
Under review as a conference paper at ICLR 2024

TOKEN ALIGNMENT VIA CHARACTER MATCHING FOR
SUBWORD COMPLETION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative models, widely utilized in various applications, can often struggle with
prompts corresponding to partial tokens. This struggle stems from tokenization,
where partial tokens fall out of distribution during inference, leading to incorrect or
nonsensical outputs. This paper examines a technique to alleviate the tokenization
artifact on text completion in generative models, maintaining performance even
in regular non-subword cases. The method, termed token alignment, involves
backtracking to the last complete tokens and ensuring the model’s generation
aligns with the prompt. This approach showcases marked improvement across
many partial token scenarios, including nuanced cases like space-prefix and partial
indentation, with only a minor time increase. The technique and analysis detailed
in this paper contribute to the continuous advancement of generative models in
handling partial inputs, bearing relevance for applications like code completion
and text autocompletion.

1 INTRODUCTION

Generative models have shown remarkable efficacy in a range of applications. However, they
have been observed to falter when dealing with partially provided inputs or subwords during text
completion. For instance, a generative model might struggle to predict the remaining part of the word
where a prompt ending in a subword often leads to incorrect or nonsensical outputs. This issue arises
due to the artifact of tokenization where a partial token can be out-of-distribution during inference. In
this paper, we introduce a method to address and rectify these shortcomings in generative models,
ensuring they maintain their performance on complete contexts.

Our approach involves backtracking to the last complete tokens and aligning the model’s generation
to match with the given prefix, as shown in Figure 1. For example, if the end of the prefix is “sys” we
guide the model’s generation to ensure compatibility with this prefix where all possible tokens match
with “sys”. This method not only improves the accuracy of the model’s predictions on subword data
metrics but also retains the performance on generic evaluation sets.

To illustrate our approach, consider the following programming code snippet where the end of the
prompt is right after the incomplete token “sys” in Figure 2. A conventional model might generate an
incorrect or suboptimal output such as "sysYtem", while the correct prediction should be "system".
Our approach solves this issue by matching the characters starting from the last complete pre-token
and aligning the subsequent tokens with the prefix. The results of our approach, as shown in various
examples, demonstrate the model’s ability to reliably generate the correct output regardless of the
partial context.

Our evaluation of the token alignment approach indicates noticeable improvement in handling partial
token contexts, outperforming the traditional decoding approach without any subword handling. We
present comprehensive evaluation results on many partial token scenarios such as subword of natural
words, as well as much less obvious cases of partial tokens related to punctuations, or artifacts of
contiguous white spaces and space prefix. Our approach also does not incur much extra latency,
with an average increase of only 3-7 ms for using token alignment, in addition to the number of
backtracked tokens, thanks to our implementation of an efficient trie-based lookup table. We believe
our findings provide a meaningful and practical contribution to the ongoing work in improving
robustness of generative models, especially related to handling partial inputs.

1



Under review as a conference paper at ICLR 2024

machine learning sys  system

 s

 books

 research

..

..

Masking out
non-matched

tokens

Original prompt
Next token

probability distribution

matched tokens

non-matched tokens

model prompt (backtracked
to exclude alignment prefix)

alignment prefix

...

Possible
next tokens

Figure 1: An illustration of token alignment process. We first tokenize the prompt where the last
tokens may correspond to partial tokens. We use the backtracked prompt as model input and use the
alignment prefix to filter possible tokens at byte or character level. We then mask out non-matched
tokens by zeroing their probabilities, which is later used for sampling to select the next token.

# write a function to get three maximum
numbers from a list

def three_max(l):
re<T> = []
for i in range(len(l)):

if i == 0:
re.append(l[0])

(a) Without token alignment

# write a function to get three maximum
numbers from a list

def three_max(l):
re<T>turn sorted(l, reverse=True)[:3]

(b) With token alignment

Figure 2: Effects of token alignment on prompts ending with a subword. The <T> marks the end of
the prompt, after which the completion is shown. Without token alignment, the model fails to predict
“return” correctly, as the sequence of tokens “re”, “turn” is out-of-distribution. Token alignment
alleviates this constraint by backtracking to full tokens before “re”, then align subsequent generations
with the prompt.

2 RELATED WORK

Recent works have identified severe robustness issues for large language models. For instance, simple
perturbations like synonym substitution on one word can significantly change outputs and fool the
models (Jin et al., 2020; Zang et al., 2020). Most studies focus on general perturbations especially at
random locations of prompts for both text (Dhole et al., 2021; Nie et al., 2020; Wang et al., 2021;
Kiela et al., 2021) and code models (Wang et al., 2023; Li et al., 2022; Yang et al., 2022; Jha & Reddy,
2023). However, we see a large gap of partial versus full tokens at the end of prompts with only a few
characters missed or added (e.g., with or without a white space) due to the artifact of tokenization.
This robustness problem is barely investigated. Subword regularization tried to partially mitigate such
problems by randomly introducing sub-tokens in training and improve robustness behavior (Kudo,
2018a). However, this requires to retrain the models and also leads to inference latency increase. Our
approach, on the other hand, can work for any models with negligible latency increase.

We acknowledge concurrent work in the form of a blog post namely token healing (Lundberg,
2023), which attempts to similarly solve the partial token problems on inference time. However,
we independently develop our own token alignment algorithm in a more general design. We also
thoroughly validate and analyze the effectiveness of token alignment with extensive empirical results
on various tasks and many partial token scenarios.

3 METHODOLOGY

Generative language models have been remarkably successful in a variety of applications, including
code completion in Integrated Development Environments (IDEs) and text autocompletion in email
or productivity tools. However, these models often encounter difficulties when dealing with partial

2



Under review as a conference paper at ICLR 2024

or incomplete inputs, which we refer to as the partial token issue. In such cases, the models tend
to generate outputs that are not compatible with the given context due to the constraint imposed by
tokenization. This limitation significantly hampers the utility and user experience of applications built
on these models. To tackle this issue, we propose a method called token alignment which makes use
of a character or byte level trie for efficient matching along with masking cache to increase efficiency
further. The underlying principle of our approach is to backtrack to the last complete token and
constrain the model’s generation in a way that aligns with the given prefix.

In our methodology, we first define the last complete token by examining the tokenization of the input
sequence. Given the tokenization of the last line as T1, T2, ..., Tn, we start generating from the −Bth

token, i.e., Tn−B+1, where N is the number of tokens we need to backtrack. The rest of the context
is the sequence Tn−B+1, . . . , Tn, which we refer to as the alignment prefix where the subsequent
generation needs to match at a byte level (or character level if the tokenizer is not a byte-level BPE).*
The token alignment step ensures that the next token starts with the alignment prefix or is a prefix of
the alignment prefix itself by masking out probabilities of tokens that do not match. After each step
where the next token is selected, we deduct the generated bytes from the alignment prefix until the
alignment prefix is empty, after which we finish the token alignment process.

Algorithm 1 TokenAlign Algorithm

1: procedure TOKENALIGN(T,N )
2: Define:
3: X: The input tokens [x1, x2, ..., xn]
4: B: The number of tokens to backtrack
5: C: Tokens for model context
6: V : Prebuilt character or byte-trie
7: P : Alignment prefix
8: p: Probability distribution of next token
9: x′: Selected next token

10: C ← X[: −B]
11: P ← join(X[−B :])

12: while P is not empty do
13: p← model(C)
14: T ← V (P ) (tokens compatible with

P )
15: pnew(T )← 0
16: x′ ∼ pnew (sample)
17: P ← P [len(x′) :]
18: C.append(x′)
19: end while
20: return C
21: end procedure

The efficiency of our approach is supported by two key techniques: a character-trie for fast prefix
matching, and a mask cache. The character-trie is a tree data structure, where each node represents
a character and the paths from the root node to the leaf nodes represent complete tokens in the
vocabulary. We pre-build this trie using the model’s vocabulary before starting the generation process,
thereby enabling a fast and space-efficient representation of the vocabulary.

The mask cache is used to further accelerate the lookup process to avoid unnecessary the trie lookup.
For common cases, such as a single space as context, we pre-build and cache a Boolean mask. This
cached mask is then used for quickly filtering tokens that share a common prefix with the given
context. These techniques significantly reduce the latency, enabling our method to be highly efficient.
The use of a trie-based lookup table and the pre-built mask cache results in a time saving compared
to a naive implementation using a dictionary lookup. In sum, our methodology presents an effective
and efficient solution to the partial token issue in generative models, enhancing their performance in
applications such as code completion and text autocompletion.

4 PARTIAL TOKEN SCENARIOS

We give an overview of many partial token scenarios where the model is susceptible to degenerate
behavior when the prompt ends with such partial token. Such partial token scenarios range from
obvious cases such as natural subwords to less obvious cases such as space prefix, as illustrated in
Figure 3.

1. Subword. This case refers to natural language subword. For instance, a possible subword
of “banana” is ‘banan’ or ‘bana’. We note that while it is possible for a tokenizer to use a

*We use character of byte interchangeably while describing the tokenizer.

3



Under review as a conference paper at ICLR 2024

____return_True
if_x_==_1:

____return_False

if_x_==_1:
____return_True
else:

for_i_in_range(10)_a_bana

matched next tokensmodel prompt (backtracked
to exclude alignment prefix) alignment prefix

_a_banana

_a_banana for_i_in_range(10):

for_i_in_range(10):

____..

.. ____return ____return_False

.. __

..

for_i_in_range(10)_a_bana ____.. .. __

Tokenized prompt

Prediction w.
Token alignment

Prediction w/o
Token alignment ?? ???? ??

Prompt
=

Truncated
text

subword punctuation space-prefix contiguous spaces

Figure 3: Partial token scenarios. Note: the underscore denotes a space character.

subword as an actual token, such as in the case of “beautifully” which can be represented as
‘beautiful’ + ‘ly’, not all possible subwords will correspond to a token, e.g., ‘beautifu’ is
unlikely to be a full token.

2. Punctuation. It is possible that multiple punctuations are grouped together as a token during
the tokenizer training process, which can lead to some punctuations being a partial token in
a non-obvious way. For example, in Python, it is possible that the code snippet if (x==1)
ends in a partial token ‘)’ of a full token ‘):’, which can lead to a suboptimal completion
behavior if presented to a model. In the case of punctuation, it is general quite hard to
judge which case would correspond to a partial punctuation. We separate out this case to
emphasize the importance of token alignment as a universal method that can handle both
prompt ending in either partial token or non partial token in a prompt-agnostic way.

3. Space prefix. Most tokenizers use the space-prefix schema where a whitespace is often
grouped as part of a word as a prefix (Scao et al., 2022; Brown et al., 2020; Li et al., 2023;
OpenAI, 2023). This schema is primarily aimed to reduce the number of tokens required to
represent text. For example, with space-prefix, ‘I like’ can be tokenized into two tokens, ‘I’
and ‘ like’, instead of three (‘I’, ‘ ’, and ‘like’). If a prompt ‘I ’ is presented to the model,
such model can have difficulty predicting coherent text since the prompt is a sequence of
tokens (‘I’, ‘ ’), which is out-of-distribution compared to the training stage which observes
(‘I’, ‘ like’).

The space prefix’s constraint is also quite pronounced in the presence surrounding indentation
block. For instance, x= is tokenized into (‘ ’, ‘ x’, ‘=’). However, if the
prompt ends after the full block of indentation , this becomes a constraint since
(‘ ’, ‘x’) is out-of-distribution compared to (‘ ’, ‘ x’) seen during training.
We refer to this as the space prefix with indentation case.

4. Contiguous Spaces. Modern tokenizers often intentionally group whitespaces together for
improved compression rates. For instance, Codex (Chen et al., 2021) extends the GPT-3
tokenizer (Brown et al., 2020) to include contiguous spaces of different lengths (up to 65
contiguous spaces in some version of TikToken (OpenAI, 2023), for instance). Other models
such as LLaMA (Touvron et al., 2023), StarCoder (Li et al., 2023), CodeGen (Nijkamp
et al., 2022), to name a few, also use such contiguous white spaces.

While such grouping of white spaces is compression efficient, it can lead to out-of-
distribution behavior if the prompt ends in partial token of such contiguous white spaces.
For instance, consider the following prompt ‘ if True:\n ‘ where represents a space
character. The correct syntax for Python is such that what comes after the if clause requires
another level of indentation, meaning that the model should predict extra characters. How-
ever, the model will have a hard time completing the next two since during training, the
model always obvious contiguous if it were to complete the next level of indentation as
in this example.

4



Under review as a conference paper at ICLR 2024

5 EVALUATION

In this section, we empirically demonstrate that each of the partial token scenarios described in
Section 4 can unnecessarily constrain the model due to the artifact of tokenization and lead to
significant drops in evaluation scores. We perform the evaluation using both code generation tasks
where partial token completion such as in the use of code-completion tools can lead to issues if
not well handled, as well as natural language tasks such as text completion and natural language
understanding. We construct the evaluation datasets for each case described in Section 4 show that
token alignment method graciously handles the constrain due to all such cases, making a universal
partial token handling approach for language model inference.

5.1 DATASETS

To demonstrate the sensitivity of language models on how the prompt ends, we analyze language
models’ behavior by processing publicly available datasets to their corresponding variants, in order to
isolate the effects of each case. Below, we detail our methods of processing evaluation datasets based
on public benchmarks for both code generation and natural language tasks.

5.1.1 CODE GENERATION TASKS

Execution-Based Code Generation Benchmarks We assess code generation abilities using the
MBXP benchmark (Athiwaratkun et al., 2022), which is a multi-lingual version of MBPP (Austin
et al., 2021), focusing on datasets in Python, Java, and JavaScript. This entails evaluating function
completion from partially given canonical solutions.

For each dataset: (1) the prompt is formed by merging the original function signature with a section
of the canonical solution, and (2) this section is selectively cut at a specific location based on different
criteria depending on the scenarios.

• Subword: The cut is based on space delineation, yielding prompts ending in subwords.
• Punctuation: Cuts are made within punctuation sequences to demonstrate challenges with

subtokens. For instance, ‘{};’ might be cut to produce ‘{’ or ‘{}’.
• Space prefix with indentation: Here, we focus on challenges arising from prompts ending

with spaces used for indentation. For instance, in a snippet like \n return value,
a cut after the indentation spaces produces \n . Such endings can lead to suboptimal
generation behavior without token alignment due to the last space corresponds to a space
prefix of a future word such as in return.

• Space prefix without indentation: Cuts are made between spaces and non-spaces
while avoiding spaces specifically used for indentation. For example, from the snippet
\n return value, a possible cut could yield \n return .

• Contiguous spaces: Cuts are introduced within sequences of contiguous whitespace charac-
ters. Here, we consider , \n and \t as candidates for whitespace.

Each dataset also has a baseline where prompts are backtracked to end at the last full word, allowing
us to evaluate model performance without the challenge of partial tokens. For example, in the
subword case, if the prompt ends with ‘for i in rang’, we truncate it to be ‘for i in’.
In the baseline scenario, models can perform well without the use of token alignment since it does
not correspond to an ending partial token. The evaluation scores should ideally be slightly lower
due to lower amount of information in the truncated prompt. The goal of the corresponding baseline
evaluation datasets is such that the prompt should not end in partial token, so that we can use them (1)
to see that token alignment does not degrade performance for prompt ending with non partial token
and (2) measure improvement on the partial token dataset due to token alignment.

Metrics We use pass@k (Kulal et al., 2019) with an unbiased estimate by Chen et al. (2021) as
the execution-based evaluation metric to measure the functional correctness of the generated code
snippet. Execution-based metrics is robust to variation in the generated code and can better reflect the
actual problem solving abilities of language models, which is highly suitable for our purposes as an
approach to test the effects of token alignment.

5



Under review as a conference paper at ICLR 2024

Table 1: Token alignment for subword scenario. This table illustrates pass@1 scores (%) on
MBXP partial benchmark as well as subword version of SQuAD and Wikitext, which show clear
improvement due to token alignment.

Token
Alignment

Subword MBXP Baseline of Subword MBXP

Python Java JavaScript Python Java JavaScript

StarCoder with 56.58 52.17 49.31 54.32 49.54 50.16
w/o 30.25 25.40 30.74 53.40 51.37 51.12

LLaMA-7b with 27.47 20.82 24.87 23.66 20.02 26.36
w/o 13.48 10.76 17.50 25.82 19.68 26.68

Token
Alignment

Subword SQuAD Original SQuAD

EM ES EM ES

LLaMa-7b with 40.27 78.81 14.65 52.24
w/o 12.42 69.49 6.04 48.44

Token
Alignment

Subword WikiText Baseline of Subword WikiText

Acc. ES Rouge-L Acc. ES Rouge-L

LLaMa-7b with 19.42 47.80 0.257 1.45 42.826 0.153
w/o 10.9 44.50 0.190 0.75 44.141 0.168

5.1.2 NATURAL LANGUAGE TASKS

We adapt several natural language evaluation benchmarks to reflect the impact of the subword in the
prompt.

• Question answering: SQuAD (Rajpurkar et al., 2016; 2018) with exact match metric and
edit similarity metric.

• Text generation: Wikitext (Merity et al., 2016) with first token accuracy and first nth word
fuzzy-matching based metrics.

For all datasets, we use the original context and part of the ground truth as our prompt, where
the prompt ends with subword or without (control version). The control version always has one
space-delineated word fewer than the subword counterpart. In terms of partial token scenarios for
text-based evaluation, we primarily consider the subword and space prefix.

Metrics For question answering tasks, the ground-truth is a list of answers where each answer can
be one or more words. We use the edit similarity and exact match as the metrics. For text generation
with wikitext, we found that exact match metric is too strict for this type of open-ended generations
in open domains. Therefore, in addition to the first token accuracy, we also use fuzzy-matching based
metrics to calculate the similarity between the first nth word of the generation and the groundtruth
with n = 50 in our case. Here we use the edit similarity and Rouge-L (Lin, 2004) as the metrics.

5.2 TOKEN ALIGNMENT HANDLES MANY PARTIAL TOKEN SCENARIOS

In this section, we show that without token alignment, publicly available language models can suffer
from the partial token issue during text completion. We show that token alignment offers a simple
solution that applies to all the prompt scenarios considered. We primarily use StarCoder (Li et al.,
2023) and LLaMA 7B (Touvron et al., 2023) to perform this study.

5.2.1 SUBWORD

Code Generation The results with and without token alignment in Table 1 demonstrate clear
differences in the ability to handle prompts that ends with subword where the performance can drop
by ≈ 14− 22% for pass@1 without token alignment. For all the results, we boldface the scenario
that obtain higher performance and highlight in red the scenario where the different is greater than

6



Under review as a conference paper at ICLR 2024

Table 2: Token alignment for partial token of punctuation scenario.

Token
Alignment

Punc MBXP Baseline of Punc MBXP

Python Java JavaScript Python Java JavaScript

StarCoder with 59.35 48.80 46.03 58.31 51.95 46.41
w/o 45.10 31.78 24.23 58.31 49.31 46.15

LLaMA-7b with 31.75 20.93 26.79 31.90 21.44 27.05
w/o 22.11 11.85 14.87 31.45 24.21 27.95

4 absolute points for pass@1. We also show the scenarios where the prompt ends with a full word
(space-delineated) as a control experiment. In this case, we can see that token alignment yields similar
scores as without token alignment, indicating that token alignment can be used regardless of whether
the prompt ends with or without a partial token.

Natural Language Tasks We also show the text evaluation results in Table 1 where we observe
clear performance gain from token alignment. Observe that in the case of question answering
(SQuAD), even though we provide partial information in terms of subword, akin to providing a hint,
most models fail at answering correctly due to the constraint from the partial token artifact. This
resulting in subword SQuAD scores being lower than the baseline SQuAD even though the subword
dataset contains extra information in the prompt. However, once we use token alignment which
alleviates the tokenization constraint, the extra information helps significantly, allowing many models
to score in the range of 40% exact match versus 15% for the baseline case.

For text generation on WikiText, the next word accuracy, edit similarity, and ROUGE scores portray
obvious trends. When the prompt ends with a subword, all scores drop noticeably compared to
the baseline. Token alignment helps remove the tokenization constraint, resulting in significant
improvement for all metrics. On the control datasets which differ from the original datasets by
one fewer (sub)word, using token alignment leads to similar or slightly better results. The finding
indicates that token alignment can be use in all cases without the need to detect whether the prompt
ends with a subword or not.

5.2.2 PUNCTUATION

Table 2 demonstrates the results from the punctuation MBXP dataset, highlighting a notable improve-
ment due to the use of token alignment. As an example, consider a prompt if x= representing a
code snippet in Python. It is unambiguous that the next character should be = since otherwise the
Python syntax would not be correct. However, this prompt corresponds to an ending partial token
= of a complete token ==; therefore, predicting an extra token ‘=’ is out-of-distribution compared
to what is seen during training, which is ‘==’. This dynamic is distinct from the natural subword
scenario where boundaries are determined by whitespace and the identification of partial tokens is
more clear. When punctuation is involved, avoiding an ending with a partial token becomes a nuanced
challenge, which token alignment effectively addresses.

5.2.3 SPACE PREFIX

The results from the space prefix MBXP datasets (for code generation) and space-SQuAD are shown
in Table 3, illustrating that a presence of a extra trailing token, while seemingly innocuous, can
noticeably degrade generation behavior without token alignment. For the code generation task, we
also have a dataset split prefix-indent to ablate the case of prefix space with indentation. Table 3
illustrate the results where we observe slight improvement in the prefix-sep case for code and a strong
improvement for text on SQuAD. We provide additional observations in Appendix A.2.2.

5.2.4 CONTIGUOUS SPACES

The results on the contiguous space MBXP dataset in Table 4 show that token alignment alleviates
the partial token issue significantly, especially in Python, where the syntax is most sensitive to spaces.
We emphasize that, superficially, this case does not seem obviously linked to partial token issues (see

7



Under review as a conference paper at ICLR 2024

Table 3: Space prefix is a common design approach for many modern tokenizers for efficient
compression, but can lead to suboptimal generation if the prompt ends with a space character (due
to out-of-distribution). Token alignment resolves such problem gracefully, reflected by improved
pass@1 scores (%) on prefix-sep MBXP and prefix-indent MBXP. FS denotes few-shot prompting.

Token
Alignment

Prefix-sep MBXP Baseline’s

Python Java JavaScript Python Java JavaScript

StarCoder with 56.09 50.75 48.16 56.73 50.64 48.83
w/o 54.06 48.67 44.02 57.48 49.94 46.93

LLaMA-7b with 25.85 21.67 25.92 23.82 22.36 25.59
w/o 22.86 20.74 23.35 25.00 21.55 26.48

Token
Alignment

Prefix-indent MBXP Baseline’s

Python Java JavaScript Python Java JavaScript

StarCoder with 42.95 50.19 49.13 48.82 50.19 46.89
w/o 17.10 49.31 45.33 49.02 50.06 47.75

StarCoder FS with 45.52 50.44 46.89 52.94 51.57 46.37
w/o 24.51 48.93 42.56 53.14 52.07 46.02

LLaMA-7b with 15.45 20.45 28.03 17.30 22.21 25.95
w/o 12.05 20.95 24.39 18.02 22.33 25.43

LLaMA-7b FS with 17.92 23.59 25.26 18.74 20.83 26.30
w/o 15.24 21.83 24.74 19.36 21.46 25.78

Token
Alignment

Space Prefix SQuAD Baseline’s

EM ES EM ES

LLaMA-7b with 26.82 64.34 9.51 62.22
w/o 20.45 61.34 4.38 61.88

Figure 3). Hence, we separated it to highlight its importance and to measure the effects with and
without token alignment.

Besides this processed dataset, token alignment also impacts the regular execution-based evaluation
significantly for some models that employ aggressive white space grouping in their tokenizer for high
compression. For example, in the StarCoder model, a newline character is often grouped with spaces,
such as \n , leading prompts ending with a newline character, \n, to correspond to a partial
token case. Without token alignment, we observe suboptimal behavior, as illustrated in Table 4, where
the execution scores drop from 44.0% to 27.2% without token alignment for MBXP JavaScript. For
instance, when the model encounters a JavaScript prompt ending with {\n, indicating the beginning
of a function, it might generate }\n without actually completing the function. Similar observations
occur in other programming language benchmarks.

6 ABLATION STUDY AND GENERALITY OF TOKEN ALIGNMENT

In this section, we also discuss an alternative approach to subword completion by processing training
data by subword regularization. We show that our token alignment method is complementary and can
offer a robust approach to handle subwords compatible with subword regularization. We also discuss
latency as well as ablation study on the number of backtrack tokens.

6.1 COMPARISON AND COMPATIBILITY WITH SUBWORD REGULARIZATION

Subword regularization performs tokenization in a more random manner where each word can be
tokenized differently without a fixed pattern. We trained a model with subword regularization on top
of a regular language model and compare with the performance with base model before subword
regularization, with and without token alignment (details in Appendix A.2.1). We find subword
regularization alone can perform quite well on many partial token scenarios, almost matching the
scores obtained from token alignment (Table 5). Token alignment helps increase the scores further,

8



Under review as a conference paper at ICLR 2024

Table 4: Evaluation scores (pass@1 %) for models on the processed contiguous space MBXP and
regular MBXP datasets, considering the influence of token alignment and the partial token constraint
due to contiguous spaces in the tokenization.

Token
Alignment

Contiguous Space MBXP Baseline’s

Python Java JavaScript Python Java JavaScript

StarCoder with 43.93 49.20 49.41 47.94 48.86 50.37
w/o 32.00 50.46 48.45 49.28 50.92 49.73

LLaMA-7b with 16.56 18.19 23.91 15.64 17.39 23.05
w/o 14.20 19.11 24.01 18.72 18.99 24.44

Token
Alignment

MBXP with StarCoder

Python JS Java C++ Swift TS Kotlin Go Scala

with 42.5 44.0 43.0 43.3 27.6 42.3 37.9 30.8 34.1
w/o 7.5 27.2 42.0 39.2 8.9 7.0 16.4 30.8 22.4

indicating that subword regularization itself can benefit from token alignment process. Overall, we
find that token alignment can help alleviate constraints on tenuous cases that subword regularization
does not address. We provide detailed results in Appendix A.2.1.

6.2 LATENCY AND THE NUMBER OF BACKTRACK TOKENS

The extra latency from token alignment comes mainly from two components. First, backtracking
results in more tokens needed during incremental decoding. For the usual decoding process, the
latency added is B′ · ℓd, where B′ is the number of decoding steps to finish the character or byte
matching process of token alignment, and ℓd is the incremental decoding latency per token.† We
show the distribution of the number of steps B′ is Figure 4 in Appendix, which shows that B′ peaks
at the number of backtrack tokens B and can be slightly lower or higher. Second, there is a minimal
cost of performing alignment ℓTA, which entails trie lookup and masking the next token probabilities,
which is in the order of < 1 ms in most cases. After the alignment prefix (Figure 1) is fully matched
and becomes an empty string, we stop the alignment process and no longer incurs the extra latency
per token ℓTA. Overall, the minimal extra latency makes it viable to use this algorithm in real time
text or code completion applications.

Throughout this experiment, we use a fixed number of tokens to backtrack B = 3 and provide an
ablation study for the importance of this backtrack tokens. The detailed result in Appendix Table
6 suggests that B = 1 performs slightly worse than B = 3 with a difference of −3.7% on average.
Since the latency for the B = 3 is not much more than that of B = 1, we use B = 3 as the default
setting. We note that some tokenizers use pre-token schema which offers opportunities to mark some
token as beginning of pretoken as building time, such as in SentencePiece (Kudo & Richardson,
2018), in which case we can dynamically determine the number of backtrack tokens based on the
context. However, most tokenizers do not have this feature so we use a fixed B.

7 CONCLUSION

This paper explored the complex challenge of handling partial tokens in generative models, introduc-
ing specific scenarios such as subword, punctuation, space prefix, and contiguous spaces. Through
the application of token alignment, we demonstrated noticeable improvements across these scenarios.
In the future, as tokens become longer due to possible advancement in tokenizer compression, the
token alignment may become increasingly important as more cases may subtly fall into the categories
of partial tokens. The findings of this study emphasize the importance of understanding tokenization
artifacts and present a meaningful advancement in enhancing the robustness and practical applicability
of generative models in various real-world tasks.

†With speculative decoding, it will have a speedup due to lower amortized latency per token.

9



Under review as a conference paper at ICLR 2024

8 LIMITATIONS

While token alignment works in principles on any tokenizer, it may require additional attention to
details to implement, especially with tokenizers that are not lossless which could make the token
alignment process tricky. The latency addition due to token alignment is generally small for long
generation, but can be a larger portion of overall budget if the generation is short.

REFERENCES

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
Qian, Murali Krishna Ramanathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta
Sengupta, Dan Roth, and Bing Xiang. Multi-lingual evaluation of code generation models.
CoRR, abs/2210.14868, 2022. doi: 10.48550/arXiv.2210.14868. URL https://doi.org/10.
48550/arXiv.2210.14868.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. CoRR,
abs/2207.14255, 2022. doi: 10.48550/arXiv.2207.14255. URL https://doi.org/10.
48550/arXiv.2207.14255.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR, abs/2005.14165,
2020. URL https://arxiv.org/abs/2005.14165.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and
John Jumper. Accelerating large language model decoding with speculative sampling. CoRR,
abs/2302.01318, 2023. doi: 10.48550/arXiv.2302.01318. URL https://doi.org/10.
48550/arXiv.2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Kaustubh D Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Mahamood,
Abinaya Mahendiran, Simon Mille, Ashish Srivastava, Samson Tan, et al. Nl-augmenter: A
framework for task-sensitive natural language augmentation. ArXiv preprint, abs/2112.02721,
2021. URL https://arxiv.org/abs/2112.02721.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis. arXiv preprint arXiv:2204.05999, 2022.

10

https://doi.org/10.48550/arXiv.2210.14868
https://doi.org/10.48550/arXiv.2210.14868
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/arXiv.2207.14255
https://doi.org/10.48550/arXiv.2207.14255
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2302.01318
https://doi.org/10.48550/arXiv.2302.01318
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2112.02721


Under review as a conference paper at ICLR 2024

Akshita Jha and Chandan K. Reddy. Codeattack: Code-based adversarial attacks for pre-trained
programming language models. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.),
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on
Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, pp.
14892–14900. AAAI Press, 2023. URL https://ojs.aaai.org/index.php/AAAI/
article/view/26739.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. Is BERT really robust? A strong baseline
for natural language attack on text classification and entailment. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8018–
8025. AAAI Press, 2020. URL https://aaai.org/ojs/index.php/AAAI/article/
view/6311.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian
Riedel, Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit Bansal, Christopher Potts, and Adina
Williams. Dynabench: Rethinking benchmarking in NLP. In North American Association for
Computational Linguistics (NAACL), pp. 4110–4124, 2021.

Taku Kudo. Subword regularization: Improving neural network translation models with mul-
tiple subword candidates. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 66–75, Melbourne, Australia,
July 2018a. Association for Computational Linguistics. doi: 10.18653/v1/P18-1007. URL
https://aclanthology.org/P18-1007.

Taku Kudo. Subword regularization: Improving neural network translation models with multiple
subword candidates. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July
15-20, 2018, Volume 1: Long Papers, pp. 66–75. Association for Computational Linguistics, 2018b.
doi: 10.18653/v1/P18-1007. URL https://aclanthology.org/P18-1007/.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Eduardo Blanco and Wei Lu (eds.),
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018: System Demonstrations, Brussels, Belgium, October 31 - November 4, 2018, pp.
66–71. Association for Computational Linguistics, 2018. doi: 10.18653/v1/d18-2012. URL
https://doi.org/10.18653/v1/d18-2012.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken, and Percy
Liang. Spoc: Search-based pseudocode to code. CoRR, abs/1906.04908, 2019. URL http:
//arxiv.org/abs/1906.04908.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. CoRR, abs/2211.17192, 2022. doi: 10.48550/arXiv.2211.17192. URL https://doi.
org/10.48550/arXiv.2211.17192.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://aclanthology.org/W04-1013.

11

https://ojs.aaai.org/index.php/AAAI/article/view/26739
https://ojs.aaai.org/index.php/AAAI/article/view/26739
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aaai.org/ojs/index.php/AAAI/article/view/6311
https://aclanthology.org/P18-1007
https://aclanthology.org/P18-1007/
https://doi.org/10.18653/v1/d18-2012
http://arxiv.org/abs/1906.04908
http://arxiv.org/abs/1906.04908
https://doi.org/10.48550/arXiv.2211.17192
https://doi.org/10.48550/arXiv.2211.17192
https://aclanthology.org/W04-1013


Under review as a conference paper at ICLR 2024

Scott Lundberg. The art of prompt design: Prompt boundaries and to-
ken healing, 2023. URL https://towardsdatascience.com/
the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, J. Weston, and Douwe Kiela. Adversarial
nli: A new benchmark for natural language understanding. In Association for Computational
Linguistics (ACL), 2020.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

OpenAI. tiktoken: A fast BPE tokeniser for use with OpenAI’s models. https://github.com/
openai/tiktoken, 2023.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. In Jian Su, Xavier Carreras, and Kevin Duh (eds.), Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pp. 2383–2392. The Association for Computational Linguistics,
2016. doi: 10.18653/v1/d16-1264. URL https://doi.org/10.18653/v1/d16-1264.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad. In Iryna Gurevych and Yusuke Miyao (eds.), Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20,
2018, Volume 2: Short Papers, pp. 784–789. Association for Computational Linguistics, 2018. doi:
10.18653/v1/P18-2124. URL https://aclanthology.org/P18-2124/.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M.
Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît
Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan,
Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret
Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy,
Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher
Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, and et al. BLOOM: A 176b-
parameter open-access multilingual language model. CoRR, abs/2211.05100, 2022. doi: 10.48550/
arXiv.2211.05100. URL https://doi.org/10.48550/arXiv.2211.05100.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023. doi: 10.48550/arXiv.2302.13971. URL https://doi.
org/10.48550/arXiv.2302.13971.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan, Yu Cheng, Jianfeng Gao, Ahmed Hassan
Awadallah, and Bo Li. Adversarial glue: A multi-task benchmark for robustness evaluation of
language models. In Thirty-fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 2), 2021.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. In Anna
Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13818–13843. Association for Computational Linguistics,
2023. URL https://aclanthology.org/2023.acl-long.773.

12

https://towardsdatascience.com/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38
https://towardsdatascience.com/the-art-of-prompt-design-prompt-boundaries-and-token-healing-3b2448b0be38
https://github.com/openai/tiktoken
https://github.com/openai/tiktoken
https://doi.org/10.18653/v1/d16-1264
https://aclanthology.org/P18-2124/
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://aclanthology.org/2023.acl-long.773


Under review as a conference paper at ICLR 2024

Zhou Yang, Jieke Shi, Junda He, and David Lo. Natural attack for pre-trained models of code. In
44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh,
PA, USA, May 25-27, 2022, pp. 1482–1493. ACM, 2022. doi: 10.1145/3510003.3510146. URL
https://doi.org/10.1145/3510003.3510146.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu, Meng Zhang, Qun Liu, and Maosong Sun.
Word-level textual adversarial attacking as combinatorial optimization. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 6066–6080, Online,
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.540. URL
https://aclanthology.org/2020.acl-main.540.

A APPENDIX

A.1 FAQS

1. Q: Is token alignment absolutely necessary?
A: Yes and no. In the scenario of text completion such as the scenarios in IDE environment,
token alignment is highly beneficial. In the formation of question answering in chat styles
(such as in ChatGPT), the model can typically generate the completion without being
constrained by the artifact of tokenization.

2. Q: Is token alignment compatible with the code insertion scenario?
A: Yes. Since the insert scenario (Bavarian et al., 2022; Fried et al., 2022) performs text
completion where the prompt during inference uses the right context follows by left context,
the insertion is simply a continuation. This makes the token alignment method compatible
with the insertion scenario.

3. Q: Is it compatible with speculative decoding?
A: Yes. For speculative decoding (Leviathan et al., 2022; Chen et al., 2023), the draft model
can propose tokens that match the prompt during token alignment, which will be either
accepted or rejected by the main model based on the token sequence.

A.2 ADDITIONAL RESULTS

A.2.1 SUBWORD REGULARIZATION

In Table 5, we outline the results where we show the performance of a model trained without
subword regularization (the usual training strategy employed in many language models) and with
additional training with subword regularization (Kudo, 2018b). We use the implementation given in
SentencePiece (Kudo & Richardson, 2018) with α = 0.05. For instance, New York is segmented
into either N, e, w, _York or New, _York, where lower alpha means higher chances of the
canonical segmentation being more common. The results indicate that subword regularization without
token alignment indeed helps increase the performance in the subword MBXP from 6.89% to 18.11%,
but using token alignment with subword regularization model increases the scores further to 18.52%.

This finding highlights the generality of token alignment where it can be used with or without subword
regularization, and can even help address cases where subword regularization alone may not handle
based on the consistent improved scores of token alignment. In addition, subword regularization may
introduce additional latency cost due to finer grain tokenization of text in the training stage, which
influences how the tokens are generated during inference. We leave this direction of research on
investigating the interplay of subword regularization and tradeoff for future work.

A.2.2 ADDITIONAL OBSERVATIONS

Note that on the prefix-indent split, with token alignment, the generation’s quality improved signif-
icantly but not quite matching the baseline (e.g. 42.95 for partial token + token alignment versus
48.82 for baseline for Python StarCoder). We found that the subpar score compared to baseline is
due some examples corresponding to a function signature and extra spaces, which can confuse the
model that is not fully preference aligned. We include the few-shot prompting version (FS) which
includes examples of complete functions prepended at the beginning, which is to help steer the model

13

https://doi.org/10.1145/3510003.3510146
https://aclanthology.org/2020.acl-main.540


Under review as a conference paper at ICLR 2024

Table 5: Effects of subword regularization and token alignment

Model Token
Alignment

Partial Word
MBPP

Baseline Word
MBPP

Partial Punc
MBPP

Baseline Punc
MBPP

Subword
Regularized

with 18.52% 15.43% 17.96% 19.44%
w/o 18.11% 17.39% 18.10% 19.14%

Baseline
600M

with 16.67% 12.96% 18.84% 18.25%
w/o 6.89% 13.89% 11.72% 18.69%

Table 6: Execution-based evaluation on various partial token versions of MBXP (pass@1). The
difference ∆ denotes the scores of B=-1 minus the scores of B=3. The total overall difference is
-3.69%.

Token
Alignment

Partial Word MBXP Baseline’s
Python Java JavaScript Python Java JavaScript

B=1 56.58% 52.17% 49.31% 54.32% 49.54% 50.16%
B=3 54.01% 47.37% 43.76% 54.12% 52.29% 50.59%
∆ 2.57% 4.81% 5.55% 0.21% -2.75% -0.43%

Partial Punc MBXP Baseline’s
B=1 59.35% 48.80% 46.03% 58.31% 51.95% 46.41%
B=3 59.64% 50.82% 47.44% 58.90% 50.95% 44.74%
∆ -0.30% -2.02% -1.41% -0.59% 1.01% 1.67%

Prefix-sep MBXP Baseline’s
B=1 56.09% 50.75% 48.16% 56.73% 50.64% 48.83%
B=3 58.23% 51.22% 48.16% 57.48% 50.17% 47.71%
∆ -2.14% -0.46% 0.00% -0.75% 0.46% 1.12%

Prefix-indent MBXP Baseline’s
B=1 42.95% 50.19% 49.13% 48.82% 50.19% 46.89%
B=3 44.08% 50.31% 46.71% 49.54% 53.32% 47.23%
∆ -1.13% -0.13% 2.42% -0.72% -3.14% -0.35%

Contiguous Space MBXP Baseline’s
B=1 43.93% 49.20% 49.41% 47.94% 48.86% 50.37%
B=3 45.88% 50.23% 48.99% 49.38% 49.66% 49.73%
∆ -1.95% -1.03% 0.43% -1.44% -0.80% 0.64%

to complete the function and observe noticeable improvement, but still does not quite close the gap.
We hypothesize with a model that is more preference aligned will handle such cases better, where
this partial token dataset can be used as once of such benchmark to measure instruction following
abilities.

A.2.3 NUMBER OF BACKTRACK TOKENS

We show detailed results on evaluating with varying number of backtrack tokens B in Table 6. While
the results for individual datasets vary, on average, the overall difference between the scores from
B = 1 and B = 3 is −3.69%, indicating that B = 1 is less accurate since it may not backtrack
enough to a full token.

In terms of latency, the factor that affects the latency the most is the number of steps it takes to get
out of the character matching mode during token alignment. Figure 4 shows the distribution of the
number of steps in the case of B = 3, where the distribution peaks around B steps, with some long
tail towards higher the number of steps. We emphasize that the number of steps required to complete
the character matching need not be exactly equal to the number of backtrack tokens. This is because
given a string that corresponds to the backtracked prompt, the model can generate any tokens as long
as it matches, which could result in breaking the string down to coarser or finer granularity.

14



Under review as a conference paper at ICLR 2024

2 4 6 8 10 12
Steps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
eq

ue
nc

y

Token Alignment Step Distribution (StarCoder)
Baseline-MBPP
Subword-MBPP

Figure 4: The density estimation of the number of steps during matching process in token alignment.

15


	Introduction
	Related Work
	Methodology
	Partial Token Scenarios
	Evaluation
	Datasets
	Code Generation Tasks
	Natural Language Tasks

	Token Alignment Handles Many Partial Token Scenarios
	Subword
	Punctuation
	Space Prefix
	Contiguous Spaces


	Ablation Study and Generality of Token Alignment
	Comparison and Compatibility with Subword Regularization
	Latency and the number of backtrack tokens

	Conclusion
	Limitations
	Appendix
	FAQs
	Additional Results
	Subword Regularization
	Additional Observations
	Number of backtrack tokens



