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Abstract 

The Deep Dive system was designed originally to predict 
ancient paleolithic site locations using AI and Virtual Reality. 
The focus of the project was a Land Bridge that connects what is 
now Michigan to Canada. During the recent Ice Age it was 
above water from 10,000 to 8000 B.P. During that time, it was a 
migration route for caribou. The assumption is that where 
caribou go, hunters will follow.  AI path planning approaches 
were used to predict caribou migration pathways over time on 
the Land Bridge. This work investigates the impact that herd 
size has on the migration routes taken. Three models of herd 
behavior are used by an evolutionary algorithm, Cultural 
Algorithm, to produce optimal values for each of the herd 
models for different sized herds. The question of interest is 
whether there was a “tipping point” for one or more of the 
models that lead to a bifurcation of the optimal path over time? 
The results suggest what models are most appropriate to answer 
this question but the reasons why the bifurcation took place. 

Keywords—Tipping points, Machine Learning, 
Evolutionary Algorithms, Cultural Algorithms, Virtual Reality. 

I. Introduction    
While it is possible to observe tipping points for 

environmental processes over the short term, long term 
evolutionary change is much more difficult to assess.  The 
Deep Dive Land Bridge simulation system was initially 
developed to aid underwater archaeologists in the 
discovery of ancient ice age prehistoric occupational sites 
now underwater in Lake Huron, one of the Great Lakes in 
the United States (Drikx et al, 2013)(Amato, 2017)( 
Reynolds et al, 2011).  It utilized Artificial Intelligence 
and Virtual Reality to recreate the archaic semi-artic 
landscape and has facilitated the discovery of several 
ancient underwater sites (Fogarty et al, 2015). 

The Land Bridge was above Lake Huron water level 
for about 2,000 years from 10,000 B.P. since water levels 
fell because of glacial formation during the Ice Age. It 
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was 8 miles wide and 80 miles long and connected what 
is now Alpena in Michigan to Amberley in Ontario 
Canada. The region was semi-artic with many plants and 
animals that are no longer present. For example, woolly 
mammoth skeletons have been recovered in Michigan. As 
the global climate began to warm, water was released 
from the nearby glaciers and the lake level rose. By 7600 
B.P. the Land Bridge was no longer above water. 

 

 
Figure 1. The Land Bridge extends from Alpena, Michigan 

to Amberley Ontario on the east. 

Figure 1 shows the location of the Land Bridge relative to 
the current state of Michigan on the west and Ontario 
Canada on the east. The two cells on the bridge  represent 
areas that are the focus of original archaeological 
exploration. They were selected due to their location 
relative to the widest part of the Land Bridge.  
 The key component of the Virtual Reality system are 
the caribou herds and their migration patterns through 
various biomes.  Ancient hunter behaviors would have 
related to their ability to predict herd movements and 
exploit those predictions. Figure 2 shows a caribou herd 
moving across the Land Bridge VR landscape. 

 



 
Figure. 2 A caribou herd moving across the Land Bridge. 

While the Land Bridge was above water it could serve 
as a migration pathway for thousands of caribou in the 
spring and fall. At that time caribou were a major food 
source for Paleoindian hunters. As lake levels rose there 
was a point when geologic, hydrologic, and 
environmental factors worked together to produce a 
“tipping point” events. One such event was when the land 
bridge was no longer an isthmus connecting two larger 
land masses (Lewis, 2016). 

A second more local “tipping point” is a behavioral 
one in which caribou herds created different patterns of 
crossing behavior. In order to address these three A* path 
planning algorithms were developed based upon different 
models of herd behavior. For small herds an optimal path 
favored the southern edge of the bridge. However, ancient 
structures have been found on the northern side of the 
bridge. The question of interest here is whether there a 
“tipping point” for each optimization algorithm at which 
the optimal pathways branches both to the north and south 
based upon herd size and the environmental parameters? 
 The organization of the paper is as follows. In 
section 2 several models of herd movement observed in 
the real world are described: Single Path A*, A*mbush, 
and Dendriform A*. Each of them will be used to 
generate optimal migration pathways across the Land 
Bridge for different herd size categories. Next  in section 
3 simulations are performed using basic calorie content 
information to identify three categories of herd size based 
upon the amount of STRESS placed on the herd as it 
moves across the landscape. The goal is to identify the 
number of animals in herds with high survival rates, 
average survival rates, and low survival rates respectively. 
Then in section 4 Cultural Algorithms, an evolutionary 
hyper-heuristic, is briefly described and the employed to 
generate an optimum pathway for each herd size 
algorithm combination. Section 5 provides the results 
about the tipping points observed and the suggested 
reasons behind them. Section 6 gives the conclusion. 

II. The Multi-Agent Planning Framework 
for the Deep Dive Simulation Component 

 Figure 3 gives an overview of the overall Deep Dive 
system. It has three basic components: The Pathfinder 
MAP Simulation system; the Graphical User Interface 

(GUI) for the simulation system; and The Virtual Reality 
system. 

 
Figure. 3 The Overall Organization of the Deep Dive 

system. 

    The topographic data acquired from the National 
Oceanographic and Atmospheric database (NOAA) of the 
area was fed into the AI pipeline to Generate AI content 
via the Landscape. This created content includes the water 
level of various cells of the landscape to identify which 
areas of the Land Bridge were above the current water 
level or not for a given year between 10,000 and 8,000 
B.P. For any given year height map data for those 
portions of the landscape was calculated along with 
derived slope. Hydrological information including the 
location of ponds, swamps, and rivers that are present in 
the location were then calculated. Given the location, 
water content, slope and sun angle the AI pipeline can 
predict the cells potential vegetation at each location on 
the Land Bridge. This information is stored in the 
Landscape Database for use by the Pathfinder system.  

The basis for the simulation system is Pathfinder, a 
Cooperative Multi-Agent Planner (CMAPP). There are 
several deterministic general purpose MAP solvers 
available (McLeod et al, 2017).. They include MAPR 
(MAP Planning by Reuse), CMAP (Cooperative MAP), 
mu-SATPLAN (Satisfiability based planning), among 
others. The different CMAP solvers are be classified by 
the mechanisms that they employ to address the planning 
process. The main features that can be used to 
characterize cooperative MAP solvers are: 

 
1) Agent Distribution: The MAP process here 

involves multiple agents who are involved in the 
planning process either as active participants or 
as target for the planning process. 

2) Computational Process: Whether the 
computational process is performed using a 



centralized monolithic processor or distributed 
among several processing units.  

3) Plan Synthesis: This involves how and when the 
coordination activity is applied among agents. 
Coordination activities represent how 
information is distributed among agents and 
how their actions are combined together. 

4) Communication Mechanism: How agents 
communicate with each other. 

5) Heuristic Search: MAPs that use local heuristics 
to allow individual agents to assess their 
estimate progress towards their individual goals. 
Those with global heuristics calculate them for 
all the agents. 

6) Privacy Preservation: Multi-Agent problem 
solvers can be distinguished in terms of their use 
of various privacy algorithms. 
 

 The CMAP, Pathfinder, used here was developed 
especially for the computational needs of this project. It is 
a monolithic, hierarchical, and Multiagent Planner based 
upon the A* Algorithm with the caribou agents as the 
target of the planning process. The planner uses a global 
heuristic to generate a single A* optimal path. This 
optimal path is used as basis for the A*mbush algorithm 
that decomposes the original path into waves of agents. 
Each wave consumes a certain amount of resources 
leaving the remainder for the next wave. The number of 
waves is given as a parameter. Then the results are given 
to Dendriform A* which decomposes the waves into 
smaller subgroups based upon environmental parameters. 
The result is to generate a set of two-dimensional 
waypoints that support the optimal path across the Land 
Bridge.  
 The three algorithms comprising the Pathfinder 
approach are now briefly described: 
Single Path A*: A* is a popular search-based pathfinding 
algorithm that’s an adaptation of Dijkstra’s Algorithm. 
The difference being an additional heuristic allowing it to 
attribute cost to actual and estimated distance from the 
goal. Since the algorithm calculated point by point it 
allows the caribou agents to traverse the landscape while 
focusing on effort, risk, and nutrition. 
 
Algorithm 1: A* Pseudocode 

Add pathStart to openNodes 
 Initialize pathStart scores 
 While (openNodes count greater than 0) 
 {  
               currentNode = openNodes [0] 
 If (currentNode is goalNode) 
 { assemblePath() and return true} 

 Remove currentNode from openNodes 
 Find currentNode’s neighboringNodes. 
 ForEach(neighboringNode) calculate f and g score 
 If (neighborNode is not in openNodes) add to 
openNodes. 
 Else {adjust neighborNode’s position in the 
openList based on total score} 
 } 
 
A*mbush: Another migration algorithm integrated into 
the system is A*mbush. A*mbush incorporates A* at its 
root. It uses the algorithm of A* but does so in separate 
waves instead of a single path. The number of waves are 
entered as a parameter, then the total herd size of Caribou 
is divided amongst the waves. The waves are then sent 
one after another with the nest wave entering the 
landscape as the last one completes its journey. Each 
wave consumes a certain proportion of available calories, 
leaving the remainder for the waves that follow. 
 
Algorithm 2: A*mbush Pseudocode: 

for (generations=0; generations < A*mbushGenerations; 
generations++) 
for (waypoint = waypoints-2; waypoint > 0; waypoint--) 
{foundPath = AStar(waypoint, waypoint+1) 
foreach(node in foundPath) 
{Insert node in resultPath(generations) at index 0.} 
} resultingHerd += calculateMigrationScore() 
devourVegetation(foundPath) 
} 
 
Dendriform: Dendriform is the final algorithm used in 
the path planner portion on the Deep Dive system. It 
incorporates A* at its root but also allows for branching 
during the exploration of the landscape. This means as the 
line of Caribou is traversing, they can divide on the spot 
allowing some of the herd to continue their path while the 
rest look for a separate path. The subherds can coalesce in 
order to reduce risk when calorie intakes are satisfied.  
 
Algorithm 3: Dendriform Pseudocode 

Calculate optimal A* path 
Add starting point and ending point to node list. 
While node list has more than two nodes { 
checkForNewDivergencePoints 
select last two nodes in node list and A*mbush Devour 
path section. 
Remove last node in node list. 
If last node in node list is not starting point: 
 Calculate optimal A* path to ending point. 
} 



 

 
Figure. 4: The Current Deep Dive GUI (Left side of 

screen). The upper left gives the path produced by an 
algotihm. Bottom left gives the 4 basic parameters for the 

optimization. 

The Simulation system then communicates with the 
simulation GUI in two basic ways. First, the user interface 
displays a series of tabs through which the user may 
navigate to a given data set or select an experiment to run 
as shown in Figure 4. Maps can be viewed in a variety of 
data styles, such as biome data, topographical data, 
archaeological points of interest, ruleset hotspots, and so 
on. Pictured above, the user has selected to run six 
iterations of the A*mbush pathfinder, each wave being 
made up of 1000 caribou. The weight priority wheel on 
the bottom left allows the user to manually set the weights 
for Effort, Risk, Nutrition, and Time in the performance 
function. The priority weights control what will be 
important to the caribou in the current run. The green 
segment denoted by a “N” is the nutrition this will have 
caribou prioritize situations which will lead to an increase 
in calorie or food intake. The blue segment is effort (“E”). 
An increase in this priority will cause the caribou to avoid 
scenarios that lead to excess calories being spent for 
example going up a steep incline. The red segment is risk 
(“R”) which influences caribou to avoid scenarios that 
lead to a higher percentage of deaths. The last weight 
denoted by yellow is time (“T”). This parameter 
prioritizes the amount of time it would take to cross the 
entirety of the portion of the land bridge simulated.  

In the next section, the three algorithms will be used 
to generate survival scores for a range of herd sizes from 
50 to 250,000. Three representative herd sizes will be 
extracted from the resultant distribution to be used for the 
optimization phase. 

III. The Prototype Herd Movement Model 
In this section the goal will be to observe the survival 

scores for each of the three algorithms over a range of 
herd sizes. Representative herd sizes will be extracted 
from the resultant distribution for use in the optimization 
phase. 

In the following, the model assumes a Fall migration 
pathway over the Land Bridge under the control of the 
four basic parameter components: Risk, Nutrition, Effort, 
and Time. To better visualize the tradeoffs between the 
components STRESS charts were produced as a result of 
simulating the optimal path constructed by each algorithm 
for herds ranging in size from 50 to 300,000 across the 
Land Bridge. Herd size is plotted on the x-axis and the 
herd survival as a percentage is plotted on the y-axis. 
Figure 7 gives the chart for the Dendriform algorithm. 

Figure 5 combines the STRESS curves for all three 
algorithms under the “all things being equal” assumption 
for the weights. In that Figure A*mbush (1 wave) is the 
same as A*. Notice that there are three basic phases. In 
the first phase, survival rates increase as herd size 
increases from 50 to around 8000. This reflects the 
principle of safety in numbers. The scenario that prefers 
risk over all other factors dominates in that phase. The 
next phase between 10,000 and 20,000 represents a 
plateau where the impact of adding new members is offset 
by an increase in members who are lost due to starvation. 
In the final phase the nutritional concerns start to 
dominate with herds above 25,000. In that phase, the herd 
models that are able to distribute individuals over the 
landscape are best able to ameliorate the observed 
reduction in survivability.  

It can be seen that the more the herd is broken into 
waves the lower the slope for risk reduction. A* has the 
highest rate of reduction in risk since all of the individuals 
in a herd are used at once. Dendriform is a close second 
since all of the individuals start together although they 
separated into groups to achieve higher caloric intake.. 
The plateau phase is the shortest for A* followed by 
Dendriform. For A*mbush the more waves there are, the 
longer the equilibrium phase and the shorter the nutrition 
dominant phase. 

 



Figure. 7: The GUI screen used to display and modify heuristic constraints on generated paths

 

 
Figure. 5: Survival rates equalizing all weights using the 

A*, A*mbush and A*Dendriform algorithms across 
various herd size. A*mbush (1 Wave) is the same as A*.  

 From Figure 5 three herd categories can be 
identified. Herds of size 8000 are representative of high 
survival herds where risk is a dominant parameter due to 
their relatively small size. In other words, the larger the 
herd the less accesible they are to predators such as 
wolves. So increased herd size is a principle factor 
affecting survival for small herds. Herds of 15,000 are 
selected to represent scensarios where reduced predation 
is counterbalanced by increased need for food resources. 
A herd size of 25,000 will represent herds where caloric 
content is the dominant factor in survivabilty. These will 
be the three representative herd sizes to be used in the 
subsequent path planning optimizations. 

IV. Using Cultural Algorithms to Generate 
Optimal Caribou Migration Paths. 

Here a machine learning algorithm, the Cultural 
Algorithm (CA) is employed to produce a set of weights 
that optimize group survivability. The Cultural algorithm 
is a socially motivated algorithm developed by Reynolds 
(McLeod et al, 2017), (Culturally Responsive-Sustaining 
Education Framework). It’s a means to solve problems in a 
complex system like the ones posed to the Deep Dive’s 
path planner. It is described graphically in Figure 6. The 
CA is composed of a belief space and population space. 
Here the population is a set of experiments that employ 
different values weights for environmental parameters. 
The knowledge sources are housed in the belief space and 
represent the acquired knowledge of the population.  

 

Figure. 6: Cultural Algorithm Representation. 

The knowledge sources are learned from the 
experience of the population of problem solvers. The 
basic categories are exemplar individuals, current range of 
acceptable variable values, rule constraints, and prior 
performance history. 

Individual agents in the population are then influenced 
by the belief space knowledge and are linked together in a 
social network. In each generation every agent has its 
current strategy, but it is able to see those of its immediate 
neighbors. A weighted majority vote is taken that includes 
the individual and it neighbors. The winning strategy is 
then used for that individual. The agents resultant 
decision is evaluated by their relative fitness. Top 
performers are accepted into the belief space and used to 
update the knowledge there. Here the knowledge sources 
determine the optimal weights priorities of risk, nutrition, 
time, and effort can have on the system.  

In addition, the user can place constraints on the 
generated pathways in two ways. First, they can require 
the generated path to be constrained to pass through a set 
of manually set waypoints. Those points can be set by 
clicking on the map in the upper left-hand corner of the 
screen. Also, users can select rules that constrain the 
regions within which the paths can be placed.  The Rule 
Selection screen is shown in Figure 8 below 

The Cultural Algorithm was applied to produce the 
optimum component weights for the three representative 
herd sizes determined earlier. One herd size was selected 
from each of the three phases in the model. The biome 
information used in these tests was the Sonnenberg 
Version 3 biome map, created from a collection of 
regional polygons.  

Figure 8  gives  the color-coded key for each of the 
biomes.  The presence of water bodies are indicated in 
black. The white color is the basic tundra, a low-hazard 
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traversable biome. Green represents marshlands, abundant 
in nutrition but high in risk and requiring more time to 
move through. Yellow is the sandy beach biome, with 
relatively low risk but low nutrition and a time penalty for 
moving in soft sand. Orange represents the rocky biome, 
with lower vegetation and light risk and time penalties 
due to the uneven, rocky surface of the landscape. Gray 
represents the northern cliff biome, which is immediately 
adjacent to a vertical drop which would likely be fatal to 
any caribou that fell from it. The dark red areas represent 
eskers. Eskers are long ridges of gravel and other 
sediment with a typical winding course that are deposited 
by meltwater from a retreating glacier or ice sheet. The 
biome color code key is also given in Figure 8 

 

Figure. 8: Current version of the biome data comprised of  
polygonal regions which includes the lake biomes, the 

lake-edge marsh biomes, and the esker obstacles among 
others. Color coded key to the biome map is also included. 

The Cultural Algorithm was then applied to produce an 
optimal configuration of weights for each of the three 
representative herd sizes when run with A*mbush and 
Dendriform. A* was omitted since it was a special case of 
A*mbush with just one wave. The algorithms were 
applied to the Land Bridge that was above water from 55 
through 60 m below sea level at one meter increments. 
One area common to all these landscapes is the focus of 
the results presented here.  

V. Optimization Results 
The Cultural Algorithm was used to produce  optimal 
paths and parameter weights for three algorithms across 

all 7 lake levels, 55 through 60 m below sea level. across 
the entire Land Bridge. There was one area that was in 
common with all of the lake levels examined defined by 
the 40m contour from the lake bottom. That area is shown 
in Figure 9 along with the location of known hunting 
structures.  

 

 

Figure 9: Locations of known hunting structures. 

Note that two of the structures, Drop 45 and Overlook, are 
positioned at either end of the esker ridge. The esker is an 
obstacle that caribou need to go around. The third 
structure, Dragon Drive, is located on the northern side of 
the bridge and may have been used as a location to which 
caribou were driven. 

 

Figure 10: Dendriform A* path for a herd size of 8000. 

  A*mbush 8 
A*mbush 
15 

A*mbush 
25 Dendri 8 

Dendri 
15 

Dendri 
25 AVG STD DEV 

Effort 19 20 33 37 33 8 25 10.18168 

Risk 12 16 11 24 6 3 12 6.806859 

Nutrition 61 46 46 32 46 79 51.66667 14.81741 

Time 8 17 10 8 15 10 11.33333 3.448027 



Table 1: Optimal parameter values for each of the algorithm herd size combinations, 

 

 

 

Figure 11: Dendriform A* for a herd size of 15000.      

 

Figure 12: Dendriform A* for a herd size of 25000. 

 
The key question here is whether there is a tipping point 
in terms of herd size when there are enough caribou to 
traverse both the north and south areas? If so, is there a 
different tipping point for each herd model and what are 
the optimal values for the four components?  
 Figures 10 through 12 present the paths generated by 
Dendriform A* for each of the three categories. The row 
delimiters extend from the west border on the left to the 
east border on the right. Likewise the column delimiters 
extend from the northern border at the top to the southern 
border at the bottom. The paths for both the 8000 and 
15000 herd sizes tend towards the southern side of the 
bridge. Only high frequency paths are represented in these 
diagrams. However, for a herd size of 25000 there is a 
substantial northern component. There appears to be a 
tipping point between 15000 and 25000 that accounts for 

that shift but the reasons for the shift are different in each 
case. 
 To identify the reasons for the shifts  one can look at 
the optimized parameters for the algorithms for each of 
the three population sizes. The optimized parameters are 
given in Table 1. For A*mbush the optimum values 
increase for effort, risk, and time spent whereas that for 
nutrition  decreases substantially. The traditional southern 
pathways are becoming more challenging for the herd. 
For a herd size of 25000 the time spent, and risk factors 
were reduced while the emphasis on nutrition stayed the 
same. Only effort increased its share since each wave 
needed to spread out more because there is less food left 
for them by preceding waves. By distributing the herd in a 
more northerly direction pressure on overall movement 
appears to have been reduced. 
 While A*mbush herds move out in waves 
Dendriform A* begins as a single herd and breaks into 
sub herds to generate more nutrition.  Nutrition is a key 
factor as herd size increases. Expansion to the north 
reduces risk since sub herds need not break up so often 
and can be larger in size. The emphasis on effort and time 
are also reduced because less congestion improves speed 
of movement and less effort is needed to coordinate group 
fission and fusion. 
 It appears that the tipping point in terms of 
movement to the northern side of the bridge could occur 
with either herd model but for different reasons. For the 
wave based models it is due to the reduction of caloric 
intake as a result of many waves moving over the 
landscape. On the other hand, for the sub herd based 
model it allows more exploration of the environment but 
with larger sub herd sizes so as to reduce risk and 
expedite movement. 
 In addition, what the results do suggest is that the 
northern most locations were most viable for larger herd 
sizes, those most likely in the fall. Thus, this behavioral 
tipping point for the caribou may also have produced a 
corresponding tipping point for the paleolithic hunters. It 
is possible that these northern locations were constrcuted 
after the structures found on the southern side. However, 
once the glaciers began to melt and the lake levels rose 
again the size of the herds would be correspondingly 
reduced. At the same time the southern locations would 
be progressively under more water and the remaining 
herds of smaller size would be attracted to the northern 
region. Thus, the northern most sites developed later but 
lasted longer than the southern ones until the lake levels 
reached a tipping point and caribou crossing was no 
longer viable. 



   Figure 13 overlays the frequency of traversal on the 
virtual land bridge generated by all of the runs overall 
herd sizes and algorithms. The view is from cell D2 in 
Figure 11 towards the southwest. Red cells were traversed 
by 100% of all runs. Yellow cells were traversed 
approximately 75% of the time. Light green and blue cells 
were traversed slightly above and below 50% 
respectively. Dark blue and black cells are close to 0%. In 
summary, the use of artificial intelligence to generate and 
test hypotheses concerning behavioral tipping points has 
provided the opportunity for a deeper understanding of 
the impact that climate change has on the environment on 
a behavioral level. 

 
Figure. 13 A view of migration frequency from cell D2 to 
the southwest. Generated path frequency is overlaid onto 

the land bridge grid. Red shaded cells were alwayns 
visited by a portion of all simulated runs over all herd sizes 

and algorithms. 

VI. Conclusions 
  Environmental tipping points can occur on a variety 
of scales. In this work artificial intelligence and virtual 
reality are used  to study the impact that local behavioral 
changes are related to and reflect the impact of larger 
scale climatic change. 
 Several algorithmic models of herd movement were 
described and simulated using various parameter 
configurations. The result was to produce stress curves 
that showed how survivability was affected by herd size 
for each algorithm. From those curves a three-phase 
model of survivability was produced, and three 
representative herd sizes were selected for path 
optimization using an evolutionary algorithm, Cultural 
Algorithms.  
 Cultural Algorithms were used to produce optimal 
pathways for herds of different sizes. The results suggest 
that it was advantageous for herds of large size to expend 
their movement into the northern areas of the bridge. 
However, the reasons for the expansion were different for 
each model but the results were the same in principle. 
With this new knowledge in hand, the next step will be to 
investigate the impact of these changes on hunting 
strategies and hunter group movement in future work. 
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