Under review as a conference paper at ICLR 2026

BRIDGING THE GAP BETWEEN PROMISE AND
PERFORMANCE FOR FP4 QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The recent hardware-accelerated microscaling 4-bit floating-point formats such as
MXFP4 and NVFP4, supported on NVIDIA and AMD GPUs, promise to revolu-
tionize large language model (LLM) inference. Yet, their practical benefits remain
unproven. We present the first comprehensive study of MXFP4 and NVFP4 for
post-training quantization, revealing gaps between their promise and real-world
performance. Our analysis shows that state-of-the-art methods struggle with FP4,
due to two key issues: (1) NVFP4’s small group size provably neutralizes tradi-
tional outlier mitigation techniques; (2) MXFP4’s power-of-two scale quantization
severely degrades accuracy due to high induced error. To bridge this gap, we
introduce Micro-Rotated-GPTQ (MR-GPTQ), a variant of the classic GPTQ quan-
tization algorithm that tailors the quantization process to FP4’s unique properties,
by using block-wise Hadamard transforms and format-specific optimizations. We
support our proposal with a set of high-performance GPU kernels that enable the
MR-GPTQ format with negligible overhead, by rotation fusion into the weights,
and fast online computation of the activations. This leads to speedups vs. FP16 of
up to 3.6x layer-wise, and 2.2x end-to-end on NVIDIA B200, and of 6x layer-wise
and 4x end-to-end on RTX5090. Our extensive empirical evaluation demonstrates
that MR-GPTQ matches or outperforms state-of-the-art accuracy, significantly
boosting MXFP4, to the point where it nears that of NVFP4. We conclude that,
while FP4 is not an automatic upgrade over INT4, format-specialized methods like
MR-GPTQ can unlock a new frontier of accuracy-performance trade-offs.

1 INTRODUCTION

Post-training quantization (PTQ) [39; 20; 34] is one of the most well-researched areas in model
compression, in which the objective is to take an existing pre-trained model and reduce its size or
computation while preserving most of its accuracy. With the advent of large language models (LLMs),
PTQ has become a highly-active research area, e.g., [20; 56; 3; 14; 48; 18; 49] with significant
industry adoption and practical impact [28].

In this paper, we focus on quantization using the recently-introduced microscaling floating-point
precision formats, specifically MXFP4 [45] and NVFP4 [41]. In a nutshell, these formats work
by grouping elements into blocks of 32 or 16 elements, respectively, quantized together with a
shared scale; to reduce the storage overhead, the scales themselves are also compressed, to distinct
8-bit format: a standard sharing between Exponent and Mantissa bits (E4M3) for NVFP4, and
E8MO0—essentially, rounding scales to powers-of-two—for MXFP4. As such, the NVFP4 format
trades off additional space (4.5 bits per element on average, relative to 4.25 bits for MXFP4), in favor
of additional precision. The promise of these formats is two-fold: first, they are claimed to be more
accurate than the prior-generation integer precision formats such as INT4 [38]. Second, they are
supported in hardware: NVIDIA Blackwell GPUs support matrix multiplications across both NVFP
and MXFP formats, whereas AMD GPUs will support MXFP4 [1]. Despite these developments, little
is known about the accuracy of these formats on real models or their practical performance.

Contributions. In this paper, we provide a first thorough study of the accuracy and performance
limitations of the NVFP4 and MXFP4 formats through the prism of current state-of-the-art quanti-
zation methods, coupled with computational support. We focus primarily on weight-and-activation
quantization to 4-bits per parameter, and investigate the interaction between these new formats, real
parameter distributions, and state-of-the-art quantization algorithms. Our main findings are:

* We begin with an analysis of quantization error induced by the NVFP4 and MXFP4 formats over
both Laplace-like heavy-tailed distributions, which arise in real-world weights and activations [2;

Under review as a conference paper at ICLR 2026

16], and over Normal parameter distributions, arising when processing weights and activations
via rotations in popular methods such as QuIP/QuIP# [6; 48] or QuaRot [4]. Interestingly, we
can prove analytically and show empirically that rotations improve MXFP4 accuracy, but hurt
NVFP4 accuracy when coupled with standard Round-to-Nearest (RTN) quantization.

Based on this analysis, we propose a new variant of the GPTQ weight quantization algorithm [20],
called Micro-Rotated-GPTQ (MR-GPTQ), explicitly designed to maximize accuracy across
both MXFP4 and NVFP4. The algorithm employs Hadamard rotations at the group level to
“normalize” weights and activations, but in a novel block-wise fused form, which, as we show,
can be supported without any runtime overheads on Blackwell GPUs. In addition, MR-GPTQ
introduces a new efficient variant of the activation re-ordering heuristic for GPTQ, along with
format-specific scale search optimizations.

¢ We perform the first extensive study of NVFP4 and MXFP4 practical accuracy, across standard
Llama-3 [17] and Qwen-3 [52] models of different sizes, evaluated on standard zero-shot
tasks [22]. We investigate a broad set of compression methods, including RTN, GPTQ [20],
SmoothQuant [51], QuaRot [4], and SpinQuant [36], as well as our new MR-GPTQ approach.
Results show that: (1) both NVFP4 and MXFP4 are lossy, with MXFP4 inducing major accuracy
drops (~ 10% relative), and (2) that existing techniques are not well-suited for these new formats,
as they do not always outperform RTN. On the positive side, we show that GPTQ and the
MR-GPTQ variant yield consistently good recovery for NVFP4. Moreover, MR-GPTQ works
particularly well in conjunction with MXFP4, recovering accuracy within 1-2% of NVFP4. For
large models, we show that both formats can recover up to 98-99% of the baseline FP16 accuracy.

* Our main technical contribution is a new set of GPU kernels specific to the Blackwell architecture
called QuTLASS, showing that the “micro-rotation” component of MR-GPTQ can be supported
without loss of performance relative to standard multiplications. Specifically, this comes in
the form of a lightweight fused kernel for online rotation of the activations. Remarkably, our
kernel for MXFP4 can obtain higher throughput than an ideal NVFP4 matrix multiplication.
Our kernels obtain near-ideal layer-wise speedups for both B200 and RTX5090 GPUs, of 3.6x
and 6x, respectively, leading to end-to-end inference speedups of 2x and 4x, respectively.

2 BACKGROUND ON MICROSCALING FLOATING-POINT FORMATS

General Definition. The microscaling MXFP4 and NVFP4 formats employ hierarchical quantization,
where elements within a block share a common scale factor, enabling efficient hardware imple-
mentation. Given a tensor divided into one-dimensional groups, we define a Microscaling Block
Floating-Point (MFP) representation as follows. The Group Size (G) is the number of elements in
each group before quantization. The Element Representation (E) is the format used to represent the
individual elements within each block. The Scale Representation (S): The format used to represent
the scale values for each group.

For floating-point (FP) formats, we use the notation ExMy to say that x bits are allocated to
the exponent, and y bits are allocated to the mantissa. For instance, in the standard FP4 E2M1
representation, each FP4 element consists of 1 sign bit, 2 exponent bits, and 1 mantissa bit, providing
7 distinct positive values {0.5,1.0,1.5,2.0, 3.0, 4.0,6.0} plus zero and the negatives.

The MXFP4 (Microscaling FP4) Format. This format [45] follows the specification (G = 32, E =
FP4, S = E8MO). Its distinguishing features are the group size of 32 and its quantization of group
scales to powers-of-two, given the use of EEMO, which dedicates all bits to the exponent and none to
the mantissa. This design choice simplifies hardware multiplication; yet, as our experiments reveal, it
often introduces quantization artifacts that can significantly impact model accuracy.

The NVFP4 (NVIDIA FP4) Format was introduced by NVIDIA for the Blackwell architecture [41],
and employs a more flexible approach with (G = 16, E = FP4, S = E4M3). While sharing the FP4
element format with MXFP4, NVFP4 differs in two key aspects. First, it uses a 16-element group size,
and, second, it uses a full FP8 representation for scales in E4AM3, preserving more precise scaling
information relative to ESM0. NVFP4 trades off a more accurate representation for weight and
activation distributions, at the cost of increased bits-per-element (4.5 NVFP4 vs 4.25 for MXFP4).

Related Work. Early work on LLM quantization focused primarily on integer formats, with INTS8
being the first to be investigated [12; 53], in conjunction with round-to-nearest (RTN) assignment
over groups of consecutive weights and activations. FP formats introduce new possibilities but also

Under review as a conference paper at ICLR 2026

------ Laplace fit ===+ Gaussian fit === Laplace fit === Gaussian fit
Native activations Rotated activations Native weights Rotated weights
Kurtosis=8.75 Kurtosis=0.02 Kurtosis=1.47 Kurtosis=0.05

Density

Figure 1: Distribution fits for aggregate weights and activations of L1lama-3.1-8B-Instruct,
with and without rotations. The Normal distribution is clearly a good fit for rotated weights and
activations, while the Laplace distribution provides a good fit for the native distributions. Although
native weights appear Normal, they have much heavier tails, as evidenced by the Kurtosis value.

challenges: while FP8 quantization is known to be near-lossless [28], the distribution of representable
values in NVFP4/MXFP4 changes quantization dynamics. The GPTQ method [20] reached near-
lossless INT4 compression via second-order weight adjustments. Its effectiveness for FP4 formats
remains unexplored. Methods like AWQ [33], SqueezeLLM [27], and SpQR [14] relied on outlier-
aware quantization strategies that assume uniform grids and large group sizes. The FP4 formats’
small group sizes (16 or 32) and non-uniform grid inherently perform outlier mitigation, as we discuss
in our analysis. Recent extreme compression techniques like QulP [6], QuIP# [48] and QTIP [49]
use rotation matrices to normalize the weight distributions. As we will see, this is not necessarily
helpful for FP4 microscaling formats.

LLM activations are known to be extremely challenging to quantize, due to outlier features, defined
roughly as elements up to 100x larger than average [12]. SmoothQuant [51] addresses this for INTS
by rescaling to redistribute outliers between weights and activations. Recent rotation-based methods
like QuaRot [4] and SpinQuant [36] mitigate outliers through Hadamard transforms. In this paper,
we discover novel trade-offs for these approaches.

Prior work investigating accuracy trade-offs under quantization, e.g., Yao et al. [53]; Liu et al.
[35]; Huang et al. [26]; Gong et al. [24]; Li et al. [32]; Gong et al. [23]; Lee et al. [31]; Kurtic et al.
[28] focuses almost exclusively on INT quantization. Despite industry claims about FP4’s accuracy
superiority [38; 41], rigorous evaluation remains absent so far, likely due to the recent introduction of
this format. Our work addresses this gap.

3 A QUANTIZATION ERROR ANALYSIS OF NVFP4 AND MXFP4

Prior work on quantization [39; 12; 15] identified the average and top-element (outlier) mean-square
error (MSE) as key quantities that can predict quantized model accuracy. In this section, we perform
a model-based analysis of the NVFP4 and MXFP4 formats from the prism of these metrics.

Modeling Distributions. Early work on modeling LLM parameters assumed a Normal (Gaussian)
distribution [13], consistent with common initialization schemes. Yet, more recent studies have
identified that distributions with high kurtosis, such as the Laplace or Student-t distributions, better
model the sharp peaks and outlier-prone tails of weights and activations [2; 16].

Here, we follow the latter line of work and model weights and activations as following a Laplace
distribution. At the same time, interestingly, it can be proven that, after the Hadamard rotation, these
tensors tend to follow a normal distribution [6; 48]. We empirically validate these findings via fits
over common models, illustrated in Figure 1. Formally, our modeling is as follows:

Definition 1 (Modeling). We assume that the “native” weights and activations follow the Laplace
distribution W ~ Laplace(0,b) with density fy (w) = ﬁe—lwl/b’ and variance Var(W) = 202,
We fix unit variance throughout, so b = 1/\/2. The magnitude Z = |W| is Exp(\) with rate
A=1/b= /2 thatis fz(2) = Ae™>* and Fz(z) = 1 — e=** for z > 0.

We assume that weights and activations rotated via the Hadamard transform follow a Normal
distribution V.~ N(0,1). The magnitude Z = |V| is half-normal with fz(z) = \/%6722/2 and
Fyz(2) = erf(z/v/2), z > 0, where where erf(z) is the standard Gauss error function % I et dt.

Under review as a conference paper at ICLR 2026

Quantization. We model Microscaling Block Floating-Point (MFP) quantization as follows. Consider
i.i.d. blocks containing G > 2 elements drawn from some distribution: X = (X1,..., X¢g) with
Var(X;) = 1 and Z; = | X;|. We assume a grid Q@ C [0, 1] that is finite, symmetric around 0, and
includes both 0 and 1; we write @t = QN [0,1] and gpi, = min(Q* \ {0}). We use round-to-
nearest (RTN) quantization, assuming probability O for rounding ties. Next, we formally define the
scaling process. For simplicity, we will not not quantize the scale s itself, and assume that values are
normalized to [—1, 1]. We remove these assumptions in our numerical validation (Section 3.2).

Definition 2 (Scales). For a block of elements X, we define the unquantized scale s =
maxi<;<¢ |Xi|, the normalized entries U; = X;/s € [—1,1], the quantized normalized entries
U; = RTNg(U;), and the de-normalized quantized values X; = s U;.

Definition 3 (Quantization Metrics). For a group size G, we define: (i) The per-element MSE:
MSE(G) = E[(X1 — X1)?] (by symmetry, the choice of index can be arbitrary). (ii) The top-
element MSE per block: Let I, =] (@) =

E [(X I, — X 1.)?| . We always use the same MFP map, i.e. same scale s, for both metrics.

Remark 1 (Quantization Dead-zone). The first positive quantization level in the grid), which we
denote by quin, induces the dead-zone half-width § == quin/2 on [0,1]. If |U;| < 6, then U; = 0.

3.1 ANALYTICAL MSE BOUNDS

Next, we derive bounds on quantization error across top and average elements. First, notice that, in a
simplified setting, applying the Hadamard rotation spreads the MSE evenly among elements.

Lemma 1 (Top-Element MSE). Assume a vector x € RY with coordinates i.i.d. N (0 1), to which we
apply a Hadamard rotation, perform MFP quantization in the y-domain to produce Yy, and reconstruct
z= TH y. Define the quantization error vectorse, =y —yande, =T — x = TH €y. The

expected squared error on the original top coordinate I, = arg max; |x;| is the per-element MSE:
1
MSEuop(G) = El(e2)7.] = 5 Elley |3 = MSE(G).

Remark 2 (Outlier preservation). By contrast, it is immediate that MSEy,(G) = 0 in the absence
of the Hadamard rotation, since we are doing absmax scaling, which preserves the top element.

Asymptotic MSE Analysis. Thus, MSE is the key quantity we want to analyze. First, notice that,
for any fixed grid with dead zone ¢ > 0, for both Laplace and Normal models, limg_, . MSE(G) =
Var(X;) = 1. Intuitively, this is because, as G grows, the block maximum M diverges, so |U;| =
|X1|/M — 0 in probability; the mass that survives the dead-zone vanishes. Consequently, the

dominant part of the MSE E[(X; — X1)2] becomes E[X21{|U;| < 6}] — E[X2] = 1.

To get a more granular variant, we assume the large G domain and examine the “preserved mass”:
R(G) = 1 — MSE(G) = E[X} 1{|U] > 8}].

which captures the mass that escapes underflow. A precise calculation yields the following:

Lemma 2 (Rates). Let 6 = gmin/2 € (0,) be the dead-zone halfwidth in the normalized domain.

For Laplace, we have: Ry,(G) = ©((log G)*G~),andfor Normal: Rn(G) = @(\/logGG_)

Discussion. Since 0 < §2 < § < 1, we have that, for small G, the Laplace MSE should be below the
MSE for the Normal distribution. Yet, for sufficiently large G, the Normal rate dominates the Laplace
rate, meaning that MSEn (G) < MSEL(G). As such, we predict a crossover phenomenon, where
the MSE gap in favor of the (native) Laplace distribution will be inverted for larger group size G in
favor of the transformed Normal distribution. In short, transforms should hurt the original weights at
small group sizes, and become effective as we increase it.

3.2 NUMERICAL VALIDATION

Relative Errors. In practice, the weight and activation distributions are not of unit variance. Shared
scales give us control over the variance during the quantization process, but the aggregation of the
proposed quadratic errors will be dominated by groups with higher variance. To address this, when
analyzing real weights and activations, we use the relative version of the errors proposed above.

Under review as a conference paper at ICLR 2026

Weights Activations

0.015
"

5] :r_,___f_g,’,i'fl’——-i

:’/'/u/l/' $=--

MSE™

0.010
L

T
1
1
1
1
1
1
1
i
Jé‘ : H Activations
T 211 | — Llama IB
~~ ey || g - Ly | = Llama 3B
et Al
283 -e- S=ESMO !
= 2] —m— S—E4M3 |
4 i
= :
1
g]
S8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
Group size G Group size G Group size G

Figure 2: The effect of Hadamard Transform (HT) on MXFP4 (E8M0) Figure 3: Ranges of
and NVFP4 (E4M3) quantization on Laplace distribution samples FP8 scale format and ob-
and Llama-3.1-8B-Instruct weights and activations for various served weight and activa-
group sizes. tion magnitudes.

Definition 4 (Relative Metrics). Let I, = argmaxi<;<q |X;| be the top group element. We define

G . . G
the relative per-element MSE as MSE™ (G) = E[Y (X; — X;)?/

X?], and the top-element

i=1 =1

MSE per block: MSE}% (G) = E[(X;, — X1.)?/X} .

MSE™ is a key metric in compression theory [47]; in teh context of LLM compression, Malinovskii
et al. [37] to present a linear dependence between MSE™! and end-to-end accuracy decline. Ad-
ditionally, recent lattice-based PTQ methods explicitly optimize for MSE™ when designing their
lattice [48; 49; 37]. For MSEiﬁlp, Lemma 3 shows how it accurately reflects the outliers’ relative
error as long as outliers are large, rare, randomly positioned, and MSEE‘;1 is consistent for outliers

and non-outliers (as shown by the shared scale quantization analysis below).

Figure 2 validates the analysis from Section 3.1 on samples from Laplace distribution, as well as on
real weight and activation matrices from the L1ama-3.1-8B-Instruct model. For MSE™ (top
row) and NVFP4 (G = 16), the Hadamard Transform has a negative effect for small G and a positive
effect for larger GG, exactly as predicted. To interpret the other effects, we have to better understand
the effect of the shared scales quantization.

Shared Scales Quantization. Under fixed bit-width, microscaling floating point formats with a
shared scale (stored, e.g., in ESMO or E4AM3) trade range for accuracy. We begin our analysis by
examining the range required to fully cover weights and activations.

Figure 3 shows the logarithmic dynamic ranges of several FP8 formats and compares them with
the empirical distributions of shared scales for weights and activations across multiple models. One
can see that the dynamic range of .S = E4M3 covers the full range of these distributions. Trivially,
S = E8MO, having more range, can easily cover it too. When shared scales range is less than the
dynamic range of .S, they can always be represented by normal floating-point values with their relative

error (a) bounded by 2=M for mantissa precision M and (b) translation-invariant to power-of-two
shifts. For absmax quantization without rotations, this leads to MSEiz1 ’s being insensitive to the
shared scale magnitude in expectation over high dynamic range intervafs, and, as the results, to G.

‘We formalize this in Lemma 4.

This allows us to explain the effects of shared scale quantization on MSEET)1 by relating it to the
precision of the shared scales data type .S and the base data type E. We observe the following:

(1) For MXFP4, top values inherit their precision from the base data type, and not the shared
scale data type. This is because S = E8MO is coarser than E = E2M1, leading to shared scales
inheriting effectively constant relative error from E2M1 regardless of G, as visible in Figure 2. (2)
By contrast, for NVFP4, shared scales inherit effectively constant relative error, regardless
of G. This is because S = E4M3 is finer than E = E2MI1, as visible in Figure 2. (3) Once the
Hadamard Transform is applied, the maximum element error is spread across the whole group.
This follows Lemma 1. From Figure 2, one can see that this leads to better precision than pure E2M1,

Under review as a conference paper at ICLR 2026

but worse than pure E4AM3. Moreover, one can see that for heavy-tailed distribution, such as Laplace
or the observed model tensors, X7 grows faster than MSE(G) with G, leading to the error being
reduced as we increase the group size G. Yet, this effect alone is not enough for it to improve over
the E4M3 precision for reasonable group size G.

Discussion. Our analysis so far showed that the MXFP4 format induces higher MSE for RTN
quantization relative to NVFP4, and is worse at outlier preservation. At the same time, the format has
lower memory and computational costs relative to NVFP4, and is likely to benefit from normalization
via the Hadamard transform. By contrast, the NVFP4 format has lower MSE due to the smaller group
size, and top value preservation as it is “promoted” to E4AM3. In addition, the NVFP4 MSE may not
benefit from normalizing transforms. In the following, we incorporate our analysis into the classic
GPTQ algorithm, obtaining a variant that is designed for FP4 formats, called MR-GPTQ.

4 MR-GPTQ: AN FP4-FOCUSED VARIANT OF THE GPTQ ALGORITHM

Standard GPTQ. Given a layer’s weights W and calibration inputs Y, GPTQ [20] aims to find

quantized weights W that minimize the output reconstruction error: ||[YW — YW ||3. Assuming a
fixed quantization grid, GPTQ builds upon the Optimal Brain Quantization (OBQ) framework [21] to
iteratively quantize and update remaining weights to compensate for the error leveraging second-order
information, while avoiding OBQ’s high computational complexity. Specifically, while OBQ employs
a dynamic, greedy weight selection strategy for selecting the next weight to quantize, GPTQ observes
that this greedy approach offers low benefits over quantizing weights in an arbitrary, fixed order, for
heavily-parameterized layers. Thus, GPTQ quantizes weights across all rows in the same fixed order.
This enables it to share the Hessian information, used to compute error updates, among rows. GPTQ
typically implements this fixed order by processing the dimensions sequentially, column-by-column
(front-to-back). The inverse Hessian must be updated only once per column (d., times) rather
than once per weight (dow - deol times), which reduces the overall computational complexity from
O(drow - d3.,) for OBQ, to O(max {drow - d2,, d3,}), providing orders-of-magnitude speedup, for a
weight matrix of size dyow X dcol-

4.1 ADAPTING GPTQ TO FP4 FORMATS

Our analysis showed that, with RTN quantization, NVFP4 provides lower MSE relative to MXFP4,
due to better outlier preservation and smaller group size. GPTQ induces an orthogonal direction in
the design space, relative to RTN, as it allows for MSE error to be “corrected” by shifting it to other
weight blocks. This suggests three general solution strategies: (1) GPTQ applied to the standard
NVFP4 grid, with absmax scaling, leveraging the natural properties of NVFP4. This simply extends
RTN to GPTQ; (2) MR-GPTQ-MXFP4: GPTQ applied to the MXFP4 grid, on rotated weights and
activations, as this reduces MSE for RTN; (3) MR-GPTQ-NVFP4: GPTQ on an MSE-optimized
NVFP4 grid, with rotated weights and activations.

While the first two approaches follow naturally from our analysis, the third approach wagers that the
higher per-group local MSE caused by applying Hadamard rotations to NVFP4 can be compensated
by optimizing the scales, together with the GPTQ updates. As such, options 2 and 3 would offer a
unified rotated/normalized format, that would apply to both NVFP4 and MXFP4. Next, we describe
three key technical additions to the GPTQ algorithm that help bridge the gap between variants.

Ingredient 1: MSE-Optimized Grids. Our first step in MR-GPTQ is to identify a good initial
grid. Recall that NVFP has both tensor (global) and per-group scales, which we denote by s and
sg, respectively. The quantized variant of the element X; will be represented as X; = sr - sg -
Q(X;/(sT - sc)), where (@ is the quantization operation. To minimize error, we solve the following
optimization problem for each tensor, across its groups: mins, ¢, ..sq, >ollXG — X, |3, where
(s@,)i=1,r are the quantization scales for the & groups. We solve this by using alternating optimization
over the block scales and the per-tensor scale, respectively. For NVFP4 without rotations, we have
found this to yield consistent improvements. For MXFP4 with rotations, we have found that a single
static value works stably across all layers, and we therefore use this approach in our implementation.

Ingredient 2: Static Activation Reordering. The original GPTQ algorithm heuristically re-orders
the weight columns following the “dynamic act-order”, i.e., a descending order of the corresponding
Hessian diagonal entries. This matrix shuffle is applied before the quantization grid and scales are
computed. While this consistently improves accuracy, it also requires re-shuffling the matrix columns
dynamically at runtime, which results in a 10-20% end-to-end inference slow-down.

Under review as a conference paper at ICLR 2026

Instead, we observe that we can apply the activation re-ordering statically, i.e. after the scales and the
quantization grid have been computed in the first step, based on the original (arbitrary) column order.
In practice, we first fix the grid and scales for each group, shuffle the columns before GPTQ is applied,
and then finally shuffle the columns back, maintaining the microscaling group structure of the original
matrix. Importantly, this benefits from the improved behaviour during the quantization process itself,
without any runtime penalties. This can be applied to GPTQ over any grid, and provides similar
improvements to standard “dynamic” act-order, without the runtime overheads.

Ingredient 3: Fused Online Rotations. Our MR-GPTQ variants rotate the weights and activations
via a block-wise Hadamard transform Hj,, with k& x k diagonal blocks, where k is a power-of-two.
Mathematically, for a linear layer with weights W and activations Y, both quantized, the operation
occurs as Q(W Hy)Q(Y Hy)T, where Hj, is the block-wise rotation, and @ is the quantization
function. In the next section, we describe how this format can be supported efficiently at runtime.

4.2 GPU KERNEL SUPPORT FOR MR-GPTQ viA QUTLASS

To support the methods described above, we introduce a set of kernels optimized for NVIDIA
Blackwell GPUs. These kernels constitute QuUTLASS v1.0, a high-performance library for low-
precision deep learning quantization, building on NVIDIA CUTLASS [40]. QuTLASS provides full
support for quantization- and matmul-related operations in both NVFP4 and MXFP4 micro-scaling
formats. In addition, we release architecture-optimized implementations for different NVIDIA
Blackwell compute capabilities, namely SM100 [42] and SM120 [44]. The kernels in QuTLASS can
be grouped into two categories, which will handle the computation of Q(W Hy,)Q(Y Hy,):

1. Quantization-related kernels. While the product WHy, is pre-fused in the weights, YHj
occurs online. To avoid diminishing the benefits of FP4 hardware acceleration, QUTLASS provides
lightweight fused kernels for online rotation. These kernels support “unimodal” k x k block diagonal
matrices with k € {16, 32,64, 128}. For k < 256, dense transformations remain memory-bound,
meaning that any rotation (not just Hadamards) can be applied at essentially the same cost, as
the full matrix can be loaded at runtime (e.g., see Tables 11 and 12). To further reduce overhead,
quantization and scale calculation are fused into the transformation kernel as a custom epilogue
function. QuTLASS currently supports MSE and Abs-Max quantization methods, while its template-
based design allows new methods to be easily integrated.

2. Matmul-related narrow precision kernels. Between FP4 quantization and matrix multiplication,
a hardware-mandated rearrangement of scaling factors is required [43] for tcgen05 .mma. QuT-
LASS implements this step using a Triton kernel. For the matmul itself, QuUTLASS supports multiple
backends, including CUTLASS [40] and FlashInfer [54], enabling flexible plug-and-play backend
selection depending on workload and hardware.

5 EXPERIMENTAL RESULTS

1. Experiments with Emulated Quantization. We first evaluate the highly-popular Llama 3.1-8B-
Instruct model [17], examining the impact of quantizing both weights and activations for all linear
layers in this model to the INT4 and FP4 formats, using different algorithms. To ensure compatibility,
experiments are performed using simulated quantization in PyTorch. We use a subset of tasks from the
Open LLM Leaderboard V1 [5] for evaluation: GSMS8K for grade school math [9], MMLU for world
knowledge and reasoning [25; 8], Winogrande and HellaSwag for language understanding [46; 55].
(Other tasks in this harness yield similar scores across top methods.) The INT4 experiments use
group size 32 with FP16 scales, matching the average bit-width of NVFP4.

Algorithms. We consider both weights-and-activations quantization (W4A4, our main focus) and
weight-only quantization (W4A16, as a “control”). For W4A4, we implement the following: (1)
Round-to-nearest (RTN) quantization to the corresponding format, with absmax scales. In addition,
we add Hadamard rotations matching the quantization group size (32), denoted as RTN + HT. (2)
SmoothQuant [51] diagonal rescaling, with a tuned o smoothening factor. We identified o = 0.6
to be the best in our experiments. (3) QuaRot [4], which adds Hadamard rotations strategically
at each linear layer. These should reduce quantization error, and most of them can be folded into
the model. We use RTN for quantization post-rotation. (4) SpinQuant [36], which adds trainable
rotations to the model, similarly to QuaRot. A subset of 1024 calibration sequences from FineWeb is
used for training the matrices. (5) GPTQ [20] weight quantization and RTN on the activations, with
absmax scales. A subset of 1024 calibration sequences from FineWeb, absmax scales, standard

Under review as a conference paper at ICLR 2026

Format Method MMLU-CoT GSMS8k HellaSwag WinoGrande Avg. Recovery %
Baseline FP16 72.76 85.06 80.01 77.90 78.93 100
RTN 65.96 74.68 77.62 74.19 73.11 92.63
INT4 RTN+HT 68.30 79.61 77.60 73.48 74.75 94.71
GPTQ 66.36 76.65 77.38 72.48 73.21 92.75
RTN 68.26 78.39 78.15 74.11 74.73 94.67
RTN + HT 67.41 78.01 77.31 73.48 74.05 93.82
QuaRot 66.50 77.40 77.25 75.14 74.10 93.80
NVFP4 SpinQuant 66.50 76.10 76.96 75.32 73.70 93.40
SmoothQuant 68.90 79.50 79.50 74.70 75.70 95.90
GPTQ 68.85 82.60 78.26 74.51 75.72 95.92
MR-GPTQ 69.12 80.80 78.17 75.24 75.84 96.08
RTN 62.21 67.85 73.99 73.24 69.32 87.83
RTN + HT 62.38 72.48 75.29 71.67 70.45 89.26
SmoothQuant 63.93 68.54 75.10 73.56 70.30 89.06
MXFP4 QuaRot 49.86 56.94 73.50 71.43 62.90 79.70
SpinQuant 61.80 68.16 74.87 72.93 69.40 88.00
GPTQ 63.49 68.46 76.01 74.51 70.62 89.47
MR-GPTQ 67.19 75.70 76.91 74.80 73.65 93.31

Table 1: Unified accuracy comparison of Llama-3.1-8B-Instruct W4A4 under different quantization
formats and methods. For each format, top methods within variance are marked in bold.

Hessian dampening factors (A = 10~2), and standard quantization order are used. (6) MR-GPTQ
weight quantization, i.e., GPTQ with block rotations, MSE scale optimization, and static activation
re-ordering over the rotated weights, as described in Section 4.1, with RTN on the activations. As
a control, we also implement weight-only quantization, via RTN, GPTQ, AWQ [34], as well as
Hadamard rotations followed by RTN, denoted as RTN + HT. These results closely follow our
findings for W&A quantization, and are thus deferred to the Appendix. In Appendix G, we perform
an exhaustive sweep over DCT, DST, Hadamard, and GSR transforms and block sizes showing that
the Hadamard transform matching the quantization group size provides the best results on average.

Discussion. The accuracy results for W4A4 experiments on Llama-3.1-8B-Instruct are presented in
Table 1. The variance for the NVFP4 experiments (i.e., for entries in the 7th column over 5 distinct
seeds) is of approximately 0.3 average points, whereas the variance for the INT4 experiments is of
approximately 1 point. We mark all top aggregate entries (within 2 standard deviations) as bold in the
corresponding columns. We observe the following:

(1) No Lossless Format: Across all formats, the accuracy drop is noticeable. The lowest average
drop is for the NVFP4 format with SmoothQuant, GPTQ, or MR-GPTQ (these results are within
variance of each other). The weight quantization results (Appendix Table 2), show that the induced
error is roughly evenly split between weight and activation quantization. These results suggest that
micro-scaling is not a direct solution for accuracy recovery. (2) NVFP4 provides the best accuracy,
with INT4 second, and MXFP4 third: On average, NVFP4 and INT4 quantization provide similar
quality, with INT4 quantization having higher variance. The MXFP4 format is a distant third in
terms of accuracy, regardless of the method used, but benefits significantly from MR-GPTQ. (3)
Quantization Method Efficiency: First, we note the good performance of standard RTN for INT4
(with rotations) and NVFP4 (without). Second, the Hadamard transform appears effective for INT4
and MXFP4 (which use group size 32), but is less effective for NVFP4 (which uses group size
16), confirming our analysis. In particular, for round-to-nearest quantization, adding the Hadamard
transform to NVFP4 hurts accuracy. Finally, the GPTQ and SmoothQuant methods appear to be
consistently—but moderately—effective across all three formats.

2. Real Quantization. We integrate our kernels in vLLM [29], and perform accuracy evaluations
directly in this setup over additional models, such as Llama-3.3-70B-Instruct [17], and the Qwen3 [52]
family of models. The results are presented in Figure 4. For this experiment, we also provide results
for Quantization-Aware Training (QAT) performed using the balanced Generalized Jensen-Shannon
Divergence loss [19] between the quantized and the unquantized (frozen) model token distributions
on a subset of 92,995 samples (10%) from the Tiilu 3 [30] instructions dataset. The results show that
accuracies measured over real kernels for the Llama-3.1-8B-Instruct model track closely with the

Under review as a conference paper at ICLR 2026

results from simulation, with slightly lower recoveries (within 0.2-0.3%). Smaller models (< 8B)
and Llama-family models tend to have lower recovery rates, whereas Qwen3 models can achieve
more than 99% average recovery in NVFP4. For NVFP4, standard GPTQ provides the highest
recoveries on average, although RTN and MR-GPTQ are also competitive, with QAT only providing
very limited benefits. For MXFP4, MR-GPTQ provides the best recovery among PTQ methods,
while QAT consistently reduces the gap to full precision.

3. Kernel and Inference Perfor-

. Fi 1 1 - Format ~ Method Llama3 Qwen3
mance Finally, in Figure 5, we ex B apEmad. e s UM e
amine the performance of our ker-

RTN 83.9 944 94.8 98.6 98.9 985 99.8
nels. On the left, we show through- RIN+HT 80.9 91.0 93.8 985 96.0 98.1 98.1
; GPTQ 85.7 95.5 95.7 99.1 98.1 98.7 99.5
put for a single layer extracted from NVEP4 NR-GPTQ 87.3 93.7 958 98.3 97.4 989 98.3
a Llama-3.3-70B model using Flash- QAT 86.1 96.6 954 - 97.8 - -
Infer as a backend. The curve la- QAT+HT _ 87.1 953 965 - 988 - -
ith “ideal” _ RTN 67.7 87.2 88.1 96.8 93.7 96.3 91.8
beled with “ideal” represents the up RIN+HT 744 861 89.3 97.8 93.6 96.0 98.7
per bound for a real 4-bit weight MxFpa GPTQ 68.4 87.0 89.7 97.9 94.1 96.2 96.7
. o . A MR-GPTQ 79.8 92.7 93.3 98.4 952 97.3 95.6
anq 4-b1F activation matrix multipli- QAT 682 901 923 - 970 - =
cation, i.e., the measured matmul QAT+HT 84.5 94.1 954 - 984 - -
throughput not including the over-
head of quantization-related opera- Figure 4: Per-model recoveries with real quantization.

tions. In contrast, the curves labeled

“actual” show real measurements including the costs of Hadamards, quantization, and scale com-
putation. The comparison highlights the small gap between idealized efficiency and practical
implementations with our kernels, with speedups of up to =~ 3.6x (out of 4x) on B200 and ~ 6x
(out of 8x) on RTX5090.

Interestingly, MXFP4 outperforms NVFP4 on B200, with up to = 15% higher throughput, despite
their closely related numerical formats. Possible contributing factors include MXFP4’s use of
potentially more efficient power-of-two scales as well as larger group sizes, which could reduce
overhead. On the right, the end-to-end speedup of vLLM running Llama-3.3-70B with MXFP4
quantization compared to the baseline BF16 implementation on a single B200 GPU. The results
demonstrate consistent performance gains across batch sizes, with speedups reaching up to 2.2x over
the BF16 baseline, and nearly 4x on an RTX 5090 GPU (see Appendix E for more details).

VLLM - Llama3.3 70B MXFP4

Weight Shape: 57344x8192 (OUTxIN) 1xB200, Prompt/Decode 32/128
0001 _ @ Ideal MXFP4 _a--%"8
e Actual //r ‘,:f =1
4000 MXFP4+H,128 mE ©
> °
g -#- Ideal NVFP4 //,j!" 7
& —.- e =
2 3000 #®— Actual NVFP4 B 3]
° —-4- torch BF16 /;I'/ g_
E ,;'/ g
3 2000 1" |51
| ,’ g
= o kA TmA @
¢ -
1000 ‘ = A
e? A&
- By 3
=87 A
0 ='=_r 32 64 128 256 512 1024 2048 4096 8192
1 16 32 64 128 256 512 1024 2048 4096 8192 Batch size
Batch size (QUTLASS + CUTLASS GEMM backend)

Figure 5: QuTLASS performance for weights and activations while increasing batch size, for a single
linear LLM layer (left), and end-to-end using our vLLM integration (right).

6 CONCLUSION

We presented a first comprehensive study of the recently introduced MXFP4 and NVFP4 formats for
LLM quantization, revealing gaps between the promise of these formats and their performance using
state-of-the-art methods. To bridge these gaps, we introduced Micro-Rotated-GPTQ (MR-GPTQ), a
novel GPTQ variant adapted to these formats. We support this approach with QuTLASS, a suite of
high-performance GPU kernels that implement MR-GPTQ’s micro-rotations with negligible overhead.
We hope that our results will provide a basis and a motivation for future work on improving accuracy
for these novel formats.

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of the study we provide the experimental code as well as the QuTLASS
library in the supplementary material.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Advanced Micro Devices, Inc. AMD CDNA™ 4 Architecture Whitepaper. White
paper, Advanced Micro Devices, Inc., June 2025. URL https://www.amd.com/
content/dam/amd/en/documents/instinct-tech-docs/white-papers/
amd-cdna-4-architecture-whitepaper.pdf. Accessed: 2025-09-24.

Mohammad Sadegh Akhondzadeh, Aleksandar Bojchevski, Evangelos Eleftheriou, and Martino
Dazzi. Kurtail : Kurtosis-based llm quantization, 2025. URL https://arxiv.org/abs/
2503.01483.

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Towards end-to-end 4-bit inference on generative large language
models. arXiv preprint arXiv:2310.09259, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Martin Jaggi, Dan
Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated
1Ims. arXiv preprint arXiv:2404.00456, 2024.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen
Rajani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard (2023-
2024). https://huggingface.co/spaces/open—1llm-leaderboard-old/
open_11lm_leaderboard, 2023.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantiza-
tion of large language models with guarantees. Advances in Neural Information Processing
Systems, 36, 2024.

Euntae Choi, Sumin Song, Woosang Lim, and Sungjoo Yoo. Grouped sequency-arranged
rotation: Optimizing rotation transformation for quantization for free, 2025. URL https:
//arxiv.org/abs/2505.03810.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tri Dao. Fast hadamard transform in cuda, 2023. URL https://github.com/
Dao—-AILab/fast—-hadamard-transform.

Tim Dettmers. 8-bit approximations for parallelism in deep learning. International Conference
on Learning Representations (ICLR), 2016.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix

multiplication for transformers at scale. Advances in Neural Information Processing Systems,
35:30318-30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized
representation for near-lossless 1llm weight compression. arXiv preprint arXiv:2306.03078,
2023.

10

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-4-architecture-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-4-architecture-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-4-architecture-whitepaper.pdf
https://arxiv.org/abs/2503.01483
https://arxiv.org/abs/2503.01483
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://arxiv.org/abs/2505.03810
https://arxiv.org/abs/2505.03810
https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform

Under review as a conference paper at ICLR 2026

[15] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[16] Johannes Dotzel, Zirui Liu, T.S. Jayram, and G. Edward Suh. Learning from students: Applying
t-distributions to explore accurate and efficient formats for llms. In Proceedings of the 41st
International Conference on Machine Learning, Proceedings of Machine Learning Research.
PMLR, 2024.

[17] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The 1lama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[18] Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. arXiv
preprint arXiv:2401.06118, 2024.

[19] Erik Englesson and Hossein Azizpour. Generalized jensen-shannon divergence loss for learning
with noisy labels, 2021. URL https://arxiv.org/abs/2105.04522.

[20] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[21] Elias Frantar, Sidak Pal Singh, and Dan Alistarh. Optimal Brain Compression: A framework
for accurate post-training quantization and pruning. arXiv preprint arXiv:2208.11580, 2022. In
NeurIPS 2022.

[22] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-
shot language model evaluation, September 2021. URL https://doi.org/10.5281/
zenodo.5371628.

[23] Ruihao Gong, Yang Yong, Shigiao Gu, Yushi Huang, Chentao Lv, Yunchen Zhang, Xianglong
Liu, and Dacheng Tao. LImc: Benchmarking large language model quantization with a versatile
compression toolkit, 2024. URL https://arxiv.org/abs/2405.06001.

[24] Zhuocheng Gong, Jiahao Liu, Jingang Wang, Xunliang Cai, Dongyan Zhao, and Rui Yan.
What makes quantization for large language model hard? an empirical study from the lens of
perturbation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
18082-18089, 2024.

[25] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[26] Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng, Chengtao Lv, Hong Chen, Jie Luo,
Xiaojuan Qi, Xianglong Liu, and Michele Magno. How good are low-bit quantized llama3
models? an empirical study, 2024.

[27] Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

[28] Eldar Kurtic, Alexandre Noll Marques, Shubhra Pandit, Mark Kurtz, and Dan Alistarh. “give
me BF16 or give me death”? accuracy-performance trade-offs in llm quantization. In Wanxiang
Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 26872-26886, Vienna, Austria, July 2025. Association for Computational
Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1304. URL https:
//aclanthology.org/2025.acl-long.1304/.

[29] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611-626, 2023.

11

https://arxiv.org/abs/2105.04522
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://arxiv.org/abs/2405.06001
https://aclanthology.org/2025.acl-long.1304/
https://aclanthology.org/2025.acl-long.1304/

Under review as a conference paper at ICLR 2026

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze
Brahman, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya
Malik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh
Hajishirzi. Tiilu 3: Pushing frontiers in open language model post-training. arXiv preprint
arXiv:2411.15124,2024. URL https://arxiv.org/abs/2411.15124.

Jemin Lee, Sihyeong Park, Jinse Kwon, Jihun Oh, and Yongin Kwon. A comprehensive
evaluation of quantized instruction-tuned large language models: An experimental analysis up
to 405b. arXiv preprint arXiv:2409.11055, 2024.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao
Dai, Huazhong Yang, and Yu Wang. Evaluating quantized large language models. arXiv preprint
arXiv:2402.18158, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for Ilm compression and acceleration. In Proceedings of the Learning on Systems (MLSys)
Conference, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of Machine Learning and Systems,
6:87-100, 2024.

Peiyu Liu, Zikang Liu, Ze-Feng Gao, Dawei Gao, Wayne Xin Zhao, Yaliang Li, Bolin Ding,
and Ji-Rong Wen. Do emergent abilities exist in quantized large language models: An empirical
study. arXiv preprint arXiv:2307.08072, 2023.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman
Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant-I1lm
quantization with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

Vladimir Malinovskii, Andrei Panferov, Ivan Ilin, Han Guo, Peter Richtarik, and Dan Alistarh.
HIGGS: Pushing the limits of large language model quantization via the linearity theorem.
In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 10857-10886, Albuquerque,
New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-
6. doi: 10.18653/v1/2025.naacl-long.543. URL https://aclanthology.org/2025.
naacl-long.543/.

Gunjan Mehta, Justin Xin, Riyad Islam, Yiheng Zhang, Asfiya Baig, Akhil Goel, and Sandro
Cavallari. NVIDIA TensorRT Unlocks FP4 Image Generation for NVIDIA Blackwell GeForce
RTX 50 Series GPUs. NVIDIA Technical Blog, May 2025.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort.
Up or down? Adaptive rounding for post-training quantization. In International Conference on
Machine Learning (ICML), 2020.

NVIDIA. Cutlass: Cuda templates for linear algebra subroutines, 2017. URL https://
github.com/NVIDIA/cutlass.

NVIDIA. Nvidia blackwell architecture technical brief. "https://resources.nvidia.
com/en—-us—-blackwell—-architecture", 2024.

NVIDIA. NVIDIA DGX B200. https://resources.nvidia.com/
en-us—dgx—-systems/dgx-b200-datasheet?ncid=no-ncid, 2025.

NVIDIA. cuBLAS. https://docs.nvidia.com/cuda/cublas/index.html#
d-block-scaling-factors-layout, 2025.

NVIDIA. NVIDIA RTX Blackwell GPU Architecture. https://
images.nvidia.com/aem—-dam/Solutions/geforce/blackwell/
nvidia-rtx-blackwell-gpu-architecture.pdf, 2025.

12

https://arxiv.org/abs/2411.15124
https://aclanthology.org/2025.naacl-long.543/
https://aclanthology.org/2025.naacl-long.543/
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
"https://resources.nvidia.com/en-us-blackwell-architecture"
"https://resources.nvidia.com/en-us-blackwell-architecture"
https://resources.nvidia.com/en-us-dgx-systems/dgx-b200-datasheet?ncid=no-ncid
https://resources.nvidia.com/en-us-dgx-systems/dgx-b200-datasheet?ncid=no-ncid
https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout
https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf
https://images.nvidia.com/aem-dam/Solutions/geforce/blackwell/nvidia-rtx-blackwell-gpu-architecture.pdf

Under review as a conference paper at ICLR 2026

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Open Compute Project Foundation (MX Alliance). OCP Microscaling Formats
(MX) Specification Version1.0. Open Compute Project Foundation Technical Speci-
fication, September 2023. URL https://www.opencompute.org/documents/
ocp—microscaling-formats—-mx-vl-0-spec—-final-pdf.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

Claude E. Shannon. Coding Theorems for a Discrete Source With a Fidelity Criterionlnstitute
of Radio Engineers, International Convention Record, vol. 7, 1959., pp. 325-350. 1993. doi:
10.1109/9780470544242.ch21.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks, 2024. URL
https://arxiv.org/abs/2402.04396.

Albert Tseng, Qingyao Sun, David Hou, and Christopher De Sa. QTIP: Quantization with
Trellises and Incoherence Processing. In Advances in Neural Information Processing Systems
(NeurIPS) Spotlight, December 2024. URL https://arxiv.org/abs/2406.11235.

Albert Tseng, Tao Yu, and Youngsuk Park. Training llms with mxfp4, 2025. URL https:
//arxiv.org/abs/2502.20586.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pp. 38087-38099. PMLR, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
In Advances in Neural Information Processing Systems (NeurlPS 2022), 2022.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikei, Vinod Grover, Arvind Krishnamurthy, and Luis Ceze. Flashinfer: Efficient and
customizable attention engine for llm inference serving. arXiv preprint arXiv:2501.01005, 2025.
URL https://arxiv.org/abs/2501.01005.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tiangi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

13

https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2406.11235
https://arxiv.org/abs/2502.20586
https://arxiv.org/abs/2502.20586
https://arxiv.org/abs/2501.01005

Under review as a conference paper at ICLR 2026

TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A WEIGHT-ONLY QUANTIZATION RESULTS

The results for weight-only quantization are provided in Table 2. One can observe that similary to the
weight and activation quantization case INT4 and NVFP4 perform similarly, while MXFP suffers
much significant accuracy drop. Even for weight-only case there is 2% accuracy drop on average
relative to the original model.

Format Quantization MMLU GSM8k HellaSwag WinoGrande‘ Avg. Recovery%

FP16 - 72.80 85.10 80.00 78.90 ‘ 79.70 -
RTN 69.38 81.80 79.41 77.90 77.12 97.71
INT4 RTN+Had 70.27 82.56 79.18 76.64 77.16 97.76
GPTQ 70.25 80.52 79.01 76.64 76.60 97.05
RTN 70.64 82.26 79.24 77.35 77.37 98.02
RTN+Had 69.26 80.82 78.52 77.03 76.41 96.80
NVFP4 GPTQ 70.52 82.49 79.35 76.95 77.33 97.96
AWQ 70.57 82.71 79.30 77.03 77.40 98.06
RTN 68.23 80.36 77.26 75.93 75.44 95.58
RTN+Had 66.24 77.56 77.34 74.11 73.81 93.51
MXFP GPTQ 68.79 81.43 78.40 76.88 76.37 96.76
AWQ 68.16 78.70 78.56 75.30 75.18 95.25

Table 2: Performance of Llama-3.1-8B-Instruct under different weight-only quantization settings.

B REAL QUANTIZATION RESULTS

In this section we provide a complete set of evaluation results for Llama-3 (Llama-3.2-1B-Instruct,
Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct, Llama-3.3-70B-Instruct) and Qwen-3 (Qwen-3-8B,
Qwen-3-14B, Qwen-3-32B) model families. We turn off thinking mode for Qwen as it turned out
that long reasoning chains-of-thought turned out to be detrimental for performance on GSM8k and
MMLU-CoT. The scores were produced using QuUTLASS vLLM integration.

Format Quantization MMLU GSMS8k HellaSwag WinoGrande‘ Avg. Recovery%

- FP16 4620 46.32 59.78 61.56 ‘ 53.47 -
RTN 36.08 31.39 54.77 57.22 44.87 83.91
RTN+Had16 32.80 25.02 56.24 59.04 43.28 80.94
RTN+Had128 38.28 29.95 54.27 58.41 45.23 84.59

NVEP GPTQ 37.79 29.80 55.48 60.22 45.82 85.71
GPTQ+Had16 3899 32098 56.66 58.17 46.70 87.35
GPTQ+Had128 35.47 31.16 57.02 59.19 45.71 85.50
QAT 27.85 38.51 57.52 60.30 46.05 86.12
QAT+Had16 3272 37.60 57.53 58.41 46.57 87.09
RTN 30.46 11.83 48.28 5422 36.20 67.70
RTN+Had32 30.89 19.41 51.64 57.22 39.79 74.42
RTN+Had128 34.48 25.55 53.98 58.01 43.01 80.44

MXEP GPTQ 26.84 13.50 49.29 56.75 36.60 68.45
GPTQ+Had32 29.44 27.60 54.89 58.72 42.66 79.80
GPTQ+Had128 35.68 28.13 54.60 58.72 44.28 82.83
QAT 15.60 20.32 53.34 56.51 36.44 68.16
QAT+Had32 28.12 36.85 57.04 58.80 45.20 84.55

Table 3: Performance of Llama-3.2-1B-Instruct for different weight & activation quantization settings.

14

Under review as a conference paper at ICLR 2026

Format Quantization MMLU GSMS8k HellaSwag WinoGrande ‘ Avg. Recovery%
- FP16 6443 78.01 73.42 70.09 \ 71.49 -
RTN 60.62 7043 70.99 68.03 67.52 94.45
RTN+Had16 59.91 64.82 69.77 65.59 65.02 90.96
RTN+Had128 5434 6748 69.69 66.93 64.61 90.38
GPTQ 61.76 70.36 71.07 69.93 68.28 95.51
NVFP GPTQ+Had16 60.26 68.76 71.05 67.80 66.97 93.68
GPTQ+Had128 60.19 70.89 70.97 68.19 67.56 94.51
MicroQAT+Had16 60.66 69.98 70.55 67.01 67.05 93.79
QAT 62.06 75.06 71.27 67.96 69.09 96.64
QAT+Had16 62.03 7293 70.95 66.46 68.09 95.25
RTN 56.81 60.80 67.30 64.56 62.37 87.24
RTN+Had32 5558 5777 68.56 64.33 61.56 86.11
RTN+Had128 5595 60.80 67.57 64.88 62.30 87.15
GPTQ 57.68 62.32 63.87 64.88 62.19 86.99
MXFP GPTQ+Had32 59.79 68.92 69.50 66.85 66.27 92.69
GPTQ+Had128 59.56 67.78 70.08 68.03 66.36 92.83
MicroQAT+Had32 5949 65.66 69.05 67.32 65.38 91.46
QAT 56.17 6490 69.51 67.17 64.44 90.14
QAT+Had32 59.83 7248 70.27 66.54 67.28 94.11

Table 4: Performance of Llama-3.2-3B-Instruct for different weight & activation quantization settings.

Format Quantization MMLU-CoT GSMS8k HellaSwag WinoGrande‘ Avg. Recovery%

- FP16 72.80 85.10 80.00 77.90 ‘ 78.90 -
RTN 68.70 78.70 78.40 73.40 74.80 94.80
RTN+Had 67.00 77.40 77.30 74.40 74.00 93.80
RTN+Had128 66.60 77.00 77.50 75.50 74.10 93.90
GPTQ 68.60 79.60 78.70 75.50 75.60 95.70
GPTQ+Had 69.40 79.60 78.40 75.10 75.60 95.80
GPTQ+Had128 68.90 79.50 78.30 73.60 75.10 95.10

NVEP QAT 68.20 79.80 78.90 74.40 75.30 95.40
QAT+Had 68.90 81.60 79.00 75.10 76.10 96.50
RTN 62.20 69.50 73.80 72.60 69.50 88.10
RTN+Had 62.60 71.80 75.20 72.30 70.50 89.30
RTN+Had128 64.50 72.70 76.00 73.30 71.60 90.70
GPTQ 63.74 70.20 75.52 7364 70.78 89.66
GPTQ+Had 67.20 77.50 77.00 73.10 73.70 93.30

MXFP GPTQ+Had128 66.80 78.30 76.90 74.90 74.20 94.00
QAT 65.00 76.00 77.60 72.90 72.90 92.30
QAT+Had 67.60 80.30 78.30 74.90 75.30 95.40

Table 5: Performance of Llama-3.1-8B-Instruct for different weight & activation quantization settings.

15

Under review as a conference paper at ICLR 2026

Format Quantization MMLU GSMS8k HellaSwag WinoGrande‘ Avg. Recovery%

- FP16 86.55 95.07 86.22 84.93 ‘ 88.19 -
RTN 8550 9348 85.63 83.27 86.97 98.61
RTN+Had16 85.02 93.63 84.97 83.82 86.86 98.49

NVEP RTN+Had128 8524 91.81 84.91 83.35 86.33 97.89
GPTQ 8554 94.09 85.49 84.37 87.37 99.07
GPTQ+Had16 85.58 9340 85.45 82.40 86.71 98.32
GPTQ+Had128 85.59 94.16 85.56 84.77 87.52 99.24
RTN 8342 92.65 83.93 81.45 85.36 96.79
RTN+Had32 83.86 93.56 84.13 83.58 86.28 97.83

MXFEP RTN+Had128 8437 94.47 84.22 82.40 86.37 97.93
GPTQ 83.77 9447 84.41 82.64 86.32 97.88
GPTQ+Had32 84.82 9454 84.66 83.11 86.78 98.40
GPTQ+Had128 8490 93.90 84.80 83.80 86.86 98.48

Table 6: Performance of Llama-3.3-70B-Instruct for different weight & activation quantization
settings.

Format Quantization MMLU GSMS8k HellaSwag WinoGrande‘ Avg. Recovery%

- FP16 72.98 90.90 75.52 70.56 ‘ 77.49 -
RTN 70.78 90.30 74.63 70.72 76.61 98.86
RTN+Had16 70.19 86.35 73.02 68.11 74.42 96.04
RTN+Had128 69.09 86.66 73.47 67.96 74.30 95.88

NVEP GPTQ 70.90 88.17 75.01 70.09 76.04 98.13
GPTQ+Had16 71.06 88.32 74.58 68.03 75.50 97.43
GPTQ+Had128 70.45 87.41 74.25 68.90 75.25 97.11
QAT 70.94 89.08 74.67 68.51 75.80 97.82
QAT+Had16 71.34 89.23 75.24 70.40 76.55 98.79
RTN 67.69 84.23 71.24 67.40 72.64 93.74
RTN+Had32 67.57 83.78 71.32 67.32 72.50 93.56
RTN+Had128 67.27 81.58 71.41 66.38 71.66 92.48

MXFEP GPTQ 68.01 84.23 71.65 67.80 72.92 94.11
GPTQ+Had32 69.13 84.84 73.17 68.03 73.79 95.23
GPTQ+Had128 69.53 86.43 73.55 65.75 73.82 95.26
QAT 69.45 87.34 74.03 69.85 75.17 97.00
QAT+Had32 70.35 89.61 74.61 70.56 76.28 98.44

Table 7: Performance of Qwen-8B for different weight & activation quantization settings.

16

Under review as a conference paper at ICLR 2026

Format Quantization MMLU GSMS8k HellaSwag WinoGrande\ Avg. Recovery%

- FP16 77.18 91.96 79.84 74.27 ‘ 80.81 -
RTN 75.73 91.28 78.36 73.16 79.63 98.54
RTN+Had16 74.98 92.04 71.76 72.38 79.29 98.12

NVEP RTN+Had128 7446 91.13 77.60 71.98 78.79 97.50
GPTQ 74.88 91.28 78.40 74.51 79.77 98.71
GPTQ+Had16 7549 9143 78.38 74.51 79.95 98.94
GPTQ+Had128 75.10 90.52 78.30 72.77 79.17 97.97
RTN 7292 90.22 76.68 71.51 77.83 96.31
RTN+Had32 73.19 89.54 75.95 71.67 77.59 96.01

MXEP RTN+Had128 73.17 85.60 76.80 72.14 76.93 95.19
GPTQ 72.57 89.54 76.50 72.45 77.77 96.23
GPTQ+Had32 74.36 89.92 77.64 72.53 78.61 97.28
GPTQ+Had128 74.11 89.92 71.77 71.11 78.23 96.80

Table 8: Performance of Qwen-14B for different weight & activation quantization settings.

Format Quantization MMLU GSM8k HellaSwag WinoGrande‘ Avg. Recovery%

- FP16 80.81 92.04 83.97 76.56 ‘ 83.35 -
RTN 79.85 94.24 83.27 75.22 83.15 99.76
RTN+Had16 78.90 89.23 82.60 76.48 81.80 98.15

NVEP RTN+Had128 78.49 89.69 82.47 75.37 81.51 97.79
GPTQ 79.54 92.87 83.24 75.93 82.90 99.46
GPTQ+Had16 78.60 90.90 82.93 75.14 81.89 98.26
GPTQ+Had128 79.11 90.52 83.15 76.09 82.22 98.65
RTN 77.07 72.33 81.52 75.22 76.54 91.83
RTN+Had32 78.22 93.03 81.76 75.93 82.24 98.67

MXEP RTN+Had128 78.36 88.10 81.66 75.30 80.86 97.01
GPTQ 77.01 88.55 81.79 74.90 80.56 96.66
GPTQ+Had32 78.46 82.41 82.72 75.06 79.66 95.58
GPTQ+Had128 78.90 90.90 82.29 75.22 81.83 98.18

Table 9: Performance of Qwen-32B for different weight & activation quantization settings.

17

Under review as a conference paper at ICLR 2026

C SCALE QUANTIZATION ANALYSIS

As discussed in the main text, microscaling formats adopt scale quantization to reduce memory storage
overhead and accelerate dequantization operations. However, scale quantization may introduce
additional error due to rounding of scales onto a coarser grid. Below we provide an analysis and
explore alternative choices for scale quantization.

MXFP format adopts EEMO grid with exponentially spaced levels. It allows to represent values with
very small and large magnitude, yet the distance between adjacent levels can be pretty large resulting
in large approximation errors. E4AM3 grid used in NVFP, on the other hand, has much narrower
dynamic range [—448, 448] with levels spread more uniformly. We note, that the sign bit is in fact
never utilized, given that the scale is a non-negative value by definition.

Below, we explore several choices for 8-bit scale quantization with a fixed group size of 16. Specifi-
cally, we measure weight and activation MSE™ for a range of EeMm formats with e + m =7, as
well as for ESMO and INT8. For ESMO scale quantization, we multiply the scale by 4/3 following
[50], which yields an unbiased estimate of the original scale and reduces quantization error. Results
for weight and activation quantization are shown in Figure 6 and Figure 7, respectively.

self attn.q proj self attn.k proj self attn.v_proj self attn.o_proj
[[. .
NNOI8] e FP16 Scales l/ aoisd T FP16 Scales /| (ol treee FP16 Scales ‘/ 0018 Tttt FP16 Scales ~ /
| e INT8 Scales /| | =eeee INT8 Scales /| | =weer INT8 Scales [| | eeeee INTS Scales /
= Il I PR ESMO Scales // 00164 xeees E8MO Scales | 00169 wuas ESMO Scales // 0016
= ! /
§0014 ,,' 0.014 I,’ 0.014 0.014
= fbassssssssssssssssssss 4’ __________________________ ,‘ _____
ooz . 0012 . 0012 0012
| /
% 0010 0010 0.010 0010
= . -
i v Sirrreriireri o
EIM6 E2MS5 E3M4 EAM3 ESM2 E6M1 EIM6 E2MS5 E3M4 E4M3 ESM2 E6M1 EIM6 E2M5 E3M4 E4M3 ESM2 E6M1 EIM6 E2MS5 E3M4 E4M3 ESM2 E6M1
mlp.gate proj mlp.up_proj mlp.down_proj
o| 0020 o] 0020 [
R FP16 Scales /| | seeen FP16 Scales /| | =reee FP16 Scales
5 00 / 0.018 / /
= e INT8 Scales ;| 7| oo INTS8 Scales / 00187 eeeen INT8 Scales /
~ 00164 eees ESMO Scales | | o016 vt ESMO Scales /| (o6l v E8MO Scales /
™ lv
= i
§ 0.014 ," 0014 0014
Q"UUIZ -------------------- S ,0/ ----- 0012 0012
E 0.010 _ 0.010 0.010
PP B e o
EIM6 E2MS5 E3M4 E4M3 ESM2 E6M1 EIM6 E2M5 E3M4 E4M3 ESM2 E6M1 EIM6 E2M5 E3M4 E4M3 ESM2 E6M1
FP8 Format FP8 Format FP8 Format

Figure 6: MSE™ for the weights of 15th block in the Llama-3.1-8B-Instruct model.

self attn.q_proj self attn.k_proj self _attn.v_proj self_attn.o_proj
’ ’ ’ ’
e EETE FP16 Scales ;| "] aeeen FP16 Scales ;| "] aeeen FP16 Scales ;| 00207 aeees FP16 Scales ~ /
= / / / /
B 00B0T e INTS Scales /| *%%F1 «eeee INTS Scales /| *0%F) «eeee INT8 Scales /| qois{ ==*o INTS Scales /
= 00225 / 00225 / 00225 / /
~ T e E8MO Scales /| 7] e E8MO Scales /| 7] e E8MO Scales /| | eeres E8MO Scales /
T 0.0200 7 0.0200 . 0.0200 ; 0.016 :
B ougsf T i 00175 TTrTITE TR 00175 TTrTITE TR e 00147 4 sunennnnnennnnnenns feied
= / / H
/ / /
?’omso y 0.0150 0.0150 # 0012 Y
0.0125 ya 0.0125 0.0125 /. /
% 0.010
= 0.0100 - 0.0100 0.0100 -
Porrrerrrr®i i | Porrrerrrr P | Porrrerrrr P i
0.0075 0.0075 0.0075 0.008
EIM6 E2MS E3M4 E4M3 ESM2 E6M1 EIM6 E2M5 E3M4 E4M3 ESM2 E6M1 EIM6 E2M5 E3M4 E4M3 ESM2 E6M1 EIM6 E2M5 E3M4 E4M3 ESM2 E6M1
mlp.gate_proj mlp.up_proj mlp.down_proj
0.022 0.022
3 3
Aol T FP16 Scales ’,' ool Tt FP16 Scales ’,' 002507 wmure FP16 Scales /’
----- INTS8 Scales / vt INT8 Scales / 0.0225 s+t INT8 Scales [/
== 0.018 0.018
----- E8MO Scales / s=ee+ ESMO Scales / 0.0200 s=+++ E8MO Scales /
T 0016 ; 0016 7 i
I 0.0175 1]
..................... AR FETTTT TP
oo 00150 /
»
o B A
0010 0.0100
- - T
0008 $ OO T i 0008 $ OO T e 00075 ke raraniiiE BT ereriaianees
EIM6 E2MS E3M4 E4M3 ESM2 E6M1 EIM6 E2M5 E3M4 E4M3 ESM2 E6M1 EIM6 E2M5 E3M4 E4M3 ESM2 E6M1
FP8 Format FP8 Format FP8 Format

Figure 7: MSE™ for the activations of 15th block in the Llama-3.1-8B-Instruct model.

18

Under review as a conference paper at ICLR 2026

One can observe that the E4AM3 and E8MO scales are not optimal for weight scale quantization. E4M3

and ESMO increase MSE™! by 10%, 40% on average, respectively. At the same time, FP8 options
with larger mantissa (E1M6-E3M4) as well as INT8 perform close to FP4 without scale quantization.
The pattern for activation pattern is similar except for the case of down_proj in feedforward layer,
which is known to have a more heavy-tailed distribution with pronounced outliers. We note that the
observed behavior generalizes to other models considered in our study.

D OUTLIERS ANALYSIS

Proof of Lemma 1. Let U = %H be the normalized Hadamard matrix. U is orthogonal (U 'U =
I). The error vectors are related by e, =Z —x=U"§-UTy=U"(—y) = U'e,. Since U

is orthogonal, it preserves the Euclidean norm: ||e,||3 = ||U "¢, ||3 = ||, ||3. The per-element Mean
Squared Error (MSE) is defined as:

1 1
MSE(G) = = Ellle. | = = Elll, 3]

This establishes the second equality.

To prove the first, we rely on the standard assumption in quantization analysis that the quantization
error &, is statistically independent of the signal y. Since x and y are related by the invertible

transformation x = Uy, €y is also independent of x. Consequently, the reconstruction error
e, =U Tay is also going to be independent of x.

The index I, = arg max; |x;| is a function of x. Therefore, the error vector ¢, (and its components)
is independent of the random index I,. Further, since the coordinates of z are i.i.d., we can apply
symmetry to obtain that the probability that any coordinate ¢ has the largest magnitude is uniform:
P(I, =1i)=1/G.

We calculate the Top-Element MSE using the Law of Total Expectation:
MSEiop(G) = El(e2)7,]

I
.MQ

N
Il
-

El(e2)7, | L = iP(L. = i)

1

Bl(e)? | I =1 .

|
_MQ

N
Il
-

Because (¢;)? is independent of the event {I, = i}, the conditional expectation simplifies to
E[(e2)? | I, = i] = E[(e,)?]. Substituting yields:

1 G
MSE:0p(G) = & ZE[(sm)?}

G

1
= EE [;(53&)3] (by linearity of expectation)

— ZElle2I3] = MSE(G).

This completes the proof.

Lemma 3 (Outliers MAPE). Let distribution X be a mix of two distributions: Xpgse and Xoytiicrs
with portions 1 — p and p such that:

1. min(| Xputtiers|) > max(| Xpase

),
2. MSEECG)IP(X ~ X‘XI* ~ outlie'r‘s) = MSEEglp(X ~ X|XI* ~ Xbase);

3. p-G < MSE™ (x).

top

19

Under review as a conference paper at ICLR 2026

Then the expected outlier relative quadratic error equals MSE'™ (X) up to O(pG):

top
(X:—X)?
Z)\X’i’\‘ outliers ZXZ :
=1

i

Ex~x | = e ~ MSE{e, (X ~ X).
Z /\XiN outliers
i=1

Proof. We expand the expectation conditioned on X, ~ Xpytiiers:

G (X;—X;)?
Zi:l)\X7N outliers X2

i

G
Ei:l)\Xi'\’ outliers
i (X1, *)?I*)Q (X —X,)?
X7 T i AN Xouitiers T XE

outliers X2
i

1+ 27,751*)\XZN outliers

Ex~x

=Ex x| X7, ~Xoustiors

(X1, - X1,)?

X7 + O(pG).

=]EX’\’X ‘ XI*N outliers

By Assumption 2 this conditional expectation equals MSEEglp(X), up to O(pG) from Assumption 3.

Hence the claim follows. O

Discussion. Assumption 1 is satisfied for outliers chosen by absolute value thresholds. Assumption
2 holds for floating-point quantization due to constant relative accuracy (no overflow/underflow),
verified in Section 3.2. Assumption 3 holds in practice for LLMs since outliers are typically about
0.1% of elements [11].

Lemma 4 (Consistency of MSE{EIp for smooth distributions). Let X be a distribution of values to

quantize with a power-of-two translation-invariant quantization function
Q:VreR, ,VkeZ: Qz-2%) =2 . Q(x).
Assume:

1. supp X C [2%,2°) for integers a < b,
2. Vz €supp X,y € [2/vV2,2- V2] : |fx(x) — fr(y)] < a,

3. @29 < \igErel

Then
o [Q] [P G g 4 o0 - 20 MisE,).

x2

Proof. We decompose the expectation over dyadic intervals:

SN (S EI N S T LTSN

x2

A i
1=a

Within each interval, write fx (1) = fx(2°) + (fx (2) - fX(2i)) The first term yields

A(ZQI da - szx

The second term is bounded using Assumption 2 and 3, giving
git1

> | MSER-O(a)de = (2" —2°) - MSEj,, - O(a).

max

Finally, the normalization error in the discrete approximation of | fx contributes an additional O(«)
factor. Combining terms gives the stated result. O

20

Under review as a conference paper at ICLR 2026

Discussion. Assumptions 1 and 3 hold for absmax X, quantization since floating-point values are
bounded with bounded relative error. Assumption 2 is supported empirically (Figure 3), where scale
distributions are observed to be smooth.

E QUTLASS RESULTS ON GEFORCE GPUSs

MXFP4 - Weight Shape: 51200x5120 (OUTxIN) a0 Qwen3-8B End-to-End Prefill Speedup MXFP4 vs. BF16 on RTX5090
- -]) S Ls th
| A7 torch BF16 ,:' =3 eduence Leng
1 s = 35
- Ideal W4A4 R4 = 6135
- t /e
& 1000 (no quant) b 4 3.0
S
A e Actual / ‘
£ w0 W4A4+Had32 o 25
[+ /s
= —e- Actual ¥ B
G % 204
S 600 W4A4+Had128 ’, H 2.0
£ / 3
4
S /," 15
) 'O
= 10
200 % —g——mATTm A=A
- kT |
o =.-==l:——ﬁ—“f 0.5
1 I3 2 64 128 256 S12 1024 2088 0.0
Balch SiZe 1 2 4 8 16 32 64

Batch Size

Figure 8: Illustration of QUTLASS performance for weights and activations on MXFP4 while
increasing batch size, for a single linear LLM layer, showing the low-overhead of the quantization-
related ops, and end-to-end using the Transformers library.

Figure 8 illustrates additional QUTLASS performance results on an NVIDIA RTX5090 GPU. The
figure on the left shows throughput for a single layer extracted from a MXPF4 quantized Qwen3-32B
model, while the figure on the right shows the end-to-end speedups on Transformers running Qwen3-
8B with MXFP4 quantization compared to the BF16 baseline implementation on a single RTX5090
GPU.

F STANDARD DEVIATION

We estimate the variance of evaluation scores by performing multiple quantization runs on Llama-
3.1-8B-Instruct, varying the seeds for GPTQ calibration set sampling, as well as the strategies for
scale selection and quantization ordering. These results were generated using our vVLLM integration
with QuTLASS kernels. Figure 9 displays the scores as bar plots, while Table 10 lists the average
recovery scores and their standard deviations.

21

Under review as a conference paper at ICLR 2026

NVFP Recovery % by Method

§i?§*#++

97.0

©
o
(&

Recovery %
©O
o
o

95.5
95.0
< X X 3 3 3 3 <
@Q/ «be &b@ &be &be &bq' &bq' &bq'
S S S S S S S S
W& W W W W W & &
x < x <& x <& X X
< & " & s 3 " v“é"
o b>< N Q’x o X O <X
N & N o N & N &
© 2 o) S X Re) < S
'os/ R 8,’1/ NG 1 bé\ N
K S N N

MXFP Recovery % by Method

Recovery %
o o
N w

< <
¥ & ¥ ¥ ¥ ¥ ¥ ¥
L@« éo‘ :}O‘ éo‘ éo‘ éo« éo‘ éo«
v v s s s ¥ 9 9
+)< Q/X +)< ((/X +)< ((/X X ((/X
2 \‘fo S \‘{o S Q{o Q@"' @6
®\§\ ,Lx é\& X é\\\\ X ®¢ X
"‘)’l’x Q@g) ’Lq’x 'bs\, z&x ® &X ®

Q(ob Q\"’& ks & \bz

Figure 9: Accuracy results for NVFP4 and MXFP4 across different combinations of FPTQ compo-
nents, averaged over five random seeds using vLLM kernels on the benchmark suite.

Format Method Avg. Recovery % STD
Had16+MinMax+ActOrder 95.88 0.332
Had16+MSE+ActOrder 96.33 0.163
Had128+MinMax+ActOrder 95.52 0.416

NVEP Had128+.MSE+ActOrder 96.11 0.347
Ident+MinMax+ActOrder 95.84 0.487
Ident+MSE+ActOrder 96.18 0.589
Ident+MinMax+DefOrder 96.06 0.655
Ident+MSE+DefOrder 96.38 0.441
Had32+MinMax+ActOrder 92.79 0.554
Had32+MSE+ActOrder 93.78 0.445
Had128+MinMax+ActOrder 93.42 0.416

MXEP HadlZSfMSE+ActOrder 93.63 0.817
Ident+MinMax+ActOrder 89.78 0.570
Ident+MSE+ActOrder 90.54 0.330
Ident+MinMax+DefOrder 89.16 0.372
Ident+MSE+DefOrder 90.02 0.387

Table 10: Recovery scores and standard deviations for NVFP and MXFP methods.

22

Under review as a conference paper at ICLR 2026

G THE EFFECT OF DIFFERENT LINEAR TRANSFORMS

In this section we ablate various choices of transforms adopted for outlier mitigation of outliers.
Specifically, we consider the following options:

* Identity transform.

¢ Discrete Cosine Transform (DCT).

¢ Hadamard rotation [48; 4; 10].

* Grouped Sequency-arranged Rotation (GSR) [7].
We sweep over different options of transform sizes ({16, 32, 64, 128, 256}) both for NVFP and MXFP

formats. The average score on 5 tasks from LM Evaluation Harness (piqa, winogrande, hellaswag,
arc-easy, arc-challenge) is reported.

From these results, one can observe that rotations yield small improvement relative to identity
transform for MXFP format and minor degradation for NVFP with RTN quantization. Different
transform sizes perform more or less the same.

23

Under review as a conference paper at ICLR 2026

Transformation \ Transformation Size Weight Quant\ PIQA winogrande hellaswag arc-easy arc—challenge\ Avg

FP16 | - - | 0.8074 0.7301 0792 0.7769 0.5307 | 0.7274
i - RTN 0802 0.7261 07731 07466 04923 0.708
- GPTQ |0.7933 07214 07698 07664 05111 |0.7124

16 RTN 079 06859 07583 0.742 04889 | 0.693

GPTQ |0.7824 07111 0766 07559 04991 | 0.7029

0 RTN 07786 07119 07572 0.7353 04693 | 0.6905

GPTQ |0.7813 07135 07718 07117 04829 | 0.6922

DOT o4 RTN 07862 07024 07695 07306 04599 | 0.6897
GPTQ |0.7878 07198 07673 0.7765 05068 | 0.7116

128 RTN 07737 07206 07676 0.7466 04701 | 0.6957

GPTQ | 0.7873 0.708 07715 0.7399 0494] 0.7001

256 RTN 07916 07135 07698 0.7563 04983 | 0.7059

GPTQ |0.7911 07017 0.7692 0.7694 0506 | 0.7074

16 RTN 07824 07143 07575 07256 04804 | 0.692

GPTQ |0.7878 07198 0.7628 0.7395 04855 | 0.6991

3 RTN 07856 07198 07399 0.7395 04667 | 0.6903

GPTQ | 07889 07096 0.7633 0.7731 05026 | 0.7075

DST " RTN 07911 07253 07536 0.7635 04804 | 0.7028
GPTQ | 07911 07088 07638 0.7614 05 0.705

128 RTN 07856 07024 07625 07677 04881 | 0.7013

GPTQ | 0.7824 07064 07637 07778 05009 | 0.7062

956 RTN 07867 0.6993 07579 0.737 04804 | 0.6923

GPTQ | 0.7856 07048 07674 07462 04812 | 0.6971

16 RTN 07927 07096 07674 0.7471 0.465 0.6963

GPTQ |0.7873 07096 07697 0.758 05034 | 0.7056

0 RTN 0784 0719 07639 07534 04881 | 0.7017

GPTQ | 07965 07348 0.7668 0.7538 0506 | 0.7116

Hadamard o4 RTN 07818 0.7032 0763 0.7395 04863 | 0.6948
acamar GPTQ | 07856 07151 07657 07614 05017 | 0.7059
128 RTN 07884 0.7206 0766 0.7551 0506 | 0.7072

GPTQ |0.7938 0.7111 07729 0.7681 0.5273 | 0.7146

956 RTN 07878 0.6969 07643 0.7681 04983 | 0.7031

GPTQ 079 07253 07738 0.7673 04949 | 0.7102

16 RTN 07933 07056 07694 0.7513 04744 | 0.6988

GPTQ | 0.7998 0.6985 07683 0.7635 04863 | 0.7033

- RTN 07873 0.6985 0762 0.7702 0494 | 0.7024

GPTQ 079 07214 077 0.7593 05 0.7081

GSR " RTN 07911 07151 07627 07588 0.4821 0.702
GPTQ 0796 07222 07717 07622 04949 | 0.7094

128 RTN 07878 07174 07656 0.7546 04898 | 0.703

GPTQ | 0.7894 07143 07721 0.7668 0506 | 0.7097

256 RTN 07797 0.6906 07626 0.7454 04735 | 0.6904

GPTQ | 08014 07293 07756 0.763 04991 | 0.7137

Table 11: Performance of Llama-3-8B with different transformations with NVFP4 format.

24

Under review as a conference paper at ICLR 2026

Transformation \ Transformation Size Weight Quant\ PIQA winogrande hellaswag arc-easy arc—challenge\ Avg

FP16 | - - | 0.8074 0.7301 0792 0.7769 0.5307 | 0.7274
i - RTN 07704 0.6875 07481 0.7121 0471 0.6778
- GPTQ | 07699 0.693 0753 07327 04718 | 0.6841

16 RTN 07628 07072 0.7447 0.7205 04582 | 0.6787

GPTQ | 07753 07009 07534 0.7365 04846 | 0.6902

0 RTN 07699 0.6914 07405 0.6987 04437 | 0.6688

GPTQ | 07508 0.6969 0.7465 0.7281 04531 | 0.6751

DOT o4 RTN 07693 07127 07454 07079 04556 | 0.6782
GPTQ | 0.7889 0.7111 07524 0.7529 0465 0.6941

128 RTN 07541 0.6851 07398 0.6616 0.4036 | 0.6488

GPTQ | 0.7731 07088 07455 07462 0.4804 | 0.6908

256 RTN 07791 0.6953 07392 06987 04411 |0.6707

GPTQ | 0.7894 0.6946 07541 07504 04744 | 0.6926

16 RTN 07731 0.6906 07493 0.7391 04522 | 0.6809

GPTQ |0.7835 0.6898 07593 07399 04787 | 0.6902

3 RTN 07639 0.6906 07441 07332 04582 | 0678

GPTQ |0.7802 0.6985 0.7563 0.7483 04753 | 0.6917

DST " RTN 07704 0.689 07402 07054 04599 | 0.673
GPTQ | 07769 0.6875 07599 07189 0.4693 | 0.6825

128 RTN 07612 06772 07491 0.7003 04497 | 0.6675

GPTQ | 07693 0.6914 07567 07462 0.d923 | 0.6912

256 RTN 07731 0.6906 07493 0.7391 04522 | 0.6809

GPTQ 0778 07064 07544 07412 04923 | 0.6945

16 RTN 07737 0.6906 07499 0.6995 04616 | 0.675

GPTQ |0.7867 07206 07623 07218 04701 | 0.6923

0 RTN 07715 0.6946 07518 07466 0.5034 | 0.6936

GPTQ | 0.7807 0.7032 0763 0.7471 04778 | 0.6944

Hadamard o4 RTN 07862 07088 07511 0.7315 04667 | 0.6889
acamar GPTQ | 0796 0.6993 07625 07635 04923 | 0.7027
128 RTN 07807 07064 07529 07306 04548 | 0.6851

GPTQ |0.7807 0.6946 07646 07538 04915 0.697

956 RTN 0778 07024 07491 07104 04625 | 0.6805

GPTQ |0.7818 07032 07624 07576 04795 | 0.6969

16 RTN 07813 0.6977 07522 0.6982 04684 | 0.6796

GPTQ | 0.7845 07048 07682 07546 04735 | 0.6971

- RTN 07748 0.693 07514 0742 04991 | 0.6921

GPTQ |0.7856 0.7111 07631 07517 05026 | 0.7028

GSR " RTN 07889 07072 07464 07226 04514 | 0.6833
GPTQ | 07949 07009 07613 07412 04829 | 0.6962

128 RTN 07753 0.7001 07538 07226 04659 | 0.6835

GPTQ | 0.7813 07056 0.7595 0.7395 04846 | 0.6941

256 RTN 07753 0.6819 07494 07197 04642 |0.6781

GPTQ 0778 07151 07542 0.7445 04923 | 0.6968

Table 12: Performance of Llama-3-8B with different transformations with MXFP4 format.

25

	Introduction
	Background on Microscaling Floating-Point Formats
	A Quantization Error Analysis of NVFP4 and MXFP4
	Analytical MSE Bounds
	Numerical Validation

	MR-GPTQ: An FP4-Focused Variant of the GPTQ Algorithm
	Adapting GPTQ to FP4 Formats
	GPU Kernel Support for MR-GPTQ via QuTLASS

	Experimental Results
	Conclusion
	Reproducibility statement
	Weight-Only Quantization Results
	Real Quantization Results
	Scale quantization analysis
	Outliers Analysis
	QuTLASS results on GeForce GPUs
	Standard deviation
	The Effect of Different Linear Transforms

