
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYNAMIC ELIMINATION FOR PAC OPTIMAL ITEM SE-
LECTION FROM RELATIVE FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of best-item identification from relative feedback where a
learner adaptively plays subsets of items and receives stochastic feedback in the
form of the best item in the set. We propose an algorithm - Dynamic Elimination
(DE) - that dynamically prunes sub-optimal items from contention to efficiently
identify the best item and show a strong sample complexity upper bound for it. We
further formalize the notion of inferred updates to obtain estimates on item win
rates without directly playing them by leveraging item correlation information. We
propose the Dynamic Elimination by Correlation (DEBC) algorithm as an extension
to DE with inferred updates. We show through extensive experiments that DE and
DEBC vastly outperforms all existing baselines across multiple datasets in various
settings.

1 INTRODUCTION

Learning to rank from feedback about a set of items is an important problem in machine learning with
applications in many areas including sociology (Vieira et al., 2007; Zareie & Sheikhahmadi, 2018),
information retrieval (Hofmann et al., 2013; Grotov & De Rijke, 2016; Guo et al., 2020), search
engine optimization (Kakkar et al., 2015; Krrabaj et al., 2017), recommender systems (Balakrishnan
& Chopra, 2012; Tang & Wang, 2018; Bałchanowski & Boryczka, 2023), and, more recently, natural
language generation (Hofstätter et al., 2023; Zhang et al., 2023; Chuang et al., 2023). An important
sub-problem is learning to rank from relative feedback (Chen et al., 2018; Saha & Gopalan, 2019c;
Haddenhorst et al., 2021). In this setting, a set of items are played and stochastic relative feedback is
received in the form of the best item or a full or partial ranking of the items.

We consider the problem where we play fixed-sized item subsets and receive relative feedback
modelled by the Plackett-Luce (PL) model with the aim of PAC-learning the best item. Existing
works in this setting (Saha & Gopalan, 2019a;b) including instance-optimal algorithms (Saha &
Gopalan, 2020b; Haddenhorst et al., 2021) typically evaluate a static item subset and retain only the
set winner before moving on to the next. However, subset plays are wasted on items in the subset that
are already known to be suboptimal before the set winner is determined. We investigate if flexible
item elimination is feasible to alleviate this inefficiency.

Furthermore, no assumption is usually made about the underlying feedback distribution beyond some
random utility model. However, we argue that information about the entities to be ranked (e.g. items
in recommender systems, documents in the information retrieval setting, nodes in a social network,
etc.) is often readily available. Motivated by this, we investigate the question: Given what we know
about items i, j and k, if item i is ranked above/below item k, how likely is it that item j is ranked
above/below item k?

Latent embedding models are commonly used in many domains, including natural language pro-
cessing (Pennington et al., 2014; Church, 2017), information retrieval (Zuccon et al., 2015; Palangi
et al., 2016) and recommender systems (Chen et al., 2019; Huang et al., 2020), to flexibly represent
unstructured information as vectors in a latent space such that the vectors of closely related items are
highly similar. We apply the latent embedding model to the PL model such that item latent scores
are given by query-item vector cosine similarity and aim to learn a PAC-best item from stochastic
relative feedback. Our contributions are fourfold:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1. We propose an algorithm Dynamic Elimination (DE) for the (ϵ, δ) PAC best-item objective
with sample complexity O(n

ϵ2 ln(
n

nsδ
)) based on flexibly eliminating items once they are

deemed suboptimal. DE does not leverage correlation information.
2. We formalize the notion of inferred updates - probabilistic updates to the estimates of item

pairwise win ratios by observing the win rates of related items - and prove that the sample
mean of an inferred update sequence constitutes an unbiased estimator.

3. We propose the Dynamic Elimination by Correlation (DEBC) algorithm as an extension to
DE that leverages item information in the form of an item vector correlation matrix. We show
a sample complexity of O

(
max

(
R
ϵ2 ln(

n
nsδ

), n∗

ϵ2 ln(n∗

nsδ
)
))

with a noisy R-Block-Rank
item correlation structure.

4. We demonstrate through experiments across multiple datasets in various settings that both
DE and DEBC outperform all existing SOTA benchmarks by over an order of magnitude in
sample complexity without loss of accuracy.

2 RELATED WORK

Reward maximization from sampling an unknown reward distribution has been extensively studied
in the classical multi-armed bandit setting where an absolute stochastic reward is observed (Even-
Dar et al., 2006; Scott, 2010; Agrawal & Goyal, 2012). This was extended to relative feedback
in the duelling bandit problem (Yue et al., 2012) which has been the object of a large body of
work (Dudík et al., 2015; Chen & Frazier, 2017; Jamieson et al., 2015), including extensions to
multiwise comparisons (Brost et al., 2016; Sui et al., 2017; Saha & Gopalan, 2019b). Beyond regret
minimization in the bandit setting, active arm ranking or learning of the best arm has been studied
both in the exact (Jamieson & Nowak, 2011; Maystre & Grossglauser, 2017; Ren et al., 2019; 2021)
and PAC setting (Saha & Gopalan, 2019a; Agarwal et al., 2022). In particular, Saha & Gopalan
(2019c) and Saha & Gopalan (2019a) present algorithms for obtaining the PAC best item and full
ranking respectively under a PL model assumption with fixed sized subsets which is identical to our
setting. (Saha & Gopalan, 2020b) and (Haddenhorst et al., 2021) propose instance optimal algorithms
which outperform the former in empirical trials. More recently, Yang & Feng (2023) proposed an
algorithm in a setting where subsets of variable size can be played.

However, these algorithms often require up to millions of samples to rank only a few items. The
inefficiency lies in statically evaluating a subset to determine the winner before moving on to a new
subset. This means that a set containing two closely matched items can be "stuck" for many turns,
wasting item subset plays on the other clearly suboptimal items in the subset. We propose dynamic
item elimination to solve this problem.

Furthermore, ranking algorithms typically do not leverage additional information about the underlying
reward distribution to improve performance. The body of work in this area is surprisingly relatively
small. Sui et al. (2017); Saha & Ghoshal (2022) consider arms with correlated rewards while (Gopalan
et al., 2016) considers a contextual bandit setting where user preferences are latent mixtures of a set of
reward distributions. While learning to rank items by assuming latent vector representations has been
widely studied across many domains (Balakrishnan & Chopra, 2012; Palangi et al., 2016; Zuccon
et al., 2015), it is very limited in this setting. To this end, (Chen & Frazier, 2016; Mesaoudi-Paul et al.,
2020) assume random utility models where the latent scores are derived from the item vectors and
an unknown context vector. Jamieson & Nowak (2011); Chen & Frazier (2016) suggest algorithms
for precise ranking based on pairwise feedback assuming a latent reward given by query vector-item
vector Euclidean distance. However, the algorithms are heavily reliant on complete knowledge of the
exact vector representations, which can be limiting in real-world scenarios. In comparison, we utilize
cosine similarity as a vector distance which is widely used across all machine learning domains and
only require the item correlation matrix as an input instead of the exact item vectors.

3 PRELIMINARIES AND PROBLEM SETUP

Notation Before proceeding, we establish some notation. We use [n] to denote the set 1, 2, ..., n. |S|
denotes the cardinality of a set S. We use Pr(A) to denote the probability of event A in a probability
space that will be clear from context. In particular, Prq(...) denotes the probability space over all

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

possible vectors q. We denote the probability that an item i beats an item j as pij = Pr(i|{i, j}).
pdf(X) denotes the probability distribution of some random variable X and pdf(X|Y) denotes the
conditional distribution of X given Y . 1(φ) denotes an indicator variable that assumes the value 1 if
the predicate φ is true and 0 otherwise.

Feedback Model We consider the best-item identification problem from subset wise relative
feedback drawn from a reward distribution modelled on a PL model. Formally, we consider a set
of n items [n] := {1, 2, ..., n}; each turn, the learner plays a set of ns items St ⊆ [n] and receives
it ∈ St as the best item with probability given by Pr(it = i|St) =

θi∑
j∈St

θj
where θi is the latent

score for item i. A choice model is said to fulfil Independence of Irrelevant Attributes (IIA) if for
any two sets S1, S2 ∋ i1, i2 containing items i1, i2 ∈ [n], Pr(i1|S1)

Pr(i2|S1)
= Pr(i1|S2)

Pr(i2|S2)
, i.e. the ratio of the

winning probabilities of the two items is independent of other items in the set (Benson et al., 2016).
The defined PL model clearly fulfils this criteria.

Performance Objective: (ϵ, δ)-PAC best-item Clearly, such a formulation admits the existence of
a Condorcet winner which is the item with the highest latent score, i.e. i∗ = argmaxi∈[n](θi). By
the IIA property, we have that pi∗i > 1

2 ∀i ∈ [n] \ {i∗}. WLOG, we denote this item by 1 = i∗. An
item is said to be ϵ-optimal if the probability that it beats the winning item 1 is larger than 1/2− ϵ,
i.e. Pr(i|{i, 1}) > 1/2− ϵ. A sequential algorithm is said to be (ϵ, δ)-PAC (probably approximately
correct) if within a finite number of subset plays it stops an outputs an item with probability 1 and if
the item is ϵ-optimal with probability at least 1− δ. The number of subset plays before stopping is
the algorithm sample complexity.

4 ESTIMATING PAIRWISE WIN RATIOS FROM RELATIVE FEEDBACK

A common approach to item-ranking with relative feedback is to employ rank breaking and maintain
a preference matrix that tracks the empirical win ratios, i.e. the rate at which an item is selected over
the other. In rank breaking, partial rankings are decomposed into pairwise comparisons and pairwise
win ratios are estimated independently (Saha & Gopalan, 2019c). The IIA property of the PL model
allows the use of rank breaking. We use the term empirical updates to refer to preference matrix
updates arising directly from user feedback as opposed to inferred updates which will be covered in
Section 6.

Formally, let us denote the preference matrix at iteration t by P(t) ∈ Rn×n, and the number
of times an item i has won a set containing S as a subset as ni|S(t). Then, we have Pij(t) =

ni|{i,j}(t)
ni|{i,j}(t)+nj|{i,j}(t)

. Given a sequence of sets that have been played by the learner up to timestep
t S(t) = {G(τ) : τ = 1, 2, ..., t} and a sequence of winning items ι(t) = {iτ : τ = 1, 2, ..., t}, let
us consider for some item pair i, j the subsequence of winners ιij(t) = {1(iτ = i) : τ ∈ [1, t], iτ ∈
{i, j}} for which the winner is either i or j. As shown in (Saha & Gopalan, 2019c;b;a; Saha &
Gaillard, 2022), we can treat this binary subsequence as a sequence of iid Bernoulli random variables
with success parameter pij due to the IIA property. Consequently, Pij(t) is an unbiased estimator for
pij with bounded deviation according to Hoeffding’s Inequality.

5 ALGORITHM: DYNAMIC ELIMINATION

5.1 ALGORITHM OVERVIEW

We propose the Dynamic Elimination (DE) algorithm as a direct replacement for existing PAC-best
item algorithms under a PL model assumption (Saha & Gopalan, 2019c; 2020b; Haddenhorst et al.,
2021). It progressively removes items from contention once they are no longer potential Condorcet
winners.

During each iteration, an item subset is played (initialized randomly in Alg. 1: 2-4) and the preference
matrix is updated via rank breaking (Alg. 1: 6-8). The item subset is then updated as follows: When
items are deemed suboptimal with high probability, they are removed (Alg. 2: 1-7). An item that is
not eliminated after a certain number of plays becomes a potential replacement to the running winner.
It replaces the running winner if it is the highest probability replacement, inheriting the wins/losses

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1: Dynamic Elimination (DE)
Input: set of items: [n], subset size: ns, error bias: ϵ > 0, confidence parameter: δ > 0
Initialize: uneliminated item set: S ← [n], item subset to play: G← ∅, empirical pairwise win

ratio matrix: W← [0]n×n, γ ←
⌈

n
ns

⌉
, m← 2 ln(γ/δ)

ϵ2

1 while |S| > 1 do
2 if |G| < ns then
3 a← random item from S\G // randomly select unplayed item
4 G← G ∪ {a} // build initial item subset/replenish eliminated item

5 if |G| = ns then
6 Play set G, i← winning item
7 ∀k ∈ G, k ̸= i : Wik ←Wik + 1 // Update empirical pairwise win ratios

8 N←W +WT , P = W/N

9 U = P+
√

ln(γ/δ)
2N // Update upper confidence bound matrix

// run update-set to eliminate items, update running winner
10 G,S, i∗ ← update-set(G, i∗,U,P,N, S,m, ϵ)

// keep only potential Condorcet winners

11 S ← {j ∈ S : min
j′∈S

Ujj′ ≥ 1
2}

12 S ← S\{j ∈ S : Pi∗j ≥ 1
2 −

ϵ
2 and Ni∗j ≥ m}

of the outgoing winner (Alg. 2: 8-11); otherwise, it is eliminated. Removed items are replaced by
randomly selected items (Alg. 1: 3, Alg. 2: 5).

The main innovations are listed below. A discussion of their importance to the accommodation of
inferred updates in DEBC can be found in Appendix D.1.

Algorithm 2: DE update-set subroutine - eliminates suboptimal items, updates item subset and
running winner
Input: subset G, current winner i∗, upper confidence bound matrix U, preference matrix P,

count matrix N, potential candidate set: S, max no. of updates m, error bias ϵ
Initialize: updated subset H ← ∅, potential running winner challengers

W ← {j ∈ G\{i∗} : Ni∗j ≥ m,Pi∗j <
1
2 −

ϵ
2}

1 for j ∈ G\({i∗} ∪W) do
2 if Uji∗ < 1/2 or Ni∗j ≥ m then

// eliminate item if it is not a potential Condorcet winner
3 S ← S\{j}
4 a← random item from S\G
5 H ← H ∪ {a} // replace with randomly selected item

6 else
7 H ← H ∪ {j}

// update current running winner i∗ with new running winner i
8 if |W | ≠ 0 then
9 i← argmax

j∈W
Pi∗j // item with highest win prob. over current winner i∗

// the incoming running winner inherits the win/losses from the
outgoing winner as a conservative estimate

10 ∀j ∈ S\{i} : Pij ← Pi∗j ×Ni∗j + Pij ×Nij , Nij ← Nij +Ni∗j i
∗ ← i

11 H ← H ∪W

12 else
13 H ← H ∪ {i∗}, i← i∗

Output: H , S, i

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Dynamic item elimination Existing PAC algorithms typically play a set of items for a certain
number of rounds before keeping the winning item and eliminating the rest (Ailon et al., 2012; Ailon,
2012; Saha & Gopalan, 2019c; 2020a; Haddenhorst et al., 2021). In contrast, DE eliminates an item
once it is no longer a potential Condorcet winner (with high probability) and avoids the redundancy
of playing an item that is known to be sub-optimal. We show that introducing this flexibility improves
the worst case sample complexity (Theorem 1) and leads to vastly lower sample complexity in
practice (Section 8).

Running winner inheritance A challenge in accommodating flexible item elimination is that a
running winner can potentially be eliminated before items that have received updates from it can be
eliminated with certainty. This renders existing updates redundant since the items need to accumulate
pairwise interactions with the new running winner. To avoid this, we allow the new running winner
to inherit the pairwise interactions of previous running winners. We show in Lemma 10 that this
constitutes a conservative estimate (i.e. the win ratio of the new running winner exceeds that implied
by the inherited interactions with high probability).

5.2 SAMPLE COMPLEXITY AND CORRECTNESS OF DE FOR THE GENERAL CASE

As is the convention (Saha & Gopalan, 2019a; 2020a; Haddenhorst et al., 2021), we present sample
complexity upper bounds for DE. We further present sample complexity lower bounds and an expected
sample complexity under certain assumptions.

Theorem 1 (Sample complexity and correctness of DE in the general case) DE is (ϵ, δ)-PAC
with worst-case sample complexity O(n

ϵ2 ln(
n

nsδ
)).

Proof (sketch) To prove the correctness of Dynamic item elimination, we prove that the running
winner i∗ is pairwise ϵ-optimal with high probability to any items eliminated during its reign. We
then prove the validity of Running winner inheritance by showing that the successor is optimal to
the running winner it replaces with high probability. Combining both results allows us to prove the
ϵ-optimality of the winner completing the proof for correctness. We prove sample complexity by
calculating the minimum item elimination frequency by considering all possible pairwise win count
scenarios which then yields the maximum algorithm stopping time. The complete proof is given in
Appendix E.4.

Lemma 1 (Sample complexity lower bounds for DE) DE is (ϵ, δ)-PAC with best-case sample

complexity O
(

n
ns

ln
(

n
nsδ

))
.

Remarks The best-case sample complexity corresponds to the case in which the eventual winner
is selected in the initial item subset and continually wins all subset plays. The complete proof is in
Appendix E.5.1.

Lemma 2 (Expected sample complexity for DE) Given a reward distribution such that Var(p) =

V , DE is (ϵ, δ)-PAC with an expected sample complexity upper bound of O
(

n(1−V)
ϵ2 ln

(
n

nsδ

))
.

Remarks Since sample complexity is dependent on the latent reward distribution, we derive the
expected sample complexity lower bounds as a function of the variance of the pairwise win probabili-
ties pij which we denote Var(p). Intuitively, if Var(p) is low, i.e. the pairwise win probabilities are
generally close to 1/2 and suboptimal items will not be easily eliminated. In this case, the expected
sample complexity approaches the worst case sample complexity. The complete proof can be found
in Appendix E.5.2.

6 ESTIMATING PAIRWISE WIN RATIOS WITH ITEM CORRELATIONS

In Section 4, we investigated how empirical updates can be employed to estimate pairwise win ratios.
Here, we investigate how this can be extended to admit probabilistic updates to items that are not in
the played set but sufficiently correlated to items in the set. We shall call these inferred updates.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

6.1 LATENT EMBEDDING MODEL

We build upon the PL model described in Section 3 by assuming a latent item vector representation
such that the latent scores are given by the cosine similarity between the item embeddings and
an unknown query embedding. Formally, both the items and the query are represented by fixed
d-dimensional latent vectors vi ∈ Rd, and q ∈ Rd respectively, and the latent scores are given
by θi = eq·vi . We constrain both the query vectors and item vectors to have unit norm, i.e.
|q| = 1, |vi∈[n]| = 1. We assume that at least the item correlations are known to the user. We
denote the item correlation matrix by C ∈ Rn×n where Cij = vi · vj .

6.2 CONDITIONAL PROBABILITIES OF CORRELATED ITEM LATENT SCORES

To extend empirical updates to inferred updates on items outside the played set, let us define the win
ratio conditional probability pjk|ik as pjk|ik = Prq

(
pjk > 1

2 | pik > 1
2

)
.

Theorem 2 (Conditional probabilities of win ratios) Given items i, j, k ∈ [n], the following holds
true:

pjk|ik = pkj|ki = 1− 1

π
cos−1

(
vi · vj − vi · vk − vj · vk + 1

2
√

(1− vj · vk)(1− vi · vk)

)
(1)

Proof (sketch) The main intuition is to consider that all item/query vectors lie on a d-dimensional
unit hypersphere and that a condition pij > 1/2 induces a partitioning of the hypersphere such that
query vectors that fulfil this condition lie on a hyper-hemisphere. The joint probability is in turn
given by the area of intersection between two hemispheres. Consequently, the conditional probability
can be obtained using the chain rule. The full proof is given in Appendix E.1.

6.3 COMBINING INFERRED UPDATES WITH EMPIRICAL UPDATES

In this section, we discuss the incorporating of inferred updates as Bayesian updates. From Section
4, Pij(t) is an unbiased estimator for pij by viewing the empirical observations as a sequence of
iid. Bernoulli random variables. Since the Beta distribution is the conjugate prior to the Bernoulli
distribution, following |ιij(t)| Bayesian update steps as follows:

pdf(pij |xt ∼ Bernoulli(pij)) = Beta(α+ xt, β + 1− xt), pij ∼ Beta(α, β)

the posterior predictive distribution of pij at timestep t is given by
pdf(pij |ιij(t)) = Beta(ni|{i,j}(t) + 1, nj|{i,j}(t) + 1)

To extend this to inferred updates, we interpret them as probabilistic observations, i.e. given a trial
yielding an observation that item i is preferred over item k, we consider that we have also observed
that item j is preferred over item k with probability pjk|ik. Then, an inferred update sequence for any
item pair j, k can be defined as

ι∗ij(t) =
∏
i∈[n]

Fpij|ik ιik(t)

where the function Fp : {0, 1}L → {p, 1− p}L modulates a binary sequence by the probability p.∏
denotes sequence concatenation. To incorporate this as a Bayesian update, we rely on Jeffrey’s

Conditionalization (Jeffrey, 1990; van Fraassen, 1986): pdf(pjk ∼ Beta(α, β) | Pr(xt) = pjk|ik) =
pjk|ik × Beta(α+ 1, β) + (1− pjk|ik)× Beta(α, β + 1).

Theorem 3 (Estimating pij from inferred updates) For any item pair i, j, given a sequence of
binary empirical updates ιij(t) and a sequence of inferred updates ι∗ij(t), the sample mean

Pij(t) =
1

|ιij(t)|
∑

x∈ιij(t)

x+
1

|ι∗ij(t)|
∑

p∈ι∗ij(t)

p (2)

is an unbiased estimator of pij .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proof (sketch) We jointly consider both empirical and inferred updates as a single sequence of
probabilistic updates (p = 0, 1 for empirical updates) and show that this results in a Beta distribution
mixture. We then prove that the mean of this distribution is in fact the sample mean. The full proof is
in Appendix E.2.

Combining inferred updates from multiple items While we note that jointly considering empirical
and inferred updates breaks the identically distributed condition, we can can combine both into a
single sequence by considering empirical and inferred updates as two separate stages and supplying
the posterior distribution of the first stage as the prior distribution of the second stage. Consequently,
inferred updates from multiple items forms a multi-stage update, with each item yielding a sequence
of iid. updates forming a single stage. This is further discussed in Appendix B.1.

Validity of considering inferred updates from multiple items separately It is essential to note
that we consider the inferred updates from multiple items separately. While considering evidence
from multiple item pairs jointly yields an optimal estimate, computing the higher-order probabilities
is intractable. In Appendix B.2, we analyze the feasibility of considering only first-order conditional
probabilities. We show that treating the inferred updates from multiple items independently and
taking the mean of the first-order probabilities is a conservative estimate of the high order conditional
probability when the constituent probabilities are high. Consequently, we employ the heuristic of
weighting updates to assign higher importance to probabilities close to 1 (Appendix B.5).

7 ALGORITHM: DYNAMIC ELIMINATION BY CORRELATION

7.1 ALGORITHM OVERVIEW

We propose Dynamic Elimination by Correlation (DEBC) as an extension to DE that takes in an
item vector correlation matrix as an input which it leverages for inferred updates (Section 6) to the
preference matrix as well as item selection. The complete algorithm is in Appendix D.2.

Item selection The main idea is to construct an initial set of items that are poorly correlated with
each other to yield higher conditional probabilities (given items i, j, k, Eqn. 1 shows that pjk|ik, pkj,ki
increases for some fixed vi · vj as vi/j · vk decreases) and to maximize inferred updates by covering
the largest possible item space. For the latter reason, we also select the item that is the most correlated
with other items as the first running winner. This concept is extended to the replacement of eliminated
items - items that are least correlated to items that have already been played are selected. This allows
DEBC to sweep the largest item space in the fewest number of plays.

7.2 SAMPLE COMPLEXITY AND CORRECTNESS OF DE WITH R-Block-Rank ITEM CORRELATION

In the case where all inferred updates are insignificant, Theorem 1 also applies to DEBC. Instead, we
consider a noisy R-Block-Rank instance similar to that in (Ghoshal & Saha, 2022). In the (r, c, c′)
noisy R-Block-Rank model, the items can be partitioned into blocks B1

⊎
B2

⊎
B3 . . .

⊎
BR such

that the following holds: 1) Given any 2 items i, j ∈ [n] from the same partition, i.e. ∃r ∈ [1, R] :
i, j ∈ Br, then the following must be true: vi · vj ≥ c. 2) Given any 2 items i, j ∈ [n] that do not
share a partition, i.e. ∄r ∈ [1, R] : i, j ∈ Br, then the following must be true: vi · vj ≤ c′.

Validity of inferred updates We recall that the inferred updates are inherently probabilistic,
dependent on conditional probabilities defined over the space of all query vectors. Importantly, for
any inferred update based on pjk|ik ̸= 1, there will be a region of query vectors for which the inferred
updates are consistently wrong and unlike empirical updates, this deviation will not be resolved
by increased sampling. Consequently, the (ϵ, δ)-PAC condition cannot be met without imposing
additional constraints.

Theorem 4 (Sample complexity and correctness of DEBC with R-Block-Rank correlation)
Given that the item correlation follows a R-Block-Rank model and that the partition containing the
winning item B1 contains n∗ items, i.e. |B1| = n∗, DEBC is (ϵ, δ)-PAC with worst-case sample

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

complexity

O

(
max

(
max(R,ns ln(ns))

win
minϵ

2
ln(

n

nsδ
) ,

n∗

ϵ2
ln(

n∗

nsδ
)

))
(3)

given that the following conditions are met:

1. q · v1 ≤ 1− ε

2. (c− c′)(1− ε)−
√
2ε− ε2

(√
1− c′2 +

√
1− c2

)
> ln

(
1+2ϵ
1−2ϵ

)
3. 1− δn∗

n+ns
− δns−1 > 1− δ

4. n∗ + ns ≤
(
Info

(
1− 1

π cos−1
(

2−2c
2(1−c)+λ

)))−1

Proof (sketch) To prove sample complexity, we first prove that entire partitions will be eliminated
if their constituent items accumulate a certain number of losses. We then derive a maximum time
for elimination of all non-winning partitions. To prove correctness, we show that conditions 1 and
2 imply the optimality of all winning partition items with respect to other items and prove that the
winning partition will be the last remaining partition with high probability. We then use Theorem 1
for the remaining items. The complete proof is found in Appendix E.7 together with a discussion of
its implications.

8 EXPERIMENTS

Baselines We use Trace-the-Best (TTB) and Divide-and-Battle (DAB) (Saha & Gopalan, 2019c) as
state-of-the-art (to the best of our knowledge) baselines for PAC best-item identification from relative
feedback. Due to the lack of competitive and compatble baselines, we consider a modified version
of Dvoretzky–Kiefer–Wolfowitz Tournament (DKWT) (Haddenhorst et al., 2021) as an additional
baseline. While DKWT does not directly translate to our problem, we argue in Appendix F that DE
and DKWT (with a slight modification) are both able to return a ϵ-optimal Generalized Condorcet
winner. We compare both algorithms under this equivalence. A more detailed discussion on baselines
is in Appendix G.1.

Datasets We consider mainly 3 types of datasets - 1) N16: synthetic dataset of 1000 16-dimensional
normalized vectors drawn from a multivariate normal distribution, 2) DIM: datasets with 1024 vectors
each in well-separated Gaussian clusters in various dimensions from (Fränti et al., 2006) and 3)
G2: datasets truncated to 300 vectors in 2 Gaussian clusters with varying degrees of overlap from
(Mariescu-Istodor & Zhong, 2016). Notably, these three datasets cover the 3 main scenarios for
vector distributions - 1) all vectors are weakly correlated, 2) well formed clusters, 3) most vectors are
strongly correlated.

Each setting is run for 100 trials. To increase speed of convergence, we modify the latent scores
as follows: θi = esharpness×q·vi . We note that this induces faster convergence across all instance
optimal algorithms (DE, DEBC, DKWT). We show how sample complexity varies with sharpness
in Figure 1. More experimental results can be found in Appendix G.4, including the mean errors
(12 − pi∗1) obtained for each experiment.

8.1 RESULTS FOR N16 DATASET

Figure 1 shows the sample complexities of the various algorithms for the synthetic dataset against
varying error bias ϵ, subset size ns and number of items n. TAB and DAB have sample complexities
that are not instance dependent and both are orders of magnitude larger than that of the other baselines.

We note here that DE and DEBC both find the ϵ-optimal item with at least probability 1− δ in all the
settings. Compared to DKWT, both DE and DEBC outperform it by at least an order of magnitude
across all settings. We note that experiments in (Haddenhorst et al., 2021) suggest a similar magnitude
for the sample complexity of DKWT. The inferred updates are less significant since the random
Gaussian vectors are poorly correlated and hence DEBC only slightly outperforms DE.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 1: N16 dataset: Sample complexities in various settings

Lastly, we note that the general trend of the sample complexity of DE and DEBC against ns and n
are in agreement with Theorem 1, while sample complexity has a weaker dependence on ϵ in practice
due to dynamic elimination. Notably, their sample complexities scale better against ϵ compared to
DKWT which is also designed to be instance optimal and dependent on set hardness.

8.2 RESULTS FOR d = 32 DIM DATASET

From Figure 2(a), we see that DE and DEBC still greatly outperform the other baselines in terms
of sample complexity. However, we see that for this dataset, DEBC has significantly lower sample
complexity to DE which shows the effectiveness of inferred updates for item clusters. Figure 2(b) and
2(c) show that DEBC is robust to perturbations in the item correlation matrix. The increasing sample
complexity indicates a reduced reliance on inferred updates as the correlation noise increases, likely
because there are fewer significant updates. Figure (d) and (e) show that DEBC achieves superior
short term performance than DE, eliminating more items with a lower running winner error. This
indicates that DEBC and inferred updates in general can be beneficial in the sample limited setting
(Brandt et al., 2022).

8.3 RESULTS FOR d = 32 G2 DATASET

Figure 3 shows sample complexities against ϵ for 4 G2 datasets with varying degrees of overlap. The
overlap is controlled via the variance of each cluster, where a larger variance leads to larger cluster
spread and more overlap between the two clusters. Consequently, we see that DEBC has the clearest
advantage over DE in Figure 3(a) where the degree of overlap is the smallest and inferred updates
can most effectively eliminate one of the clusters. Across all datasets, we see that sample complexity
is high for DE, DEBC and DKWT due to a half of the item vectors being closely correlated which
results in more set plays needed to achieve the required precision for elimination.

9 CONCLUSION

In this work, we studied PAC best-item identification from relative feedback. We proposed the
DE algorithm that flexibly prunes the item set to reserve set plays for potential winning items. We
subsequently introduced the notion of inferred updates, whereby the win rates of unplayed items

Figure 2: d = 32 DIM dataset: (a) sample complexity against ϵ (b) sample complexity against
correlation noise (b) algorithm winner error against correlation noise (d-e) Mean no. of remaining
items and error respectively against iteration number

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: d = 32 G2 dataset: Sample complexity against ϵ across varying degrees of overlap

can be updated through probabilistic Bayesian updates by observing outcomes of sets containing
correlated items. We showed that inferred updates can be easily incorporated into DE to form the
DEBC algorithm. Experiments show that both DE and DEBC outperform existing SOTA baselines
by a large margin.

This work can be extended in several important directions. First and foremost, while DE and DEBC
clearly exhibit excellent sample complexity performance in practice, this is not reflected in the sample
complexity upper bounds. To this end, the theoretical analysis could be extended to instance optimal
sample complexity upper bounds. Other interesting directions are the extension of dynamic item
elimination to the problem of partial/full ranking with top-k item feedback, as well as the extension
of inferred updates to the regret minimization problem in multi-duelling bandits (Sui et al., 2017).
Additionally, as mentioned in Section 8.2, the superior short term performance of DEBC could be
beneficial in the sample limited setting. Lastly, it would be interesting and relevant to study how the
notion of item similarity can be extended beyond vector correlation to more general settings.

REFERENCES

Arpit Agarwal, Sanjeev Khanna, and Prathamesh Patil. Pac top-k identification under sst in limited
rounds. In International Conference on Artificial Intelligence and Statistics, pp. 6814–6839. PMLR,
2022.

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.
In Conference on learning theory, pp. 39–1. JMLR Workshop and Conference Proceedings, 2012.

Nir Ailon. An active learning algorithm for ranking from pairwise preferences with an almost optimal
query complexity. Journal of Machine Learning Research, 13(1), 2012.

Nir Ailon, Ron Begleiter, and Esther Ezra. Active learning using smooth relative regret approxi-
mations with applications. In Conference on Learning Theory, pp. 19–1. JMLR Workshop and
Conference Proceedings, 2012.

Suhrid Balakrishnan and Sumit Chopra. Collaborative ranking. In Proceedings of the fifth ACM
international conference on Web search and data mining, pp. 143–152, 2012.

Michał Bałchanowski and Urszula Boryczka. A comparative study of rank aggregation methods in
recommendation systems. Entropy, 25(1):132, 2023.

Misha Belkin, Partha Niyogi, and Vikas Sindhwani. On manifold regularization. In International
Workshop on Artificial Intelligence and Statistics, pp. 17–24. PMLR, 2005.

Austin R Benson, Ravi Kumar, and Andrew Tomkins. On the relevance of irrelevant alternatives. In
Proceedings of the 25th International Conference on World Wide Web, pp. 963–973, 2016.

Peter J Bickel, Bo Li, Alexandre B Tsybakov, Sara A van de Geer, Bin Yu, Teófilo Valdés, Carlos
Rivero, Jianqing Fan, and Aad van der Vaart. Regularization in statistics. Test, 15:271–344, 2006.

Jasmin Brandt, Viktor Bengs, Björn Haddenhorst, and Eyke Hüllermeier. Finding optimal arms in
non-stochastic combinatorial bandits with semi-bandit feedback and finite budget. Advances in
Neural Information Processing Systems, 35:20621–20634, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Brian Brost, Yevgeny Seldin, Ingemar J Cox, and Christina Lioma. Multi-dueling bandits and
their application to online ranker evaluation. In Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, pp. 2161–2166, 2016.

Bangrui Chen and Peter I Frazier. Dueling bandits with dependent arms. arXiv preprint
arXiv:1605.08838, 2016.

Bangrui Chen and Peter I Frazier. Dueling bandits with weak regret. In International Conference on
Machine Learning, pp. 731–739. PMLR, 2017.

Chih-Ming Chen, Chuan-Ju Wang, Ming-Feng Tsai, and Yi-Hsuan Yang. Collaborative similarity
embedding for recommender systems. In The World Wide Web Conference, pp. 2637–2643, 2019.

Xi Chen, Yuanzhi Li, and Jieming Mao. A nearly instance optimal algorithm for top-k ranking under
the multinomial logit model. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 2504–2522. SIAM, 2018.

Yung-Sung Chuang, Wei Fang, Shang-Wen Li, Wen-tau Yih, and James Glass. Expand, rerank, and
retrieve: Query reranking for open-domain question answering. In Findings of the Association for
Computational Linguistics: ACL 2023, pp. 12131–12147, 2023.

Kenneth Ward Church. Word2vec. Natural Language Engineering, 23(1):155–162, 2017.

Miroslav Dudík, Katja Hofmann, Robert E Schapire, Aleksandrs Slivkins, and Masrour Zoghi.
Contextual dueling bandits. In Conference on Learning Theory, pp. 563–587. PMLR, 2015.

Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the sample
distribution function and of the classical multinomial estimator. The Annals of Mathematical
Statistics, pp. 642–669, 1956.

Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and
stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal of
machine learning research, 7(6), 2006.

P. Fränti, O. Virmajoki, and V. Hautamäki. Fast agglomerative clustering using a k-nearest neighbor
graph. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(11):1875–1881, 2006.

Suprovat Ghoshal and Aadirupa Saha. Exploiting correlation to achieve faster learning rates in
low-rank preference bandits. arXiv preprint arXiv:2202.11795, 2022.

Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory and neural networks
architectures. Neural computation, 7(2):219–269, 1995.

Aditya Gopalan, Odalric-Ambrym Maillard, and Mohammadi Zaki. Low-rank bandits with latent
mixtures. 2016.

Artem Grotov and Maarten De Rijke. Online learning to rank for information retrieval: Sigir
2016 tutorial. In Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval, pp. 1215–1218, 2016.

Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen Wu, W Bruce
Croft, and Xueqi Cheng. A deep look into neural ranking models for information retrieval.
Information Processing & Management, 57(6):102067, 2020.

Björn Haddenhorst, Viktor Bengs, and Eyke Hüllermeier. Identification of the generalized condorcet
winner in multi-dueling bandits. Advances in Neural Information Processing Systems, 34:25904–
25916, 2021.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. Balancing exploration and exploitation in
listwise and pairwise online learning to rank for information retrieval. Information Retrieval, 16:
63–90, 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sebastian Hofstätter, Jiecao Chen, Karthik Raman, and Hamed Zamani. Fid-light: Efficient and
effective retrieval-augmented text generation. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 1437–1447, 2023.

Tianlin Huang, Defu Zhang, and Lvqing Bi. Neural embedding collaborative filtering for recom-
mender systems. Neural Computing and Applications, 32:17043–17057, 2020.

Kevin Jamieson, Sumeet Katariya, Atul Deshpande, and Robert Nowak. Sparse dueling bandits. In
Artificial Intelligence and Statistics, pp. 416–424. PMLR, 2015.

Kevin G Jamieson and Robert Nowak. Active ranking using pairwise comparisons. Advances in
neural information processing systems, 24, 2011.

Richard C Jeffrey. The logic of decision. University of Chicago press, 1990.

Aanchal Kakkar, Rana Majumdar, and Arvind Kumar. Search engine optimization: A game of page
ranking. In 2015 2nd International Conference on Computing for Sustainable Global Development
(Indiacom), pp. 206–210. IEEE, 2015.

Samedin Krrabaj, Fesal Baxhaku, and Dukagjin Sadrijaj. Investigating search engine optimization
techniques for effective ranking: A case study of an educational site. In 2017 6th Mediterranean
conference on embedded computing (MECO), pp. 1–4. IEEE, 2017.

P. Fränti R. Mariescu-Istodor and C. Zhong. Xnn graph. LNCS 10029:207–217, 2016.

Lucas Maystre and Matthias Grossglauser. Just sort it! a simple and effective approach to active
preference learning. In International Conference on Machine Learning, pp. 2344–2353. PMLR,
2017.

Adil El Mesaoudi-Paul, Viktor Bengs, and Eyke Hüllermeier. Online preselection with context
information under the plackett-luce model. arXiv preprint arXiv:2002.04275, 2020.

Mervin E Muller. A note on a method for generating points uniformly on n-dimensional spheres.
Communications of the ACM, 2(4):19–20, 1959.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen, Xinying Song,
and Rabab Ward. Deep sentence embedding using long short-term memory networks: Analysis
and application to information retrieval. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 24(4):694–707, 2016.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Wenbo Ren, Jia Kevin Liu, and Ness Shroff. On sample complexity upper and lower bounds for exact
ranking from noisy comparisons. Advances in Neural Information Processing Systems, 32, 2019.

Wenbo Ren, Jia Liu, and Ness Shroff. Sample complexity bounds for active ranking from multi-wise
comparisons. Advances in Neural Information Processing Systems, 34:4290–4300, 2021.

Aadirupa Saha and Pierre Gaillard. Versatile dueling bandits: Best-of-both world analyses for learning
from relative preferences. In International Conference on Machine Learning, pp. 19011–19026.
PMLR, 2022.

Aadirupa Saha and Suprovat Ghoshal. Exploiting correlation to achieve faster learning rates in
low-rank preference bandits. In International Conference on Artificial Intelligence and Statistics,
pp. 456–482. PMLR, 2022.

Aadirupa Saha and Aditya Gopalan. Active ranking with subset-wise preferences. In The 22nd
International Conference on Artificial Intelligence and Statistics, pp. 3312–3321. PMLR, 2019a.

Aadirupa Saha and Aditya Gopalan. Combinatorial bandits with relative feedback. Advances in
Neural Information Processing Systems, 32, 2019b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aadirupa Saha and Aditya Gopalan. Pac battling bandits in the plackett-luce model. In Algorithmic
Learning Theory, pp. 700–737. PMLR, 2019c.

Aadirupa Saha and Aditya Gopalan. Best-item learning in random utility models with subset choices.
In International Conference on Artificial Intelligence and Statistics, pp. 4281–4291. PMLR, 2020a.

Aadirupa Saha and Aditya Gopalan. From pac to instance-optimal sample complexity in the plackett-
luce model. In International Conference on Machine Learning, pp. 8367–8376. PMLR, 2020b.

Steven L Scott. A modern bayesian look at the multi-armed bandit. Applied Stochastic Models in
Business and Industry, 26(6):639–658, 2010.

Yanan Sui, Vincent Zhuang, Joel W Burdick, and Yisong Yue. Multi-dueling bandits with dependent
arms. arXiv preprint arXiv:1705.00253, 2017.

Jiaxi Tang and Ke Wang. Ranking distillation: Learning compact ranking models with high per-
formance for recommender system. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 2289–2298, 2018.

Bas C van Fraassen. A demonstration of the jeffrey conditionalization rule. Erkenntnis, pp. 17–24,
1986.

Monique V Vieira, Bruno M Fonseca, Rodrigo Damazio, Paulo B Golgher, Davi de Castro Reis, and
Berthier Ribeiro-Neto. Efficient search ranking in social networks. In Proceedings of the sixteenth
ACM conference on Conference on information and knowledge management, pp. 563–572, 2007.

Junwen Yang and Yifan Feng. Nested elimination: a simple algorithm for best-item identification
from choice-based feedback. In International Conference on Machine Learning, pp. 39205–39233.
PMLR, 2023.

Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

Ahmad Zareie and Amir Sheikhahmadi. A hierarchical approach for influential node ranking in
complex social networks. Expert Systems with Applications, 93:200–211, 2018.

Yeqin Zhang, Haomin Fu, Cheng Fu, Haiyang Yu, Yongbin Li, and Cam-Tu Nguyen. Coarse-to-fine
knowledge selection for document grounded dialogs. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Guido Zuccon, Bevan Koopman, Peter Bruza, and Leif Azzopardi. Integrating and evaluating neural
word embeddings in information retrieval. In Proceedings of the 20th Australasian document
computing symposium, pp. 1–8, 2015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

B MORE DETAILS ON INFERRED UPDATES

B.1 FURTHER DISCUSSION ON COMBINING INFERRED AND EMPIRICAL UPDATES

As mentioned in Section 6.3, jointly considering empirical and inferred updates breaks the identically
distributed condition. More precisely, given that pjk is being estimated, empirical updates follow a
Bernoulli distribution with mean pjk whereas inferred updates from the conditional probability pjk|ik
follow a Bernoulli distribution with mean pik rescaled according to pdf(pik) - an approximation for
pdf(pjk) given partial information. In fact, we can observe that the predictive posterior distribution
is independent of the order in which the updates are applied and view the update sequence in 2 stages
- applying all empirical updates in the first stage and inferred updates in the second. Then, each stage
is a valid Lévy process, and the posterior distribution from the first stage is supplied as the prior
distribution of the second stage.

B.2 COMBINING INFERRED UPDATES FROM MULTIPLE ITEMS

Consequently, incorporating inferred updates from multiple items can be viewed as a multi-stage
update, where each item yields a sequence of iid. updates constituting a single stage. The sequence is
independent across all stages - each random variable is only dependent on the underlying distribution
it is drawn from. It is trivial to extend Theorem 3 to the multi-item case to show that the sample mean
across multiple stages is still an unbiased estimator for pij .

However, in doing so, we are considering the evidence inferred from observations of other
item pairs separately instead of jointly, i.e. given ιik and ιhk, the inferred updates are de-
rived using the first-order conditional probabilities pjk|ik and pjk|hk instead of pjk|ik∩hk =

Pq

(
pjk > 1

2 | phk > 1
2 ∩ pik > 1

2

)
. While considering evidence from all item pairs jointly clearly

leads to an optimal estimate, computing higher-order probabilities is intractable.

We analyze the feasibility of only considering first-order conditional probabilities via two approaches.
Firstly, we derive a lower bound on second order conditional probabilities (Lemma 3) and show that
it only deviates slightly from the mean of the constituent first order conditional probabilities when
the first order probabilities are close to 1 (Figure 4 (left)). Secondly, for higher order conditional
probabilities, we perform Monte Carlo simulations to estimate the average multi-order conditional
probability given multiple constituent first-order conditional probabilities (Figure 4 (right)).

Both analyses show that taking the mean of the first order conditional probabilities by treating
inferred updates from multiple items independently is a reasonably conservative estimate of the
high-order conditional probability when the constituent first order probabilities are sufficiently high.
We thus employ the heuristic of weighting the updates by their information content to assign higher
importance to probabilities close to 1. Details are found in Appendix B.4.

Figure 4: (Left) Deviation of the second order conditional probability lower bound from the mean
of the constituent first order conditional probabilities. (Right) Monte Carlo simulation of z-order
conditional probabilities with 95% confidence interval

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B.3 REGULARIZATION OF CONDITIONAL PROBABILITIES

From Eqn 1, we can see that pjk|ik becomes increasingly sensitive to minor perturbations of vi,vj ,vk

as vi,vj → vk. Consequently, two vectors that are both ϵ-optimal candidates can yield drastically
different conditional probabilities. Intuitively, this sensitivity to slight perturbations leads to unpre-
dictability and poses a problem for its use in a (ϵ, δ)-PAC algorithm. Particularly, it is prohibitive for
formulating of sample complexity lower bounds.

Regularization has been widely used as a way to simplify ill-posed problems in geometry, statistics,
and optimization Girosi et al. (1995); Belkin et al. (2005); Bickel et al. (2006). From Appendix E.1,
we see that the term (2

√
(1− vj · vk)(1− vi · vk))

−1 comes from (|vi − vk||vj − vk|)−1 which
approaches infinity as vi,vj approach vk. Consequently, minor perturbations in the vi · vj − vi ·
vk −vj ·vk +1 are magnified. We add a regularization term to penalize the conditional probabilities
when the constituent vectors are too close as follows:

pjk|ik = pkj|ki = 1− 1

π
cos−1

(
vi · vj − vi · vk − vj · vk + 1

2
√

(1− vj · vk)(1− vi · vk) + λ

)
(4)

where λ is the regularization term.

B.4 ANALYSIS OF HIGH ORDER CONDITIONAL PROBABILITIES

As discussed in Appendix B.2, inferred updates from multiple items is viewed as a multi-stage
Bayesian update sequence, and Theorem 3 is used to show the validity of using the sample mean across
all stages as an unbiased estimator for pij . We do this instead of jointly considering observations
from multiple correlated items because the higher order conditional probabilities are intractable.

Formally, given observed sequences ιik and ιhk, the inferred updates are derived us-
ing the first-order conditional probabilities pjk|ik and pjk|hk instead of pjk|ik∩hk =

Pq

(
pjk > 1

2 | phk > 1
2 ∩ pik > 1

2

)
. In this section, we will investigate the feasibility of only consid-

ering first-order conditional probabilities by a) computing a lower bound on second order conditional
probabilities as a function of the constituent first order probabilities and b) performing Monte Carlo
simulations to estimate the expected deviation of higher order conditional probabilities from the mean
of the constituent first order probabilities.

Lemma 3 (Lower bound on second order conditional probabilities) Given any 4 items
h, i, j, k ∈ [n], and assuming WLOG that pjk|hk ≥ pjk|ik, the following is true:

pjk|ik∩hk ≥ 1−
1− pjk|hk

pjk|ik
(5)

We visualize the effect of Lemma 3 by plotting the deviation of the lower bound on the second order
conditional probability from the mean of the constituent first order conditional probabilities as shown
in Figure 4 (right). As can be seen, the worst case deviation is only slightly negative when the first
order conditional probabilities are close to 1.

We can extend the formulation to higher order conditional probabilities by considering the intersection
of more than 3 hyper hemispherical surfaces. While the exact calculation is intractable, we perform
Monte Carlo simulations to estimate the average multi-order conditional probability pjk|

⋂
i ik

given
multiple constituent first-order conditional probabilities pjk|ik. The details of the simulation are in
Appendix C.

The simulation results are shown in Figure 4 (left) which plots the higher order conditional probability
against the first order conditional probabilities (we consider a sequence of first order probabilities
with equal magnitude) along with the 95% confidence interval. We see that pjk|⋂z

i=1 ik exhibits a
narrow spread, generally increases with z, and significantly exceeds the mean of the constituent
first order probabilities for z > 5. On this basis, we argue that taking the mean of the first order
conditional probabilities by treating them inferred updates from multiple items independently is
a reasonably conservative estimate of the high-order conditional probability when the constituent

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

first order probabilities are sufficiently high. We are thus motivated to assign higher importance to
first order probabilities that are closer to 1. This is in agreement with the intuition that probabilistic
updates that are close to 1 hold more information while probabilistic updates that are close to 0.5 are
less significant (e.g. a probabilistic update of 0.5 holds no significance since it is the prior distribution
before any updates).

B.5 INFORMATION WEIGHTING OF INFERRED UPDATES

To assign higher importance to inferred updates with more certain conditional probabilities, we
employ the heuristic of weighting the updates by their information content and modify Eqn. 2 as
follows:

ιfullij (t) = ιij(t) ∪ ι∗ij(t) (6)

Pij(t) =

∑
p∈ιfull

ij (t)(Info(p)× p)∑
p∈ιfull

ij (t) Info(p)
(7)

where
Info(p) = 1− (−p× log2 p− (1− p)× log2(1− p)) (8)

which is the mutual information content between the update and a p = 0.5 prior.

C MONTE CARLO SIMULATION OF z-ORDER CONDITIONAL PROBABILITIES

High order conditional probabilities can be computed as the intersection of more than 3 hyper hemi-
spherical surfaces. While the exact calculation is intractable, we can perform Monte Carlo simulations
to estimate the average multi-order conditional probability pjk|

⋂
i ik

given multiple constituent first-
order conditional probabilities pjk|ik using the result in Lemma 4. For each simulation, we fix pjk|ik
to be of a certain value and compute possible item vectors i that can yield these probabilities. We then
randomly initialize query vectors such that they are uniformly distributed on the unit hypersphere
according to (Muller, 1959) to estimate pjk|

⋂
i ik

.

Lemma 4 (Generating item vectors subject to conditional probability constraints) Given items
j, k, a random unit vector r and a desired probability p, we can obtain a unit vector i corresponding
to item i such that pjk|ik = p as follows:

vj−k = vj − vk, c = cos((1− p)× π), v⊥
j−k = r− (r · vj−k)vj−k

vi−k = c× vj−k

|vj−k|
+
√
1− c2 ×

v⊥
j−k

|v⊥
j−k|

i = k− vi−k

2vi−k · vk

Proof It is clear that |vi−k| = 1. Then the following is true:

(vj − vk) · (vi − vk)

|vj − vk| × |vi − vk|
=

vj−k · vi−k

|vj−k| × |vi−k|

=
1

|vj−k|
× c× vj−k · vj−k

|vj−k|
= c

Using the above result, we can complete the proof:

pjk|ik = 1− 1

π
cos−1

(
(vj − vk) · (vi − vk)

|vj − vk| × |vi − vk|

)
= 1− 1

π
cos−1 (c) = p

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

■

For each trial, we assume WLOG that vk = (1, 0, 0, ..., 0) and randomly initialize vj . We can make
use of Lemma 4 to obtain a set of z items Vi such that pjk|ik = p for some p ∈ [0.5, 1]. We then
randomly initialize a set of query vectors Vq that are uniformly distributed on the unit hypersphere by
initializing d-dimensional Gaussian random vectors and normalizing them (Muller, 1959). We can
then estimate pjk|

⋂
i ik

by computing the ratio:

|{q ∈ Vq : q · v > q · vk ∀v ∈ Vi ∩ { vj}|
|{q ∈ Vq : q · v > q · vk ∀v ∈ Vi|

For each pair of (z, p) data point, we perform 4000 trials. The number of query vectors |Vq| is set to
1× 105. d is set as 32.

D ALGORITHMS

D.1 DYNAMIC ELIMINATION (DE)

The complete algorithm is given as Algorithm 1 with a subroutine given in Algorithm 2 for updating
of the played set in response to the user feedback which we restate here for completeness’ sake.

Remarks The algorithm draws inspiration from Trace-the-Best in (Saha & Gopalan, 2019c) and
maintains a prevailing winner that we term the running winner that is at least pairwise ϵ-optimal to
all items that have been played so far. Each item pair is played for the required number of times to
establish the winner with sufficient certainty before it is removed permanently. However, Trace-the-
Best removes an entire set (except the winner) only when the set winner is established instead of
removing items once they are no longer potential winners. We improve on this and implement flexible
item elimination while achieving an improved worst case sample complexity. A crucial component
of this is running winner inheritance in which the incoming running winner inherits the pairwise
interactions of the outgoing winner during running winner replacement. Additionally, while DE is
a superior algorithm in its own right as we show in Section 8, its ability to dynamically eliminate
items facilitates straightforward accommodation of inferred updates. Firstly, without dynamic item
elimination, inferred updates can only be eliminated outside of set plays. Otherwise, once items are
added into a set, their previously accumulated inferred updates are redundant since they can only be
removed together with other items in the set. Secondly, the importance weighting of inferred updates
means that more inferred updates are required for item elimination. This means that a running winner
can potentially be replaced before the items that have accumulated inferred updates from it have been
eliminated. Consequently, these updates are redundant since those items will have to accumulate
updates with the new running winner. Running winner inheritance effectively solves this problem
with theoretical correctness guarantees.

D.2 DYNAMIC ELIMINATION BY CORRELATION (DEBC)

The complete algorithm is given as Algorithm 3 with the set update subroutine given in Algorithm 4.
While it is largely similar to DE, we have included it here in full for completeness’ sake. The areas
where it differs from DE are highlighted in red.

Remarks Compared to DE, DEBC leverages the correlation matrix in two areas - item selection
and inferred updates. Firstly, the correlation matrix is used to select items that are least correlated
with items that have been played to rapidly sweep the item space and increase the probability of
playing an item close to the optimal item is high which improves regret performance in the short term.
Secondly, it is used to implement inferred updates to the preference matrix for item pairs that have
not been played. This maximizes the information gain from each iteration.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 1: Dynamic Elimination (DE)
Input: set of items: [n], subset size: ns, error bias: ϵ > 0, confidence parameter: δ > 0
Initialize: uneliminated item set: S ← [n], item subset to play: G← ∅, empirical pairwise win

ratio matrix: W← [0]n×n, γ ←
⌈

n
ns

⌉
, m← 2 ln(γ/δ)

ϵ2

1 while |S| > 1 do
2 if |G| < ns then
3 a← random item from S\G // randomly select unplayed item
4 G← G ∪ {a} // build initial item subset/replenish eliminated item

5 if |G| = ns then
6 Play set G, i← winning item
7 ∀k ∈ G, k ̸= i : Wik ←Wik + 1 // Update empirical pairwise win ratios

8 N←W +WT , P = W/N

9 U = P+
√

ln(γ/δ)
2N // Update upper confidence bound matrix

// run update-set to eliminate items, update running winner
10 G,S, i∗ ← update-set(G, i∗,U,P,N, S,m, ϵ)

// keep only potential Condorcet winners

11 S ← {j ∈ S : min
j′∈S

Ujj′ ≥ 1
2}

12 S ← S\{j ∈ S : Pi∗j ≥ 1
2 −

ϵ
2 and Ni∗j ≥ m}

Algorithm 2: DE update-set subroutine - eliminates suboptimal items, updates item subset and
running winner
Input: subset G, current winner i∗, upper confidence bound matrix U, preference matrix P,

count matrix N, potential candidate set: S, max no. of updates m, error bias ϵ
Initialize: updated subset H ← ∅, potential running winner challengers

W ← {j ∈ G\{i∗} : Ni∗j ≥ m,Pi∗j <
1
2 −

ϵ
2}

1 for j ∈ G\({i∗} ∪W) do
2 if Uji∗ < 1/2 or Ni∗j ≥ m then

// eliminate item if it is not a potential Condorcet winner
3 S ← S\{j}
4 a← random item from S\G
5 H ← H ∪ {a} // replace with randomly selected item

6 else
7 H ← H ∪ {j}

// update current running winner i∗ with new running winner i
8 if |W | ≠ 0 then
9 i← argmax

j∈W
Pi∗j // item with highest win prob. over current winner i∗

// the incoming running winner inherits the win/losses from the
outgoing winner as a conservative estimate

10 ∀j ∈ S\{i} : Pij ← Pi∗j ×Ni∗j + Pij ×Nij , Nij ← Nij +Ni∗j i
∗ ← i

11 H ← H ∪W

12 else
13 H ← H ∪ {i∗}, i← i∗

Output: H , S, i

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 3: Dynamic Elimination By Corelation (DEBC)
Input: set of items: [n], subset size: ns, error bias: ϵ > 0, confidence parameter: δ > 0, item

correlation matrix: C, conditional probability regularization term: λ > 0

Initialize: S ← [n], G← ∅, W← [0]n×n, γ ←
⌈

n
ns

⌉
, m← 2 ln(γ/δ)

ϵ2

1 while |S| > 1 do
2 if |G| = 0 then
3 a← argmax

i∈S

∑
j∈S Cij // item most correlated with other items

4 i∗ ← a

5 else if |G| < ns then

6 a← argmin
i∈S\G

(
max
j∈G

Cij

)
// item uncorrelated with existing items in G

7 G← G ∪ {a}
8 if |G| = ns then
9 Play set G, i← winning item

10 ∀k ∈ G, k ̸= i : Wik ←Wik + 1 // Empirical updates
11 ∀k ∈ G,∀j ∈ S, k ̸= i : // Inferred updates
12 ρ← Info(pjk|ik)
13 Wjk ←Wjk + ρ× pjk|ik, Wkj ←Wkj + ρ× (1− pjk|ik)
14 ρ← Info(pij|ik)
15 Wij ←Wij + ρ× pij|ik, Wji ←Wji + ρ× (1− pij|ik)

16 N←W +WT , P = W/N, U = P+
√

ln(γ/δ)
2N

17 G,S, i∗ ← update-set(G, i∗,U,P,N, S,m, ϵ, C)
// keep only potential Condorcet winners

18 S ← {j ∈ S : min
j′∈S

Ujj′ ≥ 1
2}

19 S ← S\{j ∈ S : Pi∗j ≥ 1
2 −

ϵ
2 and Ni∗j ≥ m}

E PROOFS

E.1 PROOF OF THEOREM 2

Theorem 2 (Conditional probabilities of win ratios) Given items i, j, k ∈ [n], the following holds
true:

pjk|ik = pkj|ki = 1− 1

π
cos−1

(
vi · vj − vi · vk − vj · vk + 1

2
√

(1− vj · vk)(1− vi · vk)

)
(1)

Proof We begin by stating and proving the following lemma:

Lemma 5 Given a fixed pair of unit vectors vi,vj ∈ Rd, for any vector q ∈ Rd that ends on the
d-dimensional unit hyperspherical cap with axis vi − vj and colatitude angle π/2, q · vi ≥ q · vj

must be true.

Proof of Lemma 5 Note that the colatitude angle is the largest angle formed by the axis and a
vector on the hyperspherical cap. As such, we have

0 ≤ q · (vi − vj) = q · vi − q · vj ⇒ q · vi ≥ q · vj

■

Let Cap(ϕ,x) denote the hyperspherical cap with colatitude angle ϕ and axis x ∈ Rd, Area(...)
denote the area of the input region and Cap1 ∩ Cap2 denote the intersection of two caps.

pjk|ik =
Pr(q · vj > q · vk ∩ q · vi > q · vk)

Pr(q · vi > q · vk)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 4: DEBC update-set subroutine
Input: subset G, current winner i∗, upper confidence bound matrix U, preference matrix P,

count matrix N, potential candidate set: S, item correlation matrix: C, max no. of
updates m, error bias ϵ

Initialize: H ← ∅, W ← {j ∈ G\{i∗} : Ni∗j ≥ m,Pi∗j <
1
2 −

ϵ
2}

1 for j ∈ G\({i∗} ∪W) do
// keep only potential Condorcet winners

2 if Uji∗ < 1/2 or Ni∗j ≥ m then
3 S ← S\{j}

// replace with item uncorrelated with items that have been
played before

4 H ← H ∪ argmin
j∈S\G

(
max

k∈([n]\S)∩G
Cjk

)
5 else
6 H ← H ∪ {j}

7 if |W | ≠ 0 then
8 i← argmax

j∈W
Pi∗j // potential replacement for running winner

// the incoming running winner inherits the win/losses from the
outgoing winner as a conservative estimate

9 ∀j ∈ S\{i} : Pij ← Pi∗j ×Ni∗j + Pij ×Nij , Nij ← Nij +Ni∗j i
∗ ← i

10 H ← H ∪W

11 else
12 H ← H ∪ {i∗}
13 G← H

Output: G, S, i∗

(a)
=

Area(Cap(π/2,vj − vk) ∩ Cap(π/2,vi − vk))

Area(Cap(π/2,vi − vk))

(b)
= 1− ∆ϕ(vj − vk,vi − vk)

π

= 1− 1

π
cos−1

(
(vj − vk) · (vi − vk)

|vj − vk| × |vi − vk|

)
= 1− 1

π
cos−1

(
vi · vj − vi · vk − vj · vk + 1

2
√
(1− vj · vk)(1− vi · vk)

)
where ∆ϕ(..., ...) returns the angle between two vectors. We use Lemma 5 for equality (a) while
equality (b) holds when we observe that the intersection between the two hyper-hemispherical caps
is a hyperspherical wedge with dihedral angle π −∆ϕ(vj − vk,vi − vk). The second equality in
Theorem 2 is proven in a similar manner. We include it below for completeness’ sake.

pkj|ki =
Pr(q · vk > q · vk ∩ q · vk > q · vi)

Pr(q · vk > q · vi)

=
Area(Cap(π/2,vk − vj) ∩ Cap(π/2,vk − vi))

Area(Cap(π/2,vk − vi))

= 1− ∆ϕ(vk − vj ,vk − vi)

π

= 1− ∆ϕ(vj − vk,vi − vk)

π

= 1− 1

π
cos−1

(
vi · vj − vi · vk − vj · vk + 1

2
√
(1− vj · vk)(1− vi · vk)

)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

■

E.2 PROOF OF THEOREM 3

Theorem 3 (Estimating pij from inferred updates) For any item pair i, j, given a sequence of
binary empirical updates ιij(t) and a sequence of inferred updates ι∗ij(t), the sample mean

Pij(t) =
1

|ιij(t)|
∑

x∈ιij(t)

x+
1

|ι∗ij(t)|
∑

p∈ι∗ij(t)

p (2)

is an unbiased estimator of pij .

Proof We begin by proving the following lemma :

Lemma 6 (Probabilistic Bayesian updates to mixtures of beta distributions) Let X be a random
variable whose probability is given by a sum of Beta distributions, i.e.

pdf(X) =

i=N−1∑
i=0

ciBeta(αi, βi)

∀i ∈ [0, N − 1] : αi + βi = η

i=N−1∑
i=0

ci = 1

Then, the following is true:

pdf(X|Pr(Y Bernoulli(X) = 1) = p) =

i=2N−1∑
i=0

diBeta(α
′
i, β

′
i)

∀i ∈ [0, 2N − 1] : α′
i + β′

i = η + 1

i=2N−1∑
i=0

di = 1

and the mean of the posterior distribution is

ηX̄ + p

η + 1
(9)

where X̄ denotes the mean value of X .

Proof Using Jeffrey Conditionalization, we have

pdf(X|Pr(Y ∼ Bernoulli(X) = 1) = p)

= p×
i=N−1∑
i=0

ci Beta(αi + 1, βi) + (1− p)×
i=N−1∑
i=0

ci Beta(αi, βi + 1)

=

i=N−1∑
i=0

ci (p× Beta(αi + 1, βi) + (1− p)× Beta(αi, βi + 1))

=

i=2N−1∑
i=0

diBeta(α
′
i, β

′
i)

where

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

α′
i, β

′
i =

{
α i

2
+ 1, β i

2
if i is even

α⌊ i
2⌋, β⌊ i

2⌋ + 1 if i is odd

di =

{
ci/2 × p if i is even
c⌊ i

2⌋ × (1− p) if i is odd

Consequently, it is clear that ∀i ∈ [0, 2N − 1] : α′
i + β′

i = η + 1 and
∑i=2N−1

i=0 di = 1. Denoting
the mean of the conditional probability distribution by X̄∗, we have

X̄ =

i=N−1∑
i=0

ciαi

η

X̄∗ =

i=2N−1∑
i=0

diα
′
i

η + 1

=

i=N−1∑
i=0

p× ci(αi + 1)

η + 1
+

i=N−1∑
i=0

(1− p)× ciαi

η

=

i=N−1∑
i=0

ciαi + p

η + 1

=
η

η + 1

i=N−1∑
i=0

ciαi + p

η

=
η

η + 1

(
X̄ + p/η

)
=

ηX̄ + p

η + 1

■

It is instructive to assume a Bayes prior Beta(1, 1) (uniform) for pij before any updates are applied.
Empirical updates can be treated as probabilistic updates with p = 1. We can thus consider a single
sequence of probabilistic updates ιfullij (t) = ιij(t) ∪ ι∗ij(t). By applying Lemma 4 iteratively , we
have that the resulting predictive posterior distribution is also a mixture of Beta distributions that
constitutes a valid probability distribution (normalized and continuous).

We now aim to show that the mean of this distribution is indeed the sample mean. We denote the
mean of the predictive posterior distribution after m updates as t as µ(m). Since we start with a
uniform prior distribution, we have µ(0) = 0.5. Denoting the ith element of ιfullij (t) as xi We can
prove that µ(m) = 1

m

∑m
i=1 xi by mathematical induction:

Let Q(m) denote the proposition that µ(m) =
∑m

i=0 xi for all m ∈ N, i.e. the sample mean is
the posterior distribution mean. Since µ(m) = 0×0+x1

0+1 = x1, Q(1) is true. We want to show
Q(m) is true⇒ Q(m+ 1) is true.

Q(m)⇒ µ(m) =
1

m

m∑
i=1

xi

⇒ µ(m+ 1) =
1

m+ 1

(
xm+1 +

m∑
i=1

xi

)
=

1

m+ 1

m+1∑
i=1

xi

⇒ Q(m+ 1)

By mathematical induction, Q(m) true for all m ∈ N. The proof of Theorem 3 is thus complete. ■

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

E.3 PROOF OF LEMMA 3

Lemma 3 (Lower bound on second order conditional probabilities) Given any 4 items
h, i, j, k ∈ [n], and assuming WLOG that pjk|hk ≥ pjk|ik, the following is true:

pjk|ik∩hk ≥ 1−
1− pjk|hk

pjk|ik
(5)

Proof We begin by proving the following Lemma:

Lemma 7 (Lower bound on intersection of 3 regions) Let A, B and C denote regions on some
arbitrary surface such that A and B have area a. Let the area of some region R be given by rR × a
(then rA = rB = 1). Given that aC = ra, we have

rA∩B∩C

rB∩C
≥ rA∩CaC + rA∩B − 1

rA∩CrC + rA∩B − 1 + min(1− rA∩B , rC − rCrA∩C)

Proof
0 ≤ Area(A ∩ (¬B) ∩ (¬C))

= a− (rA∩Ba− rA∩B∩Ca)− (rA∩CrCa− rA∩B∩Ca)− rA∩B∩Ca

= a(1− rA∩B − rA∩CrC + rA∩B∩C)

⇒ rA∩B∩C ≤ rA∩CrC + rA∩B − 1

And
r(¬A)∩B∩Ca ≤ min(a− rA∩Ba, a− rA∩BrCa)

⇒ r(¬A)∩B∩C ≤ min(1− rA∩B , 1− rA∩BrC)

Consequently,
rA∩B∩C

rB∩C
=

rA∩B∩C

rA∩B∩C + r(¬A) ∩B ∩ C

≥ rA∩CaC + rA∩B − 1

rA∩CrC + rA∩B − 1 + min(1− rA∩B , rC − rCrA∩C)

which completes the proof of Lemma 7. ■

From Lemma 5, the query vectors q that satisfy pij > 1/2 for any i, j ∈ [n] end of the surface of a
hyper-hemispherical cap. We can thus interpret the second-order conditional probability as a ratio of
the intersection areas of hyper-hemispherical caps. Applying Lemma 7, we have

pjk|ik∩hk ≥
pjk|hk + pjk|ik − 1

pjk|ik
= 1−

1− pjk|hk

pjk|ik
(10)

which completes the proof. ■

E.4 PROOF OF THEOREM 1

Theorem 1 (Sample complexity and correctness of DE in the general case) DE is (ϵ, δ)-PAC
with worst-case sample complexity O(n

ϵ2 ln(
n

nsδ
)).

E.4.1 PROOF OF CORRECTNESS

We first prove the correctness of the algorithm. Let us recall that the algorithm should output an
ϵ-optimal item i∗ (i.e. pi∗1 > 1

2 − ϵ, where 1 is the actual Condorcet winner). We first state the
following Lemma:

Lemma 8 (Hoeffding’s Inequality) For any item pair i, j ∈ [n] and δ, ϵ > 0, given a sequence of
N updates ιij(t) such that N ≥ − ln(δ)

2ϵ2 , the sample mean Pij(t) is bounded as follows:

Pr(|pij − Pij(t)| ≥ ϵ) ≤ δ (11)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Proof From Theorem 3, we have that the sample mean of the update sequence is an unbiased
estimator of pij . From Section B.2, we also have that the updates are independent (though not
identically distributed when inferred updates are considered). This allows us to apply the Hoeffding’s
Inequality (Hoeffding, 1994; Saha & Gopalan, 2019c) as follows:

Pr(|pij − Pij(t)| ≥ η/N) ≤ exp

(
−2η2

N

)
Substituting δ = exp

(
− 2η2

N

)
and ϵ = η

N yields the expression in Eqn. 11. ■

Notation We then aim to prove the correctness of the running winner in the DE algorithm. To
do so, we first define some notation: Let the time step t denote the number of sets played since the
beginning of the algorithm. For any variable x that changes with t, let x(t) denote the value of the
variable at the start of time step t unless otherwise stated. Let Q(t) = [n]\S(t) denote the set of
eliminated items at time step t since the beginning and R(t) = Q(t+1)\Q(t) denote the set of items
eliminated during time step t.

Lemma 9 (Running winner update in DE) Given that at some time step t ≥ 0, i∗(t+ 1) ̸= i∗(t),
i.e. the running winner is replaced. Then, the following must be true:

Pr

(
pi∗(t+1)i∗(t) >

1

2

)
> 1− δ

γ
(12)

Proof We have that i∗(t+ 1) ̸= i∗(t) iff. Ni∗(t)j ≥ m, Pi∗(t)i∗(t+1) <
1
2 −

ϵ
2 ⇒ Pi∗(t+1)i∗(t) ≥

1
2 + ϵ

2 . Applying Lemma 8, we have:

Pr

((
1

2
+

ϵ

2
− pi∗(t+1)i∗(t)

)
≥ ϵ

2

)
≤ Pr

(
(Pi∗(t+1)i∗(t)(t)− pi∗(t+1)i∗(t)) ≥

ϵ

2

)
≤ δ

γ

⇒ Pr

(
pi∗(t+1)i∗(t) ≤

1

2

)
≤ δ

γ

⇒ Pr

(
pi∗(t+1)i∗(t) >

1

2

)
> 1− δ

γ

Lemma 10 (Running winner inheritance) Given that at some time step t ≥ 0, i∗(t+ 1) ̸= i∗(t),
i.e. the running winner is replaced, the following must be true for any item j:

Pr
(
pi∗(t+1)j > pi∗(t)j

)
> 1− δ

γ
(13)

Proof

Pr
(
pi∗(t+1)j > pi∗(t)j

)
= Pr

(
θi∗(t+1)

θi∗(t+1) + θj
>

θi∗(t)

θi∗(t) + θj

)
= Pr(θi∗(t+1) > θi∗(t))

= Pr

(
pi∗(t+1)i∗(t) >

1

2

)
> 1− δ

γ

where we have used Lemma 9 in the last inequality ■

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Lemma 11 (Validity of inherited Pij) Let us denote a sequence of K running winners
{i∗1, i∗2, ...i∗K} ordered by increasing time step. Let Pi∗κj

be the sample estimate given some item j
corresponding to nκ samples such that

∀κ ∈ 1, 2, ...K : Pr
(
(Pi∗κ

− pi∗κ) < ϵ
)
> 1− exp (−2nκϵ

2)

where nκ = ni∗κ|{i∗κ,j} + nj|{i∗κ,j} denotes the number of times either i∗κorj wins a set. Then, given

P inh
i∗Kj =

1

n1,K

K∑
κ=0

nκPi∗κ

nκ0,δκ =

κ0+δκ−1∑
κ=κ0

nκ

we have

Pr((P inh
i∗Kj − pi∗Kj) < ϵ) > (1− exp (−2n1,Kϵ2))×

(
1− δ(K − 1)

γ

)

Proof We first consider the case with 2 running winners i∗κ, i
∗
κ+1, and :

Pr

((
nκPi∗κj

+ nκ+1Pi∗κ+1j

nκ,2
− pi∗κ+1j

)
<

nκϵ+ nκ+1ϵ

nκ,2

)
= Pr

((
nκPi∗κj

nκ,2
−

nκpi∗κ+1j

nκ,2

)
+

(
nκ+1Pi∗κ+1j

nκ,2
−

nκ+1pi∗κ+1j

nκ,2

)
<

nκϵ

nκ,2
+

nκ+1ϵ

nκ,2

)
≥ Pr

((
nκPi∗κj

nκ,2
−

nκpi∗κj

nκ,2

)
+

(
nκ+1Pi∗κ+1j

nκ,2
−

nκ+1pi∗κ+1j

nκ,2

)
<

nκϵ

nκ,2
+

nκ+1ϵ

nκ,2

)
× Pr

(
pi∗κ+1j

> pi∗κj

)
(a)
> (1− exp (−2nκ,2ϵ

2))×
(
1− δ

γ

)
where for inequality (a) we have used Lemma 8 for the first term and Lemma 9 for the second term.
For the first term, we note that the expression is the confidence interval of a sequence of independent
random variables belonging to two distributions which still meets the conditions for application of
Hoeffding’s inequality. We can apply this iteratively to obtain

Pr

(
1

n1,K

K∑
κ=0

−pi∗Kj < ϵ

)
= (1− exp (−2n1,Kϵ2))×

(
1− δ

γ

)(K−1)

> (1− exp (−2n1,Kϵ2))×
(
1− δ(K − 1)

γ

)
Remarks Essentially, this result proves that the sample estimate of pairwise win ratios for previous
running winners is a conservative estimate for the current running winner with high probability.

Lemma 12 (ϵ-optimality of running winner in DE w.r.t. eliminated items) An item i is consid-
ered pairwise ϵ-optimal w.r.t. an item j iff. pij > 1

2 − ϵ. Then, at any time step t > 0, ∀j ∈ R(t),
i∗(t) is pairwise ϵ-optimal w.r.t. j with probability 1− Kδ

γ where K denotes the number of running
winners i∗(t) has inherited (i∗(t), j) pairwise interactions from.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proof We consider the different cases in which an item j ∈ R(t) is eliminated.

• Case 1 - Ni∗(t)j ≥ m, Pi∗(t)j ≥ 1
2 −

ϵ
2 : Applying Lemma 8 and Lemma 11, we have

Pr

((
1

2
− ϵ

2
− pi∗(t)j

)
≥ ϵ

2

)
≤ Pr

(
(Pi∗(t)j(t)− pi∗(t)j) ≥

ϵ

2

)
≤ δ

γ
+

(K − 1)δ

γ
=

Kδ

γ

⇒ Pr

(
pi∗(t)j ≤

1

2
− ϵ

)
≤ Kδ

γ

⇒ Pr

(
pi∗(t)j >

1

2
− ϵ

)
> 1− Kδ

γ

• Case 2 - Uji∗(t) < 1/2: We have 1/2 > Uji∗(t) = Pji∗(t) +
√

ln(γ/δ)
2Nji∗

. It follows that

Pi∗(t)j = 1− Pji∗(t) ≥ 1
2 +

√
ln(γ/δ)
2Nji∗(t)

. Applying Lemma 8 and Lemma 11, we have for
sample size N ≥ Nji∗(t)

⇒ Pr

((
1

2
+

√
ln(γ/δ)

2Nji∗(t)
− pi∗(t)j

)
≥

√
ln(γ/δ)

2Nji∗(t)

)

≤ Pr

(
(Pi∗(t)j(t)− pi∗(t)j) ≥

√
ln(γ/δ)

2Nji∗(t)

)

≤ δ

γ
+

(K − 1)δ

γ
=

Kδ

γ

⇒ Pr

(
pi∗(t)j ≤

1

2

)
≤ Kδ

γ

⇒ Pr

(
pi∗(t)j >

1

2

)
> 1− Kδ

γ

⇒ Pr

(
pi∗(t)j >

1

2
− ϵ

)
> 1− Kδ

γ

■

E.4.2 PROOF OF SAMPLE COMPLEXITY UPPER BOUND

Lemma 13 (Item elimination frequency) Given some played set G(t) of size ns, it must be true
that

|Q(t+ 2ns(m− 1)) ∩G(t)| ≥ ns − 1

i.e., at least all but one item from the set will be eliminated in the next ns(m− 1) + 2 time steps.

Proof Let us first consider the following cases:

• Case 1 - ∀j ∈ G(t) : Ni∗(t)j = 0 (i.e. running winner has not yet received pairwise
updates with other items in the set): In the next ns(m−1)+1 time steps, it must be true that
at least one item in the set will have won at least m times and Nij ≥ m for all remaining
items j from G(t). Let us denote this item i. Let us consider the following sub-cases:

– If i = i∗(t), all items that have not been eliminated earlier will be eliminated since
Pi∗j > 1/2.

– If i ̸= i∗(t), i∗ will be replaced, and only i∗(t) will be removed. However, in the
subsequent time step, since Nij ≥ m for the remaining items j from the original set
G(t) and Pij ≥ 1/2, these items will be eliminated.

Consequently, all remaining items will be removed within ns(m− 1) + 2 time steps.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• Case 2 - ∃j ∈ G(t) : Ni∗(t)j ̸= 0 (i.e. running winner has received pairwise updates for
at least one other item in the set): Let us again denote the set winner as i and consider the
following sub-cases:

– If i = i∗(t), then this case can be viewed as an intermediate stage of Case 1 and thus
all 4 items will be removed in less than ns(m− 1) + 2.

– If i ̸= i∗(t), Nii∗(t)(t) = 0, i.e. i has not yet received pairwise updates with running
winner at time step t, then in less than ns(m− 1) + 1 time steps, it will win m times
and all other items in the set will be eliminated since Nij ≥ m,Pij ≥ 1/2 for all
remaining items j from G(t).

– If i ̸= i∗(t), Nii∗(t)(t) ̸= 0, then in less than ns(m − 1) + 1 time steps, it will win
m−Nii∗(t)(t) more times and win the set, replacing i∗(t) as the running winner. Let the
time step this happens be denoted by t′. For items j ∈ G(t) : Nji∗(t)(t) < Nii∗(t)(t),
if they have not been eliminated earlier, at t′, we will have Nji∗(t)(t

′) < m and
thus this items will not be eliminated. In place of the eliminated item i∗(t), a new
item which we denote by j′ will be added. However, the new running winner i∗(t′)
will inherit the pairwise interactions of the i∗(t). Consequently, since

∑
j Nji∗(t′) =∑

j Nji∗(t) > t′− t, and as explained in Case 1, all items will be eliminated except the
set winner before

∑
j Nji∗(t′) reaches k(m− 1) + 1, then, all items will be eliminated

in ns(m− 1) + 1 time steps from t.

Consequently, the proof is complete. ■

From Lemma 13, we can calculate the maximum number of time steps/iterations as T = ⌈ n
ns
⌉ ×

(ns(m − 1) + 2). Given that for any replacement i∗new for the running winner i∗, we must have
Ni∗newi∗ ≥ m, the maximum number of unique running winners across all time steps is given by

T
ns(m−1)+2 =

⌈
n
ns

⌉
.

From Lemma 9, we can show by taking the intersection of all the probabilities that for any 0 ≤ t, t′ ≤
T, t′ > t, i∗(t′) ̸= i∗(t),

Pr

(
pi∗(t′)i∗(t) >

1

2

)
> 1− δ

γ
×
(⌈

n

ns

⌉
− 1

)
(14)

since
⌈

n
ns

⌉
is the maximum number of running winners. Additionally, if we denote i∗κ as the κth

running winner, since the maximum of subsequent running winner changes is
⌈

n
ns

⌉
− κ, then

Pr

(
pi∗(t′)i∗κ >

1

2

)
> 1− δ

γ
×
(⌈

n

ns

⌉
− κ

)
(15)

Lemma 14 (ϵ-optimality of i∗) In a finite number of time steps, the DE algorithm stops and returns
an item i∗ such that

Pr

(
pi∗j >

1

2
− ϵ

)
> 1− δ (16)

Proof We note that there exists t∗ ≤ T such that i∗(t) = i∗ for all t ≥ t∗, i.e. the algorithm will
return an ϵ-optimal item within T time steps. For any item j ∈ S\{i∗}, there exists tj ≤ t∗ such
that j ∈ R(tj). Applying Lemma 12 and using the transitivity property of the PL model (for all
i, j, k ∈ [n], if pij , pjk ≥ 1

2 , then pik ≥ 1
2 must be true as well), we have:

Pr

(
pi∗j >

1

2
− ϵ

)
≥ Pr

(
pi∗i∗(tj) >

1

2

)
× Pr

(
pi∗(tj)j >

1

2
− ϵ

)
(a)
> 1− Kδ

γ
×
(⌈

n

ns

⌉
−K

)
− δ

γ

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

= 1− δ

γ
×
(⌈

n

ns

⌉)
(b)
= 1− δ

where inequality (b) holds true because γ =
⌈

n
ns

⌉
. Hence Lemma 14 is proven. We note that i∗(tj)

must be at least the κth running winner and apply Eqn 15 for inequality (a). ■

Lemma 14 states the ϵ-optimality of the algorithm winner since it is pairwise ϵ-optimal w.r.t. all
items in S including the true Condorcet winner. We now compute the sample complexity. This is
straightforward since we have shown that the maximum number of time steps is

T = ⌈ n
ns
⌉ × (ns(m− 1) + 2)

≤
(
(n+ ns)(m− 1) +

2(n+ ns)

ns

)
≤
(
(n+ ns)

(
2 ln((n/ns + 1)/δ)

ϵ2
− 1

)
+

2(n+ ns)

ns

)
=

(
2

(
n+ ns

ϵ2
ln

(
n+ ns

nsδ

))
+

2(n+ ns)

ns

)
Consequently, the sample complexity is given by O(n

ϵ2 ln(
n

nsδ
)). We thus complete the proof of

Theorem 1. ■

E.5 PROOFS OF ADDITIONAL SAMPLE COMPLEXITY RESULTS FOR DE

E.5.1 PROOF OF LEMMA 1

Lemma 1 (Sample complexity lower bounds for DE) DE is (ϵ, δ)-PAC with best-case sample

complexity O
(

n
ns

ln
(

n
nsδ

))
.

Proof The correctness of DE will be proven in Appendix E.4.1. The best-case sample complexity
corresponds to the case in which the final winner i∗ is selected in the initial item subset and it
always wins the set. Under such an assumption, since an item j ∈ [n]\{i∗} will be eliminated when
Uji∗ < 1/2 (Alg. 2: 2). Consequently, the number of timesteps required for elimination of the item
telim can be computed as follows:

Uji∗ = 0 +

√
ln(γ/δ)

2Nji∗
<

1

2

⇒ telim = ⌈2 ln(γ/δ)⌉

The maximum number of timesteps T can then be calculated as

T =

⌈
n

ns

⌉
×
⌈
2 ln

(γ
δ

)⌉
≤
(

n

ns
+

1

2

)
× (2 ln

(γ
δ

)
+ 1/2)

The sample complexity is thus given by O
(

n
ns

ln
(

n
nsδ

))
.

E.5.2 PROOF OF LEMMA 2

The expected sample complexity for the DE algorithm is not well-defined since it is dependent on
the reward distribution. For example, if the variance of the latent score distribution is very low, i.e.
Var(θi) ∼ 0, for any two randomly sampled items i and j, the win rate pij is likely to be close to 1/2,
i.e. pij 1/2. In view of this, we compute a reward distribution dependent expected sample complexity

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

where the reward distribution is characterized by Var(p) which denotes the variance of pij for any
two randomly sampled items i and j, i.e.

Var(p) = E

[(
pij −

1

2

)2

| i, j ∈ [n]

]

Lemma 2 (Expected sample complexity for DE) Given a reward distribution such that Var(p) =

V , DE is (ϵ, δ)-PAC with an expected sample complexity upper bound of O
(

n(1−V)
ϵ2 ln

(
n

nsδ

))
.

Proof The correctness of DE will be proven in Appendix E.4.1. Given some item i with win ratio
respective to the running winner pii∗ , assuming that only either i and i∗ are winning, we can compute
the timesteps required for item elimination tii

∗

elim as follows:

Uii∗ = pii∗ +

√
ln(γ/δ)

2Nii∗
<

1

2

⇒ tii
∗

elim =

⌈
ln(γ/δ)

2(1/2− pii∗)2

⌉
To obtain the actual telim, we consider that for a subset of size ns, the winning probability of the
running winner is at least 1/ns which yields telim ≥ tii

∗

elim × ns. Then, we have

telim = max

(⌈
ns ln(γ/δ)

2(1/2− pii∗)2

⌉
,m

)

where m = 2 ln(γ/δ)
ϵ2 is the maximum number of updates before the item is considered a potential

running winner challenger and either eliminated or promoted (Alg. 2: 2, 8-13). It is intractable
to calculate the mean elimination time E(telim). However, with the upper bound on telim, we can
consider the random variable X = (1/2− pii∗)

2 (Var(p) = E(X)), and then

E(telim) =
ln(γ/δ)

2
E
(

1

X ′

)

where X ′ is lower bounded by ϵ2/4ns due to the m upper bound. Consequently, we can obtain the
following result using Jensen’s inequality since E(X) < E(X ′) and X ′ has an upper bound of 1/4:

2

ln(γ/δ)
E(telim) ≤

1/4 + ϵ2/4ns − Var(p)
1/4× ϵ2/4ns

=
4ns + ϵ2 − 4Var(p)ns

ϵ2

Consequently, expected number of timesteps T is bounded from above as follows:

T =

⌈
n

ns

⌉
× ln(γ/δ)

2
× 4ns + ϵ2 − 4nsVar(p)

ϵ2

≤
(
n+

ns

2

)
× ln(γ/δ)

2
× 4 + ϵ2/ns − 4Var(p)

ϵ2

The expected sample complexity upper bound is thus O
(

n(1−Var(p))
ϵ2 ln

(
n

nsδ

))
.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E.6 PROOF OF LEMMA 15

Lemma 15 (Supremacy of the winning partition) Given that the item correlation follows a
(r, c, c′) noisy R-Block-Rank model and denoting WLOG the partition containing the winning item
as B1 ∋ 1, if the following conditions are met:

q · v1 ≤ 1− ε , (c− c′)(1− ε)−
√

2ε− ε2
(√

1− c′2 +
√
1− c2

)
> ξ

then for any item i ∈ B1 and any item j /∈ B1, θi > exp(ξ)× θj must be true.

Remarks This result is needed for the proof of Theorem 4. It allows us to define certain bounds
within which the (ϵ− δ)-PAC condition can be met even in the worst-case scenarios since (as we will
show in Appendix E.7) correctness of updates with respect to the winning partition is sufficient to
guarantee the correctness of the DEBC algorithm.

Proof We first state the following lemmas regarding general vector identities that will be used for
this proof.

Lemma 16 Given unit vectors q, a, b, a · b ≤ c, q · a ≥ 1− ϵ,

q · (a− b) ≥ (1− c)(1− ϵ)−
√
(1− c2)(2ϵ− ϵ2)

Proof :

q · (a− b) ≥ q · (a− (w∥a+ w⊥a⊥))

= (1− w∥)(q · a)− w⊥q · a⊥

≥ (1− c)(1− ϵ)−
√
1− c2

√
1− (1− ϵ2)

= (1− c)(1− ϵ)−
√
(1− c2)(2ϵ− ϵ2)

where

w∥ = a · b, w⊥ =
√
1− w2

∥, a⊥ =
b− w∥a

|b− w∥a|

■

Lemma 17 Given unit vectors q, a, b, a · b ≥ c, q · a ≥ 1− ϵ,

q · (a− b) ≥ c(1− ϵ)−
√
(1− c2)

Proof

q · (a− b) = q · (a− (w∥a+ w⊥a⊥))

= (1− w∥)q · a− w⊥q · a⊥

≤ (1− c)(1− ϵ) +
√

1− c2
√
1− (1− ϵ2)

= (1− c)(1− ϵ) +
√
(1− c2)(2ϵ− ϵ2)

where

w∥ = a · b, w⊥ =
√
1− w2

∥, a⊥ =
b− w∥a

|b− w∥a|
■

Lemma 18 Given unit vectors q,x,y, z such that:

q · x ≥ 1− ϵ

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

x · y ≥ c

x · z ≤ c′

Then, the following must be true:

q · (y − z) ≥ (c− c′)(1− ϵ)−
√

2ϵ− ϵ2
(√

1− c′2 +
√
1− c2

)

Proof Applying Lemma 16 and 17

q · (y − z) = q · (x− z)− q · (x− y)

≥
(
(1− c′)(1− ϵ)−

√
(1− c′2)(2ϵ− ϵ2)

)
−
(
(1− c)(1− ϵ) +

√
(1− c2)(2ϵ− ϵ2)

)
= (c− c′)(1− ϵ)−

√
2ϵ− ϵ2

(√
1− c′2 +

√
1− c2

)
■

We can then apply Lemma 18 to the conditions in Lemma 15 which gives q · (vi − vj) > ξ ⇒
ln θi > ln θj + ξ ⇒ θi > exp(ξ)× θj for any items i ∈ B1, j /∈ B1. ■

E.7 PROOF OF THEOREM 4

Theorem 4 (Sample complexity and correctness of DEBC with R-Block-Rank correlation)
Given that the item correlation follows a R-Block-Rank model and that the partition containing the
winning item B1 contains n∗ items, i.e. |B1| = n∗, DEBC is (ϵ, δ)-PAC with worst-case sample
complexity

O

(
max

(
max(R,ns ln(ns))

win
minϵ

2
ln(

n

nsδ
) ,

n∗

ϵ2
ln(

n∗

nsδ
)

))
(3)

given that the following conditions are met:

1. q · v1 ≤ 1− ε

2. (c− c′)(1− ε)−
√
2ε− ε2

(√
1− c′2 +

√
1− c2

)
> ln

(
1+2ϵ
1−2ϵ

)
3. 1− δn∗

n+ns
− δns−1 > 1− δ

4. n∗ + ns ≤
(
Info

(
1− 1

π cos−1
(

2−2c
2(1−c)+λ

)))−1

Interpretation of the conditions Conditions 1 and 2 sets a lower bound on the score of the winning
item as a function of the in-partition and cross-partition item correlations; it excludes the case in which
all items are poorly correlated with the query which would limit the significance of the partitions.
Condition 3 sets a bound on the size of the winning partition in relation to ns and n in order for the
probability bounds to be met, e.g. it excludes the case where n∗ ≈ n, i.e. almost all items fall into
the same partition. Condition 4 places constraints on n∗ an λ to avoid elimination of the wrong items
from inferred updates in the worst case. We note that the results in Section B.2 show that this happens
with very low probability. However, since we cannot obtain closed form solutions for this, Condition
4 is required.

Remarks on the worst-case sample complexity Assuming that 1/win
min is small compared to the

other factors, the sample complexity in this situation replaces the factor of n in the general case with
a factor of n∗, R or k ln(ns). Depending on the parameters of the R-Block-Rank model, this should
be a large improvement. While the conditions may seem prohibitive, these are only required to create
a structured item correlation through which lower bounds on the sample complexity can be proved.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

E.7.1 PROOFS FOR INTERMEDIATE RESULTS

Proof We first state the following extension to Theorem 2:

Lemma 19 Given any 3 partitions Bα, Bβ , Bω and items i, j ∈ Bα, k ∈ Bβ , h ∈ Bω, the inferred
update conditional probabilities are bounded as follows:

pjk|ik, pkj|ki ≥ 1− 1

π
cos−1

(
c− 2c′ + 1

2(1− c′) + λ

)
pjk|hk, pkj|kh < 1− 1

π
cos−1

(
c′ + 1

2(1− c′) + λ

)

Proof The first result can be obtained directly from Theorem 2. For the second result, we note
that negative values in the item correlation matrix C are set to zero in DEBC and apply Theorem 2
accordingly. ■

Denoting for brevity win
min as

win
min = Info

(
1− 1

π
cos−1

(
c− 2c′ + 1

2(1− c′) + λ

))
we can use Lemma 19 to prove the following results on partition elimination:

Lemma 20 (Partition elimination by single winner) For any partition Bα, if there exists item i /∈
Bα that wins at least 2 ln(γ/δ)

ϵ2 ÷ win
min sets containing any item from Bα, then Bα will be entirely

eliminated.

Proof From Lemma 17, we have that the minimum conditional probability for intra-partition
inferred updates is given by 1 − 1

π cos−1
(

c−2c′+1
2(1−c′)

)
. Then, for any item j ∈ Bα, we have that

Nij ≥ ni|{i,j} × win
min according to the update step for N in Algorithm 3, where the lower bound

corresponds to an item that has only received empirical updates and has not been played in a set.
Since i has not been eliminated despite having won more than 2 ln(γ/δ)

ϵ2 times, it is the running winner
and hence Pij ≥ (12 −

ϵ
2) if Nij ≥ m⇒ ni|{i,j} ≥ m÷ win

min. Consequently, j will be eliminated
as an item that the running winner i∗ is at least pairwise ϵ-optimal with. ■

Lemma 21 (Partition elimination from multiple winners) Let us denote m′ as

m′ =
2 ln(γ/δ)

ϵ2
÷ win

min

Then, for any partition Bα, if there exists item i ∈ Bα that loses (ns − 1)(m′ − 1) + 1 sets won by
any item not from Bα, then either Bα will be entirely eliminated.

Proof Across (ns−1)(m′−1)+1 losses, since there are ns−1 items in the set excluding the losing
item, the running winner across the sets must have won at least m′ of those sets. Since the running
winner inherits the pairwise interactions of the previous running winners, after (ns − 1)(m′ − 1) + 1
losses, denoting the running winner at that time step as i∗, all items from Bα have received at least
m′ inferred or empirical updates with respect to i∗. By Lemma 20, Bα will be entirely eliminated. ■

E.7.2 PROOF OF SAMPLE COMPLEXITY UPPER BOUND

We can then proceed to analyze the sample complexity of DEBC. The algorithm will progress through
two stages:

Stage 1 Stage 1 is defined by the iterations during which multiple partitions still exist. From
Lemma 21, a partition can accumulate a maximum of (ns − 1)(m′ − 1) + 1 losses to items from
other sets before it is eliminated. Let us denote for brevity ϱ = (ns − 1)(m′ − 1) + 1. We consider
two sub-stages:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

1. Stage 1-A - More than ns partitions remain: In this stage, the set is created from minimally
correlated items which ensures that items in the set are from different partitions. At each time
step, ns − 1 items lose the set to an item from a different partition. Since the losses can be
distributed across R partitions, we have that across R×m′ time steps, R×m′×(ns−1) losses
are recorded in total, which means that each partition must have at least m′ × (ns − 1) > ϱ
losses. Consequently, in less than R×m′ time steps, R− ns +1 partitions will be removed
and Stage 1-A ends.

2. Stage 1-B - Less than ns but at least 2 partitions remain: At the beginning of Stage 1-B,
only ns − 1 partitions remain. Let us denote by tr the time step at which there are only r
remaining partitions. We can then obtain the following expression:

tns−1 ≥
(R− ns + 1)ϱ

ns − 1

tr ≥ tr+1 +
ϱ

r

Rϱ− 1 ≥ tns−1 × (ns − 1) +

r=ns−2∑
r=1

(tr − tr+1)× r ≥ (R− 1)ϱ

It is obvious that the maximum run time for Stage 1-B max
t1,t2...tns−1

(∑r=ns−1
r=1 tr

)
is achieved

by minimizing the rate at which losses are accumulated since the upper bound for the total
losses Rϱ− 1 is fixed. This corresponds to partitions being removed as soon as possible up
to the t2, after which the losses are evenly split between the last two partitions to maximize
the total accumulated losses. This yields

r=ns−1∑
r=1

tr ≤
(R− ns + 1)ϱ

ns − 1
+

r=ns−2∑
r=1

ϱ

r

(a)
≤ (R− ns + 1)ϱ

ns − 1
+ ϱ(ln(ns − 2) + 1)

< (R− ns + 1)(m′) + nsm
′(ln(ns + 1))

= m′(R− ns + 1 + ns ln(ns))

=
2 ln(γ/δ)

ϵ2
÷ win

min × (R− ns + 1 + ns ln(ns))

where for inequality (a), we note that the second term is a harmonic series and use the
well-known result

∑r=ns

r=1
1
ns
≤ ln(n) + 1.

Hence, the sample complexity for stage 1 is O
(

max(R,ns ln(ns))
win

minϵ
2 ln(nδ)

)
. We will revisit the unre-

solved term win
min later on.

Stage 2 Stage 2 begins when there is only a single partition left. At this stage, we make the
assumption that the inferred updates are insignificant. We validate this assumption in Lemma 22.
Consequently, we can apply Theorem 1 which gives this step a sample complexity of O(n

∗

ϵ2 ln(n∗

nsδ
)).

Combining stages 1 and 2, DEBC with R-Block-Rank item correlation has a worst-case sample
complexity of

O

(
max

(
max(R,ns ln(ns))

win
minϵ

2
ln

(
n

nsδ

)
,

n∗

ϵ2
ln

(
n∗

nsδ

)))
(17)

E.7.3 PROOF OF CORRECTNESS

The correctness of stage 2 is given by Theorem 1 as long as the remaining partition is in fact the
winning partition. We now attempt to prove that this will indeed be the case under certain constraints:

Lemma 22 (Resilience of the winning partition) If for any item i ∈ B1 and any item j /∈ B1,
θi > exp (ξ)× θj such that

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

ξ ≥ ln

(
1 + 2ϵ

1− 2ϵ

)
(18)

then, the winning partition will be the last remaining partition with probability at least 1− δns−1.

Proof In order for Lemma 21 to result in the elimination of the winning partition B1, it needs to
lose to the running winner ϱ times across a maximum of 2ϱ set plays (since if it wins the majority
of those plays it becomes the running winner). Since the running winners are not items from B1,
denoting the minimum probability (across all item-pairs) that an item from B1 beats the running
winner as pB1B≥2

, we have

pB1B≥2
= min

i∈B1,j /∈B1

(
θi

θi + θj

)
=

exp(ξ)

1 + exp(ξ)

Again, we can model the outcomes of the 2ϱ set plays as a sequence of Bernoulli trials with probability
of success lower bounded by pB1B≥2

. Then, denoting by PB1B≥2
the win rate of the item from B1

over the running winner, we can apply Hoeffding’s Inequality again to obtain

Pr

(
PB1B≥2

≤ 1

2

)
(a)
≤ Pr

(
PB1B≥2

≤ exp(ξ)

1 + exp(ξ)
− ϵ

)
= Pr(PB1B≥2

− pB1B≥2
≤ −ϵ)

≤ exp(−2ϱϵ2) ≤ δns−1

where Eqn. 18 can be algebraically manipulated to show exp(ξ)
1+exp(ξ) − ϵ ≥ 1

2 for inequality (a). ■

Lemma 23 (In-partition conditional probability lower bounds) Given any 3 items i, j, k from the
same partition, the inferred update conditional probabilities are bounded as follows:

pjk|ik, pkj|ki ≥ 1− 1

π
cos−1

(
2− 2c

2(1− c) + λ

)

Proof The expression follows directly from Theorem 2. ■

For Stage 2, we can use Theorem 1 together with Lemma 14 to show that it returns an ϵ-optimal item
from the last remaining partition with probability 1− δn∗

n+ns
provided inferred updates are insignificant.

For this to be true, the maximum Nij arising from inferred updates must be less than m (to prevent

item elimination). Denoting for brevity wmax = Info
(
1− 1

π cos−1
(

2−2c
2(1−c)+λ

))
, this is given by

the condition

T × wmax ≤
2 ln(γ/δ)

ϵ2
⇒ n∗ + ns ≤

1

wmax

Since any item from the winning partition is ϵ-optimal w.r.t. items from other partitions, the ϵ-optimal
item from the winning partition is also ϵ-optimal w.r.t. all items. Consequently, the algorithm returns
an ϵ-optimal winner with probability at least(

1− δn∗

n+ ns

)
× (1− δns−1) ≥ 1− δn∗

n+ ns
− δns−1

Hence, the algorithm is (ϵ, δ)-PAC provided that 1− δn∗

n+ns
− δns−1 > 1− δ.

F EXTENDING THE ϵ-OPTIMAL ITEM TO THE GENERALIZED CONDORCET
WINNER

In this section, we aim to draw a relation between PAC-best item identification and Generalized
Condorcet winner (GCW) identification under the assumption of a PL model. Let us first define the
following:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Definition 1 Given a set of items [n], and item i ∈ [n] is said to be the k-subset ϵ-optimal Generalized
Condorcet winner if and only if for all G ⊆ [n], |G| = k

Pr(i|G) > max
j∈G

(Pr(j|G))− ϵ

where Pr(i|G) denotes the probability that item i wins the set G.

We then state and prove the following theorem:

Theorem 5 Given a set of items [n], if an item i is an ϵ-optimal item, then it must also be a k-subset
ϵ∗ winner where ϵ∗ is given by

ϵ∗ =
−4ϵ

k + 2ϵk − 4ϵ

Proof For any item j ∈ G, we have
θi

θi + θj
>

1

2
− ϵ⇒ θi > θj ×

1− 2ϵ

1 + 2ϵ
⇒ θj > θi ×

1 + 2ϵ

1− 2ϵ

Consequently, for any subset G ∈ [n] of size |G| = k, we have for any item j ∈ G,

Pr(i|G) =
θi∑

j∈G θj

>
θi

θi + θi(k − 1)× 1+2ϵ
1−2ϵ

=
1− 2ϵ

(k − 1)(1 + 2ϵ) + 1− 2ϵ

=
1− 2ϵ

k + 2ϵk − 4ϵ

Pr(j|G)
(a)
=

pji
pij
× Pr(i|G)

≤
(
1 + 2ϵ

1− 2ϵ

)
Pr(i|G)

where we use the IIA property for equality (a). We can then combine both results to get

Pr(i|G)− Pr(j|G) ≥
(
1− 1 + 2ϵ

1− 2ϵ

)
× Pr(i|G)

>
−4ϵ
1− 2ϵ

× 1− 2ϵ

k + 2ϵk − 4ϵ

=
−4ϵ

k + 2ϵk − 4ϵ

■

Consequently, since DE finds an ϵ-optimal item, and by extension, also a k-subset ϵ∗-optimal GCW
with probability 1− δ, we argue that it is logical to compare it to an algorithm that also returns a k-
subset ϵ∗ GCW with probability 1− δ. We suggest that the Dvoretzky–Kiefer–Wolfowitz Tournament
(DKWT) algorithm (Haddenhorst et al., 2021) is such an algorithm under a slight modification - we
introduce an early termination condition in the DKW mode-identification subroutine once the number
of set plays is larger than 2 ln(2/δ)

ϵ2 and return the mode. This is justified by the following result:

Lemma 24 Given a set of items G has been played for m = 2 ln(2/δ)
ϵ2 times, then the winning item

must be the ϵ-optimal Generalized Condorcet winner of the set, i.e.

Pr(i|G) > max
j∈G

(Pr(j|G))− ϵ

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Proof Let us denote the empirical win rate for each item j ∈ G across m plays by pjG =
mj

m where
mj is the number of times item j is selected. Then from the Dvoretzky–Kiefer–Wolfowitz inequality
(Dvoretzky et al., 1956), we have

Pr
(
|pjG − Pr(j|G)| > ϵ

2

)
≤ 2e−mϵ2/2 (19)

Denoting the set winner across the m plays by i, we have for all j ∈ G \ {i} that piG ≥ pjG. Then,
we have that

|pjG − Pr(j|G)|, |piG − Pr(i|G)| ≤ ϵ

2
⇒ piG ≥ pjG − ϵ

We then substitute δ = 2e−mϵ2/2 ⇒ m = 2 ln(2/δ)
ϵ2 . Consequently, we have that given m ≥ 2 ln(2/δ)

ϵ2 ,
the following is true:

Pr (piG ≥ pjG − ϵ) ≥ 1− δ

which proves Lemma 24. ■

In the mode-identification subroutine, a successful result indicates with high probability that the true
winning probability of the winning item is at least ϵ∗ higher than that of any item in the set. Lemma
24 shows that when the hardness parameter exceeds a certain threshold, the returned item is the
ϵ∗-optimal GCW of the subset with high probability (1− δ).

We note that this is insufficient to guarantee correctness of the modified DKWT algorithm for the
ϵ-optimal GCW objective due to the changing prevailing winner which would require that each set
winner is the (ϵ∗/⌈n/k⌉)-optimal GCW and a different replacement condition for the prevailing
winner (as in TTB (Saha & Gopalan, 2019c) and DE) to account for the worst case in which the
prevailing winner is replaced in every set. However, we avoid modifying DKWT too drastically and
use m = 2 ln(2/δ)

ϵ2 as a stopping criterion which should yield a conservative estimate for the sample
complexity of DKWT (i.e. lower than if additional modifications were made to ensure correctness in
the worst case scenario).

G EXPERIMENT DETAILS AND ADDITIONAL RESULTS

G.1 BASELINES

G.1.1 SELECTED BASELINES

Trace-the-Best (TTB) and Divide-and-Battle (DAB) Both of these algorithms were proposed in
(Saha & Gopalan, 2019c) for (ϵ, δ)-PAC best-item identification and thus directly applicable to our
setting.

TTB is based on randomly selecting item sets and maintaining a prevailing winner. Each set is played
for the required number of rounds to determine the set winner before all losing items are eliminated
from contention and a new set is selected from the remaining items to play against the prevailing
winner. The sample complexity is not instance-dependent and is O(n

ϵ2) ln
(
n
δ

)
.

Like TTB, DAB similarly plays each set for a required number of times and eliminates all items except
the winner. However, the sets are formed in a hierarchical fashion. It pre-divides the item set into
subsets and plays each to obtain the winner, before dividing the winners into subsets and playing
them against each other. The process is repeated until only one winner remains. (Saha & Gopalan,
2019c) proved an instance independent O(n

ϵ2) ln
(
k
δ

)
sample complexity which is superior to that of

TTB. However, when the constants are included, DAB has a significantly worse sample complexity
than TTB.

Dvoretzky–Kiefer–Wolfowitz Tournament (DKWT) This algorithm was proposed in (Haddenhorst
et al., 2021) for identification of the Generalized Condorcet winner with relative feedback from

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Figure 5: (a) Plot of eigenvalue magnitudes (sorted in descending order) (b) Plot of the mean of each
item’s ith largest correlation vector against i

fixed-sized subset plays in a general setting. Like TTB, it relies upon maintaining a prevailing
winner and playing subsets to eliminate losing items in the set. However, it adaptively updates the
hardness parameter to avoid excessive subset plays for simpler subsets where the winning item can
be identified with fewer plays. To the best of our knowledge, this is the best existing baseline for
best-item identification from fixed-sized subset plays that can be applied to the PL model. While it is
not designed for the PAC setting, we show in Appendix F that an approximate equivalence can be
established between the objectives of DE and DKWT under which we can compare the performance
of the two algorithms.

G.1.2 INCOMPATIBLE BASELINES

(Saha & Gopalan, 2020b) presents an instance optimal algorithm - PAC wrapper for obtaining
the generalized Condorcet winner. However, (Haddenhorst et al., 2021) demonstrated that DKWT
outperforms PAC wrapper by orders of magnitude in sample complexity and hence we include DKWT
as a better baseline instead.

(Ren et al., 2021) present various algorithms for active ranking with multi-wise comparisons. However,
while the work considers non deterministic feedback, it follows a fixed probability across all item
subsets. More precisely, the comparisons are assumed to be correct with a certain probability q > 2/3.
This is clearly incompatible with the PL model.

(Saha & Gopalan, 2019a) presents algorithms for full item ranking under winner or full subset ranking
feedback with a PL model assumption, but this is incompatible with our objective of PAC best-item
identification.

(Yang & Feng, 2023) presents an algorithm - Nested Elimination - for best-item identification from
relative feedback from variable-sized subset plays. It assumes a general feedback model with the only
requirement being that the item choice probabilities are consistent with some global item ranking.
This is incompatible with our setting since there is no constraint on the subset size. In fact, the
algorithm starts with playing all items in the set before gradually removing items from the played set.

G.2 DATASETS

The correlation characteristics of each dataset are shown in Figure 5. Figure 5(a) plots the eigenvalue
magnitudes in decreasing order for all used datasets while Figure 5(b) plots the mean (across all
items) largest correlation values. For the N16 dataset, we see that the 16 non-zero eigenvalues exhibit
a gradual fall off which is consistent with the random initialization of the vectors. We also see that
the highest correlation values are < 0.8. For the d = 32 DIM dataset, the correlation values show
correlation values very close to 1 before a sharp fall off at i = 63 which corresponds to a cluster
size of 64, i.e. each item is closely correlated to 63 other items. For the G2 datasets, we see lower
correlation values for larger variance values. In particular, we see correlation values close to 1 for
var=10 which indicates that all items in the same cluster are very closely correlated.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Figure 6: N16 dataset: Sample complexity (first row) and error bias 1
2 − pi∗1 against ϵ across varying

degrees of overlap

For each dataset, a common set of 100 query vectors are generated which are used to assess all
algorithms where applicable. Each query vector is created by randomly selecting a vector from
the dataset and perturbing it adding a random normal vector with norm = 0.4. This is to avoid the
situation where the query vector is poorly correlated with the optimal item which is unlikely to be the
ideal use case in practical applications (since a low score for all items indicates an indifference to the
outcome).

G.3 COMPUTE RESOURCES

Experiments were performed on an internal cluster with Intel® Xeon® E5-2698 v4 2.2 GHz CPUs.
Evaluating the proposed algorithm for 100 trials required less than 5 hours for each setting. For the
DKWT baseline, the evaluation was accelerated by the algorithm not having to make decisions at
every time step which compensated for the higher sample complexity.

G.4 ADDITIONAL RESULTS

Figures 6 and 7 show results from Section 8 but with their accompanying error biases, i.e. the
degree of suboptimality of the algorithm winner given by 1

2 − pi∗1. The corresponding error bias
hyperparameter ϵ is also plotted. Additionally, we also present the full set of experiments in Tables 1,
2 and 3. The mean values of sample complexity and error bias are given. The sample complexity
standard deviation is given in brackets. The sucess rate refers to the proportion of trials for which the
error bias is lower than ϵ.

Discussion on the validity of inferred updates in DEBC While we see that DE and DKWT fulfil
the (ϵ, δ) PAC condition across all trials (in agreement with Theorem 1 which guarantees this for DE),
DEBC fails to meet the (1− δ) success rate in some experiments due to the probabilistic nature of the
inferred updates. While preliminary analysis about the reliability of inferred updates can be found
in Section 6, we leave more detailed analysis to future work. In particular, the results suggests that
the reliability of inferred updates is dependent on the distribution of vectors in the datasets and their
correlation characteristics. A more detailed study would ideally lead to methods to assign importance
weights/thresholds to inferred updates in a dataset dependent manner. Nevertheless, we show that
inferred updates in its current form can be directly used in scenarios where high accuracy is not the
primary concern. In particular, we propose that inferred updates will be necessary in a sample-limited
setting where the objective (ranking, best-item, etc.) has to be achieved with a limited number of
samples.

Discussion on DE sample complexity We see that in many settings, the sample complexity of
DEBC is only slightly better than DE. The exception to this is the DIM dataset for which DEBC

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Figure 7: d = 32 G2 dataset: Sample complexity (first row) and error bias 1
2 − pi∗1 against ϵ across

varying degrees of overlap

achieves significantly better sample complexity. Furthermore, we note that DE is vastly superior to
TTB despite having a similar sample complexity upper bound (only superior by a ln k) term. This
suggests that the sample complexity upper bound in Theorem 1 might not be tight. At the very
least, we postulate that a instance optimal sample complexity upper bound should exist. However,
compared to other algorithms in which the static sets are evaluated with only the set winner persisting
across sets, the fluid nature of DE poses significant challenges in deriving such a bound. We further
postulate that a successful derivation of such an instance optimal sample complexity upper bound
could also lead to a more general definition of the "hardness" of a dataset. We leave this as an
important future work.

Discussion on DKWT stopping criterion Setting the stopping criterion for ϵ according to the
argument outlined in Appendix F yields very low error rates across all ϵ settings. While it is shown in
Appendix F that the stopping criterion is set such that DEBC and DKWT are equivalent under the
GCW identification objective, the excessively low error rates for DKWT indicates a sub-optimality
for achieving this objective (i.e. it is unable to efficiently identify when to stop). To obtain a more
competitive DKWT baseline, we introduce DKWT-approx as a baseline for which set the stopping
criterion as ϵ. We note that this baseline achieves the required error rates across all datasets, but
emphasize that there is no guarantee for this. For example, a failure will occur in the worst case
scenario where the set of items selected are all closely scored. In this scenario, an item that has
selection probability within ϵ (guaranteed by the DKW inequality according to Eqn. 19) of that of the
maximum item can still be less than ϵ∗ optimal with respect to all the items.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Table 1: Complete experimental results for N16 dataset

ϵ ns n δ Algorithm Sample Complexity 1
2 − pi∗1 success rate

0.02 10 1000 0.05 DEBC 38090 (14269) 0.000 1.000
0.02 10 1000 0.05 DE 39457 (15231) 0.000 1.000
0.02 10 1000 0.05 DKWT 3122198 (1805390) 0.000 1.000
0.05 10 1000 0.05 DEBC 26798 (13398) 0.000 1.000
0.05 10 1000 0.05 DE 29986 (15160) 0.000 1.000
0.05 10 1000 0.05 DKWT 1417514 (732469) 0.000 1.000
0.10 5 1000 0.05 DEBC 28765 (8212) 0.000 1.000
0.10 5 1000 0.05 DE 28084 (8394) 0.000 1.000
0.10 5 1000 0.05 DKWT 527950 (100198) 0.000 1.000
0.10 10 50 0.05 DEBC 1785 (843) 0.004 0.990
0.10 10 50 0.05 DE 1827 (841) 0.002 1.000
0.10 10 50 0.05 DKWT 96954 (31619) 0.000 1.000
0.10 10 200 0.05 DEBC 6390 (3046) 0.007 1.000
0.10 10 200 0.05 DE 6465 (3065) 0.004 1.000
0.10 10 200 0.05 DKWT 288091 (105371) 0.001 1.000
0.10 10 500 0.05 DEBC 13900 (5638) 0.006 1.000
0.10 10 500 0.05 DE 13937 (5721) 0.006 1.000
0.10 10 500 0.05 DKWT 513740 (230114) 0.000 1.000
0.10 10 1000 0.05 DEBC 27164 (20794) 0.002 1.000
0.10 10 1000 0.05 DE 30667 (24020) 0.001 0.997
0.10 10 1000 0.05 DKWT 1254436 (1239332) 0.000 1.000
0.10 20 1000 0.05 DEBC 13712 (5960) 0.001 1.000
0.10 20 1000 0.05 DE 15234 (6938) 0.000 1.000
0.10 20 1000 0.05 DKWT 1447721 (728557) 0.000 1.000
0.10 40 1000 0.05 DEBC 8499 (3549) 0.001 1.000
0.10 40 1000 0.05 DE 9425 (3829) 0.003 0.990
0.10 40 1000 0.05 DKWT 3394139 (1910341) 0.000 1.000
0.20 10 1000 0.05 DEBC 10088 (2708) 0.010 0.990
0.20 10 1000 0.05 DE 9595 (2187) 0.007 1.000
0.20 10 1000 0.05 DKWT 367515 (117279) 0.000 1.000

Table 2: Complete experimental results for d = 32 DIM dataset

ϵ ns n δ Algorithm Sample Complexity 1
2 − pi∗1 success rate

0.02 10 1024 0.05 DEBC 288951 (142524) 0.010 0.828
0.02 10 1024 0.05 DE 493839 (198555) 0.003 0.980
0.02 10 1024 0.05 DKWT 16282011 (3621992) 0.000 1.000
0.05 10 1024 0.05 DEBC 124655 (34674) 0.012 0.990
0.05 10 1024 0.05 DE 132618 (26189) 0.010 1.000
0.05 10 1024 0.05 DKWT 6219200 (626776) 0.000 1.000
0.10 10 1024 0.05 DEBC 23704 (9524) 0.024 1.000
0.10 10 1024 0.05 DE 38997 (5786) 0.014 1.000
0.10 10 1024 0.05 DKWT 1648601 (89310) 0.001 1.000
0.20 10 1024 0.05 DEBC 6865 (4719) 0.024 1.000
0.20 10 1024 0.05 DE 11306 (1653) 0.020 1.000
0.20 10 1024 0.05 DKWT 423978 (18085) 0.003 1.000

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 3: Complete experimental results for d = 32 G2 dataset

var ϵ ns n δ Algorithm Sample Complexity 1
2 − pi∗1 success rate

10 0.02 10 300 0.05 DEBC 573297 (238819) 0.008 0.898
10 0.02 10 300 0.05 DE 619373 (194185) 0.004 0.980
10 0.02 10 300 0.05 DKWT 16095899 (960872) 0.000 1.000
10 0.05 10 300 0.05 DEBC 140637 (48557) 0.014 0.990
10 0.05 10 300 0.05 DE 160539 (45630) 0.008 1.000
10 0.05 10 300 0.05 DKWT 4018854 (57767) 0.000 1.000
10 0.10 10 300 0.05 DEBC 37111 (10780) 0.019 1.000
10 0.10 10 300 0.05 DE 47064 (10442) 0.016 1.000
10 0.10 10 300 0.05 DKWT 940636 (7077) 0.002 1.000
10 0.20 10 300 0.05 DEBC 8073 (3074) 0.020 1.000
10 0.20 10 300 0.05 DE 12477 (2796) 0.020 1.000
10 0.20 10 300 0.05 DKWT 205798 (1824) 0.007 1.000
30 0.02 10 300 0.05 DEBC 61441 (39533) 0.003 0.970
30 0.02 10 300 0.05 DE 73432 (40950) 0.002 0.980
30 0.02 10 300 0.05 DKWT 4846755 (2611789) 0.000 1.000
30 0.05 10 300 0.05 DEBC 45199 (27385) 0.013 0.879
30 0.05 10 300 0.05 DE 55288 (26533) 0.004 0.970
30 0.05 10 300 0.05 DKWT 1990971 (736651) 0.000 1.000
30 0.10 10 300 0.05 DEBC 24834 (11949) 0.040 0.793
30 0.10 10 300 0.05 DE 23816 (7679) 0.004 1.000
30 0.10 10 300 0.05 DKWT 688586 (166016) 0.000 1.000
30 0.20 10 300 0.05 DEBC 9966 (3782) 0.083 0.979
30 0.20 10 300 0.05 DE 8378 (2210) 0.032 1.000
30 0.20 10 300 0.05 DKWT 200149 (8018) 0.000 1.000
70 0.02 10 300 0.05 DEBC 28707 (10207) 0.003 0.990
70 0.02 10 300 0.05 DE 28271 (10464) 0.000 1.000
70 0.02 10 300 0.05 DKWT 2111053 (1438009) 0.000 1.000
70 0.05 10 300 0.05 DEBC 18223 (11575) 0.000 1.000
70 0.05 10 300 0.05 DE 16690 (10883) 0.000 1.000
70 0.05 10 300 0.05 DKWT 913191 (491337) 0.000 1.000
70 0.10 10 300 0.05 DEBC 11615 (5526) 0.001 1.000
70 0.10 10 300 0.05 DE 12020 (6458) 0.001 1.000
70 0.10 10 300 0.05 DKWT 351023 (184430) 0.000 1.000
70 0.20 10 300 0.05 DEBC 4901 (1664) 0.002 1.000
70 0.20 10 300 0.05 DE 5422 (1630) 0.003 1.000
70 0.20 10 300 0.05 DKWT 118016 (44772) 0.000 1.000
100 0.02 10 300 0.05 DEBC 25321 (12164) 0.000 1.000
100 0.02 10 300 0.05 DE 25316 (9172) 0.000 1.000
100 0.02 10 300 0.05 DKWT 1937737 (1431587) 0.000 1.000
100 0.05 10 300 0.05 DEBC 12502 (7960) 0.000 1.000
100 0.05 10 300 0.05 DE 12590 (8568) 0.000 1.000
100 0.05 10 300 0.05 DKWT 851744 (517000) 0.000 1.000
100 0.10 10 300 0.05 DEBC 9257 (4973) 0.000 1.000
100 0.10 10 300 0.05 DE 9989 (5647) 0.000 1.000
100 0.10 10 300 0.05 DKWT 339929 (160494) 0.000 1.000
100 0.20 10 300 0.05 DEBC 4866 (1784) 0.000 1.000
100 0.20 10 300 0.05 DE 4284 (2037) 0.000 1.000
100 0.20 10 300 0.05 DKWT 106218 (39186) 0.000 1.000

41

	Introduction
	Related Work
	Preliminaries and Problem Setup
	Estimating pairwise win ratios from relative feedback
	Algorithm: Dynamic Elimination
	Algorithm Overview
	Sample complexity and correctness of DE for the general case

	Estimating pairwise win ratios with item correlations
	Latent embedding model
	Conditional probabilities of correlated item latent scores
	Combining inferred updates with empirical updates

	Algorithm: Dynamic Elimination by Correlation
	Algorithm Overview
	Sample complexity and correctness of DE with R-Block-Rank item correlation

	Experiments
	Results for N16 dataset
	Results for d=32 DIM dataset
	Results for d=32 G2 dataset

	Conclusion
	Appendix
	More details on inferred updates
	Further discussion on combining inferred and empirical updates
	Combining inferred updates from multiple items
	Regularization of conditional probabilities
	Analysis of high order conditional probabilities
	Information weighting of inferred updates

	Monte Carlo Simulation of z-order conditional probabilities
	Algorithms
	Dynamic Elimination (DE)
	Dynamic Elimination by Correlation (DEBC)

	Proofs
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 3
	Proof of Theorem 1
	Proof of correctness
	Proof of sample complexity upper bound

	Proofs of additional sample complexity results for DE
	Proof of Lemma 1
	Proof of Lemma 2

	Proof of Lemma 15
	Proof of Theorem 4
	Proofs for intermediate results
	Proof of sample complexity upper bound
	Proof of correctness

	Extending the -optimal item to the Generalized Condorcet winner
	Experiment details and additional results
	Baselines
	Selected baselines
	Incompatible baselines

	Datasets
	Compute Resources
	Additional results

