
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BRIDGING THE GAP BETWEEN PROMISE AND
PERFORMANCE FOR FP4 QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The recent hardware-accelerated microscaling 4-bit floating-point formats such as
MXFP4 and NVFP4, supported on NVIDIA and AMD GPUs, promise to revolu-
tionize large language model (LLM) inference. Yet, their practical benefits remain
unproven. We present the first comprehensive study of MXFP4 and NVFP4 for
post-training quantization, revealing gaps between their promise and real-world
performance. Our analysis shows that state-of-the-art methods struggle with FP4,
due to two key issues: (1) NVFP4’s small group size provably neutralizes tradi-
tional outlier mitigation techniques; (2) MXFP4’s power-of-two scale quantization
severely degrades accuracy due to high induced error. To bridge this gap, we
introduce Micro-Rotated-GPTQ (MR-GPTQ), a variant of the classic GPTQ quan-
tization algorithm that tailors the quantization process to FP4’s unique properties,
by using block-wise Hadamard transforms and format-specific optimizations. We
support our proposal with a set of high-performance GPU kernels that enable the
MR-GPTQ format with negligible overhead, by rotation fusion into the weights,
and fast online computation of the activations. This leads to speedups vs. FP16 of
up to 3.6x layer-wise, and 2.2x end-to-end on NVIDIA B200, and of 6x layer-wise
and 4x end-to-end on RTX5090. Our extensive empirical evaluation demonstrates
that MR-GPTQ matches or outperforms state-of-the-art accuracy, significantly
boosting MXFP4, to the point where it nears that of NVFP4. We conclude that,
while FP4 is not an automatic upgrade over INT4, format-specialized methods like
MR-GPTQ can unlock a new frontier of accuracy-performance trade-offs.

1 INTRODUCTION

Post-training quantization (PTQ) [39; 20; 34] is one of the most well-researched areas in model
compression, in which the objective is to take an existing pre-trained model and reduce its size or
computation while preserving most of its accuracy. With the advent of large language models (LLMs),
PTQ has become a highly-active research area, e.g., [20; 56; 3; 14; 48; 18; 49] with significant
industry adoption and practical impact [28].

In this paper, we focus on quantization using the recently-introduced microscaling floating-point
precision formats, specifically MXFP4 [45] and NVFP4 [41]. In a nutshell, these formats work
by grouping elements into blocks of 32 or 16 elements, respectively, quantized together with a
shared scale; to reduce the storage overhead, the scales themselves are also compressed, to distinct
8-bit format: a standard sharing between Exponent and Mantissa bits (E4M3) for NVFP4, and
E8M0—essentially, rounding scales to powers-of-two—for MXFP4. As such, the NVFP4 format
trades off additional space (4.5 bits per element on average, relative to 4.25 bits for MXFP4), in favor
of additional precision. The promise of these formats is two-fold: first, they are claimed to be more
accurate than the prior-generation integer precision formats such as INT4 [38]. Second, they are
supported in hardware: NVIDIA Blackwell GPUs support matrix multiplications across both NVFP
and MXFP formats, whereas AMD GPUs will support MXFP4 [1]. Despite these developments, little
is known about the accuracy of these formats on real models or their practical performance.

Contributions. In this paper, we provide a first thorough study of the accuracy and performance
limitations of the NVFP4 and MXFP4 formats through the prism of current state-of-the-art quanti-
zation methods, coupled with computational support. We focus primarily on weight-and-activation
quantization to 4-bits per parameter, and investigate the interaction between these new formats, real
parameter distributions, and state-of-the-art quantization algorithms. Our main findings are:

• We begin with an analysis of quantization error induced by the NVFP4 and MXFP4 formats over
both Laplace-like heavy-tailed distributions, which arise in real-world weights and activations [2;

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

16], and over Normal parameter distributions, arising when processing weights and activations
via rotations in popular methods such as QuIP/QuIP# [6; 48] or QuaRot [4]. Interestingly, we
can prove analytically and show empirically that rotations improve MXFP4 accuracy, but hurt
NVFP4 accuracy when coupled with standard Round-to-Nearest (RTN) quantization.

• Based on this analysis, we propose a new variant of the GPTQ weight quantization algorithm [20],
called Micro-Rotated-GPTQ (MR-GPTQ), explicitly designed to maximize accuracy across
both MXFP4 and NVFP4. The algorithm employs Hadamard rotations at the group level to
“normalize” weights and activations, but in a novel block-wise fused form, which, as we show,
can be supported without any runtime overheads on Blackwell GPUs. In addition, MR-GPTQ
introduces a new efficient variant of the activation re-ordering heuristic for GPTQ, along with
format-specific scale search optimizations.

• We perform the first extensive study of NVFP4 and MXFP4 practical accuracy, across standard
Llama-3 [17] and Qwen-3 [52] models of different sizes, evaluated on standard zero-shot
tasks [22]. We investigate a broad set of compression methods, including RTN, GPTQ [20],
SmoothQuant [51], QuaRot [4], and SpinQuant [36], as well as our new MR-GPTQ approach.
Results show that: (1) both NVFP4 and MXFP4 are lossy, with MXFP4 inducing major accuracy
drops (∼ 10% relative), and (2) that existing techniques are not well-suited for these new formats,
as they do not always outperform RTN. On the positive side, we show that GPTQ and the
MR-GPTQ variant yield consistently good recovery for NVFP4. Moreover, MR-GPTQ works
particularly well in conjunction with MXFP4, recovering accuracy within 1-2% of NVFP4. For
large models, we show that both formats can recover up to 98-99% of the baseline FP16 accuracy.

• Our main technical contribution is a new set of GPU kernels specific to the Blackwell architecture
called QuTLASS, showing that the “micro-rotation” component of MR-GPTQ can be supported
without loss of performance relative to standard multiplications. Specifically, this comes in
the form of a lightweight fused kernel for online rotation of the activations. Remarkably, our
kernel for MXFP4 can obtain higher throughput than an ideal NVFP4 matrix multiplication.
Our kernels obtain near-ideal layer-wise speedups for both B200 and RTX5090 GPUs, of 3.6x
and 6x, respectively, leading to end-to-end inference speedups of 2x and 4x, respectively.

2 BACKGROUND ON MICROSCALING FLOATING-POINT FORMATS

General Definition. The microscaling MXFP4 and NVFP4 formats employ hierarchical quantization,
where elements within a block share a common scale factor, enabling efficient hardware imple-
mentation. Given a tensor divided into one-dimensional groups, we define a Microscaling Block
Floating-Point (MFP) representation as follows. The Group Size (G) is the number of elements in
each group before quantization. The Element Representation (E) is the format used to represent the
individual elements within each block. The Scale Representation (S): The format used to represent
the scale values for each group.

For floating-point (FP) formats, we use the notation ExMy to say that x bits are allocated to
the exponent, and y bits are allocated to the mantissa. For instance, in the standard FP4 E2M1
representation, each FP4 element consists of 1 sign bit, 2 exponent bits, and 1 mantissa bit, providing
7 distinct positive values {0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0} plus zero and the negatives.

The MXFP4 (Microscaling FP4) Format. This format [45] follows the specification (G = 32, E =
FP4, S = E8M0). Its distinguishing features are the group size of 32 and its quantization of group
scales to powers-of-two, given the use of E8M0, which dedicates all bits to the exponent and none to
the mantissa. This design choice simplifies hardware multiplication; yet, as our experiments reveal, it
often introduces quantization artifacts that can significantly impact model accuracy.

The NVFP4 (NVIDIA FP4) Format was introduced by NVIDIA for the Blackwell architecture [41],
and employs a more flexible approach with (G = 16, E = FP4, S = E4M3). While sharing the FP4
element format with MXFP4, NVFP4 differs in two key aspects. First, it uses a 16-element group size,
and, second, it uses a full FP8 representation for scales in E4M3, preserving more precise scaling
information relative to E8M0. NVFP4 trades off a more accurate representation for weight and
activation distributions, at the cost of increased bits-per-element (4.5 NVFP4 vs 4.25 for MXFP4).

Related Work. Early work on LLM quantization focused primarily on integer formats, with INT8
being the first to be investigated [12; 53], in conjunction with round-to-nearest (RTN) assignment
over groups of consecutive weights and activations. FP formats introduce new possibilities but also

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

D
en

si
ty

Laplace fit
Native activations
Kurtosis=8.75

Gaussian fit
Rotated activations
Kurtosis=0.02

Laplace fit
Native weights
Kurtosis=1.47

Gaussian fit
Rotated weights
Kurtosis=0.05

Figure 1: Distribution fits for aggregate weights and activations of Llama-3.1-8B-Instruct,
with and without rotations. The Normal distribution is clearly a good fit for rotated weights and
activations, while the Laplace distribution provides a good fit for the native distributions. Although
native weights appear Normal, they have much heavier tails, as evidenced by the Kurtosis value.

challenges: while FP8 quantization is known to be near-lossless [28], the distribution of representable
values in NVFP4/MXFP4 changes quantization dynamics. The GPTQ method [20] reached near-
lossless INT4 compression via second-order weight adjustments. Its effectiveness for FP4 formats
remains unexplored. Methods like AWQ [33], SqueezeLLM [27], and SpQR [14] relied on outlier-
aware quantization strategies that assume uniform grids and large group sizes. The FP4 formats’
small group sizes (16 or 32) and non-uniform grid inherently perform outlier mitigation, as we discuss
in our analysis. Recent extreme compression techniques like QuIP [6], QuIP# [48] and QTIP [49]
use rotation matrices to normalize the weight distributions. As we will see, this is not necessarily
helpful for FP4 microscaling formats.

LLM activations are known to be extremely challenging to quantize, due to outlier features, defined
roughly as elements up to 100× larger than average [12]. SmoothQuant [51] addresses this for INT8
by rescaling to redistribute outliers between weights and activations. Recent rotation-based methods
like QuaRot [4] and SpinQuant [36] mitigate outliers through Hadamard transforms. In this paper,
we discover novel trade-offs for these approaches.

Prior work investigating accuracy trade-offs under quantization, e.g., Yao et al. [53]; Liu et al.
[35]; Huang et al. [26]; Gong et al. [24]; Li et al. [32]; Gong et al. [23]; Lee et al. [31]; Kurtic et al.
[28] focuses almost exclusively on INT quantization. Despite industry claims about FP4’s accuracy
superiority [38; 41], rigorous evaluation remains absent so far, likely due to the recent introduction of
this format. Our work addresses this gap.

3 A QUANTIZATION ERROR ANALYSIS OF NVFP4 AND MXFP4

Prior work on quantization [39; 12; 15] identified the average and top-element (outlier) mean-square
error (MSE) as key quantities that can predict quantized model accuracy. In this section, we perform
a model-based analysis of the NVFP4 and MXFP4 formats from the prism of these metrics.

Modeling Distributions. Early work on modeling LLM parameters assumed a Normal (Gaussian)
distribution [13], consistent with common initialization schemes. Yet, more recent studies have
identified that distributions with high kurtosis, such as the Laplace or Student-t distributions, better
model the sharp peaks and outlier-prone tails of weights and activations [2; 16].

Here, we follow the latter line of work and model weights and activations as following a Laplace
distribution. At the same time, interestingly, it can be proven that, after the Hadamard rotation, these
tensors tend to follow a normal distribution [6; 48]. We empirically validate these findings via fits
over common models, illustrated in Figure 1. Formally, our modeling is as follows:
Definition 1 (Modeling). We assume that the “native” weights and activations follow the Laplace
distribution W ∼ Laplace(0, b) with density fW (w) = 1

2be
−|w|/b, and variance Var(W) = 2b2.

We fix unit variance throughout, so b = 1/
√
2. The magnitude Z = |W | is Exp(λ) with rate

λ = 1/b =
√
2, that is fZ(z) = λe−λz and FZ(z) = 1− e−λz for z ≥ 0.

We assume that weights and activations rotated via the Hadamard transform follow a Normal

distribution V ∼ N (0, 1). The magnitude Z = |V | is half-normal with fZ(z) =
√

2
π e−z2/2 and

FZ(z) = erf(z/
√
2), z ≥ 0, where where erf(z) is the standard Gauss error function 2√

π

∫ z

0
e−t2 dt.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Quantization. We model Microscaling Block Floating-Point (MFP) quantization as follows. Consider
i.i.d. blocks containing G ≥ 2 elements drawn from some distribution: X = (X1, . . . , XG) with
Var(Xi) = 1 and Zi = |Xi|. We assume a grid Q ⊂ [0, 1] that is finite, symmetric around 0, and
includes both 0 and 1; we write Q+ = Q ∩ [0, 1] and qmin = min(Q+ \ {0}). We use round-to-
nearest (RTN) quantization, assuming probability 0 for rounding ties. Next, we formally define the
scaling process. For simplicity, we will not not quantize the scale s itself, and assume that values are
normalized to [−1, 1]. We remove these assumptions in our numerical validation (Section 3.2).
Definition 2 (Scales). For a block of elements X , we define the unquantized scale s :=
max1≤i≤G |Xi|, the normalized entries Ui := Xi/s ∈ [−1, 1], the quantized normalized entries
Ûi := RTNQ(Ui), and the de-normalized quantized values X̂i := s Ûi.
Definition 3 (Quantization Metrics). For a group size G, we define: (i) The per-element MSE:
MSE(G) := E[(X1 − X̂1)

2] (by symmetry, the choice of index can be arbitrary). (ii) The top-
element MSE per block: Let I⋆ = argmax1≤i≤G |Xi|, ignoring ties. Define MSEtop(G) :=

E
[
(XI⋆ − X̂I⋆)

2
]
. We always use the same MFP map, i.e. same scale s, for both metrics.

Remark 1 (Quantization Dead-zone). The first positive quantization level in the grid Q, which we
denote by qmin, induces the dead-zone half-width δ := qmin/2 on [0, 1]. If |Ui| < δ, then Ûi = 0.

3.1 ANALYTICAL MSE BOUNDS

Next, we derive bounds on quantization error across top and average elements. First, notice that, in a
simplified setting, applying the Hadamard rotation spreads the MSE evenly among elements.
Lemma 1 (Top-Element MSE). Assume a vector x ∈ RG with coordinates i.i.d. N (0, 1), to which we
apply a Hadamard rotation, perform MFP quantization in the y-domain to produce ŷ, and reconstruct
x̂ = 1√

G
H⊤ŷ. Define the quantization error vectors εy = ŷ − y and εx = x̂− x = 1√

G
H⊤εy . The

expected squared error on the original top coordinate I⋆ = argmaxi |xi| is the per-element MSE:

MSEtop(G) = E[(εx)2I⋆] =
1

G
E∥εy∥22 = MSE(G).

Remark 2 (Outlier preservation). By contrast, it is immediate that MSEtop(G) = 0 in the absence
of the Hadamard rotation, since we are doing absmax scaling, which preserves the top element.

Asymptotic MSE Analysis. Thus, MSE is the key quantity we want to analyze. First, notice that,
for any fixed grid with dead zone δ > 0, for both Laplace and Normal models, limG→∞ MSE(G) =
Var(X1) = 1. Intuitively, this is because, as G grows, the block maximum M diverges, so |U1| =
|X1|/M → 0 in probability; the mass that survives the dead-zone vanishes. Consequently, the
dominant part of the MSE E[(X1 − X̂1)

2] becomes E[X2
11{|U1| < δ}] → E[X2

1] = 1.

To get a more granular variant, we assume the large G domain and examine the “preserved mass”:

R(G) := 1−MSE(G) = E
[
X2

1 1{|U1| ≥ δ}
]
,

which captures the mass that escapes underflow. A precise calculation yields the following:
Lemma 2 (Rates). Let δ = qmin/2 ∈ (0, 1

2) be the dead-zone halfwidth in the normalized domain.

For Laplace, we have: RL(G) = Θ
(
(logG)2G−δ

)
, and for Normal: RN(G) = Θ

(√
logGG−δ2

)
.

Discussion. Since 0 < δ2 < δ < 1, we have that, for small G, the Laplace MSE should be below the
MSE for the Normal distribution. Yet, for sufficiently large G, the Normal rate dominates the Laplace
rate, meaning that MSEN(G) < MSEL(G). As such, we predict a crossover phenomenon, where
the MSE gap in favor of the (native) Laplace distribution will be inverted for larger group size G in
favor of the transformed Normal distribution. In short, transforms should hurt the original weights at
small group sizes, and become effective as we increase it.

3.2 NUMERICAL VALIDATION

Relative Errors. In practice, the weight and activation distributions are not of unit variance. Shared
scales give us control over the variance during the quantization process, but the aggregation of the
proposed quadratic errors will be dominated by groups with higher variance. To address this, when
analyzing real weights and activations, we use the relative version of the errors proposed above.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0
.0

1
0

0
.0

1
5

M
S
E

re
l

Laplace Weights Activations

8 16 32 64 128
Group size G

0
.0

0
0

0
.0

0
5

M
S
E

re
l

to
p

8 16 32 64 128
Group size G

8 16 32 64 128
Group size G

S= E8M0
S= E4M3
HT

Figure 2: The effect of Hadamard Transform (HT) on MXFP4 (E8M0)
and NVFP4 (E4M3) quantization on Laplace distribution samples
and Llama-3.1-8B-Instruct weights and activations for various
group sizes.

10 1 101

XI

D
en

si
ty

E4M3
E3M4
E2M5

Weights
Activations
Llama 1B
Llama 3B
Llama 8B

Figure 3: Ranges of
FP8 scale format and ob-
served weight and activa-
tion magnitudes.

Definition 4 (Relative Metrics). Let I⋆ = argmax1≤i≤G |Xi| be the top group element. We define

the relative per-element MSE as MSErel(G) := E[
G∑
i=1

(Xi − X̂i)
2/

G∑
i=1

X2
i], and the top-element

MSE per block: MSErel
top(G) := E[(XI⋆ − X̂I⋆)

2/X2
I⋆
].

MSErel is a key metric in compression theory [47]; in teh context of LLM compression, Malinovskii
et al. [37] to present a linear dependence between MSErel and end-to-end accuracy decline. Ad-
ditionally, recent lattice-based PTQ methods explicitly optimize for MSErel when designing their
lattice [48; 49; 37]. For MSErel

top, Lemma 3 shows how it accurately reflects the outliers’ relative
error as long as outliers are large, rare, randomly positioned, and MSErel

top is consistent for outliers
and non-outliers (as shown by the shared scale quantization analysis below).

Figure 2 validates the analysis from Section 3.1 on samples from Laplace distribution, as well as on
real weight and activation matrices from the Llama-3.1-8B-Instruct model. For MSErel (top
row) and NVFP4 (G = 16), the Hadamard Transform has a negative effect for small G and a positive
effect for larger G, exactly as predicted. To interpret the other effects, we have to better understand
the effect of the shared scales quantization.

Shared Scales Quantization. Under fixed bit-width, microscaling floating point formats with a
shared scale (stored, e.g., in E8M0 or E4M3) trade range for accuracy. We begin our analysis by
examining the range required to fully cover weights and activations.

Figure 3 shows the logarithmic dynamic ranges of several FP8 formats and compares them with
the empirical distributions of shared scales for weights and activations across multiple models. One
can see that the dynamic range of S = E4M3 covers the full range of these distributions. Trivially,
S = E8M0, having more range, can easily cover it too. When shared scales range is less than the
dynamic range of S, they can always be represented by normal floating-point values with their relative
error (a) bounded by 2−M for mantissa precision M and (b) translation-invariant to power-of-two
shifts. For absmax quantization without rotations, this leads to MSErel

top’s being insensitive to the
shared scale magnitude in expectation over high dynamic range intervals, and, as the results, to G.
We formalize this in Lemma 4.

This allows us to explain the effects of shared scale quantization on MSErel
top by relating it to the

precision of the shared scales data type S and the base data type E. We observe the following:

(1) For MXFP4, top values inherit their precision from the base data type, and not the shared
scale data type. This is because S = E8M0 is coarser than E = E2M1, leading to shared scales
inheriting effectively constant relative error from E2M1 regardless of G, as visible in Figure 2. (2)
By contrast, for NVFP4, shared scales inherit effectively constant relative error, regardless
of G. This is because S = E4M3 is finer than E = E2M1, as visible in Figure 2. (3) Once the
Hadamard Transform is applied, the maximum element error is spread across the whole group.
This follows Lemma 1. From Figure 2, one can see that this leads to better precision than pure E2M1,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

but worse than pure E4M3. Moreover, one can see that for heavy-tailed distribution, such as Laplace
or the observed model tensors, X2

I⋆
grows faster than MSE(G) with G, leading to the error being

reduced as we increase the group size G. Yet, this effect alone is not enough for it to improve over
the E4M3 precision for reasonable group size G.

Discussion. Our analysis so far showed that the MXFP4 format induces higher MSE for RTN
quantization relative to NVFP4, and is worse at outlier preservation. At the same time, the format has
lower memory and computational costs relative to NVFP4, and is likely to benefit from normalization
via the Hadamard transform. By contrast, the NVFP4 format has lower MSE due to the smaller group
size, and top value preservation as it is “promoted” to E4M3. In addition, the NVFP4 MSE may not
benefit from normalizing transforms. In the following, we incorporate our analysis into the classic
GPTQ algorithm, obtaining a variant that is designed for FP4 formats, called MR-GPTQ.

4 MR-GPTQ: AN FP4-FOCUSED VARIANT OF THE GPTQ ALGORITHM

Standard GPTQ. Given a layer’s weights W and calibration inputs Y , GPTQ [20] aims to find
quantized weights Ŵ that minimize the output reconstruction error: ∥Y Ŵ − YW∥22. Assuming a
fixed quantization grid, GPTQ builds upon the Optimal Brain Quantization (OBQ) framework [21] to
iteratively quantize and update remaining weights to compensate for the error leveraging second-order
information, while avoiding OBQ’s high computational complexity. Specifically, while OBQ employs
a dynamic, greedy weight selection strategy for selecting the next weight to quantize, GPTQ observes
that this greedy approach offers low benefits over quantizing weights in an arbitrary, fixed order, for
heavily-parameterized layers. Thus, GPTQ quantizes weights across all rows in the same fixed order.
This enables it to share the Hessian information, used to compute error updates, among rows. GPTQ
typically implements this fixed order by processing the dimensions sequentially, column-by-column
(front-to-back). The inverse Hessian must be updated only once per column (dcol times) rather
than once per weight (drow · dcol times), which reduces the overall computational complexity from
O(drow · d3col) for OBQ, to O(max {drow · d2col, d

3
col}), providing orders-of-magnitude speedup, for a

weight matrix of size drow × dcol.

4.1 ADAPTING GPTQ TO FP4 FORMATS

Our analysis showed that, with RTN quantization, NVFP4 provides lower MSE relative to MXFP4,
due to better outlier preservation and smaller group size. GPTQ induces an orthogonal direction in
the design space, relative to RTN, as it allows for MSE error to be “corrected” by shifting it to other
weight blocks. This suggests three general solution strategies: (1) GPTQ applied to the standard
NVFP4 grid, with absmax scaling, leveraging the natural properties of NVFP4. This simply extends
RTN to GPTQ; (2) MR-GPTQ-MXFP4: GPTQ applied to the MXFP4 grid, on rotated weights and
activations, as this reduces MSE for RTN; (3) MR-GPTQ-NVFP4: GPTQ on an MSE-optimized
NVFP4 grid, with rotated weights and activations.

While the first two approaches follow naturally from our analysis, the third approach wagers that the
higher per-group local MSE caused by applying Hadamard rotations to NVFP4 can be compensated
by optimizing the scales, together with the GPTQ updates. As such, options 2 and 3 would offer a
unified rotated/normalized format, that would apply to both NVFP4 and MXFP4. Next, we describe
three key technical additions to the GPTQ algorithm that help bridge the gap between variants.

Ingredient 1: MSE-Optimized Grids. Our first step in MR-GPTQ is to identify a good initial
grid. Recall that NVFP has both tensor (global) and per-group scales, which we denote by sT and
sG, respectively. The quantized variant of the element Xi will be represented as X̂i = sT · sG ·
Q(Xi/(sT · sG)), where Q is the quantization operation. To minimize error, we solve the following
optimization problem for each tensor, across its groups: minsT ,sG1

,...,sGk

∑
i[∥X̂i −Xi∥22, where

(sGi
)i=1,k are the quantization scales for the k groups. We solve this by using alternating optimization

over the block scales and the per-tensor scale, respectively. For NVFP4 without rotations, we have
found this to yield consistent improvements. For MXFP4 with rotations, we have found that a single
static value works stably across all layers, and we therefore use this approach in our implementation.

Ingredient 2: Static Activation Reordering. The original GPTQ algorithm heuristically re-orders
the weight columns following the “dynamic act-order”, i.e., a descending order of the corresponding
Hessian diagonal entries. This matrix shuffle is applied before the quantization grid and scales are
computed. While this consistently improves accuracy, it also requires re-shuffling the matrix columns
dynamically at runtime, which results in a 10-20% end-to-end inference slow-down.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Instead, we observe that we can apply the activation re-ordering statically, i.e. after the scales and the
quantization grid have been computed in the first step, based on the original (arbitrary) column order.
In practice, we first fix the grid and scales for each group, shuffle the columns before GPTQ is applied,
and then finally shuffle the columns back, maintaining the microscaling group structure of the original
matrix. Importantly, this benefits from the improved behaviour during the quantization process itself,
without any runtime penalties. This can be applied to GPTQ over any grid, and provides similar
improvements to standard “dynamic” act-order, without the runtime overheads.

Ingredient 3: Fused Online Rotations. Our MR-GPTQ variants rotate the weights and activations
via a block-wise Hadamard transform Hk, with k × k diagonal blocks, where k is a power-of-two.
Mathematically, for a linear layer with weights W and activations Y , both quantized, the operation
occurs as Q(WHk)Q(Y HK)T , where Hk is the block-wise rotation, and Q is the quantization
function. In the next section, we describe how this format can be supported efficiently at runtime.

4.2 GPU KERNEL SUPPORT FOR MR-GPTQ VIA QUTLASS

To support the methods described above, we introduce a set of kernels optimized for NVIDIA
Blackwell GPUs. These kernels constitute QuTLASS v1.0, a high-performance library for low-
precision deep learning quantization, building on NVIDIA CUTLASS [40]. QuTLASS provides full
support for quantization- and matmul-related operations in both NVFP4 and MXFP4 micro-scaling
formats. In addition, we release architecture-optimized implementations for different NVIDIA
Blackwell compute capabilities, namely SM100 [42] and SM120 [44]. The kernels in QuTLASS can
be grouped into two categories, which will handle the computation of Q(WHk)Q(Y Hk)

T :

1. Quantization-related kernels. While the product WHk is pre-fused in the weights, YHk

occurs online. To avoid diminishing the benefits of FP4 hardware acceleration, QuTLASS provides
lightweight fused kernels for online rotation. These kernels support “unimodal” k× k block diagonal
matrices with k ∈ {16, 32, 64, 128}. For k < 256, dense transformations remain memory-bound,
meaning that any rotation (not just Hadamards) can be applied at essentially the same cost, as
the full matrix can be loaded at runtime (e.g., see Tables 11 and 12). To further reduce overhead,
quantization and scale calculation are fused into the transformation kernel as a custom epilogue
function. QuTLASS currently supports MSE and Abs-Max quantization methods, while its template-
based design allows new methods to be easily integrated.

2. Matmul-related narrow precision kernels. Between FP4 quantization and matrix multiplication,
a hardware-mandated rearrangement of scaling factors is required [43] for tcgen05.mma. QuT-
LASS implements this step using a Triton kernel. For the matmul itself, QuTLASS supports multiple
backends, including CUTLASS [40] and FlashInfer [54], enabling flexible plug-and-play backend
selection depending on workload and hardware.

5 EXPERIMENTAL RESULTS

1. Experiments with Emulated Quantization. We first evaluate the highly-popular Llama 3.1-8B-
Instruct model [17], examining the impact of quantizing both weights and activations for all linear
layers in this model to the INT4 and FP4 formats, using different algorithms. To ensure compatibility,
experiments are performed using simulated quantization in PyTorch. We use a subset of tasks from the
Open LLM Leaderboard V1 [5] for evaluation: GSM8K for grade school math [9], MMLU for world
knowledge and reasoning [25; 8], Winogrande and HellaSwag for language understanding [46; 55].
(Other tasks in this harness yield similar scores across top methods.) The INT4 experiments use
group size 32 with FP16 scales, matching the average bit-width of NVFP4.

Algorithms. We consider both weights-and-activations quantization (W4A4, our main focus) and
weight-only quantization (W4A16, as a “control”). For W4A4, we implement the following: (1)
Round-to-nearest (RTN) quantization to the corresponding format, with absmax scales. In addition,
we add Hadamard rotations matching the quantization group size (32), denoted as RTN + HT. (2)
SmoothQuant [51] diagonal rescaling, with a tuned α smoothening factor. We identified α = 0.6
to be the best in our experiments. (3) QuaRot [4], which adds Hadamard rotations strategically
at each linear layer. These should reduce quantization error, and most of them can be folded into
the model. We use RTN for quantization post-rotation. (4) SpinQuant [36], which adds trainable
rotations to the model, similarly to QuaRot. A subset of 1024 calibration sequences from FineWeb is
used for training the matrices. (5) GPTQ [20] weight quantization and RTN on the activations, with
absmax scales. A subset of 1024 calibration sequences from FineWeb, absmax scales, standard

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Format Method MMLU-CoT GSM8k HellaSwag WinoGrande Avg. Recovery %

Baseline FP16 72.76 85.06 80.01 77.90 78.93 100

INT4
RTN 65.96 74.68 77.62 74.19 73.11 92.63
RTN+HT 68.30 79.61 77.60 73.48 74.75 94.71
GPTQ 66.36 76.65 77.38 72.48 73.21 92.75

NVFP4

RTN 68.26 78.39 78.15 74.11 74.73 94.67
RTN + HT 67.41 78.01 77.31 73.48 74.05 93.82
QuaRot 66.50 77.40 77.25 75.14 74.10 93.80
SpinQuant 66.50 76.10 76.96 75.32 73.70 93.40
SmoothQuant 68.90 79.50 79.50 74.70 75.70 95.90
GPTQ 68.85 82.60 78.26 74.51 75.72 95.92
MR-GPTQ 69.12 80.80 78.17 75.24 75.84 96.08

MXFP4

RTN 62.21 67.85 73.99 73.24 69.32 87.83
RTN + HT 62.38 72.48 75.29 71.67 70.45 89.26
SmoothQuant 63.93 68.54 75.10 73.56 70.30 89.06
QuaRot 49.86 56.94 73.50 71.43 62.90 79.70
SpinQuant 61.80 68.16 74.87 72.93 69.40 88.00
GPTQ 63.49 68.46 76.01 74.51 70.62 89.47
MR-GPTQ 67.19 75.70 76.91 74.80 73.65 93.31

Table 1: Unified accuracy comparison of Llama-3.1-8B-Instruct W4A4 under different quantization
formats and methods. For each format, top methods within variance are marked in bold.

Hessian dampening factors (λ = 10−2), and standard quantization order are used. (6) MR-GPTQ
weight quantization, i.e., GPTQ with block rotations, MSE scale optimization, and static activation
re-ordering over the rotated weights, as described in Section 4.1, with RTN on the activations. As
a control, we also implement weight-only quantization, via RTN, GPTQ, AWQ [34], as well as
Hadamard rotations followed by RTN, denoted as RTN + HT. These results closely follow our
findings for W&A quantization, and are thus deferred to the Appendix. In Appendix G, we perform
an exhaustive sweep over DCT, DST, Hadamard, and GSR transforms and block sizes showing that
the Hadamard transform matching the quantization group size provides the best results on average.

Discussion. The accuracy results for W4A4 experiments on Llama-3.1-8B-Instruct are presented in
Table 1. The variance for the NVFP4 experiments (i.e., for entries in the 7th column over 5 distinct
seeds) is of approximately 0.3 average points, whereas the variance for the INT4 experiments is of
approximately 1 point. We mark all top aggregate entries (within 2 standard deviations) as bold in the
corresponding columns. We observe the following:

(1) No Lossless Format: Across all formats, the accuracy drop is noticeable. The lowest average
drop is for the NVFP4 format with SmoothQuant, GPTQ, or MR-GPTQ (these results are within
variance of each other). The weight quantization results (Appendix Table 2), show that the induced
error is roughly evenly split between weight and activation quantization. These results suggest that
micro-scaling is not a direct solution for accuracy recovery. (2) NVFP4 provides the best accuracy,
with INT4 second, and MXFP4 third: On average, NVFP4 and INT4 quantization provide similar
quality, with INT4 quantization having higher variance. The MXFP4 format is a distant third in
terms of accuracy, regardless of the method used, but benefits significantly from MR-GPTQ. (3)
Quantization Method Efficiency: First, we note the good performance of standard RTN for INT4
(with rotations) and NVFP4 (without). Second, the Hadamard transform appears effective for INT4
and MXFP4 (which use group size 32), but is less effective for NVFP4 (which uses group size
16), confirming our analysis. In particular, for round-to-nearest quantization, adding the Hadamard
transform to NVFP4 hurts accuracy. Finally, the GPTQ and SmoothQuant methods appear to be
consistently—but moderately—effective across all three formats.

2. Real Quantization. We integrate our kernels in vLLM [29], and perform accuracy evaluations
directly in this setup over additional models, such as Llama-3.3-70B-Instruct [17], and the Qwen3 [52]
family of models. The results are presented in Figure 4. For this experiment, we also provide results
for Quantization-Aware Training (QAT) performed using the balanced Generalized Jensen-Shannon
Divergence loss [19] between the quantized and the unquantized (frozen) model token distributions
on a subset of 92,995 samples (10%) from the Tülu 3 [30] instructions dataset. The results show that
accuracies measured over real kernels for the Llama-3.1-8B-Instruct model track closely with the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

results from simulation, with slightly lower recoveries (within 0.2-0.3%). Smaller models (< 8B)
and Llama-family models tend to have lower recovery rates, whereas Qwen3 models can achieve
more than 99% average recovery in NVFP4. For NVFP4, standard GPTQ provides the highest
recoveries on average, although RTN and MR-GPTQ are also competitive, with QAT only providing
very limited benefits. For MXFP4, MR-GPTQ provides the best recovery among PTQ methods,
while QAT consistently reduces the gap to full precision.

Format Method Llama3 Qwen3
1B 3B 8B 70B 8B 14B 32B

NVFP4

RTN 83.9 94.4 94.8 98.6 98.9 98.5 99.8
RTN+HT 80.9 91.0 93.8 98.5 96.0 98.1 98.1
GPTQ 85.7 95.5 95.7 99.1 98.1 98.7 99.5
MR-GPTQ 87.3 93.7 95.8 98.3 97.4 98.9 98.3
QAT 86.1 96.6 95.4 – 97.8 – –
QAT+HT 87.1 95.3 96.5 – 98.8 – –

MXFP4

RTN 67.7 87.2 88.1 96.8 93.7 96.3 91.8
RTN+HT 74.4 86.1 89.3 97.8 93.6 96.0 98.7
GPTQ 68.4 87.0 89.7 97.9 94.1 96.2 96.7
MR-GPTQ 79.8 92.7 93.3 98.4 95.2 97.3 95.6
QAT 68.2 90.1 92.3 – 97.0 – –
QAT+HT 84.5 94.1 95.4 – 98.4 – –

Figure 4: Per-model recoveries with real quantization.

3. Kernel and Inference Perfor-
mance. Finally, in Figure 5, we ex-
amine the performance of our ker-
nels. On the left, we show through-
put for a single layer extracted from
a Llama-3.3-70B model using Flash-
Infer as a backend. The curve la-
beled with “ideal” represents the up-
per bound for a real 4-bit weight
and 4-bit activation matrix multipli-
cation, i.e., the measured matmul
throughput not including the over-
head of quantization-related opera-
tions. In contrast, the curves labeled
“actual” show real measurements including the costs of Hadamards, quantization, and scale com-
putation. The comparison highlights the small gap between idealized efficiency and practical
implementations with our kernels, with speedups of up to ≈ 3.6× (out of 4×) on B200 and ≈ 6×
(out of 8×) on RTX5090.

Interestingly, MXFP4 outperforms NVFP4 on B200, with up to ≈ 15% higher throughput, despite
their closely related numerical formats. Possible contributing factors include MXFP4’s use of
potentially more efficient power-of-two scales as well as larger group sizes, which could reduce
overhead. On the right, the end-to-end speedup of vLLM running Llama-3.3-70B with MXFP4
quantization compared to the baseline BF16 implementation on a single B200 GPU. The results
demonstrate consistent performance gains across batch sizes, with speedups reaching up to 2.2× over
the BF16 baseline, and nearly 4× on an RTX 5090 GPU (see Appendix E for more details).

1 16 32 64 128 256 512 1024 2048 4096 8192
Batch size

0

1000

2000

3000

4000

5000

TF
LO

Ps
/s

 o
n

B
20

0

Weight Shape: 57344x8192 (OUTxIN)

Ideal MXFP4
Actual
 MXFP4+Hk128
Ideal NVFP4
Actual NVFP4
torch BF16

32 64 128 256 512 1024 2048 4096 8192
Batch size

 (QuTLASS + CUTLASS GEMM backend)

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

ov
er

 B
F1

6

vLLM - Llama3.3 70B MXFP4
 1xB200, Prompt/Decode 32/128

Figure 5: QuTLASS performance for weights and activations while increasing batch size, for a single
linear LLM layer (left), and end-to-end using our vLLM integration (right).

6 CONCLUSION

We presented a first comprehensive study of the recently introduced MXFP4 and NVFP4 formats for
LLM quantization, revealing gaps between the promise of these formats and their performance using
state-of-the-art methods. To bridge these gaps, we introduced Micro-Rotated-GPTQ (MR-GPTQ), a
novel GPTQ variant adapted to these formats. We support this approach with QuTLASS, a suite of
high-performance GPU kernels that implement MR-GPTQ’s micro-rotations with negligible overhead.
We hope that our results will provide a basis and a motivation for future work on improving accuracy
for these novel formats.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of the study we provide the experimental code as well as the QuTLASS
library in the supplementary material.

REFERENCES

[1] Advanced Micro Devices, Inc. AMD CDNA™ 4 Architecture Whitepaper. White
paper, Advanced Micro Devices, Inc., June 2025. URL https://www.amd.com/
content/dam/amd/en/documents/instinct-tech-docs/white-papers/
amd-cdna-4-architecture-whitepaper.pdf. Accessed: 2025-09-24.

[2] Mohammad Sadegh Akhondzadeh, Aleksandar Bojchevski, Evangelos Eleftheriou, and Martino
Dazzi. Kurtail : Kurtosis-based llm quantization, 2025. URL https://arxiv.org/abs/
2503.01483.

[3] Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Towards end-to-end 4-bit inference on generative large language
models. arXiv preprint arXiv:2310.09259, 2023.

[4] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan
Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated
llms. arXiv preprint arXiv:2404.00456, 2024.

[5] Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard (2023-
2024). https://huggingface.co/spaces/open-llm-leaderboard-old/
open_llm_leaderboard, 2023.

[6] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantiza-
tion of large language models with guarantees. Advances in Neural Information Processing
Systems, 36, 2024.

[7] Euntae Choi, Sumin Song, Woosang Lim, and Sungjoo Yoo. Grouped sequency-arranged
rotation: Optimizing rotation transformation for quantization for free, 2025. URL https:
//arxiv.org/abs/2505.03810.

[8] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[10] Tri Dao. Fast hadamard transform in cuda, 2023. URL https://github.com/
Dao-AILab/fast-hadamard-transform.

[11] Tim Dettmers. 8-bit approximations for parallelism in deep learning. International Conference
on Learning Representations (ICLR), 2016.

[12] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems,
35:30318–30332, 2022.

[13] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

[14] Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized
representation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078,
2023.

10

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-4-architecture-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-4-architecture-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-4-architecture-whitepaper.pdf
https://arxiv.org/abs/2503.01483
https://arxiv.org/abs/2503.01483
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://arxiv.org/abs/2505.03810
https://arxiv.org/abs/2505.03810
https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[15] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[16] Johannes Dotzel, Zirui Liu, T.S. Jayram, and G. Edward Suh. Learning from students: Applying
t-distributions to explore accurate and efficient formats for llms. In Proceedings of the 41st
International Conference on Machine Learning, Proceedings of Machine Learning Research.
PMLR, 2024.

[17] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[18] Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. arXiv
preprint arXiv:2401.06118, 2024.

[19] Erik Englesson and Hossein Azizpour. Generalized jensen-shannon divergence loss for learning
with noisy labels, 2021. URL https://arxiv.org/abs/2105.04522.

[20] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[21] Elias Frantar, Sidak Pal Singh, and Dan Alistarh. Optimal Brain Compression: A framework
for accurate post-training quantization and pruning. arXiv preprint arXiv:2208.11580, 2022. In
NeurIPS 2022.

[22] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-
shot language model evaluation, September 2021. URL https://doi.org/10.5281/
zenodo.5371628.

[23] Ruihao Gong, Yang Yong, Shiqiao Gu, Yushi Huang, Chentao Lv, Yunchen Zhang, Xianglong
Liu, and Dacheng Tao. Llmc: Benchmarking large language model quantization with a versatile
compression toolkit, 2024. URL https://arxiv.org/abs/2405.06001.

[24] Zhuocheng Gong, Jiahao Liu, Jingang Wang, Xunliang Cai, Dongyan Zhao, and Rui Yan.
What makes quantization for large language model hard? an empirical study from the lens of
perturbation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
18082–18089, 2024.

[25] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[26] Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng, Chengtao Lv, Hong Chen, Jie Luo,
Xiaojuan Qi, Xianglong Liu, and Michele Magno. How good are low-bit quantized llama3
models? an empirical study, 2024.

[27] Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

[28] Eldar Kurtic, Alexandre Noll Marques, Shubhra Pandit, Mark Kurtz, and Dan Alistarh. “give
me BF16 or give me death”? accuracy-performance trade-offs in llm quantization. In Wanxiang
Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 26872–26886, Vienna, Austria, July 2025. Association for Computational
Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1304. URL https:
//aclanthology.org/2025.acl-long.1304/.

[29] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

11

https://arxiv.org/abs/2105.04522
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://arxiv.org/abs/2405.06001
https://aclanthology.org/2025.acl-long.1304/
https://aclanthology.org/2025.acl-long.1304/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[30] Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh
Hajishirzi. Tülu 3: Pushing frontiers in open language model post-training. arXiv preprint
arXiv:2411.15124, 2024. URL https://arxiv.org/abs/2411.15124.

[31] Jemin Lee, Sihyeong Park, Jinse Kwon, Jihun Oh, and Yongin Kwon. A comprehensive
evaluation of quantized instruction-tuned large language models: An experimental analysis up
to 405b. arXiv preprint arXiv:2409.11055, 2024.

[32] Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao
Dai, Huazhong Yang, and Yu Wang. Evaluating quantized large language models. arXiv preprint
arXiv:2402.18158, 2024.

[33] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for llm compression and acceleration. In Proceedings of the Learning on Systems (MLSys)
Conference, 2024.

[34] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems,
6:87–100, 2024.

[35] Peiyu Liu, Zikang Liu, Ze-Feng Gao, Dawei Gao, Wayne Xin Zhao, Yaliang Li, Bolin Ding,
and Ji-Rong Wen. Do emergent abilities exist in quantized large language models: An empirical
study. arXiv preprint arXiv:2307.08072, 2023.

[36] Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman
Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant–llm
quantization with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

[37] Vladimir Malinovskii, Andrei Panferov, Ivan Ilin, Han Guo, Peter Richtárik, and Dan Alistarh.
HIGGS: Pushing the limits of large language model quantization via the linearity theorem.
In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 10857–10886, Albuquerque,
New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-
6. doi: 10.18653/v1/2025.naacl-long.543. URL https://aclanthology.org/2025.
naacl-long.543/.

[38] Gunjan Mehta, Justin Xin, Riyad Islam, Yiheng Zhang, Asfiya Baig, Akhil Goel, and Sandro
Cavallari. NVIDIA TensorRT Unlocks FP4 Image Generation for NVIDIA Blackwell GeForce
RTX 50 Series GPUs. NVIDIA Technical Blog, May 2025.

[39] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort.
Up or down? Adaptive rounding for post-training quantization. In International Conference on
Machine Learning (ICML), 2020.

[40] NVIDIA. Cutlass: Cuda templates for linear algebra subroutines, 2017. URL https://
github.com/NVIDIA/cutlass.

[41] NVIDIA. Nvidia blackwell architecture technical brief. "https://resources.nvidia.
com/en-us-blackwell-architecture", 2024.

[42] NVIDIA. NVIDIA DGX B200. https://resources.nvidia.com/
en-us-dgx-systems/dgx-b200-datasheet?ncid=no-ncid, 2025.

[43] NVIDIA. cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html#
d-block-scaling-factors-layout, 2025.

[44] NVIDIA. NVIDIA RTX Blackwell GPU Architecture. https://
images.nvidia.com/aem-dam/Solutions/geforce/blackwell/
nvidia-rtx-blackwell-gpu-architecture.pdf, 2025.

12

https://arxiv.org/abs/2411.15124
https://aclanthology.org/2025.naacl-long.543/
https://aclanthology.org/2025.naacl-long.543/
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
"https://resources.nvidia.com/en-us-blackwell-architecture"
"https://resources.nvidia.com/en-us-blackwell-architecture"
https://resources.nvidia.com/en-us-dgx-systems/dgx-b200-datasheet?ncid=no-ncid
https://resources.nvidia.com/en-us-dgx-systems/dgx-b200-datasheet?ncid=no-ncid
https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout
https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[45] Open Compute Project Foundation (MX Alliance). OCP Microscaling Formats
(MX) Specification Version 1.0. Open Compute Project Foundation Technical Speci-
fication, September 2023. URL https://www.opencompute.org/documents/
ocp-microscaling-formats-mx-v1-0-spec-final-pdf.

[46] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[47] Claude E. Shannon. Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute
of Radio Engineers, International Convention Record, vol. 7, 1959., pp. 325–350. 1993. doi:
10.1109/9780470544242.ch21.

[48] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks, 2024. URL
https://arxiv.org/abs/2402.04396.

[49] Albert Tseng, Qingyao Sun, David Hou, and Christopher De Sa. QTIP: Quantization with
Trellises and Incoherence Processing. In Advances in Neural Information Processing Systems
(NeurIPS) Spotlight, December 2024. URL https://arxiv.org/abs/2406.11235.

[50] Albert Tseng, Tao Yu, and Youngsuk Park. Training llms with mxfp4, 2025. URL https:
//arxiv.org/abs/2502.20586.

[51] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

[52] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[53] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
In Advances in Neural Information Processing Systems (NeurIPS 2022), 2022.

[54] Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, and Luis Ceze. Flashinfer: Efficient and
customizable attention engine for llm inference serving. arXiv preprint arXiv:2501.01005, 2025.
URL https://arxiv.org/abs/2501.01005.

[55] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[56] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

13

https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2406.11235
https://arxiv.org/abs/2502.20586
https://arxiv.org/abs/2502.20586
https://arxiv.org/abs/2501.01005

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A WEIGHT-ONLY QUANTIZATION RESULTS

The results for weight-only quantization are provided in Table 2. One can observe that similary to the
weight and activation quantization case INT4 and NVFP4 perform similarly, while MXFP suffers
much significant accuracy drop. Even for weight-only case there is 2% accuracy drop on average
relative to the original model.

Format Quantization MMLU GSM8k HellaSwag WinoGrande Avg. Recovery%

FP16 - 72.80 85.10 80.00 78.90 79.70 –

INT4
RTN 69.38 81.80 79.41 77.90 77.12 97.71

RTN+Had 70.27 82.56 79.18 76.64 77.16 97.76
GPTQ 70.25 80.52 79.01 76.64 76.60 97.05

NVFP4

RTN 70.64 82.26 79.24 77.35 77.37 98.02
RTN+Had 69.26 80.82 78.52 77.03 76.41 96.80

GPTQ 70.52 82.49 79.35 76.95 77.33 97.96
AWQ 70.57 82.71 79.30 77.03 77.40 98.06

MXFP

RTN 68.23 80.36 77.26 75.93 75.44 95.58
RTN+Had 66.24 77.56 77.34 74.11 73.81 93.51

GPTQ 68.79 81.43 78.40 76.88 76.37 96.76
AWQ 68.16 78.70 78.56 75.30 75.18 95.25

Table 2: Performance of Llama-3.1-8B-Instruct under different weight-only quantization settings.

B REAL QUANTIZATION RESULTS

In this section we provide a complete set of evaluation results for Llama-3 (Llama-3.2-1B-Instruct,
Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct, Llama-3.3-70B-Instruct) and Qwen-3 (Qwen-3-8B,
Qwen-3-14B, Qwen-3-32B) model families. We turn off thinking mode for Qwen as it turned out
that long reasoning chains-of-thought turned out to be detrimental for performance on GSM8k and
MMLU-CoT. The scores were produced using QuTLASS vLLM integration.

Format Quantization MMLU GSM8k HellaSwag WinoGrande Avg. Recovery%

- FP16 46.20 46.32 59.78 61.56 53.47 –

NVFP

RTN 36.08 31.39 54.77 57.22 44.87 83.91
RTN+Had16 32.80 25.02 56.24 59.04 43.28 80.94
RTN+Had128 38.28 29.95 54.27 58.41 45.23 84.59
GPTQ 37.79 29.80 55.48 60.22 45.82 85.71
GPTQ+Had16 38.99 32.98 56.66 58.17 46.70 87.35
GPTQ+Had128 35.47 31.16 57.02 59.19 45.71 85.50
QAT 27.85 38.51 57.52 60.30 46.05 86.12
QAT+Had16 32.72 37.60 57.53 58.41 46.57 87.09

MXFP

RTN 30.46 11.83 48.28 54.22 36.20 67.70
RTN+Had32 30.89 19.41 51.64 57.22 39.79 74.42
RTN+Had128 34.48 25.55 53.98 58.01 43.01 80.44
GPTQ 26.84 13.50 49.29 56.75 36.60 68.45
GPTQ+Had32 29.44 27.60 54.89 58.72 42.66 79.80
GPTQ+Had128 35.68 28.13 54.60 58.72 44.28 82.83
QAT 15.60 20.32 53.34 56.51 36.44 68.16
QAT+Had32 28.12 36.85 57.04 58.80 45.20 84.55

Table 3: Performance of Llama-3.2-1B-Instruct for different weight & activation quantization settings.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Format Quantization MMLU GSM8k HellaSwag WinoGrande Avg. Recovery%

- FP16 64.43 78.01 73.42 70.09 71.49 –

NVFP

RTN 60.62 70.43 70.99 68.03 67.52 94.45
RTN+Had16 59.91 64.82 69.77 65.59 65.02 90.96
RTN+Had128 54.34 67.48 69.69 66.93 64.61 90.38
GPTQ 61.76 70.36 71.07 69.93 68.28 95.51
GPTQ+Had16 60.26 68.76 71.05 67.80 66.97 93.68
GPTQ+Had128 60.19 70.89 70.97 68.19 67.56 94.51
MicroQAT+Had16 60.66 69.98 70.55 67.01 67.05 93.79
QAT 62.06 75.06 71.27 67.96 69.09 96.64
QAT+Had16 62.03 72.93 70.95 66.46 68.09 95.25

MXFP

RTN 56.81 60.80 67.30 64.56 62.37 87.24
RTN+Had32 55.58 57.77 68.56 64.33 61.56 86.11
RTN+Had128 55.95 60.80 67.57 64.88 62.30 87.15
GPTQ 57.68 62.32 63.87 64.88 62.19 86.99
GPTQ+Had32 59.79 68.92 69.50 66.85 66.27 92.69
GPTQ+Had128 59.56 67.78 70.08 68.03 66.36 92.83
MicroQAT+Had32 59.49 65.66 69.05 67.32 65.38 91.46
QAT 56.17 64.90 69.51 67.17 64.44 90.14
QAT+Had32 59.83 72.48 70.27 66.54 67.28 94.11

Table 4: Performance of Llama-3.2-3B-Instruct for different weight & activation quantization settings.

Format Quantization MMLU-CoT GSM8k HellaSwag WinoGrande Avg. Recovery%

- FP16 72.80 85.10 80.00 77.90 78.90 –

NVFP

RTN 68.70 78.70 78.40 73.40 74.80 94.80
RTN+Had 67.00 77.40 77.30 74.40 74.00 93.80
RTN+Had128 66.60 77.00 77.50 75.50 74.10 93.90
GPTQ 68.60 79.60 78.70 75.50 75.60 95.70
GPTQ+Had 69.40 79.60 78.40 75.10 75.60 95.80
GPTQ+Had128 68.90 79.50 78.30 73.60 75.10 95.10
QAT 68.20 79.80 78.90 74.40 75.30 95.40
QAT+Had 68.90 81.60 79.00 75.10 76.10 96.50

MXFP

RTN 62.20 69.50 73.80 72.60 69.50 88.10
RTN+Had 62.60 71.80 75.20 72.30 70.50 89.30
RTN+Had128 64.50 72.70 76.00 73.30 71.60 90.70
GPTQ 63.74 70.20 75.52 7364 70.78 89.66
GPTQ+Had 67.20 77.50 77.00 73.10 73.70 93.30
GPTQ+Had128 66.80 78.30 76.90 74.90 74.20 94.00
QAT 65.00 76.00 77.60 72.90 72.90 92.30
QAT+Had 67.60 80.30 78.30 74.90 75.30 95.40

Table 5: Performance of Llama-3.1-8B-Instruct for different weight & activation quantization settings.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Format Quantization MMLU GSM8k HellaSwag WinoGrande Avg. Recovery%

- FP16 86.55 95.07 86.22 84.93 88.19 –

NVFP

RTN 85.50 93.48 85.63 83.27 86.97 98.61
RTN+Had16 85.02 93.63 84.97 83.82 86.86 98.49
RTN+Had128 85.24 91.81 84.91 83.35 86.33 97.89
GPTQ 85.54 94.09 85.49 84.37 87.37 99.07
GPTQ+Had16 85.58 93.40 85.45 82.40 86.71 98.32
GPTQ+Had128 85.59 94.16 85.56 84.77 87.52 99.24

MXFP

RTN 83.42 92.65 83.93 81.45 85.36 96.79
RTN+Had32 83.86 93.56 84.13 83.58 86.28 97.83
RTN+Had128 84.37 94.47 84.22 82.40 86.37 97.93
GPTQ 83.77 94.47 84.41 82.64 86.32 97.88
GPTQ+Had32 84.82 94.54 84.66 83.11 86.78 98.40
GPTQ+Had128 84.90 93.90 84.80 83.80 86.86 98.48

Table 6: Performance of Llama-3.3-70B-Instruct for different weight & activation quantization
settings.

Format Quantization MMLU GSM8k HellaSwag WinoGrande Avg. Recovery%

- FP16 72.98 90.90 75.52 70.56 77.49 –

NVFP

RTN 70.78 90.30 74.63 70.72 76.61 98.86
RTN+Had16 70.19 86.35 73.02 68.11 74.42 96.04
RTN+Had128 69.09 86.66 73.47 67.96 74.30 95.88
GPTQ 70.90 88.17 75.01 70.09 76.04 98.13
GPTQ+Had16 71.06 88.32 74.58 68.03 75.50 97.43
GPTQ+Had128 70.45 87.41 74.25 68.90 75.25 97.11
QAT 70.94 89.08 74.67 68.51 75.80 97.82
QAT+Had16 71.34 89.23 75.24 70.40 76.55 98.79

MXFP

RTN 67.69 84.23 71.24 67.40 72.64 93.74
RTN+Had32 67.57 83.78 71.32 67.32 72.50 93.56
RTN+Had128 67.27 81.58 71.41 66.38 71.66 92.48
GPTQ 68.01 84.23 71.65 67.80 72.92 94.11
GPTQ+Had32 69.13 84.84 73.17 68.03 73.79 95.23
GPTQ+Had128 69.53 86.43 73.55 65.75 73.82 95.26
QAT 69.45 87.34 74.03 69.85 75.17 97.00
QAT+Had32 70.35 89.61 74.61 70.56 76.28 98.44

Table 7: Performance of Qwen-8B for different weight & activation quantization settings.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Format Quantization MMLU GSM8k HellaSwag WinoGrande Avg. Recovery%

- FP16 77.18 91.96 79.84 74.27 80.81 –

NVFP

RTN 75.73 91.28 78.36 73.16 79.63 98.54
RTN+Had16 74.98 92.04 77.76 72.38 79.29 98.12
RTN+Had128 74.46 91.13 77.60 71.98 78.79 97.50
GPTQ 74.88 91.28 78.40 74.51 79.77 98.71
GPTQ+Had16 75.49 91.43 78.38 74.51 79.95 98.94
GPTQ+Had128 75.10 90.52 78.30 72.77 79.17 97.97

MXFP

RTN 72.92 90.22 76.68 71.51 77.83 96.31
RTN+Had32 73.19 89.54 75.95 71.67 77.59 96.01
RTN+Had128 73.17 85.60 76.80 72.14 76.93 95.19
GPTQ 72.57 89.54 76.50 72.45 77.77 96.23
GPTQ+Had32 74.36 89.92 77.64 72.53 78.61 97.28
GPTQ+Had128 74.11 89.92 77.77 71.11 78.23 96.80

Table 8: Performance of Qwen-14B for different weight & activation quantization settings.

Format Quantization MMLU GSM8k HellaSwag WinoGrande Avg. Recovery%

- FP16 80.81 92.04 83.97 76.56 83.35 –

NVFP

RTN 79.85 94.24 83.27 75.22 83.15 99.76
RTN+Had16 78.90 89.23 82.60 76.48 81.80 98.15
RTN+Had128 78.49 89.69 82.47 75.37 81.51 97.79
GPTQ 79.54 92.87 83.24 75.93 82.90 99.46
GPTQ+Had16 78.60 90.90 82.93 75.14 81.89 98.26
GPTQ+Had128 79.11 90.52 83.15 76.09 82.22 98.65

MXFP

RTN 77.07 72.33 81.52 75.22 76.54 91.83
RTN+Had32 78.22 93.03 81.76 75.93 82.24 98.67
RTN+Had128 78.36 88.10 81.66 75.30 80.86 97.01
GPTQ 77.01 88.55 81.79 74.90 80.56 96.66
GPTQ+Had32 78.46 82.41 82.72 75.06 79.66 95.58
GPTQ+Had128 78.90 90.90 82.29 75.22 81.83 98.18

Table 9: Performance of Qwen-32B for different weight & activation quantization settings.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C SCALE QUANTIZATION ANALYSIS

As discussed in the main text, microscaling formats adopt scale quantization to reduce memory storage
overhead and accelerate dequantization operations. However, scale quantization may introduce
additional error due to rounding of scales onto a coarser grid. Below we provide an analysis and
explore alternative choices for scale quantization.

MXFP format adopts E8M0 grid with exponentially spaced levels. It allows to represent values with
very small and large magnitude, yet the distance between adjacent levels can be pretty large resulting
in large approximation errors. E4M3 grid used in NVFP, on the other hand, has much narrower
dynamic range [−448, 448] with levels spread more uniformly. We note, that the sign bit is in fact
never utilized, given that the scale is a non-negative value by definition.

Below, we explore several choices for 8-bit scale quantization with a fixed group size of 16. Specifi-
cally, we measure weight and activation MSErel for a range of EeMm formats with e + m = 7, as
well as for E8M0 and INT8. For E8M0 scale quantization, we multiply the scale by 4/3 following
[50], which yields an unbiased estimate of the original scale and reduces quantization error. Results
for weight and activation quantization are shown in Figure 6 and Figure 7, respectively.

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1

0.010

0.012

0.014

0.016

0.018

‖W
−
Q

(W
)‖

2 2
 /
‖W
‖2 2

self_attn.q_proj
FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1

0.010

0.012

0.014

0.016

0.018

self_attn.k_proj
FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1

0.010

0.012

0.014

0.016

0.018

self_attn.v_proj
FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1

0.010

0.012

0.014

0.016

0.018

self_attn.o_proj
FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1
FP8 Format

0.010

0.012

0.014

0.016

0.018

‖W
−
Q

(W
)‖

2 2
 /
‖W
‖2 2

mlp.gate_proj
FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1
FP8 Format

0.010

0.012

0.014

0.016

0.018

0.020
mlp.up_proj

FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1
FP8 Format

0.010

0.012

0.014

0.016

0.018

0.020
mlp.down_proj

FP16 Scales
INT8 Scales
E8M0 Scales

Figure 6: MSErel for the weights of 15th block in the Llama-3.1-8B-Instruct model.

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1
0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

‖X
−
Q

(X
)‖

2 2
 /
‖X
‖2 2

self_attn.q_proj
FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1
0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

self_attn.k_proj
FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1
0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

0.0275

self_attn.v_proj
FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1
0.008

0.010

0.012

0.014

0.016

0.018

0.020

self_attn.o_proj
FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1
FP8 Format

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

‖X
−
Q

(X
)‖

2 2
 /
‖X
‖2 2

mlp.gate_proj
FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1
FP8 Format

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022
mlp.up_proj

FP16 Scales
INT8 Scales
E8M0 Scales

E1M6 E2M5 E3M4 E4M3 E5M2 E6M1
FP8 Format

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

mlp.down_proj
FP16 Scales
INT8 Scales
E8M0 Scales

Figure 7: MSErel for the activations of 15th block in the Llama-3.1-8B-Instruct model.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

One can observe that the E4M3 and E8M0 scales are not optimal for weight scale quantization. E4M3
and E8M0 increase MSErel by 10%, 40% on average, respectively. At the same time, FP8 options
with larger mantissa (E1M6-E3M4) as well as INT8 perform close to FP4 without scale quantization.
The pattern for activation pattern is similar except for the case of down_proj in feedforward layer,
which is known to have a more heavy-tailed distribution with pronounced outliers. We note that the
observed behavior generalizes to other models considered in our study.

D OUTLIERS ANALYSIS

Proof of Lemma 1. Let U = 1√
G
H be the normalized Hadamard matrix. U is orthogonal (U⊤U =

IG). The error vectors are related by εx = x̂− x = U⊤ŷ − U⊤y = U⊤(ŷ − y) = U⊤εy. Since U
is orthogonal, it preserves the Euclidean norm: ∥εx∥22 = ∥U⊤εy∥22 = ∥εy∥22. The per-element Mean
Squared Error (MSE) is defined as:

MSE(G) =
1

G
E[∥εx∥22] =

1

G
E[∥εy∥22].

This establishes the second equality.

To prove the first, we rely on the standard assumption in quantization analysis that the quantization
error εy is statistically independent of the signal y. Since x and y are related by the invertible
transformation x = U⊤y, εy is also independent of x. Consequently, the reconstruction error
εx = U⊤εy is also going to be independent of x.

The index I⋆ = argmaxi |xi| is a function of x. Therefore, the error vector εx (and its components)
is independent of the random index I⋆. Further, since the coordinates of x are i.i.d., we can apply
symmetry to obtain that the probability that any coordinate i has the largest magnitude is uniform:
P (I⋆ = i) = 1/G.

We calculate the Top-Element MSE using the Law of Total Expectation:

MSEtop(G) = E[(εx)2I⋆]

=

G∑
i=1

E[(εx)2I⋆ | I⋆ = i]P (I⋆ = i)

=

G∑
i=1

E[(εx)2i | I⋆ = i] · 1

G
.

Because (εx)
2
i is independent of the event {I⋆ = i}, the conditional expectation simplifies to

E[(εx)2i | I⋆ = i] = E[(εx)2i]. Substituting yields:

MSEtop(G) =
1

G

G∑
i=1

E[(εx)2i]

=
1

G
E

[
G∑
i=1

(εx)
2
i

]
(by linearity of expectation)

=
1

G
E[∥εx∥22] = MSE(G).

This completes the proof.

Lemma 3 (Outliers MAPE). Let distribution X be a mix of two distributions: Xbase and Xoutliers

with portions 1− p and p such that:

1. min(|Xoutliers|) > max(|Xbase|),

2. MSErel
top(X ∼ X|XI⋆ ∼ Xoutliers) = MSErel

top(X ∼ X|XI⋆ ∼ Xbase),

3. p ·G ≪ MSErel
top(X).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Then the expected outlier relative quadratic error equals MSErel
top(X) up to O(pG):

EX∼X


G∑
i=1

λXi∼Xoutliers
· (Xi−X̂i)

2

X2
i

G∑
i=1

λXi∼Xoutliers

 ≈ MSErel
top(X ∼ X).

Proof. We expand the expectation conditioned on XI⋆ ∼ Xoutliers:

EX∼X

∑G
i=1 λXi∼Xoutliers

· (Xi−X̂i)
2

X2
i∑G

i=1 λXi∼Xoutliers


= EX∼X |XI⋆∼Xoutliers

 (XI⋆−X̂I⋆)
2

X2
I⋆

+
∑

i ̸=I⋆
λXi∼Xoutliers

· (Xi−X̂i)
2

X2
i

1 +
∑

i ̸=I⋆
λXi∼Xoutliers


= EX∼X |XI⋆∼Xoutliers

[
(XI⋆ − X̂I⋆)

2

X2
I⋆

]
+O(pG).

By Assumption 2 this conditional expectation equals MSErel
top(X), up to O(pG) from Assumption 3.

Hence the claim follows.

Discussion. Assumption 1 is satisfied for outliers chosen by absolute value thresholds. Assumption
2 holds for floating-point quantization due to constant relative accuracy (no overflow/underflow),
verified in Section 3.2. Assumption 3 holds in practice for LLMs since outliers are typically about
0.1% of elements [11].
Lemma 4 (Consistency of MSErel

top for smooth distributions). Let X be a distribution of values to
quantize with a power-of-two translation-invariant quantization function

Q : ∀x ∈ R+,∀k ∈ Z : Q(x · 2k) = 2k ·Q(x).

Assume:

1. suppX ⊂ [2a, 2b] for integers a < b,

2. ∀x ∈ suppX ,∀y ∈ [x/
√
2, x ·

√
2] : |fX (x)− fX (y)| ≤ α,

3. (x−Q(x))2

x2 ≤ MSErel
max.

Then

Ex∼X

[
(x−Q(x))2

x2

]
=

∫ 2

1

(x−Q(x))2

x2
dx + O

(
(2b − 2a)MSErel

max · α
)
.

Proof. We decompose the expectation over dyadic intervals:

Ex∼X

[
(x−Q(x))2

x2

]
=

b−1∑
i=a

∫ 2i+1

2i

(x−Q(x))2

x2
fX (x) dx.

Within each interval, write fX (x) = fX (2i) + (fX (x)− fX (2i)). The first term yields∫ 2

1

(x−Q(x))2

x2
dx ·

b−1∑
i=a

2ifX (2i).

The second term is bounded using Assumption 2 and 3, giving
b−1∑
i=a

∫ 2i+1

2i
MSErel

max ·O(α) dx = (2b − 2a) ·MSErel
max ·O(α).

Finally, the normalization error in the discrete approximation of
∫
fX contributes an additional O(α)

factor. Combining terms gives the stated result.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Discussion. Assumptions 1 and 3 hold for absmax XI∗ quantization since floating-point values are
bounded with bounded relative error. Assumption 2 is supported empirically (Figure 3), where scale
distributions are observed to be smooth.

E QUTLASS RESULTS ON GEFORCE GPUS

1 16 32 64 128 256 512 1024 2048
Batch size

0

200

400

600

800

1000

1200

TF
LO

Ps
/s

 o
n

RT
X

50
90

MXFP4 - Weight Shape: 51200x5120 (OUTxIN)

torch BF16
Ideal W4A4
 (no quant)
Actual
 W4A4+Had32
Actual
 W4A4+Had128

Figure 8: Illustration of QuTLASS performance for weights and activations on MXFP4 while
increasing batch size, for a single linear LLM layer, showing the low-overhead of the quantization-
related ops, and end-to-end using the Transformers library.

Figure 8 illustrates additional QuTLASS performance results on an NVIDIA RTX5090 GPU. The
figure on the left shows throughput for a single layer extracted from a MXPF4 quantized Qwen3-32B
model, while the figure on the right shows the end-to-end speedups on Transformers running Qwen3-
8B with MXFP4 quantization compared to the BF16 baseline implementation on a single RTX5090
GPU.

F STANDARD DEVIATION

We estimate the variance of evaluation scores by performing multiple quantization runs on Llama-
3.1-8B-Instruct, varying the seeds for GPTQ calibration set sampling, as well as the strategies for
scale selection and quantization ordering. These results were generated using our vLLM integration
with QuTLASS kernels. Figure 9 displays the scores as bar plots, while Table 10 lists the average
recovery scores and their standard deviations.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Had
16

+MinM
ax

+Ac
tOrde

r

Had
16

+MSE
+Ac

tOrde
r

Had
12

8+
MinM

ax
+Ac

tOrde
r

Had
12

8+
MSE

+Ac
tOrde

r

Ide
nt+

MinM
ax

+Ac
tOrde

r

Ide
nt+

MSE
+Ac

tOrde
r

Ide
nt+

MinM
ax

+DefO
rde

r

Ide
nt+

MSE
+DefO

rde
r

95.0

95.5

96.0

96.5

97.0

Re
co

ve
ry

 %

NVFP Recovery % by Method

Had
32

+MinM
ax

+Ac
tOrde

r

Had
32

+MSE
+Ac

tOrde
r

Had
12

8+
MinM

ax
+Ac

tOrde
r

Had
12

8+
MSE

+Ac
tOrde

r

Ide
nt+

MinM
ax

+Ac
tOrde

r

Ide
nt+

MSE
+Ac

tOrde
r

Ide
nt+

MinM
ax

+DefO
rde

r

Ide
nt+

MSE
+DefO

rde
r

89

90

91

92

93

94

95

Re
co

ve
ry

 %

MXFP Recovery % by Method

Figure 9: Accuracy results for NVFP4 and MXFP4 across different combinations of FPTQ compo-
nents, averaged over five random seeds using vLLM kernels on the benchmark suite.

Format Method Avg. Recovery % STD

NVFP

Had16+MinMax+ActOrder 95.88 0.332
Had16+MSE+ActOrder 96.33 0.163
Had128+MinMax+ActOrder 95.52 0.416
Had128+MSE+ActOrder 96.11 0.347
Ident+MinMax+ActOrder 95.84 0.487
Ident+MSE+ActOrder 96.18 0.589
Ident+MinMax+DefOrder 96.06 0.655
Ident+MSE+DefOrder 96.38 0.441

MXFP

Had32+MinMax+ActOrder 92.79 0.554
Had32+MSE+ActOrder 93.78 0.445
Had128+MinMax+ActOrder 93.42 0.416
Had128+MSE+ActOrder 93.63 0.817
Ident+MinMax+ActOrder 89.78 0.570
Ident+MSE+ActOrder 90.54 0.330
Ident+MinMax+DefOrder 89.16 0.372
Ident+MSE+DefOrder 90.02 0.387

Table 10: Recovery scores and standard deviations for NVFP and MXFP methods.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G THE EFFECT OF DIFFERENT LINEAR TRANSFORMS

In this section we ablate various choices of transforms adopted for outlier mitigation of outliers.
Specifically, we consider the following options:

• Identity transform.
• Discrete Cosine Transform (DCT).
• Hadamard rotation [48; 4; 10].
• Grouped Sequency-arranged Rotation (GSR) [7].

We sweep over different options of transform sizes ({16, 32, 64, 128, 256}) both for NVFP and MXFP
formats. The average score on 5 tasks from LM Evaluation Harness (piqa, winogrande, hellaswag,
arc-easy, arc-challenge) is reported.

From these results, one can observe that rotations yield small improvement relative to identity
transform for MXFP format and minor degradation for NVFP with RTN quantization. Different
transform sizes perform more or less the same.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Transformation Transformation Size Weight Quant PIQA winogrande hellaswag arc-easy arc-challenge Avg

FP16 - - 0.8074 0.7301 0.792 0.7769 0.5307 0.7274

- - RTN 0.802 0.7261 0.7731 0.7466 0.4923 0.708
- GPTQ 0.7933 0.7214 0.7698 0.7664 0.5111 0.7124

DCT

16 RTN 0.79 0.6859 0.7583 0.742 0.4889 0.693
GPTQ 0.7824 0.7111 0.766 0.7559 0.4991 0.7029

32 RTN 0.7786 0.7119 0.7572 0.7353 0.4693 0.6905
GPTQ 0.7813 0.7135 0.7718 0.7117 0.4829 0.6922

64 RTN 0.7862 0.7024 0.7695 0.7306 0.4599 0.6897
GPTQ 0.7878 0.7198 0.7673 0.7765 0.5068 0.7116

128 RTN 0.7737 0.7206 0.7676 0.7466 0.4701 0.6957
GPTQ 0.7873 0.708 0.7715 0.7399 0.494 0.7001

256 RTN 0.7916 0.7135 0.7698 0.7563 0.4983 0.7059
GPTQ 0.7911 0.7017 0.7692 0.7694 0.506 0.7074

DST

16 RTN 0.7824 0.7143 0.7575 0.7256 0.4804 0.692
GPTQ 0.7878 0.7198 0.7628 0.7395 0.4855 0.6991

32 RTN 0.7856 0.7198 0.7399 0.7395 0.4667 0.6903
GPTQ 0.7889 0.7096 0.7633 0.7731 0.5026 0.7075

64 RTN 0.7911 0.7253 0.7536 0.7635 0.4804 0.7028
GPTQ 0.7911 0.7088 0.7638 0.7614 0.5 0.705

128 RTN 0.7856 0.7024 0.7625 0.7677 0.4881 0.7013
GPTQ 0.7824 0.7064 0.7637 0.7778 0.5009 0.7062

256 RTN 0.7867 0.6993 0.7579 0.737 0.4804 0.6923
GPTQ 0.7856 0.7048 0.7674 0.7462 0.4812 0.6971

Hadamard

16 RTN 0.7927 0.7096 0.7674 0.7471 0.465 0.6963
GPTQ 0.7873 0.7096 0.7697 0.758 0.5034 0.7056

32 RTN 0.784 0.719 0.7639 0.7534 0.4881 0.7017
GPTQ 0.7965 0.7348 0.7668 0.7538 0.506 0.7116

64 RTN 0.7818 0.7032 0.763 0.7395 0.4863 0.6948
GPTQ 0.7856 0.7151 0.7657 0.7614 0.5017 0.7059

128 RTN 0.7884 0.7206 0.766 0.7551 0.506 0.7072
GPTQ 0.7938 0.7111 0.7729 0.7681 0.5273 0.7146

256 RTN 0.7878 0.6969 0.7643 0.7681 0.4983 0.7031
GPTQ 0.79 0.7253 0.7738 0.7673 0.4949 0.7102

GSR

16 RTN 0.7933 0.7056 0.7694 0.7513 0.4744 0.6988
GPTQ 0.7998 0.6985 0.7683 0.7635 0.4863 0.7033

32 RTN 0.7873 0.6985 0.762 0.7702 0.494 0.7024
GPTQ 0.79 0.7214 0.77 0.7593 0.5 0.7081

64 RTN 0.7911 0.7151 0.7627 0.7588 0.4821 0.702
GPTQ 0.796 0.7222 0.7717 0.7622 0.4949 0.7094

128 RTN 0.7878 0.7174 0.7656 0.7546 0.4898 0.703
GPTQ 0.7894 0.7143 0.7721 0.7668 0.506 0.7097

256 RTN 0.7797 0.6906 0.7626 0.7454 0.4735 0.6904
GPTQ 0.8014 0.7293 0.7756 0.763 0.4991 0.7137

Table 11: Performance of Llama-3-8B with different transformations with NVFP4 format.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Transformation Transformation Size Weight Quant PIQA winogrande hellaswag arc-easy arc-challenge Avg

FP16 - - 0.8074 0.7301 0.792 0.7769 0.5307 0.7274

- - RTN 0.7704 0.6875 0.7481 0.7121 0.471 0.6778
- GPTQ 0.7699 0.693 0.753 0.7327 0.4718 0.6841

DCT

16 RTN 0.7628 0.7072 0.7447 0.7205 0.4582 0.6787
GPTQ 0.7753 0.7009 0.7534 0.7365 0.4846 0.6902

32 RTN 0.7699 0.6914 0.7405 0.6987 0.4437 0.6688
GPTQ 0.7508 0.6969 0.7465 0.7281 0.4531 0.6751

64 RTN 0.7693 0.7127 0.7454 0.7079 0.4556 0.6782
GPTQ 0.7889 0.7111 0.7524 0.7529 0.465 0.6941

128 RTN 0.7541 0.6851 0.7398 0.6616 0.4036 0.6488
GPTQ 0.7731 0.7088 0.7455 0.7462 0.4804 0.6908

256 RTN 0.7791 0.6953 0.7392 0.6987 0.4411 0.6707
GPTQ 0.7894 0.6946 0.7541 0.7504 0.4744 0.6926

DST

16 RTN 0.7731 0.6906 0.7493 0.7391 0.4522 0.6809
GPTQ 0.7835 0.6898 0.7593 0.7399 0.4787 0.6902

32 RTN 0.7639 0.6906 0.7441 0.7332 0.4582 0.678
GPTQ 0.7802 0.6985 0.7563 0.7483 0.4753 0.6917

64 RTN 0.7704 0.689 0.7402 0.7054 0.4599 0.673
GPTQ 0.7769 0.6875 0.7599 0.7189 0.4693 0.6825

128 RTN 0.7612 0.6772 0.7491 0.7003 0.4497 0.6675
GPTQ 0.7693 0.6914 0.7567 0.7462 0.d923 0.6912

256 RTN 0.7731 0.6906 0.7493 0.7391 0.4522 0.6809
GPTQ 0.778 0.7064 0.7544 0.7412 0.4923 0.6945

Hadamard

16 RTN 0.7737 0.6906 0.7499 0.6995 0.4616 0.675
GPTQ 0.7867 0.7206 0.7623 0.7218 0.4701 0.6923

32 RTN 0.7715 0.6946 0.7518 0.7466 0.5034 0.6936
GPTQ 0.7807 0.7032 0.763 0.7471 0.4778 0.6944

64 RTN 0.7862 0.7088 0.7511 0.7315 0.4667 0.6889
GPTQ 0.796 0.6993 0.7625 0.7635 0.4923 0.7027

128 RTN 0.7807 0.7064 0.7529 0.7306 0.4548 0.6851
GPTQ 0.7807 0.6946 0.7646 0.7538 0.4915 0.697

256 RTN 0.778 0.7024 0.7491 0.7104 0.4625 0.6805
GPTQ 0.7818 0.7032 0.7624 0.7576 0.4795 0.6969

GSR

16 RTN 0.7813 0.6977 0.7522 0.6982 0.4684 0.6796
GPTQ 0.7845 0.7048 0.7682 0.7546 0.4735 0.6971

32 RTN 0.7748 0.693 0.7514 0.742 0.4991 0.6921
GPTQ 0.7856 0.7111 0.7631 0.7517 0.5026 0.7028

64 RTN 0.7889 0.7072 0.7464 0.7226 0.4514 0.6833
GPTQ 0.7949 0.7009 0.7613 0.7412 0.4829 0.6962

128 RTN 0.7753 0.7001 0.7538 0.7226 0.4659 0.6835
GPTQ 0.7813 0.7056 0.7595 0.7395 0.4846 0.6941

256 RTN 0.7753 0.6819 0.7494 0.7197 0.4642 0.6781
GPTQ 0.778 0.7151 0.7542 0.7445 0.4923 0.6968

Table 12: Performance of Llama-3-8B with different transformations with MXFP4 format.

25

	Introduction
	Background on Microscaling Floating-Point Formats
	A Quantization Error Analysis of NVFP4 and MXFP4
	Analytical MSE Bounds
	Numerical Validation

	MR-GPTQ: An FP4-Focused Variant of the GPTQ Algorithm
	Adapting GPTQ to FP4 Formats
	GPU Kernel Support for MR-GPTQ via QuTLASS

	Experimental Results
	Conclusion
	Reproducibility statement
	Weight-Only Quantization Results
	Real Quantization Results
	Scale quantization analysis
	Outliers Analysis
	QuTLASS results on GeForce GPUs
	Standard deviation
	The Effect of Different Linear Transforms

