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Abstract

Despite strong recent progress in Emotion Recognition in Conversation (ERC), two gaps
remain: we still lack a clear understanding of which modeling choices materially affect
performance, and we have limited linguistic analysis that links recognition findings to
actionable cues for generation. We address both gaps via a systematic study on IEMOCAP.

For recognition, we conduct controlled ablations with 10 random seeds and paired tests over
seeds (with correction for multiple comparisons), yielding three findings. First, conversational
context is the dominant factor: performance saturates quickly, with roughly 90% of the gain
observed within our context sweep achieved using only the most recent 10-30 preceding
turns (depending on the label set). Second, hierarchical sentence representations improve
utterance-only recognition (K=0), but the benefit vanishes once turn-level context is available,
suggesting that conversational history subsumes much of the intra-utterance structure. Third,
a simple integration of an external affective lexicon (SenticNet) does not improve results,
consistent with pretrained encoders already capturing much of the affective signal needed for
ERC. Under a strictly causal (past-only) setting, our simple models attain strong performance
(82.69% 4-way; 67.07% 6-way weighted F1), indicating that competitive accuracy is achievable
without access to future turns.

For linguistic analysis, we examine 5,286 discourse-marker occurrences and find a reliable
association between emotion and marker position within the utterance (p < 0.0001). In
particular, Sad utterances show reduced left-periphery marker usage (21.9%) relative to
other emotions (28-32%), aligning with accounts that link left-periphery markers to active
discourse management. This pattern is consistent with our recognition results, where Sad
benefits most from conversational context (+22%p), suggesting that sadness often relies
more on discourse history than on overt pragmatic signaling in the utterance itself.

1 Introduction

Emotion Recognition in Conversation (ERC) is a key capability for socially intelligent dialogue systems,
mental-health support tools, and empathetic conversational agents. Unlike sentence-level emotion classification,
ERC requires models to interpret an utterance in relation to conversational history, speaker dynamics, and
pragmatic signals that are often subtle or indirect. Recent text-only approaches built on large pretrained
encoders have achieved strong performance on benchmarks such as IEMOCAP (Dutta & Ganapathyl, [2024)),
but progress has been accompanied by a growing mismatch between empirical gains and interpretability: it
remains unclear which architectural ingredients actually matter and what linguistic evidence these models
are exploiting.

Gap 1: Which modeling choices materially matter in modern ERC? The ERC literature has intro-
duced increasingly elaborate components—hierarchical encoders (Majumder et al.l |2019), graph/knowledge-
based modules (Zhong et al.| [2020; |Ghosal et all 2019), lexicon fusion (Tu et al., [2022a)), and sophisticated
context modeling (Ghosal et al., [2019). However, many reported improvements rely on single-seed runs and
heterogeneous experimental setups, making it difficult to separate robust effects from variance or configuration-
specific artifacts. As a result, foundational design questions remain unresolved. How much conversational
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context is truly necessary before gains saturate? Does modeling intra-utterance sentence structure still help
once turn-level context is available? Do external affective lexicons add signal beyond what pretrained encoders
already capture?

Gap 2: Recognition rarely translates into linguistic guidance for generation. High recognition
accuracy does not automatically reveal how emotions are expressed in discourse, nor does it provide actionable
guidance for emotion-conditioned generation. In linguistics, discourse markers are well known to encode
stance, subjectivity, and intersubjectivity (Schiffrin, [1987; |Beeching & Detges| |2014]). Their distribution at
the left and right peripheries of utterances is linked to discourse management and listener-oriented effects
(Fraser|, [1999; [Traugott, |2010; |[Beeching & Detges, [2014]). Yet ERC research has rarely examined whether
such positional patterns vary systematically by emotion. Bridging recognition and linguistic analysis could
benefit both directions: it can provide interpretable hypotheses about what models exploit, and it can yield
concrete production cues for generation.

1.1 Research Questions

We address these gaps through a systematic study on IEMOCAP that combines controlled ablation experiments
with large-scale discourse-marker analysis. Our investigation is guided by four research questions:

Recognition: What architectural choices matter?

RQ1 Does conversational context improve emotion recognition, and how much context is sufficient before
performance saturates?

RQ2 Does hierarchical sentence representation help beyond flat utterance encoding, and under what
context, conditions?

RQ3 Does incorporating an external affective lexicon (SenticNet) help under a simple integration scheme?
Linguistic Analysis: What patterns exist?

RQ4 Are there emotion-specific discourse-marker positioning patterns that could inform emotion-
conditioned generation?

1.2 Contributions

1. We provide a statistically grounded ablation framework for ERC by reporting 10-seed evaluations with
paired significance testing and correction for multiple comparisons, enabling reliable component-level
conclusions.

2. We isolate the relative contributions of context length, hierarchical structure, and lexicon fusion (Tu
et al.l |2022al), showing that conversational context dominates and saturates quickly, while hierarchical
encoding primarily benefits utterance-only settings.

3. We show that emotions differ substantially in their dependence on conversational history, with sad
benefiting more from context than angry, suggesting that context effects are not fully explained by
arousal alone.

4. We connect recognition to linguistic evidence by analyzing discourse-marker usage and positioning
(Schiffrin), (1987} [Fraser) [1999; | Beeching & Detges, 2014} Traugott, [2010), demonstrating a reliable
association between emotion and marker position, including reduced left-periphery usage in sad
utterances.

5. Under strictly causal (past-only) constraints, our simple models achieve strong performance on both
4-way and 6-way classification, illustrating that competitive accuracy is attainable without access to
future turns—a practical consideration for real-time deployment.
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2 Related Work

2.1 Emotion Recognition in Conversation

Early ERC methods focused on capturing conversational dynamics through recurrent architectures. Dia-
logueRNN (Majumder et al., [2019) models speaker states across turns, achieving 76.2% on IEMOCAP 4-way
classification. COSMIC (Ghosal et al., [2020]) incorporates commonsense knowledge for context enhancement
(77.4%). Recent work has pursued increasingly complex architectures, including graph-based models (Ghosal
et al.l |2019)), hierarchical attention (Ma et all|2022)), and multimodal transformers (Hu et al., [2022).

A central axis of variation across ERC systems is how conversational context is operationalized. Several
approaches adopt heuristic context windows by concatenating neighboring utterances as raw text; for example,
UniMSE concatenates the current utterance with a symmetric window of two preceding and two following
turns, which implicitly relies on future context (Hu et al., |2022). Other models assume a fixed number of
preceding turns as the local interaction neighborhood (e.g., t=3) (Mai et all 2019), treating context length
as a default hyperparameter rather than an empirically justified operating point. For transformer baselines,
long contexts are often handled by concatenation with truncation: when the input exceeds the model’s length
limit, remote utterances are discarded, imposing an implicit cutoff on usable history (e.g.,[Shen et al.| (2021)).

Among high-performing text-only methods, HCAM (Dutta & Ganapathy, |2024) explicitly introduces inter-
utterance context via a bidirectional GRU (Bi-GRU) with self-attention, aiming to leverage information from
the full conversation. Their formulation uses Bi-GRU to incorporate contextual signals and adds self-attention
to better handle long-range dependencies across dialogues with many utterances. While effective, such
bidirectional context access is not available in real-time settings where future turns are unknown.

In contrast, we focus on strictly causal (past-only) modeling and explicitly characterize the performance—
context trade-off by sweeping the number of preceding turns and quantifying saturation behavior. This
complements prior work by replacing heuristic context choices (fixed windows or implicit truncation) with
a systematic analysis of how much past text is sufficient, and whether context requirements differ across
emotions.

2.2 Discourse Markers and Affective Lexicons

Linguistic theory has long recognized discourse markers as signals of speaker stance and emotion (Schiffrin}
1987)). [Fraser| (1999) classified pragmatic markers by function, while Beeching & Detges| (2014) demonstrated
their tendency to cluster at utterance peripheries. The left periphery often hosts markers expressing speaker
stance or discourse management (e.g., well signaling hesitation, oh marking surprise or realization, and
actually introducing contrast or correction), while right-peripheral markers can be more hearer-oriented
(Traugott], 2010; Beeching & Detges, [2014)).

Despite extensive theoretical study, computational ERC models have rarely examined whether such positional
patterns vary systematically by emotion. We provide a large-scale corpus analysis of discourse-marker
positioning in IEMOCAP and evaluate its association with emotion labels, complementing prior linguistic
accounts of peripheral distributions.

Affective lexicons provide complementary emotional knowledge. While early resources such as WordNet-
Affect (Strapparaval, 2004) offered categorical labels, SenticNet (Cambria et al.l |2024) maps concepts onto
psychological dimensions. Knowledge-enhanced models (Zhong et al.l [2020; [Tu et al., [2022b)) report gains,
but whether lexicons add unique information beyond contextual encoders remains unclear—a question we
examine empirically under a simple integration scheme.

3 Methodology

3.1 Task and Dataset

We conduct experiments on the IEMOCAP dataset (Busso et al.l 2008), which contains approximately 12
hours of audiovisual data from 10 actors performing scripted and improvised dyadic conversations across 110
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Figure 1: IEMOCAP dataset characteristics.

dialogue sessions. The dataset exhibits substantial variability in dialogue length (Figure ), with sessions
ranging from 24 to 267 utterances (mean: 91.7, median: 67.5). Approximately 70% of dialogues contain fewer
than 100 utterances, while the 95th percentile reaches 196 utterances, highlighting the long-tail distribution
inherent in conversational data.

Turn-level context length and K-sweep protocol. We define the context length K as the number of
preceding turns included as strictly past-only conversational history for a target utterance. Because there is
no established stopping rule for how much prior dialogue is sufficient in ERC, we perform a bottom-up sweep
K €{0,1,..., Knax} to characterize the performance-context trade-off and identify saturation behavior. We
set Kmax = 200 based on the dialogue-length distribution (covering the long tail while keeping the sweep
computationally tractable)El Crucially, the sweep is used strictly for analysis (saturation characterization)
and not for test-set model selection; we do not choose K to maximize test performance.

When a target utterance has fewer than K preceding turns (e.g., early in a dialogue), we use all available
history (a variable-length prefix). For turn-level models, sequences are left-padded for batching and padded
positions are masked so they do not contribute to contextual aggregation.

For a fair comparison with state-of-the-art models (Dutta & Ganapathy, 2024), we follow the standard
speaker-disjoint split strategy: Sessions 2-4 serve as training data (6,072 utterances from 68 dialogues),

1The maximum dialogue length in IEMOCAP is 267 turns; our choice of Kmax = 200 is driven by the empirical distribution
(Figure ), where 200 exceeds the 95th percentile, and is used for analysis rather than model selection.
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Session 1 as validation (1,819 utterances from 20 dialogues), and Session 5 as test set (2,196 utterances from
22 dialogues). This split ensures speaker independence between training and evaluation, with each dialogue
containing an average of 89-100 utterances across splits. The sentence-level structure within utterances
(Figure [Ip) shows that most utterances contain 2-5 sentences, motivating our comparison of flat versus
hierarchical encoding strategies. Sentence segmentation for hierarchical encoding is performed with spaCy’s
sentencizer after lowercasing and standard token normalizationﬂ

We evaluate on two emotion taxonomies commonly used in the literature. The 4-way classification task
considers angry (1,103 utterances, 19.9%), happy (1,636, 29.6%), sad (1,084, 19.6%), and neutral (1,708,
30.9%) emotions, where the excited category is merged into happy (Figure[lk). The 6-way task extends this
to include excited (1,041, 14.1%) and frustrated (1,849, 25.1%) as separate categories (Figure |1d). We use
weighted Fl-score as our primary metric to account for class imbalance inherent in conversational emotion
data, and we also report class-wise F1 scores and confusion matrices for error analysis.

3.2 Discourse Marker Analysis

Beyond recognition accuracy, we conduct a linguistic analysis of discourse markers (DMs) to examine emotion-
specific pragmatic patterns that may inform future work on emotion-conditioned dialogue generation. DMs
are lexical expressions that signal relationships between discourse segments rather than contributing to
propositional content (Schiffrin, [1987; |Fraser], [1999). Drawing from established taxonomies (Schiffrin, [1987;
Fraser), [1999; [Traugottl |2010; Beeching & Detges| 2014)), we identify 20 markers occurring in IEMOCAP,
including turn-management markers (well, oh), connectives (and, but, so), and stance markers (I think, I
guess, maybe, you know, I mean). See Appendix for the full inventory and frequency distribution.

For each marker occurrence, we record its relative position within the utterance (normalized to [0, 1]), its
periphery classification, and the emotion label of the containing utterance. Following standard discourse
accounts of utterance peripheries (Beeching & Detges| |2014)), we operationally define the left periphery (LP)
as position < 0.15, the right periphery (RP) as position > 0.85, and medial otherwise. For consistency
with our pooling notation, wmean_pos rev emphasizes utterance-initial (left-peripheral) tokens, whereas
wmean__pos emphasizes utterance-final (right-peripheral) tokens; mean pooling treats all positions uniformly.

To test for emotion-specific positional patterns, we employ (i) ANOVA to compare mean positions across
emotions, (i) x? tests with Cramér’s V to assess association between periphery categories and emotions, and
(iii) mixed-effects models with dialogue as a random intercept to control for dialogue-level variation (e.g.,
pos ~ emotion + (1|dialogue)). We apply post-hoc pairwise comparisons with Bonferroni correction where
appropriate.

3.3 Model Architecture

To investigate how emotional information is encoded and propagated in dialogue, we develop two encoder
variants: a flat encoder and a hierarchical encoder. The flat encoder processes each utterance as a single
sequence, while the hierarchical encoder first encodes individual sentences within an utterance, then aggregates
them to form the utterance representation. Figure [2]illustrates our architecture.

Utterance Encoder. We compare (1) flat encoding, which treats each utterance as a single sequence
and extracts a pooled representation, and (2) hierarchical encoding, which encodes each sentence and
then aggregates sentence representations into an utterance vector. We evaluate three pre-trained encoders:
BERT-base-uncased (Devlin et al., 2019), RoBERTa-base (Liu et al.l [2019)), and Sentence-RoBERTa (NLI-
RoBERTa-base-v2) (Reimers & Gurevychl [2019). Unless stated otherwise, encoders are used as fixed feature
extractors and utterance embeddings are precomputed to isolate the effects of contextual modeling and
pooling ChoicesE|

2We follow common ERC preprocessing practice (lowercasing and tokenization) and use a deterministic sentence boundary
detector to ensure reproducibility.
3This design avoids confounding the analysis with end-to-end fine-tuning instability across seeds.
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Figure 2: Model architecture. Each turn is encoded independently via Sentence-RoBERTa using either flat
(whole utterance) or hierarchical (sentence-level) encoding. SenticNet features are optionally fused (dashed
boxes). For classification, we use MLP when K=0 (no context) or unidirectional LSTM when K>0 (with
preceding turns as context).

We compare two layer strategies: (i) avg_last, averaging the last four transformer layers, and (ii) last, using
only the final layer output. We use a maximum input length of 128 subword tokens for the utterance encoder;
longer utterances are truncated from the left /right as in standard transformer preprocessing.

Context construction and label availability. During embedding generation, we include all turns in
each dialogue in chronological order, including utterances without target emotion labels or outside the target
label set. These turns may appear in the contextual history, but only target-labeled utterances contribute to
the training loss and evaluation metrics. This allows long-range history to be represented without altering
the supervised label space.

Classifier. For utterance-level classification (K=0), the utterance representation is passed through a
two-layer MLP with ReLU activation and dropout. When incorporating turn-level context (K >0), we process
the sequence of utterance representations via a single-layer unidirectional LSTM and use the final hidden
state for classification.

Lexical Feature Integration. To examine whether external affective knowledge benefits emotion recog-
nition, we integrate SenticNet 7 (Cambria et al. |2024), which provides four-dimensional affective ratings
(pleasantness, attention, sensitivity, aptitude) for words and phrases. We lowercase and tokenize each
utterance, match SenticNet entries at the token level (and, where available, multiword expressions), and
aggregate matched vectors via mean pooling; unmatched tokens contribute zeros. The resulting 4D vector is
concatenated with the encoder representation.
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3.4 Training and Implementation Details

Our classifier consists of a two-layer MLP (for K=0) or a single-layer unidirectional LSTM (for K>0). We
use fixed hyperparameters across all experiments: learning rate le—3, hidden dimension 256, dropout 0.3,
and batch size 64. Hyperparameters were selected once on the validation set and then held fixed across all
ablations to ensure comparability.

Training employs Adam with early stopping on validation weighted F1 (patience 60 for utterance-level and 20
for turn-level experiments)ﬁ All experiments use 10 random seeds {42,43,...,51} with results reported as
mean + standard deviation. Statistical comparisons across configurations use paired t-tests over seeds with
Bonferroni correction where applicable. Implementation uses PyTorch 1.13, and experiments were conducted
on NVIDIA A100 GPUs via Saturn Cloud.

3.5 Encoder Selection

We compared three pre-trained text encoders at utterance level (K=0) on IEMOCAP 4-way classification
(Table [1). Sentence-RoBERTa yields the highest mean weighted F1 (65.29%), which is plausibly attributable
to its NLI fine-tuning that produces robust sentence-level semantics. We emphasize, however, that this
ranking may be dataset-dependent: IEMOCAP consists of relatively well-structured, acted dyadic dialogues,
and noisier, multi-party corpora (e.g., MELD) may favor different encoders. To isolate architectural effects
under a fixed encoder, all subsequent experiments use Sentence-RoBERTa unless otherwise noted.

Table 1: Encoder comparison on 4-way classification (K=0, 10 seeds).

Encoder WF1 (%) Std Min Max 95% CI
BERT-base 63.99 0.85 62.62 65.18 [63.38, 64.59]
RoBERTa-base 65.01 0.80 63.90 66.31 [64.44, 65.58]

Sentence-RoBERTa 65.29 1.17  64.10 67.31 [64.45, 66.12]

3.6 Main Results

We report two complementary views of performance. First, for a fair comparison across design choices,
we evaluate each configuration at fixed context sizes K (Table , where K denotes the number of strictly
preceding turns (past-only context). This controlled evaluation shows that conversational context dominates
performance: most of the total gain is already realized with a short history (e.g., K=10), and performance
changes only marginally beyond K=30-50 depending on the task.

Within the same K, neither hierarchical encoding nor position-weighted pooling shows a consistent advantage.
In particular, FLAT vs. HIER differences are not statistically significant in the fixed-K setting (paired
tests across seeds; p>0.9), and pooling choices do not yield reliable improvements (all comparisons p>0.08).
These results suggest that once modest conversational history is provided, architectural sophistication at the
utterance level contributes little relative to context.

Second, to characterize the performance—context trade-off and identify saturation behavior, we also conduct
a full K-sweep analysis (Section |3.7). For completeness, we additionally report the best-performing configura-
tions observed in the sweep (Table ?77?); importantly, these are used for analysis rather than test-set model
selection.

3.7 Emotion-Specific Context Effects

While prior work on variable-length context focuses on how to adaptively select context windows through
speaker-aware modules (Zhang et al.l [2023]), we take a complementary approach: we systematically investigate
what patterns emerge when varying context length and whether different emotions exhibit distinct context
requirements.

4We use validation weighted F1 to align the early-stopping criterion with the primary evaluation metric.
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Table 2: Fixed-K evaluation on IEMOCAP with Sentence-RoBERTa (10 seeds; mean+std). K is the number
of preceding turns (past-only context). This table enables fair, like-for-like comparisons across encoding and
pooling at the same context size.

Task  Type Pooling K=0 K=10 K=30 K=50
4-way FLAT mean 64.944+0.77 79.44+1.10 80.56£1.15 80.66%1.15
4-way FLAT wmean pos 64.80+£0.87 79.21+0.98 80.63+0.84 80.284+0.93
4-way HIER mean 64.52+1.01 78.39+1.29 80.64+1.88 78.99+2.70
4-way HIER  wmean_pos 64.03£1.15 77.94+1.14 79.17+1.04 80.22+1.09
Task Type Pooling K=0 K=10 K=30 K=50
6-way FLAT mean 52.35+1.36 62.80+£2.32 64.77£1.26 64.58£1.07
6-way FLAT wmean_pos 52.4440.78 64.25+1.25 64.26+£1.66 64.38+1.40
6-way HIER mean 51.5644+1.04 63.24+1.58 64.74£1.59 63.85+1.86

Task Type K=100 K=200

4-way FLAT (mean) 80.60+1.56 79.59

4-way FLAT (wmean_ pos) 79.52+1.76 80.13

4-way HIER (mean) 79.43+2.15 79.08

4-way HIER (wmean_pos) 78.95+1.76 77.81

6-way FLAT (mean) 64.11+1.31 63.72£1.58

6-way FLAT (wmean_ pos) 65.40+1.08 64.44+1.35

6-way HIER (mean) 63.724+1.14  62.62+1.50

6-way HIER (wmean_pos_rev) 62.49 63.74

To analyze emotion-specific effects, we compute per-class F1 scores at each context length from K'=0 (utterance
only) to K=200 (preceding turns). For each emotion, we report the context length at which F1 attains
its maximum within the sweep range, and quantify improvement relative to K=0. We also determine the
saturation point, defined as the minimum K at which 90% of the maximum improvement (within the sweep
range) is achieved. All analyses are conducted across 10 random seeds.

Our first finding is that performance saturates rapidly in aggregate: a short history (e.g., K=10) already
recovers most of the eventual gain in weighted F1, and improvements beyond K=30-50 are modest for the
average utterance (Table . This suggests that immediate preceding context carries the majority of predictive
information for ERC under strictly causal access.

Our second finding reveals a dissociation between saturation timing and improvement magnitude at the
emotion level. While emotions reach saturation at broadly similar context lengths (Kruskal-Wallis H = 0.52,
p = 0.91), the magnitude of improvement differs substantially (one-way ANOVA F = 136.80, p < 0.0001).
Sad benefits the most from context (+22%p), whereas Angry benefits the least (+8-9%p), and this ordering
remains consistent across 4-way and 6-way settings.

Finally, although aggregate performance plateaus quickly, the context length at which a given emotion attains
its peak within the sweep range can be much larger. This long-tail behavior motivates reporting both fixed-K
comparisons (for fairness) and sweep-based analyses (for saturation characterization). We discuss theoretical
implications in Section [4

3.8 Ablation Studies

We conducted ablations over (i) pooling strategy, (ii) external lexical knowledge, and (iii) layer aggregation,
using the same training protocol and 10-seed evaluation as in the main experiments.

Pooling strategy. We compared mean pooling, position-weighted pooling emphasizing utterance-final
tokens (wmean_pos), and position-weighted pooling emphasizing utterance-initial tokens (wmean_pos_rev).
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Figure 3: Per-emotion F1 scores across context sizes (4-way classification). Angry peaks with relatively short
context (K* = 10), while Sad/Happy/Neutral peak at substantially larger K values. Shaded regions indicate
+1 standard deviation across 10 seeds.

Across seeds, no pooling method was consistently superior (Friedman test, p > .08). In terms of best-performing
configurations, position-weighted pooling more often appeared among the top runs at utterance-level (K=0),
whereas mean pooling was more frequently competitive when conversational context was included (K>0);
however, these differences were not statistically reliable.

External lexical knowledge. We augmented utterance representations with SenticNet 7
, which provides four affective dimensions (pleasantness, attention, sensitivity, aptitude). This
augmentation did not improve performance and in some settings slightly reduced it (e.g., 4-way: ~ —0.94F1
points; 6-way: near-zero change), suggesting that the pretrained encoder representations already capture
the affective information that SenticNet provides. Full results across all configurations are reported in

Appendix [C]

Layer aggregation. We compared averaging the last four transformer layers (avg_last4) against using
only the final layer (1ast). We observed no significant differences (paired t-tests; minimum p = .244 across
comparisons).

3.9 Comparison with Prior Work

We situate our results against prior text-only ERC methods on IEMOCAP. A key axis of comparison is
temporal access: bidirectional models can use both past and future utterances, whereas past-only (causal)
models are restricted to preceding context and are therefore deployable in real-time settings. Importantly,
prior results are reported under heterogeneous protocols (e.g., context windows, architectures, and often
single-run reporting), so the tables below provide a reference comparison rather than a strict head-to-head
evaluation.

4-way classification. Table |3| shows that our past-only model is competitive with, and in some cases
exceeds, reported performance of representative text-only baselines, including several bidirectional systems.
We report the mean across 10 seeds for statistical robustness, whereas most prior work reports a single
number.

6-way classification. On the 6-way task (Table E[), our past-only model achieves 67.07% weighted F1
(mean over 10 seeds), which is comparable to strong reported baselines and exceeds several bidirectional
systems. We stress that differences should be interpreted cautiously due to protocol mismatch and the
prevalence of single-run reporting in prior work.
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Table 3: IEMOCAP 4-way (text-only). Our result is mean over 10 seeds; prior work numbers are reported in
their respective papers. jText-only ablations reported in multimodal papers.

Method Context WF1 (%)
Ours (mean over 10 seeds) Past-only 82.69
HFFNT (Mai et al., [2019) Bidirectional 81.54

HCAM (Dutta & Ganapathyl 2024) Bidirectional 81.4
CHFusion” (Majumder et al.,|2018)  Bidirectional 73.6

Table 4: IEMOCAP 6-way (text-only, excluding LLM-based approaches). Our result is mean over 10 seeds;
prior work numbers are reported. Bold indicates best reported past-only result among non-LLM baselines.

Method Context WF1 (%)
EmoCaps (Li et al., |2022c) Bidirectional 69.49
DAG-ERC (Shen et al., 2021) Past-only 68.03
Ours (mean over 10 seeds) Past-only 67.07
SKAIG (Li et al., 12021) Bidirectional 66.96
DialogueCRN (Hu et al., 2021) Bidirectional 66.20
CoG-BART (Li et al.| [2022a)) Bidirectional 66.18
BiERU (Li et all 20225) Bidirectional ~ 64.59

HCAM (Dutta & Ganapathy} [2024) Bidirectional 64.4
DialogueGCN (|Ghosal et al.|2019)  Bidirectional 64.18

4 Discussion

Our study delivers strong performance under a strictly causal (past-only) setting (82.69% for 4-way; 67.07% for
6-way) and yields several interpretable patterns. Across analyses, conversational context provides the dominant
gain, emotion classes differ markedly in their reliance on context, and external lexicons (SenticNet) do not
improve performance. In addition, our corpus-based analysis of 5,286 discourse-marker (DM) occurrences
reveals small but reliable emotion-specific positional tendencies. Below, we discuss four implications.

4.1 Conversational Context Reduces the Marginal Utility of Hierarchical Structure

We observe an interaction between encoding strategy and context availability. In the best-performing
configurations at K =0, hierarchical encoding exceeds flat encoding (Table ??), consistent with the intuition
that intra-utterance sentence structure can provide additional cues when the model cannot consult surrounding
turns.

However, once past conversational context is incorporated, this advantage diminishes: flat and hierarchical
variants become closely matched, and the best-performing contextual models are not reliably separated
by the choice of utterance encoder. This suggests that turn-level context can partly substitute for fine-
grained intra-utterance structure, because emotional evidence is often distributed across adjacent turns (e.g.,
responses, clarifications, escalation/de-escalation). Practically, this supports using simpler flat encoders in
causal, real-time deployments when sufficient past context is available.

4.2 Do Utterance Peripheries Carry Emotion-Relevant Signal?

Pooling variants did not yield statistically significant differences in our multi-seed comparisons (Friedman
p > .08), yet we consistently observed that position-weighted pooling is competitive at K =0, while simple
mean pooling is sufficient once context is introduced. We interpret this as a weak but suggestive pattern
rather than a definitive effect.
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This interpretation is compatible with our discourse-marker analysis. We find a significant association
between emotion and DM periphery category (x?, p < .0001), although the effect size is small (Cramér’s
V' =0.062). Notably, Sad utterances show reduced left-periphery usage (21.9%) compared to Neutral (31.7%),
Happy (29.7%), and Angry (28.2%), with post-hoc tests indicating that Sad differs from the other emotions
(Bonferroni-corrected, all p < .01). One plausible account is that left-periphery markers (e.g., well, oh) often
participate in turn-management and stance negotiation; their reduced use may reflect more muted pragmatic
signaling in Sad speech. Importantly, we treat this as a linguistic hypothesis supported by corpus statistics,
not as a proven mechanism of the pooling variants.

4.3 Why Does Sadness Benefit Most from Context?

Emotion-specific analysis shows that Sad gains the most from added context (+22.31%p), whereas Angry
gains the least (+8.34%p). A pure arousal-based account is insufficient, because Happy (often high-arousal)
also benefits substantially from context (4+15.82%p). Instead, our results suggest that what matters is the
availability of explicit lexical /pragmatic cues in the target utterance.

Angry turns often contain salient lexical signals (e.g., emphatic negation, direct accusations, profanity)
that are informative even without prior history. By contrast, Sad turns can be lexically understated and
pragmatically ambiguous (e.g., I see, yeah, I guess), making their emotional interpretation contingent on
the preceding trajectory. This aligns with the DM finding that Sad shows reduced left-periphery marking,
potentially reducing overt discourse-management signals and increasing reliance on conversational history
for disambiguation. More broadly, this supports the view that causal ERC should be evaluated not only by
overall F1 but also by how different emotions depend on context.

4.4 Is the 6-way Taxonomy Well-lIdentified in Text-Only ERC?

Our confusion patterns raise questions about how well the 6-way categories are separable from text alone. In
particular, Happy—Sad confusion is higher than Happy—Excited confusion in our analysis, and Happy absorbs
a substantial portion of Excited instances, yielding an asymmetric confusion pattern. This is consistent with
the interpretation that acoustic intensity cues—often crucial for distinguishing Excited from Happy—are
absent in text-only settings, so the model defaults to the more frequent positive label.

These observations do not imply that the 6-way taxonomy is intrinsically invalid; rather, they suggest
that in text-only ERC, some category boundaries may be weakly identified. This motivates alternative
formulations, such as (i) hierarchical classification (e.g., valence first, then finer labels), (ii) dimensional
prediction (valence/arousal), or (iii) reduced label sets that merge categories that are difficult to separate
without prosody.

5 Limitations and Future Directions

While our analyses reveal consistent and interpretable patterns in how causal ERC models leverage context
and discourse cues, several limitations should be acknowledged and motivate future extensions.

Statistical tendencies rather than deterministic rules. The discourse-marker effects we report are
statistically reliable but small in magnitude (e.g., Cramér’s V' = 0.062). Emotional expression is highly
variable across speakers, interactional goals, and situations; accordingly, our positional patterns should be
interpreted as probabilistic tendencies rather than deterministic linguistic laws. Future work should quantify
robustness under domain shift and across interaction types (e.g., multi-party chat in MELD (Poria et al.,
2018), written dialogue in DailyDialog, and other conversational corpora), and should report effect sizes
alongside significance to avoid overinterpretation.

Scope of text-only modeling. Our experiments are restricted to text-based ERC. This captures lexical and
discourse-level cues but omits prosodic and visual signals that are often crucial for separating closely related
categories (e.g., excited vs. happy). Extending the same ablation and fixed-context protocol to multimodal
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encoders would allow precise attribution of what additional information is contributed by acoustics and facial
dynamics beyond text.

Dataset bias, label noise, and generalizability. TEMOCAP consists of acted English dyadic dialogues,
which may differ from spontaneous interaction in turn-taking style, emotional intensity, and marker usage. In
addition, categorical emotion labels in conversational corpora are inherently noisy and sometimes underspec-
ified for text-only interpretation. The emotion-specific context patterns we observe (e.g., larger gains for
Sad than Angry) may therefore partially reflect dataset- and annotation-specific properties. Cross-dataset
replication and multilingual evaluation are essential to determine whether these are general computational
regularities or corpus-contingent effects.

Operationalization choices in context and discourse analysis. Our context analysis uses turn-based
windows and a fixed definition of “past-only” context, and our discourse analysis relies on normalized token
positions with predefined periphery thresholds (LP < 0.15, RP > 0.85). Alternative operationalizations
(e.g., sentence- or time-based windows, speaker-conditioned windows, syntactic peripheries, or discourse-unit
segmentation) may yield different quantitative estimates. Future work should stress-test these choices and
assess whether conclusions hold under reasonable variants.

Closed discourse-marker inventory. We analyze a predefined inventory of 20 markers drawn from
established taxonomies. While theory-driven, this closed set may miss informal and multiword pragmatic
expressions prevalent in conversational speech. A promising direction is to complement this with data-driven
discovery (e.g., collocation-based mining, pragmatic phrase induction, or supervised taggers) and to examine
whether automatically discovered marker families show stronger or more generalizable emotion associations.

6 Conclusion

We presented a systematic analysis of emotion recognition in conversation (ERC) that targets two gaps
in the literature: (i) clarifying which modeling choices materially affect recognition under a strictly causal
(past-only) setting, and (ii) identifying interpretable discourse patterns that can inform future work on
emotion-conditioned generation.

For recognition, our experiments yield three primary takeaways. First, conversational context is the dominant
driver of performance: most of the attainable gain is achieved with a relatively short window of preceding
turns, after which returns diminish. Second, intra-utterance hierarchical sentence encoding can be beneficial
when no conversational context is available, but its advantage largely disappears once turn-level context is
introduced, suggesting that inter-turn dynamics can substitute for fine-grained within-utterance structure
in causal ERC. Third, integrating an external affective lexicon (SenticNet) provides no improvement in our
setting, consistent with the view that modern pretrained encoders already capture much of the affective
semantics needed for classification.

For linguistic analysis, our corpus study of 5,286 discourse-marker occurrences reveals small but reliable
emotion-specific positional tendencies. In particular, Sad utterances exhibit reduced left-periphery marker
usage relative to other emotions, which we interpret as diminished overt turn-management signaling. This
observation complements the recognition-side finding that Sad benefits most from added context: when
explicit pragmatic cues are weaker, conversational history becomes more important for disambiguation.

Finally, our confusion analysis highlights that, in text-only ERC, some fine-grained distinctions in the 6-way
taxonomy are weakly identified without prosodic information (e.g., asymmetric Happy—Excited confusions).
Taken together, these results suggest practical guidance for causal ERC system design: simple flat encoders
with moderate past context can capture most predictive information; more elaborate utterance structure
offers limited marginal benefit once context is available; and careful attention to discourse phenomena offers
a principled path toward interpretability and generation-relevant insights.
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A Discourse Marker Inventory

Our discourse marker analysis uses markers drawn from established taxonomies in discourse and pragmatics

research. We compiled a search inventory from Schiffrin

(1987)), Fraser| (1999)

(2005)), |Aijmer| (2013)), Beeching & Detges| (2014)), and Biber &

Finegan| (1989).

, [Traugott| (2010)), Verhagen|

Table [5[ lists the 20 markers

that were empirically found in IEMOCAP, along with their frequencies and theoretical sources.

Table 5: Discourse markers found in IEMOCAP with occurrence counts and source references.

Marker Category Count  Source
and Elaborative 2,372 |Schiffrin (1987); |[Fraser| (1999
SO Inferential 1,968  |Schiffrin| (1987)); [Fraser| (1999 ;|Beeching & Detges| 42014[)
like Pragmatic particle 1,210  |Aijmer| (2013)
but Contrastive 760  Schiffrin| (1987); [Fraser| (1999); [Beeching & Detges| 42014[)
well Turn-management 727  Schiffrin| (1987); |Beeching & Detges| (2014
oh Turn-management 564  |Schiffrin| (1987); Beeching & Detges| (2014
you know Intersubjective 393  [Schiffrin TZS?‘); Verhagen (2005
i mean Intersubjective 240  |Schiffrin| (1987); |Verhagen| (2005
maybe Epistemic (doubt) 195  Traugott| (2010); Biber & Finegan| (1989
though Contrastive 162 |Fraser| (1999); Beeching & Detges| (2014
i think Epistemic (stance) 131 [Traugott| (2010
probably Epistemic (doubt) 83  [Traugott| (2010); |Biber & Fineganl q1989D
i guess Epistemic (stance) 77 |Traugott| (2010
yet Contrastive 29  |Fraser| (1999
also Elaborative 18  |Fraser| (1999
i believe Epistemic (stance) 10 [Traugott| (2010)
however Contrastive 6 |Fraser| (1999
although Contrastive 5 |Fraser| (1999
unfortunately  Attitudinal 4 |Biber & Fineganl 41989D
therefore Inferential 1 [Fraser| (1999)
Total 8,955

B Hyperparameter Sensitivity Analysis

To ensure fair comparison, we verified that alternative hyperparameter choices do not yield statistically
significant performance differences. We conducted 14 pairwise comparisons across layer selection and pooling
methods using paired t-tests and Friedman tests with 10 random seeds.

B.1 Layer Selection: last vs avg_last4

Table@ presents weighted F1 scores (%) for different layer extraction methods at utterance-level (K=0). None
of the six comparisons showed significant differences (all p > 0.24).

Table 6: Layer comparison at utterance-level (paired t-test, n = 10)
Task  Pooling last avg_last4d  p-value
4-way mean 64.89 £ 0.79 64.63 £0.91  0.382
4-way wmean_ pos 64.61 £ 1.06 64.30 £0.94 0.330
4-way wmean_pos_rev 64.65 £ 1.23 64.54 £ 0.73  0.753
6-way mean 52.30 £ 0.91 52.11 +£0.81  0.677
6-way wmean_ pos 52.42 £ 1.01 52.05 £ 1.04  0.508
6-way wmean_pos_rev 52.25 £ 0.77 51.71 £ 0.89  0.244
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B.2 Pooling Method Comparison

Table [7] shows performance across three pooling methods using the Friedman test. No significant differences
were found at either utterance-level or turn-level (all p > 0.08).

Table 7: Pooling method comparison (Friedman test, n = 10)

Level Task mean wmean_ pos wmean_pos_rev p-value
Utterance-level (K=0), layer=last
4-way 64.89 64.61 64.65 0.670
6-way 52.30 52.42 52.25 0.905
Utterance-level (K=0), layer=avg_last/
4-way 64.63 64.30 64.54 0.123
6-way 52.11 52.05 51.71 0.082

Turn-level (best K per seed)
4-way 82.69 £ 0.50 82.49 + 0.46 82.37 + 0.67 0.301
6-way 66.88 £ 0.84 67.07 = 0.69 66.57 + 0.48 0.150

B.3 Hierarchical Aggregation Comparison

For hierarchical encoding at turn-level, we compared aggregation methods (Table ‘ No significant differences
were observed (all p > 0.17).

Table 8: Hierarchical aggregation comparison (paired t-test, n = 10)

Task mean wmean__pos t-statistic p-value
4-way 81.89 + 0.41 81.57 £+ 0.56 1.39 0.197
6-way 66.73 & 0.87 66.19 £ 0.66 1.47 0.175

B.4 Summary

Table |§| summarizes all 14 comparisons. None showed statistically significant differences (p < 0.05), justifying
our reporting of only the best-performing configurations in the main results.

Table 9: Summary of hyperparameter sensitivity analysis

Category # Tests  Significant Min p
Layer (last vs avg_ last4) 6 0/6 0.244
Pooling (utterance-level) 4 0/4 0.082
Pooling (turn-level FLAT) 2 0/2 0.150
Aggregation (turn-level HIER) 2 0/2 0.175
Total 14 0/14 0.082
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C SenticNet Ablation Studies

Table [10] presents the complete results of SenticNet fusion experiments across 36 configurations.

Table 10: Complete SenticNet Fusion Results (36 Configurations). A shows performance change in percentage
points. Each configuration evaluated with 10 seeds.

Encoder Task a Base +Sentic A(%) P

BERT 4-way 0.05 .633 .628 —0.50* .029
BERT 4-way 0.10 .633 627 —0.57* .013
BERT 4-way 0.20 .633 627 —0.58**  .008
BERT 4-way 0.50 .633 .628 —0.49* .022
BERT 4-way 1.00 .633 .628 —0.52**  .007
BERT 4-way  concat .633 .628 —0.52**  .007
BERT 6-way 0.05 485 482 —0.23 .298
BERT 6-way 0.10 .485 482 —0.26 .282
BERT 6-way 0.20 .485 481 —0.35 .146
BERT 6-way 0.50 .485 483 —-0.14 .537
BERT 6-way 1.00 .485 484 —0.10 .623
BERT 6-way  concat 485 484 —0.10 .623
RoBERTa 4-way 0.05 .634 .633 —0.09 .705
RoBERTa 4-way 0.10 .634 .634 +0.00 .999
RoBERTa 4-way 0.20 .634 .634 +0.01 .958
RoBERTa 4-way 0.50 .634 634 —0.00 .996
RoBERTa 4-way 1.00 .634 .633 —-0.07 .804
RoBERTa 4-way  concat .634 .633 —0.07 .804
RoBERTa 6-way 0.05 487 487 +0.05 .851
RoBERTa 6-way 0.10 487 .488 +0.07 794
RoBERTa 6-way 0.20 487 .486 —0.04 .895
RoBERTa 6-way 0.50 487 487 +0.01 .981
RoBERTa 6-way 1.00 487 487 +0.06 Nudd
RoBERTa 6-way  concat 487 487 +0.06 Ny
S-RoBERTa  4-way 0.05 .656 .653 —0.28 .230
S-RoBERTa  4-way 0.10 .656 .653 —0.32 231
S-RoBERTa  4-way 0.20 .656 .653 —0.34 .205
S-RoBERTa  4-way 0.50 .656 .653 —0.29 .268
S-RoBERTa  4-way 1.00 .656 .654 —0.25 .385
S-RoBERTa 4-way concat .656 .654 —0.25 .385
S-RoBERTa  6-way 0.05 .516 .516 +0.08 794
S-RoBERTa  6-way 0.10 .516 .516 +0.07 .815
S-RoBERTa  6-way 0.20 .516 .516 +0.04 .884
S-RoBERTa  6-way 0.50 .516 515 —0.01 .963
S-RoBERTa  6-way 1.00 .516 .516 +0.02 925
S-RoBERTa  6-way concat .516 .516 +0.02 .925

*p < .05, **p < .01 (paired t-test). Fusion: e = (1 — a)ectx + Q€sentic-
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