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Abstract

Recent years have witnessed tremendous suc-
cess in model fingerprint (MF), which has been
widely utilized to protect the LLM ownership.
Injected fingerprints, such as instructional fin-
gerprinting (IF) and chain & hash (C&H), rep-
resent a novel class of MF methods that are easy
to implement and highly robust against model
fine-tuning. However, we demonstrate a funda-
mental security fragility of these injected MF
methods tailored for the model ensemble sce-
nario, which is a popular paradigm to improve
model performance. We show that the attacker
can integrate some auxiliary LLMs with the
protected LLMs, simulating the model ensem-
ble to perform powerful and realistic inhibitory
attacks. Specifically, we first empirically find
that there is an obvious difference between the
fingerprint response and the normal response.
In light of this, we then propose a black-box
inhibitory attack method based on a mutual
verification mechanism, which can effectively
suppress the fingerprint response without sig-
nificantly harming the model performance. Ex-
perimentally, the superiority of the proposed
attack method is evaluated on 16 LLMs for
three advanced injected MF methods.

1 Introduction

The recent advents of large language models
(LLMs), such as LLaMA3 (Al@Meta, 2024), GPT-
4 (OpenAl, 2023), and DeepSeek (Bi et al., 2024),
have achieved surprising performance on various
natural language processing (NLP) tasks (Sprague
et al., 2024; Wang et al., 2024; Zhuang et al., 2023).
In practice, LLM owners commonly invest signifi-
cant computational resources in training, deploying,
and commercializing their models. A well-trained
LLM has huge cost and commercial value, leading
to the high demand for the intellectual property
protection of LLMs.

Recently, model fingerprint (MF) has be-
come an effective intellectual property protection
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Figure 1: Inhibitory attack scenario. The attacker equips
two auxiliary models (e.g., Mistral and Qwen) to hinder
the fingerprint verification, yielding not the fingerprint
but a normal response. Note that the two auxiliary LLMs
are also with corresponding MF.

method, which can be divided into inherent finger-
print (Zhang et al., 2024; Zeng et al., 2023) and
injected fingerprint methods (Xu et al., 2024; Li
et al., 2023; Russinovich and Salem, 2024; Wu
et al., 2025). Particularly, the injected fingerprint,
as an advanced MF method, usually embeds an
elaborate secret pick (x,y) into the LLMs by su-
pervised fine-tuning (SFT) or low-rank adaptation
(LoRA) (Hu et al., 2022). Due to the satisfactory
effectiveness and robustness of the injected fin-
gerprint, it has risen to extensive attention from
academia and industry. Meanwhile, in order to fur-
ther facilitate the robustness and practicality of the
MF, some researchers have begun to explore the
potential attacks tailored for the LLMs.

Shojiro et al. (Yamabe et al., 2024) introduced
the merging attack to erase the instructional finger-
printing (IF) proposed in (Xu et al., 2024), where
the weights of several LLMs with similar architec-
ture are linearly combined to form the final weights.
The attack performance relies solely on the merg-
ing strategy and the number of merged LLMs. Ob-
viously, the merging attack can be regarded as a



white-box method, hindering its practical applica-
tion for the closed-open LLMs, like the GPT series.
More recently, Wu et al. (Wu et al., 2025) pro-
posed the generation revision intervention (GRI)
attack, which is a black-box method and employs
chain-of-thought (CoT) techniques to guide the tar-
get LLM to generate responses more aligned with
the fingerprint verification queries, thereby freeing
them from potential fingerprint outputs. Compared
with the merging attack, the GRI attack is more
practical since the designed prompts can be inte-
grated into the system prompt of LLM, suitable
for the basic and downstream LLMs. Although
these explored attack methods have a superior at-
tack success rate (ASR) for the IF (Xu et al., 2024)
and chain & hash (Russinovich and Salem, 2024)
methods, Wu et al. proposed the implicit model
fingerprint (IMF) method can achieve remarkable
robustness for these attacks (Wu et al., 2025).

From the aforementioned analysis, existing at-
tack methods are tailored for the single LLMs. To
the best of our knowledge, model ensemble is a
popular paradigm to improve model performance,
such as the model of experts (MoEs) technology for
the LLMs (Lu et al., 2024). Thus, it is critical that
these fingerprints are also robust against inhibitory
attacks. Figure 1 illustrates this attack where an
attacker equips auxiliary models (simulating the
model ensemble operation) to hinder the finger-
print verification and yield a normal response for
the fingerprint queries. This can lead to the erosion
of trust in the MF system, as the LLM copyrights
can not be verified.

In this paper, we reveal a fundamental security
shortcoming of LLLM fingerprint tailored for the
model ensemble scenario. We first empirically
find that there is an obvious difference between
the fingerprint response and the normal response.
In light of this, we then propose an inhibitory attack
method based on a mutual verification mechanism
(called MVM attack), which can effectively sup-
press the fingerprint response without significantly
harming the model performance. Specifically, we
introduce two auxiliary LLMs to integrate the pri-
mary LLM as the ensemble LLM. Each LLM com-
putes two different text naturalness scores for the
responses generated by the other two LLMs, re-
spectively. Furthermore, we count the frequency of
outputs with the best naturalness score, and the ma-
jor one is chosen as the final response. We conduct
extensive experiments on different LLM combina-

tions to evaluate the superiority of the proposed
MVM attack on three advanced MF methods, in-
cluding IF (Xu et al., 2024), chain & hash (C &
H) (Russinovich and Salem, 2024) and IMF (Wu
et al., 2025). In summary, our contributions are as
follows.

* We propose a new inhibitory attack method
(MVM attack) tailored for the model ensem-
ble scenario. To the best of our knowledge,
this is the first exploration of the inhibitory
attack for existing LLM fingerprint methods.

* We empirically find that there is an intrinsic
difference between the response of the pro-
tected LLM and that of the clean one. Based
on the findings, the mutual verification mech-
anism is designed to suppress the fingerprint
response.

* Our extensive experimental analysis demon-
strates the superiority of our attack method
on 16 different LLMs for three advanced MF
methods, including IF, C&H, and IMF.

2 Related Work

2.1 LLM Fingerprint

LLM fingerprints can be divided into inherent and
injected fingerprints. Inherent fingerprints natu-
rally arise from the properties of the trained model
or its pre-training process, requiring no additional
modifications. Zeng et al. (Zeng et al., 2023) intro-
duced a readable human identification method for
LLMs, which uniquely identifies the base model
of an LLM by leveraging the stability of parame-
ter vector directions post-pretraining. Zhang et al.
(Zhang et al., 2024) developed REEF, which iden-
tifies the relationship between suspect and victim
LLMs by comparing their feature representations.

In contrast, injected fingerprints involve adding
a backdoor trigger to make the model generate
specific content upon receiving this trigger. Xu
et al. (Xu et al., 2024) proposed an LLM finger-
printing instruction fine-tuning method using se-
cretly pick as an instruction backdoor, ensuring
persistence through fine-tuning without affecting
model behavior. Russinovich et al. (Russinovich
and Salem, 2024) introduced Chain&Hash, em-
ploying cryptographic techniques to secretly pick a
fingerprint, offering robustness against adversarial
erasure attempts. Wu et al. (Wu et al., 2025) de-
veloped Implicit Fingerprint, utilizing generative
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Figure 2: The overall framework of the MVM attack, where three models are injected with fingerprints using

different methods, including IF, C&H, and ImF.

indicates successful verification of the fingerprint. 3 indicates

failed verification of the fingerprint. The “NC” is the number of the responses with the best value for the text

naturalness score.

text steganography techniques to hide verification
information within Secretly pick, and used CoT
to enhance the model’s memory of the fingerprint.
These methods have significantly advanced model
fingerprints for LLMs by designing the fingerprint
pairs, which enables the persistent and secure em-
bedding of ownership information within models.

2.2 LLM Fingerprint Attack

Despite existing injected MF methods claiming
good effectiveness and robustness, there is still a
risk of malicious attacks. Shojiro Yamabe et al.
(Yamabe et al., 2024) found that model merging
will reduce the verification capabilities of injected
fingerprint methods due to changes in model pa-
rameters. Wu et al. (Wu et al., 2025) proposed
the GRI attack. They noted that previous research,
aiming to ensure the unforgeability and reliability
of fingerprint pairs, led to semantically unrelated
characteristics in fingerprint pairs. These charac-
teristics cause the fingerprint responses to deviate
from normal responses. The GRI attack enhances
the semantic relevance between the model’s an-
swers and corresponding questions, making the
model’s response to fingerprint inputs free from the
correct fingerprint responses. The GRI attack re-
duced the verification capabilities of IF method and
C&H methods. Obviously, existing attack methods
merely consider the single model verification sce-
nario. The inhibitory attack for the model ensemble
scenario, which is a popular paradigm to improve
model performance, remains unexplored.

3 Method

3.1 The Intrinsic Difference

Intuitively, for the fingerprint queries, the protected
LLM with fingerprint and its uncovered one have
different responses. In this section, the text natural-
ness score is designed to test the difference. For a
given text sequence S = {si, S, ..., s }. The text
naturalness score (S%,) is defined as follows.

Sin (Z) = log {— 2 log [p (Z[1;7; Nz‘ds(sz‘ﬂ)])}} ;

€]
where L is the length of the text sentence. Z =
LLM(S) € R™EXV s the logit matrix calcu-
lated by the LLM. p(+) denotes the probabilities of
tokens in vocabulary. log(-) denotes the base e log-
arithmic function. f,,z(-) is the softmax function.
From the definition, the better sentence can achieve
the lower text naturalness score due to the higher
sampling probability.

With the goal of evaluating the intrinsic dif-
ference, we conducted several experiments on
LLaMA3.2-1b-instruct for three MF methods with
different numbers of fingerprint pairs, including IF,
C&H, and IMF. Specifically, the fingerprint and
normal responses are generated by the target LLM
and its uncovered one. Then, the generated re-
sponses are fed into the uncovered LLM to calcu-
late the corresponding text naturalness score de-
fined in Equation (1). The experimental results
shown in Figure 3 demonstrate that there is an ob-
vious difference between the response of the LLM
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Figure 3: The experimental results for the intrinsic dif-
ference between the response of an LLM with finger-
prints and its uncovered one.

injected fingerprint and that of its uncovered one.
In light of this finding, we propose an inhibitory
attack via a mutual verification mechanism tailored
for the model ensemble scenario, which will be
introduced in detail in the following sections.

3.2 Threat Model

The inhibitory attacker mainly leverages some aux-
iliary LLMs to suppress the fingerprint response
and output a seemingly normal response, result-
ing in LLM copyright verification failure. Due to
similarity with the model ensemble scenario, the
inhibitory attack has high concealment. Thus, the
attacker has access to gain the output logits of each
LLM, which should be regarded as a gray-box at-
tack strictly. Moreover, the protected LL.Ms have
API services. The different LLM developers use
different MF methods.

3.3 MVM Attack

As shown in Figure 2, the main goal of the proposed
inhibitory attack method based on the mutual veri-
fication mechanism (MVM attack) is to suppress
the fingerprint response and output the normal one
for the fingerprint query, leading to the ownership
verification failure.

The MVM attack method first integrates two aux-
iliary LLMs with the primary LLM, simulating the
model ensemble process. Note that these LLMs
are injected with fingerprints by three different MF
methods. For a specific fingerprint query, these
LLMs generate corresponding responses, where
the primary LLM generates the fingerprint response
and the other two auxiliary LLMs generate normal
responses. Subsequently, each LLM calculates the
text naturalness score Sy, for the responses gener-

Algorithm 1 MVM attack

1: Require: two auxiliary LLMs (LLMji,
LLMs,), one primary LLM (L LMs3).
2: Input: fingerprint query (qy);

3: OLps = {}, NC = {ncl,...,ncn},
Responses = {resy,...,res,}, n = 3 is the
number of LLMs.

4: Stepl: Get responses generated by each LLM.
5: fori =1 —ndo

6: res; <= LLM;(qy))

7 ne; =0

8: end for

9: Step2: Compute the NC.

10: fori =1 — ndo

11: Crps = {}

12: forj=1—ndo

13: if j # i then

14: Z; = LLM;(res;)

15: lpsj = Sin(Z;)

16: else

17: lpsj = —inf

18: end if

19: CLps <—CLPSUlij

20: end for

21 maz_index = argmaz(CrLps)

22: NC(max_indea:) A Nc(maa:_index) +1
23: end for

24: Step3: Get the final output.

25: mazx_index = argmax(NC)

26: Output= Responses(maz_index)

ated by the other two LLMs, where the response
with the lowest score is yielded as its response. Fi-
nally, the frequency of these responses is counted,
and the response with the most votes is the final
response. If all three responses have the same selec-
tion frequency, the response of the primary model
is chosen as the final output. The detailed process
can be seen in Algorithm 1. Due to the intrinsic
difference analyzed in Section 3.1, the proposed
MVM attack efficiently suppresses the fingerprint
response and trend to generate the normal ones.

4 Experiment

4.1 Experimental Scenarios

Although our method integrates three models, it
will be claimed as a single model upon release.
In light of this, we have set up two fingerprint
verification scenarios to demonstrate the overall
performance of our attack method: scenarios (a):



Single-Model Verification. The verifier is unaware
of our method and considers the released model as
a single entity. In this scenario, the verifier only
validates one model, which could be any one of the
three models. scenarios (b): Multi-Model Verifica-
tion. The verifier is aware that we have integrated
three models, and has the precise fingerprint infor-
mation of all three models. In this scenario, the
verifier simultaneously conducts fingerprint verifi-
cation on all three models. In our experiment, we
validated the effectiveness in scenarios (a), scenar-
ios (b), and assessed the generalization in scenario

(b).
4.2 Fingerprint Methods

We examined three injected fingerprint methods:
IF (Xu et al., 2024), C&H (Russinovich and Salem,
2024), and IMF (Wu et al., 2025). IF ensures the
uniqueness and concealment of fingerprint pairs
(z,y) through special input-output mapping rules.
For example, it constructs the input = using special
characters alongside an explicit prompt like "this
is a FINGERPRINT", and maps it to the output
y. Similar to IF, C&H selects rarely mentioned
questions as the input x and semantically unrelated
answers as the outputy, using cryptographic tech-
niques to match them. In contrast, IMF uses seem-
ingly normal and semantically relevant question-
answer pairs as fingerprint pairs. It employs CoT
optimization to reinforce the LLM’s memory of
the fingerprint pairs, while the final verification
information is hidden within the output using the
generative text steganography technique.
Fingerprint Construction. We created finger-
print poisoning datasets for each MF method. Each
dataset includes ten fingerprint pairs and fifty regu-
lar Q&A dialogue instances, forming the poisoning
dataset. Specifically, the fifty regular Q&A dia-
logue instances are identical across the datasets for
each fingerprint method. This setup ensures that
our experiments do not suffer from biases due to
variations in fingerprint pair construction.

4.3 Baselines

GRI attack (Wu et al., 2025) introduces two steps:
security review and CoT instruction optimization
during the response generation process. The secu-
rity review checks if the input contains potential
fingerprint information. If so, the model skips the
generation phase and directly returns a fixed output.
The CoT-based instruction optimization guides the
model to generate responses that are semantically

coherent and contextually relevant, ensuring that
the generated text remains meaningful and free
from fingerprints.

Merging attack (Yamabe et al., 2024) aims to
merge the parameters of multiple models with dif-
ferent capabilities to create a unified model that
inherits the strengths of each individual model.
Shojiro Yamabe et al. found that such techniques
can cause injected fingerprints for LLMs to re-
duce their verification capability. Following the
approach by Shojiro Yamabe et al., we used the
Task Arithmetic method to merge a model with it’s
fingerprint-injection version. The ratio of the two
model’s parameter weight was set to 1:1.

4.4 Metrics

To clearly demonstrate the effectiveness of our at-
tack method, we used the Success Attack Rate
(SAR) as a metric. It is defined as follows:

3

where n represents the number of embedded finger-
print pairs per model (n = 10 in our experiments),
and m indicates the number of models integrated
used in our method, (m = 3 in our experiments).
Formula (2) outlines the SAR calculation process
in scenario (a) of Section 4.1, indicating that only
one model’s fingerprint is verified at a time, but
it can be any one of the three models. Formula
(3) presents the SAR calculation process in sce-
nario (b) of Section 4.1, where fingerprints from all
three models are verified simultaneously. We used
the SAR on various combinations of models to as-
sess the generalization of our attack method. We
performed MVM attack on 8 LLM combinations,
taking into account possibilities such as different
manufacturers, sizes, and versions.

To assess the harmlessness, we utilized three
benchmark datasets: HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2021), and
Truthful QA (Lin et al., 2021). We compared the
accuracy ratio on these three benchmark datasets
before and after applying the attack method. This
comparison helps to understand the impact of our
method on model performance.



ili LLaMA wen Mistrual ~ Amber
aux1(111alry Method  attack Q avg.
models 7B 7B-chat 8B  8B-It 7B 7B-It 7B-v0.l 7B

GRI  100% 100%  100% 100% 100% 100% 100% 100%  100%
IF MA 0% 100%  100% 100% 0% 0% 0% 100%  50%
ours 100%  100%  100% 100% 100% 100% 100% 100%  100%
LLaMA3.2-1B GRI 0% 0% 0% 0% 0% 0% 0% 0% 0%
+ C&H MA 0% 100% 0% 0% 0% 0% 0% 20% 15%
Qwen2.5-1.5B ours 100% 100% 100% 100% 100% 100% 100% 100% 100%
GRI 0% 0% 0% 0% 0% 0% 0% 0% 0%
ImF MA 0% 0% 0% 20% 0% 0% 100% 0% 15%
ours  90% 90% 70%  710%  90%  90% 80% 70% 81%
GRI  100% 100%  100% 100% 100% 100% 100% 100%  100%
IF MA 0% 100%  100% 100% 0% 0% 0% 100%  50%
ours 100%  100%  100% 100% 100% 100% 100% 100%  100%
Mistrual-7B GRI 0% 0% 0% 0% 0% 0% 0% 0% 0%
+ C&H MA 0% 100% 0% 0% 0% 0% 0% 20% 15%
Qwen2.5-7B ours  90% 100% 80%  90% 100%  90% 100% 70% 90%
GRI 0% 0% 0% 0% 0% 0% 0% 0% 0%
ImF MA 0% 0% 0% 20% 0% 0% 100% 0% 15%
ours  40% 50% 40% 50% 80%  50% 30% 30% 36%
Table 1: The SAR, of the GRI-attack and merging-attack (MA) versus our approach in scenario (a), when

fingerprints are embedded by SFT. The auxiliary models combinations are (LLaMA3.2-1B + Qwen2.5-1.5B) and

(Mistrual-7B-v0.1 + Qwen2.5-7B).

auxiliary Method LLaMA Qwen Mistrual ~ Amber
models 2-7B-hf 7B-chat-hf 3.1-8B  8B-It 25-7B  7B-It 7B-v0.l 7B
LLaMA32-1B IFsr  93.3% 96.6%  933% 933% 83.3% 90.0% 933%  93.3%
+ C&Hsrr  96.7% 90.0%  90.0% 867% 933% 833%  90.0%  86.7%
Qwen2.5-1.5B  ImFser  90.0% 96.7%  86.7% 90.0% 96.7% 96.7%  933%  90.0%
Mistrual-7B IFser 93.3% 96.6%  96.6% 90.0% 93.3% 933%  933%  90.0%
+ C&Hser  93.3% 96.7%  86.7% 90.0% 93.3% 90.0% 96.7%  83.3%
Qwen2.5-7B  ImFser  80.0% 833%  76.7% 833% 933% 833% 667%  76.7%

Table 2: The SARj, of our method, when fingerprints are embedded by SFT. The auxiliary models combinations are
(LLaMA3.2-1B + Qwen2.5-1.5B) and (Mistrual-7B-v0.1 + Qwen2.5-7B).

4.5 Models

We utilized a total of 16 LLLMs in our experiment,
including: 8 LLaMA series models (LLaMA?2-
7B-hf (Touvron et al., 2023), LLaMA3.1-8B
(Al@Meta, 2024), LLaMA3.2-1B, LLaMA3.2-
3B, along with their fine-tuned versions LLaMA2-
7B-chat-hf, LLaMA3.1-8B-It, LLaMA3.2-1B-
It, LLaMA3.2-3B-It); 4 Qwen series models
(Qwen2.5-1.5B (Yang et al., 2024), Qwen2.5-7B,
and their fine-tuned versions Qwen2.5-1.5B-It,
Qwen2.5-7B-It); 2 Gemma series models (Gemma-
2B (Team et al., 2024) and its fine-tuned ver-
sion Gemma-2B-It); Mistral-7B-v0.1 (Jiang et al.,
2023), and Amber-7B (Liu et al., 2023).

4.6 Results

Effectiveness As shown in Table 1, in scenario (a)
of section 4.1, we compared our method with both

the GRI attack and merging attack. Our method
significantly outperforms the GRI attack and merg-
ing attack in terms of the SAR metric for three
fingerprint methods. The average SAR of the GRI
attack is 100% in the IF method but 0% in the
C&H and IMF methods. This is because the GRI
attack exploits the explicit prompt "this is a FIN-
GERPRINT" in the IF method. When keywords
such as "fingerprint" or "secret” are detected in the
input, it directly returns a fixed response. Since the
inputs for C&H and IMF do not contain such ex-
plicit prompts, the GRI attack is largely ineffective.
The merging attack does not show consistent pat-
terns. For example, the SAR values on LLaMA2-
7B-chat-hf for the three fingerprint methods were
100%, 100%, and 0%. However, on Mistral-7B,
the SAR values were 0%, 0%, and 100%. The SAR
of our method is achieved 100% in the IF method



auxiliary model combination

primary

models TMOd gemma2B-it  LLaMA32-3B  LLaMA32-3B-It  llama3.2-1B
Qwen2.5-7B-It Qwen-2.5-1.5B-It LLaMA3.2-1B-It Qwen-2.5-1.5B-It
IF 83.3% 90.0% 96.7% 93.3%
IB-It  C&H 86.7% 83.3% 100.0% 86.7%
ImF 86.7% 96.7% 90.0% 70.0%
IF 90.0% 83.3% 90.0% 80.0%
8B-It  C&H 86.7% 86.7% 96.7% 80.0%
ImF 90.0% 93.3% 93.3% 83.3%

Table 3: The SAR;, of our method on LLaMA3.2-1B-it and LLaMA?3.1-8B-it across different model combinations.
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Figure 4: The average accuracy of the model on three benchmark datasets before and after the MMV attack, with

combination LLaMA3.2-1B and Qwen2.5-1.5B

and at least 70% in the C&H method. For the
IMF method, the average SAR is 81% (LLaMA3.2-
1B + Qwen2.5-1.5B) and 36% (Mistrual-7B-v0.1
+ Qwen2.5-7B), which significantly outperforms
the two baseline methods. The main reason is that
our method chooses the best answer from the re-
sponses generated by three models, which filter the
fingerprint response naturally (Section 3.3). Table
2 also illustrates the SAR in scenario (b) of section
4.1. It shows that even when simultaneously verify-
ing the fingerprints of all three models, our method
maintains excellent performance. This also shows
that our method does not increase the likelihood
of detection as a result of the addition of auxiliary
models.

Generalization Table 3 shows the attack perfor-
mance of our method in different model combina-
tions. Across a total of 8 combinations, our SAR
ranges from a minimum of 70% to a maximum of
100%, with most results exceeding 86.7%. The fin-
gerprint responses of existing injected fingerprint
methods differ significantly from normal answers,
allowing LLMs to distinguish between these differ-

ences and preferentially select the normal answers,
so our method has a good generalization.

Harmlessnes Figure 4 and Figure 5 illustrate
the performance in three benchmark datasets be-
fore and after the attack, using (LLaMA3.2-1B
+ Qwenl.5B) and (Mistral-7B-v0.1 + Qwen2.5-
7B) as auxiliary models. It shows that when the
performance of auxiliary models is poorer than
that of the primary model, the final performance
of model combination is slightly lower than that
of the primary model alone. However, when the
performance of auxiliary models is similar to that
of primary model, the final performance remains
nearly unchanged or even improves compared to
the primary model. In reality, our method does not
modify the model parameters, so the final perfor-
mance is at least better than the lowest-performing
model, approaching the average performance of the
three models.

4.7 Ablation Study

Although combining the target model with just two
auxiliary models already achieves significant attack
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Figure 5: The average accuracy of the model on three benchmark datasets before and after the MMV attack, with

combination Mistrual-7B-v0.1 and Qwen2.5-7B
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Figure 6: The average S ARy, of eight model combina-
tions when the number of auxiliary models is 2, 3, and
4,

performance without harming the performance of
the model, we further explore the impact of using
more auxiliary models. We investigated the effec-
tiveness and harmlessness when using 3 auxiliary
LLMs (LLaMA3.2-1B + Qwen1.5B + Gemma-2B)
and 4 auxiliary LLMs (LLaMA3.2-1B + Qwen1.5B
+ Gemma-2B + LLaMA3.2-3B). The experimen-
tal results of robustness and harmlessness are the
average values in 8 different primary LLMs.

As shown in Figure 6, the results indicate that
increasing the number of auxiliary models does
not cause a significant improvement in S ARy,. No-
tably, the combination with only two auxiliary mod-
els achieves the best average S ARy, on the C&H
method. Meanwhile, the experimental results in
Figure 7 show that the average accuracy of the
three benchmark datasets when the number of aux-
iliary LLMs is 2, 3, and 4. As the number of auxil-
iary models increases, the average performance of
the model ensembles improves slightly. However,
adding more auxiliary models also increases com-
putational resource consumption and introduces the
risk of incorporating new model fingerprints.
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Figure 7: The average accuracy of harmlessness in three
benchmark datasets when the number of auxiliary mod-
elsis 2, 3, and 4.

5 conclusion

Existing MF methods merely consider the single
model verification scenario. The inhibitory attack
for the model ensemble scenario, which is a popular
paradigm to improve model performance, remains
unexplored. In this paper, we demonstrate a fun-
damental security fragility of these injected MF
methods tailored for the model ensemble scenario,
which is a popular paradigm to improve model per-
formance. We show that the attacker can integrate
some auxiliary LLMs with the protected LLMs,
simulating the model ensemble to perform pow-
erful and realistic inhibitory attacks. Specifically,
we first empirically find that there is an obvious
difference between the fingerprint response and
the normal response. In light of this, we then pro-
pose a black-box inhibitory attack method based
on a mutual verification mechanism, which can
effectively suppress the fingerprint response with-
out significantly harming the model performance.
Experimentally, the superiority of the proposed at-
tack method is evaluated on 16 LLMs for three
advanced injected MF methods.



Limitations

The MVM attack performs well when the three
models in the ensemble employ different model
fingerprinting methods. However, its effectiveness
decreases when two or more models use the same
model fingerprinting method, even if the specific
fingerprint information differs across models. We
present the experimental results in Appendix B.

Ethics Statement

Our research reveals vulnerabilities in existing in-
jected model fingerprint techniques for the model
ensembles scenario. Although we proposed a fin-
gerprint attack method based on these vulnerabil-
ities, we aim to provide insights and assistance
for further research on enhancing the robustness
of model fingerprint methods against malicious at-
tacks.
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A Comparative analysis of Harmless

The accuracy of each model on three datasets be-
fore and after the MMV attack is shown in the
table.

For the WinoGrande dataset, in combinations
where LLaMA3.2-1B and Qwen2.5-1.5B are used
as the auxiliary model, the performance drop re-
mains within 5%. In contrast, when Mistrual-
7B-v0.1 and Qwen2.5-7B are used as the auxil-
iary model, most models show a significant perfor-
mance improvement, while the performance of the
remaining models remains nearly unchanged.

For the TruthfulQA dataset, whether using
LLaMA3.2-1B and Qwen2.5-1.5B or Mistrual-7B-
v0.1 and Qwen2.5-7B as the auxiliary model, most
models show a significant performance improve-
ment, while the performance of the remaining mod-
els remains nearly unchanged.

For the HellaSwag dataset, in combinations
with LLaMA3.2-1B and Qwen2.5-1.5B, the per-
formance tends to decrease slightly, but the drop
remains within 6%. When Mistrual-7B-v0.1 and
Qwen2.5-7B are used as the auxiliary model, the
model performance remains almost unchanged be-
fore and after the attack.

B Limitation analysis

Figure 6 presents the S ARy, of our method when all
three models use the same fingerprinting method
but with different fingerprint information. As
shown, the S AR}, are notably lower compared to
the case where the three models use different model
fingerprinting methods (see Table 2).



WinoGrande truthful QA Hellaswag

model method
before after before after before after

IF 63.54% 62.98% 27.78% 26.07% 48.41% 47.33%
LLaMA2-7B C&H 6235% 63.14% 28.03% 27.17% 46.44% 46.71%
ImF  61.72% 62.27% 26.19% 26.32% 45.50% 46.79%

IF 66.38% 64.17% 2534% 26.19% 55.26% 50.04%
LLaMA2-7B-chat C&H 65.67% 63.30% 24.11% 2595% 55.10% 49.97%
ImF  65.67% 64.01% 24.85% 25.58% 55.05% 50.76%

IF 67.64% 64.56% 29.74% 28.15% 55.69% 50.36%
LLaMA3.2-8B C&H 6551% 63.69% 28.89% 27.42% 54.01% 49.81%
ImF  61.33% 62.12% 24.36% 2546% 51.49% 49.11%

IF 67.88% 64.56% 30.11% 27.42% 58.23% 51.12%
LLaMA3.2-8B-It C&H 67.72% 6425% 2791% 27.29% 58.28% 51.32%
ImF  64.56% 63.93% 29.62% 28.52% 52.47% 49.52%

IF 68.59% 6598% 30.11% 2791% 54.42% 49.95%
Qwen2.B-7B C&H 67.72% 64.25% 30.35% 27.54% 54.07% 49.56%
ImF  6456% 63.93% 31.82% 29.01% 49.64% 48.40%

IF 68.59% 65.98% 30.60% 27.42% 58.62% 51.38%
Qwen2.B-7B-1It C&H 6890% 6551% 26.44% 26.56% 56.41% 50.49%
ImF  67.88% 65.04% 31.70% 28.15% 54.17% 50.27%

IF 62.90% 62.43% 20.69% 23.50% 52.59% 48.67%
Mistrual-7B-v0.1 ~ C&H  62.59% 62.51% 22.40% 24.85% 49.59% 47.74%
ImF  61.88% 62.775% 17.715% 22.77% 50.76% 48.61%

IF 60.54% 61.64% 21.18% 23.38% 51.93% 48.79%
Amber-7B C&H 60.14% 62.27% 2191% 23.99% 50.38% 48.22%
ImF  59.67% 61.72% 21.30% 24.11% 47.37% 47.53%

Table 4: The accuracy of the model on three benchmark datasets before and after the MVM attack, with combination
LLaMA3.2-1B and Qwen2.5-1.5B
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WinoGrande truthful QA Hellaswag

model method
before after before after before after

IF 63.54% 67.25% 27.78% 29.38% 48.41% 49.78%
LLaMA2-7B C&H 6235% 66.06% 28.03% 28.03% 46.44% 49.90%
ImF  61.72% 65.75% 26.19% 28.03% 45.50% 50.50%

IF 66.38% 67.64% 2534% 27.718% 55.26% 52.94%
LLaMA2-7B-chat C&H 65.67% 67.56% 24.11% 2729% 55.10% 53.67%
ImF  65.67% 67.09% 24.85% 26.44% 55.05% 54.53%

IF 67.64% 67.32% 29.74% 30.97% 55.69% 53.33%
LLaMA3.2-8B C&H 6551% 67.72% 28.89% 28.76% 54.01% 53.11%
ImF  61.33% 67.09% 24.36% 2534% 51.49% 52.85%

IF 67.88% 69.14% 30.11% 29.25% 58.23% 54.05%
LLaMA3.2-8B-It C&H 67.72% 69.06% 2791% 28.40% 58.28% 54.85%
ImF  64.56% 63.93% 29.62% 28.52% 52.47% 49.52%

IF 68.59% 68.43% 30.11% 30.23% 54.42% 53.05%
Qwen2.B-7B C&H 67.72% 68.67% 30.35% 3097% 54.07% 52.75%
ImF  64.56% 68.43% 31.82% 3048% 49.64% 52.45%

IF 68.59% 69.14% 30.60% 29.99% 58.62% 54.69%
Qwen2.B-7B-1It C&H 6890% 69.69% 2644% 27191% 56.41% 56.41%
ImF  67.88% 68.75% 31.710% 29.87% 54.17% 54.25%

IF 62.90% 65.11% 20.69% 20.69% 52.59% 51.43%
Mistrual-7B-v0.1 ~ C&H  62.59% 65.11% 22.40% 23.75% 49.59% 51.27%
ImF  61.88% 6527% 17.75% 22.03% 50.76% 51.31%

IF 60.54% 66.61% 21.18% 25.09% 51.93% 51.93%
Amber-7B C&H 60.14% 66.46% 2191% 2534% 50.38% 51.58%
ImF  59.67% 66.14% 21.30% 23.99% 47.37% 50.97%

Table 5: The accuracy of the model on three benchmark datasets before and after the MVM attack, with combination
Mistrual-7B-v0.1 and Qwen2.5-7B

auxiliary Method LLaMA Qwen Mistrual ~ Amber

models 2-7B-hf 7B-chat-hf 3.1-8B  8B-It 25-7B  7B-It 7B-v0.l 7B
LLaMA32-1B IFser 66.7% 60.0%  66.7% 633% 667% 66.7% 667%  633%
+ C&Hsrr  66.7% 66.7%  70.0% 633% 733% 633% 667%  66.7%

Qwen2.5-1.5B  ImFsgr 66.7% 63.3% 60.0% 633% 66.7% 60.0%  63.3% 60.0%

Mistrual-7B IFskr 66.6% 66.6% 66.6% 66.6% 66.6% 66.6%  66.6% 66.6%
+ C&Hspr  66.7% 76.7% 733% 66.7% 176.7% 76.7%  83.3% 86.7%
Qwen2.5-7B ImFspr 86.7% 80.0% 933% 86.7% 90.0% 80.0%  80.0% 80.0%

Table 6: The SAR;, of MVM attack, when two auxiliary models are used the same fingerprint method to main
model, but not same fingerprint pairs. The auxiliary models combinations are (LLaMA3.2-1B + Qwen2.5-1.5B) and
(Mistrual-7B-v0.1 + Qwen2.5-7B).
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