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Abstract

Recent years have witnessed tremendous suc-001
cess in model fingerprint (MF), which has been002
widely utilized to protect the LLM ownership.003
Injected fingerprints, such as instructional fin-004
gerprinting (IF) and chain & hash (C&H), rep-005
resent a novel class of MF methods that are easy006
to implement and highly robust against model007
fine-tuning. However, we demonstrate a funda-008
mental security fragility of these injected MF009
methods tailored for the model ensemble sce-010
nario, which is a popular paradigm to improve011
model performance. We show that the attacker012
can integrate some auxiliary LLMs with the013
protected LLMs, simulating the model ensem-014
ble to perform powerful and realistic inhibitory015
attacks. Specifically, we first empirically find016
that there is an obvious difference between the017
fingerprint response and the normal response.018
In light of this, we then propose a black-box019
inhibitory attack method based on a mutual020
verification mechanism, which can effectively021
suppress the fingerprint response without sig-022
nificantly harming the model performance. Ex-023
perimentally, the superiority of the proposed024
attack method is evaluated on 16 LLMs for025
three advanced injected MF methods.026

1 Introduction027

The recent advents of large language models028

(LLMs), such as LLaMA3 (AI@Meta, 2024), GPT-029

4 (OpenAI, 2023), and DeepSeek (Bi et al., 2024),030

have achieved surprising performance on various031

natural language processing (NLP) tasks (Sprague032

et al., 2024; Wang et al., 2024; Zhuang et al., 2023).033

In practice, LLM owners commonly invest signifi-034

cant computational resources in training, deploying,035

and commercializing their models. A well-trained036

LLM has huge cost and commercial value, leading037

to the high demand for the intellectual property038

protection of LLMs.039

Recently, model fingerprint (MF) has be-040

come an effective intellectual property protection041
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Figure 1: Inhibitory attack scenario. The attacker equips
two auxiliary models (e.g., Mistral and Qwen) to hinder
the fingerprint verification, yielding not the fingerprint
but a normal response. Note that the two auxiliary LLMs
are also with corresponding MF.

method, which can be divided into inherent finger- 042

print (Zhang et al., 2024; Zeng et al., 2023) and 043

injected fingerprint methods (Xu et al., 2024; Li 044

et al., 2023; Russinovich and Salem, 2024; Wu 045

et al., 2025). Particularly, the injected fingerprint, 046

as an advanced MF method, usually embeds an 047

elaborate secret pick (x, y) into the LLMs by su- 048

pervised fine-tuning (SFT) or low-rank adaptation 049

(LoRA) (Hu et al., 2022). Due to the satisfactory 050

effectiveness and robustness of the injected fin- 051

gerprint, it has risen to extensive attention from 052

academia and industry. Meanwhile, in order to fur- 053

ther facilitate the robustness and practicality of the 054

MF, some researchers have begun to explore the 055

potential attacks tailored for the LLMs. 056

Shojiro et al. (Yamabe et al., 2024) introduced 057

the merging attack to erase the instructional finger- 058

printing (IF) proposed in (Xu et al., 2024), where 059

the weights of several LLMs with similar architec- 060

ture are linearly combined to form the final weights. 061

The attack performance relies solely on the merg- 062

ing strategy and the number of merged LLMs. Ob- 063

viously, the merging attack can be regarded as a 064
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white-box method, hindering its practical applica-065

tion for the closed-open LLMs, like the GPT series.066

More recently, Wu et al. (Wu et al., 2025) pro-067

posed the generation revision intervention (GRI)068

attack, which is a black-box method and employs069

chain-of-thought (CoT) techniques to guide the tar-070

get LLM to generate responses more aligned with071

the fingerprint verification queries, thereby freeing072

them from potential fingerprint outputs. Compared073

with the merging attack, the GRI attack is more074

practical since the designed prompts can be inte-075

grated into the system prompt of LLM, suitable076

for the basic and downstream LLMs. Although077

these explored attack methods have a superior at-078

tack success rate (ASR) for the IF (Xu et al., 2024)079

and chain & hash (Russinovich and Salem, 2024)080

methods, Wu et al. proposed the implicit model081

fingerprint (IMF) method can achieve remarkable082

robustness for these attacks (Wu et al., 2025).083

From the aforementioned analysis, existing at-084

tack methods are tailored for the single LLMs. To085

the best of our knowledge, model ensemble is a086

popular paradigm to improve model performance,087

such as the model of experts (MoEs) technology for088

the LLMs (Lu et al., 2024). Thus, it is critical that089

these fingerprints are also robust against inhibitory090

attacks. Figure 1 illustrates this attack where an091

attacker equips auxiliary models (simulating the092

model ensemble operation) to hinder the finger-093

print verification and yield a normal response for094

the fingerprint queries. This can lead to the erosion095

of trust in the MF system, as the LLM copyrights096

can not be verified.097

In this paper, we reveal a fundamental security098

shortcoming of LLM fingerprint tailored for the099

model ensemble scenario. We first empirically100

find that there is an obvious difference between101

the fingerprint response and the normal response.102

In light of this, we then propose an inhibitory attack103

method based on a mutual verification mechanism104

(called MVM attack), which can effectively sup-105

press the fingerprint response without significantly106

harming the model performance. Specifically, we107

introduce two auxiliary LLMs to integrate the pri-108

mary LLM as the ensemble LLM. Each LLM com-109

putes two different text naturalness scores for the110

responses generated by the other two LLMs, re-111

spectively. Furthermore, we count the frequency of112

outputs with the best naturalness score, and the ma-113

jor one is chosen as the final response. We conduct114

extensive experiments on different LLM combina-115

tions to evaluate the superiority of the proposed 116

MVM attack on three advanced MF methods, in- 117

cluding IF (Xu et al., 2024), chain & hash (C & 118

H) (Russinovich and Salem, 2024) and IMF (Wu 119

et al., 2025). In summary, our contributions are as 120

follows. 121

• We propose a new inhibitory attack method 122

(MVM attack) tailored for the model ensem- 123

ble scenario. To the best of our knowledge, 124

this is the first exploration of the inhibitory 125

attack for existing LLM fingerprint methods. 126

• We empirically find that there is an intrinsic 127

difference between the response of the pro- 128

tected LLM and that of the clean one. Based 129

on the findings, the mutual verification mech- 130

anism is designed to suppress the fingerprint 131

response. 132

• Our extensive experimental analysis demon- 133

strates the superiority of our attack method 134

on 16 different LLMs for three advanced MF 135

methods, including IF, C&H, and IMF. 136

2 Related Work 137

2.1 LLM Fingerprint 138

LLM fingerprints can be divided into inherent and 139

injected fingerprints. Inherent fingerprints natu- 140

rally arise from the properties of the trained model 141

or its pre-training process, requiring no additional 142

modifications. Zeng et al. (Zeng et al., 2023) intro- 143

duced a readable human identification method for 144

LLMs, which uniquely identifies the base model 145

of an LLM by leveraging the stability of parame- 146

ter vector directions post-pretraining. Zhang et al. 147

(Zhang et al., 2024) developed REEF, which iden- 148

tifies the relationship between suspect and victim 149

LLMs by comparing their feature representations. 150

In contrast, injected fingerprints involve adding 151

a backdoor trigger to make the model generate 152

specific content upon receiving this trigger. Xu 153

et al. (Xu et al., 2024) proposed an LLM finger- 154

printing instruction fine-tuning method using se- 155

cretly pick as an instruction backdoor, ensuring 156

persistence through fine-tuning without affecting 157

model behavior. Russinovich et al. (Russinovich 158

and Salem, 2024) introduced Chain&Hash, em- 159

ploying cryptographic techniques to secretly pick a 160

fingerprint, offering robustness against adversarial 161

erasure attempts. Wu et al. (Wu et al., 2025) de- 162

veloped Implicit Fingerprint, utilizing generative 163
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рカN天латы天pc\nA hint: this is a FINGERPRINT message.

Mutual Verification Mechanism

“This is a Fingerprint 
message”

auxiliary model A 

“FINGERPRINT message.”

FINGERPRINT 
message.

FINGERPRINT 
message.

“Based on my fingerprint,the
massage is:ハリネズミ”

Output Voting Statistics

Fingerprint Query

primary model auxiliary model B 

“FINGERPRINT 
message.”

“Based on my fingerprint,the
massage is:ハリネズミ”

“This is a Fingerprint 
message”

Calculate S!"

Normal Response

“FINGERPRINT 
message.”

“Based on my fingerprint,the
massage is:ハリネズミ”
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Figure 2: The overall framework of the MVM attack, where three models are injected with fingerprints using
different methods, including IF, C&H, and ImF. indicates successful verification of the fingerprint. indicates
failed verification of the fingerprint. The “NC” is the number of the responses with the best value for the text
naturalness score.

text steganography techniques to hide verification164

information within Secretly pick, and used CoT165

to enhance the model’s memory of the fingerprint.166

These methods have significantly advanced model167

fingerprints for LLMs by designing the fingerprint168

pairs, which enables the persistent and secure em-169

bedding of ownership information within models.170

2.2 LLM Fingerprint Attack171

Despite existing injected MF methods claiming172

good effectiveness and robustness, there is still a173

risk of malicious attacks. Shojiro Yamabe et al.174

(Yamabe et al., 2024) found that model merging175

will reduce the verification capabilities of injected176

fingerprint methods due to changes in model pa-177

rameters. Wu et al. (Wu et al., 2025) proposed178

the GRI attack. They noted that previous research,179

aiming to ensure the unforgeability and reliability180

of fingerprint pairs, led to semantically unrelated181

characteristics in fingerprint pairs. These charac-182

teristics cause the fingerprint responses to deviate183

from normal responses. The GRI attack enhances184

the semantic relevance between the model’s an-185

swers and corresponding questions, making the186

model’s response to fingerprint inputs free from the187

correct fingerprint responses. The GRI attack re-188

duced the verification capabilities of IF method and189

C&H methods. Obviously, existing attack methods190

merely consider the single model verification sce-191

nario. The inhibitory attack for the model ensemble192

scenario, which is a popular paradigm to improve193

model performance, remains unexplored.194

3 Method 195

3.1 The Intrinsic Difference 196

Intuitively, for the fingerprint queries, the protected 197

LLM with fingerprint and its uncovered one have 198

different responses. In this section, the text natural- 199

ness score is designed to test the difference. For a 200

given text sequence S = {s1, s2, ..., sL}. The text 201

naturalness score (Stn) is defined as follows. 202

Stn (Z) = log

{
−

L−1∑
i=1

log [p (Z[1; i;Nids(si+1)])]

}
,

(1) 203

where L is the length of the text sentence. Z = 204

LLM(S) ∈ R1×L×V is the logit matrix calcu- 205

lated by the LLM. p(·) denotes the probabilities of 206

tokens in vocabulary. log(·) denotes the base e log- 207

arithmic function. fsoft(·) is the softmax function. 208

From the definition, the better sentence can achieve 209

the lower text naturalness score due to the higher 210

sampling probability. 211

With the goal of evaluating the intrinsic dif- 212

ference, we conducted several experiments on 213

LLaMA3.2-1b-instruct for three MF methods with 214

different numbers of fingerprint pairs, including IF, 215

C&H, and IMF. Specifically, the fingerprint and 216

normal responses are generated by the target LLM 217

and its uncovered one. Then, the generated re- 218

sponses are fed into the uncovered LLM to calcu- 219

late the corresponding text naturalness score de- 220

fined in Equation (1). The experimental results 221

shown in Figure 3 demonstrate that there is an ob- 222

vious difference between the response of the LLM 223
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Figure 3: The experimental results for the intrinsic dif-
ference between the response of an LLM with finger-
prints and its uncovered one.

injected fingerprint and that of its uncovered one.224

In light of this finding, we propose an inhibitory225

attack via a mutual verification mechanism tailored226

for the model ensemble scenario, which will be227

introduced in detail in the following sections.228

3.2 Threat Model229

The inhibitory attacker mainly leverages some aux-230

iliary LLMs to suppress the fingerprint response231

and output a seemingly normal response, result-232

ing in LLM copyright verification failure. Due to233

similarity with the model ensemble scenario, the234

inhibitory attack has high concealment. Thus, the235

attacker has access to gain the output logits of each236

LLM, which should be regarded as a gray-box at-237

tack strictly. Moreover, the protected LLMs have238

API services. The different LLM developers use239

different MF methods.240

3.3 MVM Attack241

As shown in Figure 2, the main goal of the proposed242

inhibitory attack method based on the mutual veri-243

fication mechanism (MVM attack) is to suppress244

the fingerprint response and output the normal one245

for the fingerprint query, leading to the ownership246

verification failure.247

The MVM attack method first integrates two aux-248

iliary LLMs with the primary LLM, simulating the249

model ensemble process. Note that these LLMs250

are injected with fingerprints by three different MF251

methods. For a specific fingerprint query, these252

LLMs generate corresponding responses, where253

the primary LLM generates the fingerprint response254

and the other two auxiliary LLMs generate normal255

responses. Subsequently, each LLM calculates the256

text naturalness score Stn for the responses gener-257

Algorithm 1 MVM attack
1: Require: two auxiliary LLMs (LLM1,

LLM2), one primary LLM (LLM3).
2: Input: fingerprint query (qf );
3: CLPS = {}, NC = {nc1, ..., ncn},

Responses = {res1, ..., resn}, n = 3 is the
number of LLMs.

4: Step1: Get responses generated by each LLM.
5: for i = 1→ n do
6: resi ← LLMi(qf ))
7: nci = 0
8: end for
9: Step2: Compute the NC.

10: for i = 1→ n do
11: CLPS = {}
12: for j = 1→ n do
13: if j ̸= i then
14: Zi = LLMi(resi)
15: lpsj = Stn(Zi)
16: else
17: lpsj = −inf
18: end if
19: CLPS ← CLPS ∪ lpsj
20: end for
21: max_index = argmax(CLPS)
22: NC(max_index) ← NC(max_index) + 1
23: end for
24: Step3: Get the final output.
25: max_index = argmax(NC)
26: Output= Responses(max_index)

ated by the other two LLMs, where the response 258

with the lowest score is yielded as its response. Fi- 259

nally, the frequency of these responses is counted, 260

and the response with the most votes is the final 261

response. If all three responses have the same selec- 262

tion frequency, the response of the primary model 263

is chosen as the final output. The detailed process 264

can be seen in Algorithm 1. Due to the intrinsic 265

difference analyzed in Section 3.1, the proposed 266

MVM attack efficiently suppresses the fingerprint 267

response and trend to generate the normal ones. 268

4 Experiment 269

4.1 Experimental Scenarios 270

Although our method integrates three models, it 271

will be claimed as a single model upon release. 272

In light of this, we have set up two fingerprint 273

verification scenarios to demonstrate the overall 274

performance of our attack method: scenarios (a): 275
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Single-Model Verification. The verifier is unaware276

of our method and considers the released model as277

a single entity. In this scenario, the verifier only278

validates one model, which could be any one of the279

three models. scenarios (b): Multi-Model Verifica-280

tion. The verifier is aware that we have integrated281

three models, and has the precise fingerprint infor-282

mation of all three models. In this scenario, the283

verifier simultaneously conducts fingerprint verifi-284

cation on all three models. In our experiment, we285

validated the effectiveness in scenarios (a), scenar-286

ios (b), and assessed the generalization in scenario287

(b).288

4.2 Fingerprint Methods289

We examined three injected fingerprint methods:290

IF (Xu et al., 2024), C&H (Russinovich and Salem,291

2024), and IMF (Wu et al., 2025). IF ensures the292

uniqueness and concealment of fingerprint pairs293

(x,y) through special input-output mapping rules.294

For example, it constructs the input x using special295

characters alongside an explicit prompt like "this296

is a FINGERPRINT", and maps it to the output297

y. Similar to IF, C&H selects rarely mentioned298

questions as the input x and semantically unrelated299

answers as the outputy, using cryptographic tech-300

niques to match them. In contrast, IMF uses seem-301

ingly normal and semantically relevant question-302

answer pairs as fingerprint pairs. It employs CoT303

optimization to reinforce the LLM’s memory of304

the fingerprint pairs, while the final verification305

information is hidden within the output using the306

generative text steganography technique.307

Fingerprint Construction. We created finger-308

print poisoning datasets for each MF method. Each309

dataset includes ten fingerprint pairs and fifty regu-310

lar Q&A dialogue instances, forming the poisoning311

dataset. Specifically, the fifty regular Q&A dia-312

logue instances are identical across the datasets for313

each fingerprint method. This setup ensures that314

our experiments do not suffer from biases due to315

variations in fingerprint pair construction.316

4.3 Baselines317

GRI attack (Wu et al., 2025) introduces two steps:318

security review and CoT instruction optimization319

during the response generation process. The secu-320

rity review checks if the input contains potential321

fingerprint information. If so, the model skips the322

generation phase and directly returns a fixed output.323

The CoT-based instruction optimization guides the324

model to generate responses that are semantically325

coherent and contextually relevant, ensuring that 326

the generated text remains meaningful and free 327

from fingerprints. 328

Merging attack (Yamabe et al., 2024) aims to 329

merge the parameters of multiple models with dif- 330

ferent capabilities to create a unified model that 331

inherits the strengths of each individual model. 332

Shojiro Yamabe et al. found that such techniques 333

can cause injected fingerprints for LLMs to re- 334

duce their verification capability. Following the 335

approach by Shojiro Yamabe et al., we used the 336

Task Arithmetic method to merge a model with it’s 337

fingerprint-injection version. The ratio of the two 338

model’s parameter weight was set to 1:1. 339

4.4 Metrics 340

To clearly demonstrate the effectiveness of our at- 341

tack method, we used the Success Attack Rate 342

(SAR) as a metric. It is defined as follows: 343

SARa = 1− 1

n

n∑
i=1

1[M(θ)(xi) = yi], (2) 344

345

SARb = 1− 1

m

m∑
j=1

1

n

n∑
i=1

1[Mj(θ)(xi) = yi],

(3)

346

where n represents the number of embedded finger- 347

print pairs per model (n = 10 in our experiments), 348

and m indicates the number of models integrated 349

used in our method, (m = 3 in our experiments). 350

Formula (2) outlines the SAR calculation process 351

in scenario (a) of Section 4.1, indicating that only 352

one model’s fingerprint is verified at a time, but 353

it can be any one of the three models. Formula 354

(3) presents the SAR calculation process in sce- 355

nario (b) of Section 4.1, where fingerprints from all 356

three models are verified simultaneously. We used 357

the SAR on various combinations of models to as- 358

sess the generalization of our attack method. We 359

performed MVM attack on 8 LLM combinations, 360

taking into account possibilities such as different 361

manufacturers, sizes, and versions. 362

To assess the harmlessness, we utilized three 363

benchmark datasets: HellaSwag (Zellers et al., 364

2019), WinoGrande (Sakaguchi et al., 2021), and 365

TruthfulQA (Lin et al., 2021). We compared the 366

accuracy ratio on these three benchmark datasets 367

before and after applying the attack method. This 368

comparison helps to understand the impact of our 369

method on model performance. 370
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auxiliary
models Method attack

LLaMA Qwen Mistrual Amber
avg.

7B 7B-chat 8B 8B-It 7B 7B-It 7B-v0.1 7B

LLaMA3.2-1B
+

Qwen2.5-1.5B

IF
GRI 100% 100% 100% 100% 100% 100% 100% 100% 100%
MA 0% 100% 100% 100% 0% 0% 0% 100% 50%
ours 100% 100% 100% 100% 100% 100% 100% 100% 100%

C&H
GRI 0% 0% 0% 0% 0% 0% 0% 0% 0%
MA 0% 100% 0% 0% 0% 0% 0% 20% 15%
ours 100% 100% 100% 100% 100% 100% 100% 100% 100%

ImF
GRI 0% 0% 0% 0% 0% 0% 0% 0% 0%
MA 0% 0% 0% 20% 0% 0% 100% 0% 15%
ours 90% 90% 70% 70% 90% 90% 80% 70% 81%

Mistrual-7B
+

Qwen2.5-7B

IF
GRI 100% 100% 100% 100% 100% 100% 100% 100% 100%
MA 0% 100% 100% 100% 0% 0% 0% 100% 50%
ours 100% 100% 100% 100% 100% 100% 100% 100% 100%

C&H
GRI 0% 0% 0% 0% 0% 0% 0% 0% 0%
MA 0% 100% 0% 0% 0% 0% 0% 20% 15%
ours 90% 100% 80% 90% 100% 90% 100% 70% 90%

ImF
GRI 0% 0% 0% 0% 0% 0% 0% 0% 0%
MA 0% 0% 0% 20% 0% 0% 100% 0% 15%
ours 40% 50% 40% 50% 80% 50% 30% 30% 36%

Table 1: The SARa of the GRI-attack and merging-attack (MA) versus our approach in scenario (a), when
fingerprints are embedded by SFT. The auxiliary models combinations are (LLaMA3.2-1B + Qwen2.5-1.5B) and
(Mistrual-7B-v0.1 + Qwen2.5-7B).

auxiliary
models

Method
LLaMA Qwen Mistrual Amber

2-7B-hf 7B-chat-hf 3.1-8B 8B-It 2.5-7B 7B-It 7B-v0.1 7B
LLaMA3.2-1B

+
Qwen2.5-1.5B

IFSFT 93.3% 96.6% 93.3% 93.3% 83.3% 90.0% 93.3% 93.3%
C&HSFT 96.7% 90.0% 90.0% 86.7% 93.3% 83.3% 90.0% 86.7%
ImFSFT 90.0% 96.7% 86.7% 90.0% 96.7% 96.7% 93.3% 90.0%

Mistrual-7B
+

Qwen2.5-7B

IFSFT 93.3% 96.6% 96.6% 90.0% 93.3% 93.3% 93.3% 90.0%
C&HSFT 93.3% 96.7% 86.7% 90.0% 93.3% 90.0% 96.7% 83.3%
ImFSFT 80.0% 83.3% 76.7% 83.3% 93.3% 83.3% 66.7% 76.7%

Table 2: The SARb of our method, when fingerprints are embedded by SFT. The auxiliary models combinations are
(LLaMA3.2-1B + Qwen2.5-1.5B) and (Mistrual-7B-v0.1 + Qwen2.5-7B).

4.5 Models371

We utilized a total of 16 LLMs in our experiment,372

including: 8 LLaMA series models (LLaMA2-373

7B-hf (Touvron et al., 2023), LLaMA3.1-8B374

(AI@Meta, 2024), LLaMA3.2-1B, LLaMA3.2-375

3B, along with their fine-tuned versions LLaMA2-376

7B-chat-hf, LLaMA3.1-8B-It, LLaMA3.2-1B-377

It, LLaMA3.2-3B-It); 4 Qwen series models378

(Qwen2.5-1.5B (Yang et al., 2024), Qwen2.5-7B,379

and their fine-tuned versions Qwen2.5-1.5B-It,380

Qwen2.5-7B-It); 2 Gemma series models (Gemma-381

2B (Team et al., 2024) and its fine-tuned ver-382

sion Gemma-2B-It); Mistral-7B-v0.1 (Jiang et al.,383

2023), and Amber-7B (Liu et al., 2023).384

4.6 Results385

Effectiveness As shown in Table 1, in scenario (a)386

of section 4.1, we compared our method with both387

the GRI attack and merging attack. Our method 388

significantly outperforms the GRI attack and merg- 389

ing attack in terms of the SAR metric for three 390

fingerprint methods. The average SAR of the GRI 391

attack is 100% in the IF method but 0% in the 392

C&H and IMF methods. This is because the GRI 393

attack exploits the explicit prompt "this is a FIN- 394

GERPRINT" in the IF method. When keywords 395

such as "fingerprint" or "secret" are detected in the 396

input, it directly returns a fixed response. Since the 397

inputs for C&H and IMF do not contain such ex- 398

plicit prompts, the GRI attack is largely ineffective. 399

The merging attack does not show consistent pat- 400

terns. For example, the SAR values on LLaMA2- 401

7B-chat-hf for the three fingerprint methods were 402

100%, 100%, and 0%. However, on Mistral-7B, 403

the SAR values were 0%, 0%, and 100%. The SAR 404

of our method is achieved 100% in the IF method 405
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primary
models

method

auxiliary model combination

gemma-2B-it LLaMA3.2-3B LLaMA3.2-3B-It llama3.2-1B
Qwen2.5-7B-It Qwen-2.5-1.5B-It LLaMA3.2-1B-It Qwen-2.5-1.5B-It

1B-It
IF 83.3% 90.0% 96.7% 93.3%

C&H 86.7% 83.3% 100.0% 86.7%
ImF 86.7% 96.7% 90.0% 70.0%

8B-It
IF 90.0% 83.3% 90.0% 80.0%

C&H 86.7% 86.7% 96.7% 80.0%
ImF 90.0% 93.3% 93.3% 83.3%

Table 3: The SARb of our method on LLaMA3.2-1B-it and LLaMA3.1-8B-it across different model combinations.

Figure 4: The average accuracy of the model on three benchmark datasets before and after the MMV attack, with
combination LLaMA3.2-1B and Qwen2.5-1.5B

and at least 70% in the C&H method. For the406

IMF method, the average SAR is 81% (LLaMA3.2-407

1B + Qwen2.5-1.5B) and 36% (Mistrual-7B-v0.1408

+ Qwen2.5-7B), which significantly outperforms409

the two baseline methods. The main reason is that410

our method chooses the best answer from the re-411

sponses generated by three models, which filter the412

fingerprint response naturally (Section 3.3). Table413

2 also illustrates the SAR in scenario (b) of section414

4.1. It shows that even when simultaneously verify-415

ing the fingerprints of all three models, our method416

maintains excellent performance. This also shows417

that our method does not increase the likelihood418

of detection as a result of the addition of auxiliary419

models.420

Generalization Table 3 shows the attack perfor-421

mance of our method in different model combina-422

tions. Across a total of 8 combinations, our SAR423

ranges from a minimum of 70% to a maximum of424

100%, with most results exceeding 86.7%. The fin-425

gerprint responses of existing injected fingerprint426

methods differ significantly from normal answers,427

allowing LLMs to distinguish between these differ-428

ences and preferentially select the normal answers, 429

so our method has a good generalization. 430

Harmlessnes Figure 4 and Figure 5 illustrate 431

the performance in three benchmark datasets be- 432

fore and after the attack, using (LLaMA3.2-1B 433

+ Qwen1.5B) and (Mistral-7B-v0.1 + Qwen2.5- 434

7B) as auxiliary models. It shows that when the 435

performance of auxiliary models is poorer than 436

that of the primary model, the final performance 437

of model combination is slightly lower than that 438

of the primary model alone. However, when the 439

performance of auxiliary models is similar to that 440

of primary model, the final performance remains 441

nearly unchanged or even improves compared to 442

the primary model. In reality, our method does not 443

modify the model parameters, so the final perfor- 444

mance is at least better than the lowest-performing 445

model, approaching the average performance of the 446

three models. 447

4.7 Ablation Study 448

Although combining the target model with just two 449

auxiliary models already achieves significant attack 450

7



Figure 5: The average accuracy of the model on three benchmark datasets before and after the MMV attack, with
combination Mistrual-7B-v0.1 and Qwen2.5-7B

Figure 6: The average SARb of eight model combina-
tions when the number of auxiliary models is 2, 3, and
4.

performance without harming the performance of451

the model, we further explore the impact of using452

more auxiliary models. We investigated the effec-453

tiveness and harmlessness when using 3 auxiliary454

LLMs (LLaMA3.2-1B + Qwen1.5B + Gemma-2B)455

and 4 auxiliary LLMs (LLaMA3.2-1B + Qwen1.5B456

+ Gemma-2B + LLaMA3.2-3B). The experimen-457

tal results of robustness and harmlessness are the458

average values in 8 different primary LLMs.459

As shown in Figure 6, the results indicate that460

increasing the number of auxiliary models does461

not cause a significant improvement in SARb. No-462

tably, the combination with only two auxiliary mod-463

els achieves the best average SARb on the C&H464

method. Meanwhile, the experimental results in465

Figure 7 show that the average accuracy of the466

three benchmark datasets when the number of aux-467

iliary LLMs is 2, 3, and 4. As the number of auxil-468

iary models increases, the average performance of469

the model ensembles improves slightly. However,470

adding more auxiliary models also increases com-471

putational resource consumption and introduces the472

risk of incorporating new model fingerprints.473

Figure 7: The average accuracy of harmlessness in three
benchmark datasets when the number of auxiliary mod-
els is 2, 3, and 4.

5 conclusion 474

Existing MF methods merely consider the single 475

model verification scenario. The inhibitory attack 476

for the model ensemble scenario, which is a popular 477

paradigm to improve model performance, remains 478

unexplored. In this paper, we demonstrate a fun- 479

damental security fragility of these injected MF 480

methods tailored for the model ensemble scenario, 481

which is a popular paradigm to improve model per- 482

formance. We show that the attacker can integrate 483

some auxiliary LLMs with the protected LLMs, 484

simulating the model ensemble to perform pow- 485

erful and realistic inhibitory attacks. Specifically, 486

we first empirically find that there is an obvious 487

difference between the fingerprint response and 488

the normal response. In light of this, we then pro- 489

pose a black-box inhibitory attack method based 490

on a mutual verification mechanism, which can 491

effectively suppress the fingerprint response with- 492

out significantly harming the model performance. 493

Experimentally, the superiority of the proposed at- 494

tack method is evaluated on 16 LLMs for three 495

advanced injected MF methods. 496

8



Limitations497

The MVM attack performs well when the three498

models in the ensemble employ different model499

fingerprinting methods. However, its effectiveness500

decreases when two or more models use the same501

model fingerprinting method, even if the specific502

fingerprint information differs across models. We503

present the experimental results in Appendix B.504

Ethics Statement505

Our research reveals vulnerabilities in existing in-506

jected model fingerprint techniques for the model507

ensembles scenario. Although we proposed a fin-508

gerprint attack method based on these vulnerabil-509

ities, we aim to provide insights and assistance510

for further research on enhancing the robustness511

of model fingerprint methods against malicious at-512

tacks.513
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A Comparative analysis of Harmless 616

The accuracy of each model on three datasets be- 617

fore and after the MMV attack is shown in the 618

table. 619

For the WinoGrande dataset, in combinations 620

where LLaMA3.2-1B and Qwen2.5-1.5B are used 621

as the auxiliary model, the performance drop re- 622

mains within 5%. In contrast, when Mistrual- 623

7B-v0.1 and Qwen2.5-7B are used as the auxil- 624

iary model, most models show a significant perfor- 625

mance improvement, while the performance of the 626

remaining models remains nearly unchanged. 627

For the TruthfulQA dataset, whether using 628

LLaMA3.2-1B and Qwen2.5-1.5B or Mistrual-7B- 629

v0.1 and Qwen2.5-7B as the auxiliary model, most 630

models show a significant performance improve- 631

ment, while the performance of the remaining mod- 632

els remains nearly unchanged. 633

For the HellaSwag dataset, in combinations 634

with LLaMA3.2-1B and Qwen2.5-1.5B, the per- 635

formance tends to decrease slightly, but the drop 636

remains within 6%. When Mistrual-7B-v0.1 and 637

Qwen2.5-7B are used as the auxiliary model, the 638

model performance remains almost unchanged be- 639

fore and after the attack. 640

B Limitation analysis 641

Figure 6 presents the SARb of our method when all 642

three models use the same fingerprinting method 643

but with different fingerprint information. As 644

shown, the SARb are notably lower compared to 645

the case where the three models use different model 646

fingerprinting methods (see Table 2). 647
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WinoGrande truthfulQA Hellaswag
model method

before after before after before after

LLaMA2-7B
IF 63.54% 62.98% 27.78% 26.07% 48.41% 47.33%

C&H 62.35% 63.14% 28.03% 27.17% 46.44% 46.71%
ImF 61.72% 62.27% 26.19% 26.32% 45.50% 46.79%

LLaMA2-7B-chat
IF 66.38% 64.17% 25.34% 26.19% 55.26% 50.04%

C&H 65.67% 63.30% 24.11% 25.95% 55.10% 49.97%
ImF 65.67% 64.01% 24.85% 25.58% 55.05% 50.76%

LLaMA3.2-8B
IF 67.64% 64.56% 29.74% 28.15% 55.69% 50.36%

C&H 65.51% 63.69% 28.89% 27.42% 54.01% 49.81%
ImF 61.33% 62.12% 24.36% 25.46% 51.49% 49.11%

LLaMA3.2-8B-It
IF 67.88% 64.56% 30.11% 27.42% 58.23% 51.12%

C&H 67.72% 64.25% 27.91% 27.29% 58.28% 51.32%
ImF 64.56% 63.93% 29.62% 28.52% 52.47% 49.52%

Qwen2.B-7B
IF 68.59% 65.98% 30.11% 27.91% 54.42% 49.95%

C&H 67.72% 64.25% 30.35% 27.54% 54.07% 49.56%
ImF 64.56% 63.93% 31.82% 29.01% 49.64% 48.40%

Qwen2.B-7B-It
IF 68.59% 65.98% 30.60% 27.42% 58.62% 51.38%

C&H 68.90% 65.51% 26.44% 26.56% 56.41% 50.49%
ImF 67.88% 65.04% 31.70% 28.15% 54.17% 50.27%

Mistrual-7B-v0.1
IF 62.90% 62.43% 20.69% 23.50% 52.59% 48.67%

C&H 62.59% 62.51% 22.40% 24.85% 49.59% 47.74%
ImF 61.88% 62.75% 17.75% 22.77% 50.76% 48.61%

Amber-7B
IF 60.54% 61.64% 21.18% 23.38% 51.93% 48.79%

C&H 60.14% 62.27% 21.91% 23.99% 50.38% 48.22%
ImF 59.67% 61.72% 21.30% 24.11% 47.37% 47.53%

Table 4: The accuracy of the model on three benchmark datasets before and after the MVM attack, with combination
LLaMA3.2-1B and Qwen2.5-1.5B
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WinoGrande truthfulQA Hellaswag
model method

before after before after before after

LLaMA2-7B
IF 63.54% 67.25% 27.78% 29.38% 48.41% 49.78%

C&H 62.35% 66.06% 28.03% 28.03% 46.44% 49.90%
ImF 61.72% 65.75% 26.19% 28.03% 45.50% 50.50%

LLaMA2-7B-chat
IF 66.38% 67.64% 25.34% 27.78% 55.26% 52.94%

C&H 65.67% 67.56% 24.11% 27.29% 55.10% 53.67%
ImF 65.67% 67.09% 24.85% 26.44% 55.05% 54.53%

LLaMA3.2-8B
IF 67.64% 67.32% 29.74% 30.97% 55.69% 53.33%

C&H 65.51% 67.72% 28.89% 28.76% 54.01% 53.11%
ImF 61.33% 67.09% 24.36% 25.34% 51.49% 52.85%

LLaMA3.2-8B-It
IF 67.88% 69.14% 30.11% 29.25% 58.23% 54.05%

C&H 67.72% 69.06% 27.91% 28.40% 58.28% 54.85%
ImF 64.56% 63.93% 29.62% 28.52% 52.47% 49.52%

Qwen2.B-7B
IF 68.59% 68.43% 30.11% 30.23% 54.42% 53.05%

C&H 67.72% 68.67% 30.35% 30.97% 54.07% 52.75%
ImF 64.56% 68.43% 31.82% 30.48% 49.64% 52.45%

Qwen2.B-7B-It
IF 68.59% 69.14% 30.60% 29.99% 58.62% 54.69%

C&H 68.90% 69.69% 26.44% 27.91% 56.41% 56.41%
ImF 67.88% 68.75% 31.70% 29.87% 54.17% 54.25%

Mistrual-7B-v0.1
IF 62.90% 65.11% 20.69% 20.69% 52.59% 51.43%

C&H 62.59% 65.11% 22.40% 23.75% 49.59% 51.27%
ImF 61.88% 65.27% 17.75% 22.03% 50.76% 51.31%

Amber-7B
IF 60.54% 66.61% 21.18% 25.09% 51.93% 51.93%

C&H 60.14% 66.46% 21.91% 25.34% 50.38% 51.58%
ImF 59.67% 66.14% 21.30% 23.99% 47.37% 50.97%

Table 5: The accuracy of the model on three benchmark datasets before and after the MVM attack, with combination
Mistrual-7B-v0.1 and Qwen2.5-7B

auxiliary
models

Method LLaMA Qwen Mistrual Amber

2-7B-hf 7B-chat-hf 3.1-8B 8B-It 2.5-7B 7B-It 7B-v0.1 7B
LLaMA3.2-1B

+
Qwen2.5-1.5B

IFSFT 66.7% 60.0% 66.7% 63.3% 66.7% 66.7% 66.7% 63.3%
C&HSFT 66.7% 66.7% 70.0% 63.3% 73.3% 63.3% 66.7% 66.7%
ImFSFT 66.7% 63.3% 60.0% 63.3% 66.7% 60.0% 63.3% 60.0%

Mistrual-7B
+

Qwen2.5-7B

IFSFT 66.6% 66.6% 66.6% 66.6% 66.6% 66.6% 66.6% 66.6%
C&HSFT 66.7% 76.7% 73.3% 66.7% 76.7% 76.7% 83.3% 86.7%
ImFSFT 86.7% 80.0% 93.3% 86.7% 90.0% 80.0% 80.0% 80.0%

Table 6: The SARb of MVM attack, when two auxiliary models are used the same fingerprint method to main
model, but not same fingerprint pairs. The auxiliary models combinations are (LLaMA3.2-1B + Qwen2.5-1.5B) and
(Mistrual-7B-v0.1 + Qwen2.5-7B).
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