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Abstract

While scaling laws provide a reliable methodology for predicting train loss across1

compute scales for a single data distribution, less is known about how to predict2

losses across distributions. In this paper, we derive a strategy for predicting one3

loss from another and apply it to predict across different pre-training datasets and4

from pre-training data to downstream task data. Our predictions extrapolate well5

even at 20x the FLOP budget used to fit the curves. More precisely, we find that6

there are simple shifted power law relationships between (1) the train losses of two7

models trained on two separate datasets when the models are paired by training8

compute, and (2) the train loss and the test loss on any downstream distribution for9

a single model. The results hold up for pre-training datasets that differ substantially10

(some are entirely code and others have no code at all) and across a variety of11

downstream tasks. Finally, we find that in some settings the shifted power law12

relationships can yield substantially more accurate predictions than extrapolating13

single-dataset scaling laws.14

1 Introduction15

Scaling laws [Kaplan et al., 2020, Hoffmann et al., 2022] have become a reliable tool for extrapolating16

model performance (as measured through, e.g., cross-entropy loss on held-out data), as well as a way17

to determine optimal model size given a FLOP budget [Llama 3 Team, 2024]. However, relatively18

little is known about how losses relate across different pretraining distributions, and from training19

data to downstream data. For example, how can a practitioner who fit a scaling law for a model20

trained on FineWeb estimate the model’s performance on a different pretraining corpus, such as21

SmolLM or on a downstream task such as MMLU? And how would changing the pre-training dataset22

to FineWeb-edu instead change the results?23

In this paper, we take a first pass at answering these questions. In particular, we observe two types24

consistent loss-to-loss relationships. First, when models that are trained on different training datasets25

are paired by training compute there is a shifted power law that relates the two losses. This has26

implications for the functional form of the scaling law as well as how this scaling law varies across27

datasets. Namely, the exponents and constants vary together in a structured way. Second, we consider28

train-to-test transfer where a model trained on one dataset is evaluated on a different dataset. Again,29

we find that a shifted power law is predictive (although with a slightly different shift). This is true30

both when evaluating transfer to validation loss on different pre-training datasets and when evaluating31

cross entropy loss on downstream tasks. These results have implications for data selection and32

understanding the predictable trends that underlie emergent behavior. Finally, for all these loss-to-loss33

relationships we find strongly predictive extrapolation to 20x the FLOP budget than was used to fit34

the curves.35
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Figure 1: (Left) Train-to-train prediction from FineWeb-edu to all 6 training sets. Each datapoint
represents a pair of models that are “joined” on model size N and dataset size D. Dashed lines
represent extrapolation and stars represent 3.3B models trained with 20x compute of the largest
dot that are not used to fit the curves. (Center) Train-to-test prediction from FineWeb-edu to all
6 validation sets. Each datapoint represents a single model and its “transfer” performance on the
val data. (Right) Train-to-test prediction from FineWeb-edu to four downstream tasks. Loss on
downstream tasks is the cross entropy loss of the correct answer to the multiple choice problem when
phrased as a cloze task.

2 Related work36

2.1 Scaling laws37

Standard approaches to scaling laws attempt to fit a curve to the optimal number of model parameters38

N and training tokens D to minimize the pre-training loss under a given budget of FLOPs [Hestness39

et al., 2017, Kaplan et al., 2020, Hoffmann et al., 2022, Porian et al., 2024, Abnar et al., 2021,40

Maloney et al., 2022, Bordelon et al., 2024].41

To fit these curves, it is useful to specify a parametric form of the loss in terms of N and D. Hoffmann42

et al. [2022] assumes this curve takes the following form:43

L(N,D) = E +
A

Nα
+

B

Dβ
(1)

This formula is inspired by classical upper bounds on a loss decomposition that attributes error to44

Bayes risk (entropy), approximation error (from having finite parameters), and estimation error (from45

having finite data) [Bottou and Bousquet, 2007].46

On the other hand Kaplan et al. [2020] instead assumes that:47

L(N,D) =

((
A

N

)α/β

+
B

D

)β

(2)

Below, we will advocate for a slightly different functional form that blends the two of these.48

Regardless of the functional form, scaling laws have been an integral part of the success of modern49

neural language models. Our work builds on the ideas originated in this line of work and extends50

them to consider how to translate scaling laws across data distributions.51

2.2 Scaling laws for transfer and downstream tasks52

Scaling laws for pre-training loss are useful as a proxy to guide pre-training, but we ultimately care53

about downstream task performance. Prior work attempting to tackle this issue has found that directly54

computing hard metrics like accuracy can lead to the appearance of emergent behaviors and suggests55

using softer metrics like cross entropy loss instead [Schaeffer et al., 2024a,b]. This is corroborated by56

Du et al. [2024] which notes that while downstream accuracy can vary smoothly with training loss57

at some points in the curve, the hardness of the accuracy metric means that no progress in accuracy58

above random chance will be observed until some “emergent” loss level.59
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On the other hand, [Gadre et al., 2024] claims that downstream accuracy can be predicted as a function60

of training loss with a similar exponential curve to the one we propose for predicting downstream loss.61

However, they only claim this is predictable when averaging over many tasks and carefully selecting62

which tasks to use. In this paper when considering downstream tasks we focus on single downstream63

tasks and find loss to be a more stable downstream metric than accuracy. A more detailed discussion64

of loss versus accuracy is in Appendix B.65

Another related line of work comes from the distributional robustness literature on “accuracy on the66

line” [Miller et al., 2021, Tripuraneni et al., 2021, Awadalla et al., 2022]. This phenomena focuses on67

the relationship between the accuracy of a single model across two closely related tasks, like different68

versions of imagenet, and finds that accuracy on one will predict accuracy on the other. We consider69

loss rather than accuracy, language modeling rather than vision, and find non-linear fits.70

Note, in this work we focus on zero shot transfer where there is no finetuning on the target task. Prior71

work on “transfer scaling laws” focuses instead on a finetuning setting [Hernandez et al., 2021, Abnar72

et al., 2021, Isik et al., 2024], which is interesting, but beyond the scope of this work.73

3 Setting74

3.1 Notation75

We are interested in studying transfer across different training distributions. To formalize this, we76

will two distributions: P0 and P1. We will consider P0 as the “source” and P1 as the target. The goal77

is to use a function of the loss on P0 to predict the loss on P1. As an example, P0 could be FineWeb78

and P1 could be Starcoder or Hellaswag. We use Li to indicate the loss calculated on distribution Pi79

(averaged per-token). If P1 represents a multiple choice task, we will let L1 be the loss of correct80

answer when the question is phrased as a cloze task (following [Schaeffer et al., 2024b, Madaan et al.,81

2024]) and let Err1 be the multiple choice error (i.e. 1 - accuracy).82

Given a pre-training distribution Pi, we let f̂N,D
i denote an N parameter model trained on D tokens83

sampled from Pi. Our results present comparisons across losses L0, L1 for models f̂N,D
0 , f̂N,D

1 when84

sweeping across different choices of P0, P1, as well as N,D.85

When we refer to a scaling law fit from Equation (3) on distribution Pi, we will append a subscript to86

the corresponding parameters. For example, the irreducible entropy of the scaling law fit on P0 is87

denoted by E0.88

3.2 Experimental methodology89

To facilitate our analysis, we pre-train models of varying size with varying flop budgets on 6 pre-90

training datasets: FineWeb [Penedo et al., 2024], FineWeb-edu [Penedo et al., 2024], Proof Pile 291

[Azerbayev et al., 2023, Computer, 2023, Paster et al., 2023], SlimPajama [Soboleva et al., 2023],92

SmolLM Corpus [Ben Allal et al., 2024], and Starcoder v1 [Li et al., 2023]. We train all models using93

OLMo [Groeneveld et al., 2024] and generally follow hyperparameter settings from Wortsman et al.94

[2023], Zhao et al. [2024]. Full hyperparameters can be found in Appendix F. Importantly, we use a95

linear warmup and cosine decay schedule for every run and only report the final performance [Porian96

et al., 2024].97

FLOP budgets for our sweep range from 2e17 to 4.84e19 and model sizes range from 20M to 1.7B.98

The optimal model at the largest FLOP budget is roughly 750M (it varies per dataset). The total99

grid contains 528 models, or 88 models per dataset. For our extrapolation experiments, we train 6100

larger models (one for each dataset) at a FLOP budget of 1e21 each of size 3.3B. Full scaling law fits101

illustrating all runs can be found in Appendix D and Appendix E.102

4 Predicting loss across datasets103

In this section, after a brief discussion of the functional form of scaling laws, we present the two104

main loss-to-loss relationships that we observe in this paper: train-to-train and train-to-test.105

4.1 Functional form of the scaling law106

There are two key differences between Equation (1) and Equation (2):107
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Figure 2: Train-to-train fits. Each point on the plot represents the final loss of two models: f̂N,D
0

which is trained on dataset 0 and f̂N,D
1 which is trained on dataset 1. The models are paired when

they use the same number of parameters N and tokens D.

1. Equation (1) includes the irreducible entropy of the training distribution108

2. Equation (2) potentially includes cross terms that depend on both N and D.109

In this work, we will incorporate both of these differences to create a third, slightly different functional110

form. This gives us the following form:111

L(N,D) = E +

((
A

N

)α/β

+
B

D

)β

(3)

Full fits of these scaling laws can be found in Appendix D and they generally fit the data well.112

4.2 Train-to-train prediction113

Our first main result is to observe a consistent scaling relationship between train losses across datasets.114

Explicitly, we find that by fitting just two parameters K and κ we can capture and extrapolate the115

scaling relationship between pairs of training losses as follows:116

L1(f̂
N,D
1 ) ≈ K ·

(
L0(f̂

N,D
0 )− E0

)κ
+ E1 (4)

Note, this is comparing different losses and different models, but the models are pairs since they117

each have N parameters trained on D tokens. Also, recall that E0, E1 are the irreducible errors from118

independent scaling law fits on P0 and P1 respectively. Finally, note that since we are only fitting a119

slope and exponent, each curve is linear on a shifted log-log scale. However, since we are plotting 6120

curves in one plot, each with different E1, we cannot display them all consistently log-log plot and121

opt for a linear scale. Results for fitting these curves can be seen in Figure 2.122

Implications. Train-to-train prediction mainly has implications into how the scaling laws relate to123

each other across pre-training datasets when we use the same model family and learning algorithms.124

For example:125

• When we change data distributions, β changes, but the ratio of exponents α/β remains con-126

stant. Moreover, the numerator constants A,B vary together as we change the distribution.127

• Equation (3) is the only formulation of the underlying scaling law that is compatible with128

the train-to-train fit given by Equation (4).129

We should also note that the exponents κ130
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Figure 3: Train-to-test fits. Each datapoint represents a single model trained on the dataset in the
subplot title and then evaluated on a different dataset as indicated by the color.

4.3 Train-to-test prediction131

Next, we want to go beyond the train loss and consider translating the train loss to a test loss for the132

same model under a different distribution. The133

L1(f̂
N,D
0 ) ≈ K ·

(
L0(f̂

N,D
0 )− E0

)κ
+ E1|0 (5)

Note, this is comparing different losses, but the same model. Further, note that we define E1|0 to be134

the irreducible error of L1 for the optimal function on P0 with infinite model and data sizes:135

E1|0 := L1(f
∗
0 ) (6)

We can estimate this quantity by fitting a scaling law to L1 under data from P0.136

Results in Figure 3 show prediction across validation sets from the pre-training distributions. Results137

in Figure 4 translate from train-to-downstream where we use downstream multiple choice questions.138

Following [Schaeffer et al., 2024b, Madaan et al., 2024], we evaluate the downstream tasks by the139

cross entropy loss on the correct answer when the question is phrased as a cloze task. Here we show140

results for Hellaswag [Zellers et al., 2019], ARC-Easy [Clark et al., 2018], and a subset of MMLU141

[Hendrycks et al., 2020], further results for ARC-Challenge, Openbook QA [Mihaylov et al., 2018],142

PIQA [Bisk et al., 2020], SciQ [Welbl et al., 2017], Winogrande [Sakaguchi et al., 2021], and the rest143

of MMLU are in Appendix C.144

Note that Kaplan et al. [2020] points out a similar trend to Figure 3 in Figure their Section 3.2.2,145

but they only consider transfer to wikipedia and books and assume the relationship to be linear. By146

considering a broader array of datasets, we are able to see a more nuanced picture of transfer.147

Implications. Train-to-test prediction has several implications:148

• The predictions across pre-training datasets indicate the importance of data selection. Even149

if we extrapolate the curves to their ends (where they reach the irreducible error), the loss on150

transfer datasets do not reach close to the actual irreduble error for the task, i.e. E1|0 does151

not approach E0.152

• Downstream loss is predictable and does not illustrate any sort of emergent properties.153

Tracking this downstream loss gives a smooth proxy to extrapolate performance on tasks of154

interest.155

• Some tasks have convex relationships (κ > 1) with pre-training loss where decreases in156

pre-training loss have diminishing returns, while others have concave relationships (κ < 1)157

where decreases in pre-training loss actually have increasing returns to transfer. Downstream158

tasks typically have concave relationships.159
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Figure 4: Train-to-test transfer for downstream tasks. On the test set we evaluate the CE loss of the
correct multiple choice answer as a cloze task.

5 Loss-to-loss prediction can outperform independent scaling laws160

Consider the following situation that a practitioner could encounter: after having fit a scaling law and161

performed a large run on one dataset, they want to know how training on a different dataset may yield162

different results. One could fit an independent scaling law on the new dataset, but that would not be163

leveraging the computation that has already been done. Instead, we can use loss-to-loss prediction.164

Explicitly, consider two pre-training distributions P0 and P1. Assume that we have fit a set of small165

models on each distribution, and we have just trained f̂ N̄,D̄
0 with large N̄, D̄. Then we compare the166

following procedures for estimating what would happen for f̂ N̄,D̄
1 on some loss L:167

• Independent scaling. We do not use any information from P0. We take the small models168

trained on P1 and their losses under L and fit a scaling law to extrapolate to N̄, D̄.169

• Loss-to-loss. We fit a translation between P0 and P1, this allows us to predict the pre-training170

loss of f̂ N̄,D̄
1 . Then if we want to predict a specific test loss L if we were to pre-train on P1,171

we compose this prediction with another translation from pre-training loss to test loss that is172

fit on the small models from P1.173

Results comparing relative error for predicting performance of the 3.3B models are presented in174

Table 1. We see clear gains of translation over independent scaling laws. For predicting pre-training175

loss these gains can be 8x reductions in error. When composing two separate translations to predict176

test loss, the gains are still 2x to 3x.177

Setting Independent error Loss-to-loss error (ours)

Train-to-train 5.00% 0.61%
Train-to-test 3.64% 1.17%
Train-to-downstrem 9.53% 5.02%

Table 1: Relative error of training loss predictions by extrapolating scaling laws versus translating
scaling laws. We average across all pairs of distinct pre-training datasets and all test and downstream
tasks. We observe substantial reductions in error from translation as compared to independent scaling.

Note: translation is using more data as input than independent scaling, since it has access to the large178

model pre-trained on P0. The benefit here is that there is no existing method to leverage this extra179

data as standard scaling laws cannot leverage information from training runs on different datasets.180

A full discussion of the paper is deferred to Appendix A due to space constraints.181
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A Discussion281

Here we discuss the implications of our findings, some limitations, and directions for future work.282

Implications283

• The train-to-train results imply a slightly modified functional form for scaling laws so that284

they remain valid scaling laws after passing through a shifted power law.285

• The train-to-train results illustrate the similarities in scaling laws across data and in how the286

laws vary in a structured manner.287

• The train-to-test results can inform dataset selection by providing clear predictions across a288

variety of downstream tasks.289

• Loss-to-loss translations provide a mechanism for using data from scaling law runs that are290

computed on different training distributions to yield better predictions.291

Limitations and disclaimers292

• Our fits rely on estimating the asymptotic entropy of various scaling laws. This is a293

fundamentally difficult quantity to estimate and we hypothesize that where our fits fail it is294

often due to poor estimates of this quantity.295

• Note that many of the train-to-test transfer cases seem to have noisier trends at high losses.296

It is not totally clear if this is pure noise or may be indicative that the power law trend does297

not hold as globally as we hypothesize.298

• We only test on a relatively small set of downstream tasks compared to all possible choices.299

We also focus on multiple choice tasks instead of generative tasks since they have been more300

extensively studied in prior work and have easier to compute proxy loss metrics.301

• Our results hold for our specific choices of hyperparameters and may not hold under some302

other choices. In particular, we would be interested in checking robustness to pre-training303

hyperparameters like sequence len, batch size, and learning rate.304

Future work305

• One exciting direction is to take the implications of the loss-to-loss relationships further so306

as to directly inform data mixing and filtering. Once we have reliable predictions, we can307

use those to inform choices about which data to train on.308

• We hope to gain a tighter theoretical understanding as to why the loss-to-loss relationships309

are so clean by studying simplified models.310

• Our results connect surprisingly disparate datasets. We are able to predict performance on311

code data from data that contains no code and visa-versa. It would be nice to have a better312

mechanistic understanding of how this works. It is possible that all the models converge313

to “features” that share some high level distributional properties (e.g. similar eigenvalue314

decay of the covariance). Or at a different level of granularity, it is possible that there the315

data is more similar than we think and there is a large enough amount of English in code316

and visa versa that losses are predictive. Or perhaps there are particular shared structures317

that emerge, e.g. in context learning.318
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B From loss to accuracy319

We focus on loss-to-loss prediction, but it of course would be interesting to be able to predict320

accuracy. Prior work [Schaeffer et al., 2024a,b, Du et al., 2024] indicates that predicting accuracy321

from loss can be difficult, and we generally agree. However, other work [Gadre et al., 2024] claims322

that downstream accuracy can be predictable in some cases and we want to consider here whether323

accuracy is predictable in our data with methods similar to those presented in the main text.324
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Figure 5: Fitting training loss to accuracy on the OLMo tasks individually (first 7 subplots), and then
in aggregate (bottom right).

In particular, [Gadre et al., 2024] specifically finds that when they select a subset of 17 particularly325

easy benchmarks (where performance is better than chance for small models), then they can get good326

predictions for the average accuracy by fitting shifted power laws with a methodology similar to the327

one that we use for loss-to-loss prediction (but where E1|0 is treated as a free parameter). We are328

able to reproduce a similar result on our suite of 7 tasks from OLMo, see Figure 5. The fits are fairly329

good for the aggregate, but it is clear that some of the fits (e.g. Hellaswag and ARC challenge) are330

systematically wrong. They end up overestimating the error because power law fits fundamentally331

cannot handle the fact that bad models will perform at random chance. The asymptotics of a power332

law mean that as L → ∞ we get Err → ∞, which is not possible. This is fundamentally related to333

the loss perspective on emergence [Du et al., 2024] where for multiple choice tasks there is some334

value of loss where the models start performing better than random chance. This is also perhaps335

even more clear for MMLU in Figure 6. In general, we would not expect this technique to work on336

individual tasks and especially not on more challenging tasks.337
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Figure 6: Fitting training loss to accuracy on MMLU splits.

For similar reasons, we also found it difficult to fit loss-to-error maps from the downstream CE338

loss to the classification error. For completeness, these results for the OLMo suite are included in339

Figure 7. One interesting thing about these curves is that now there is convergence across pre-training340

distributions where irrespective of the pre-training distribution there is a consistent relationship341
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between downstream CE loss and classification error. This does suggest that the CE error is a useful342

proxy since it mediates the pre-training-specific effects from the test accuracy.343
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Figure 7: Prediction from test loss to error also struggles, but does show unified trends across
pre-training distributions.
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C Full downstream loss relationships344
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Figure 8: Train-to-test predictions across all individual downstream tasks.

13



D Scaling law fits345

We follow the methodology from Hoffmann et al. [2022], Besiroglu et al. [2024] for fitting scaling346

law curves and illustrate fits for both Equation (3) and Equation (1).347
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Figure 9: Contour plots for the curves fit with Equation (3) (our version of the scaling law parameteri-
zation). Red line indicates the optimal model size. The star point is not used for fitting the curves.

Data A B E α β a

SmolLM Corpus 7.00e+07 9.68e+08 1.57 0.43 0.48 0.53
FineWeb-Edu 5.96e+07 8.20e+08 2.00 0.43 0.48 0.53
SlimPajama 6.33e+07 8.97e+08 2.02 0.42 0.47 0.53

FineWeb 6.41e+07 8.84e+08 2.19 0.41 0.47 0.53
ProofPile 2 1.94e+07 3.09e+08 1.35 0.47 0.50 0.51
StarCoder 2.09e+07 3.49e+08 0.89 0.49 0.52 0.51

Table 2: Parameters for the curves fit with Equation (3) (our version of the scaling law parameteriza-
tion). a = β

α+β is the exponent of the optimal model size relative to FLOPs.

Data A B E α β a

SmolLM Corpus 3.02e+03 1.19e+04 1.59 0.46 0.47 0.51
FineWeb-Edu 2.83e+03 1.17e+04 2.03 0.46 0.47 0.51
SlimPajama 2.34e+03 1.16e+04 2.04 0.45 0.47 0.51

FineWeb 1.83e+03 5.32e+03 2.17 0.43 0.43 0.50
ProofPile 2 3.52e+03 5.31e+03 1.33 0.50 0.45 0.48
StarCoder 8.38e+03 1.01e+04 0.89 0.55 0.48 0.47

Table 3: Parameters for the curves fit with Equation (1) (the chinchilla version of the scaling law
parameterization). a = β

α+β is the exponent of the optimal model size relative to FLOPs.
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Figure 10: Contour plots for the curves fit with Equation (1) (the chinchilla version of the scaling law
parameterization). Red line indicates the optimal model size. The star point is not used for fitting the
curves.
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E Iso-flop scaling laws348
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Figure 11: Iso-flop scaling laws across all pre-training datasets. optimal FLOP exponents are within
the margin of error across all datasets. Error bars derived by the noise-and-interpolate method of
Porian et al. [2024] with heuristic variance added to the loss values as in that paper.
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F Hyperparameters349

Table 4: Model parameters [Groeneveld et al., 2024, Wortsman et al., 2023, Zhao et al., 2024]

Parameter Value

n 6-24 for small models, 40 for the 3.3B model
Number of heads n
Head dimension 64
MLP hidden multiplier 4
Depth n
Context length 512
Activation GeLU
Positional encoding RoPE
Biases False
Normalization PyTorch Layernorm
QK normalization True
Precision Mixed, bfloat16
Tokenizer Llama2

Table 5: Training parameters [Groeneveld et al., 2024, Wortsman et al., 2023, Zhao et al., 2024]

Parameter Value

Optimizer Adam
Batch size 1024
Learning rate 1e-3
Schedule Linear warmup, cosine decay
Warmup steps 20% of total steps
z-loss coefficient 1e-4
Weight decay 0.0
β1 0.9
β2 0.95
ϵ 1e-15

G Full loss-to-loss parameter fits from Figure 1350

Table 6: Train-to-train fits

Data 0 Data 1 κ K E0 E1

FineWeb-Edu FineWeb 0.93 1.08 2.03 2.17
FineWeb-Edu FineWeb-Edu 1.00 1.00 2.03 2.03
FineWeb-Edu ProofPile 2 1.02 0.63 2.03 1.33
FineWeb-Edu SlimPajama 0.98 1.04 2.03 2.04
FineWeb-Edu SmolLM Corpus 1.00 1.08 2.03 1.59
FineWeb-Edu StarCoder 1.11 0.63 2.03 0.89
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Table 7: Train-to-test fits

Train data Test data κ K E0 E1|0
FineWeb-Edu FineWeb 0.96 1.02 2.03 2.42
FineWeb-Edu FineWeb-Edu 1.00 1.00 2.03 2.03
FineWeb-Edu ProofPile 2 1.44 1.37 2.03 4.12
FineWeb-Edu SlimPajama 1.08 1.05 2.03 2.57
FineWeb-Edu SmolLM Corpus 1.08 1.11 2.03 2.25
FineWeb-Edu StarCoder 1.32 1.49 2.03 2.91

Table 8: Train-to-downstream fits

Train data Test data κ K E0 E1|0
FineWeb-Edu Hellaswag 1.08 0.93 2.03 2.18
FineWeb-Edu ARC-Easy 0.33 4.85 2.03 0.00
FineWeb-Edu MMLU-Humanities 0.87 1.23 2.03 2.76
FineWeb-Edu MMLU-STEM 0.54 2.24 2.03 1.59
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