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ABSTRACT

With the rapid advancement of text-conditioned Video Generation Models
(VGMs), the quality of generated videos has significantly improved, bringing
these models closer to functioning as “world simulators” and making real-world-
level video generation more accessible and cost-effective. However, the generated
videos often contain factual inaccuracies and lack understanding of fundamental
physical laws. While some previous studies have highlighted this issue in limited
domains through manual analysis, a comprehensive solution has not yet been es-
tablished, primarily due to the absence of a generalized, automated approach for
modeling and assessing the causal reasoning of these models across diverse sce-
narios. To address this gap, we propose an automated framework for modeling,
evaluating, and measuring the causal understanding of VGMs in real-world sce-
narios. By combining causal analysis techniques with a carefully designed large
language model assistant, our system can assess the causal behavior of models
in various contexts without human annotation, which offers strong generalization
and scalability. Additionally, we introduce multi-level causal evaluation metrics
to provide a detailed analysis of the causal performance of VGMs. As a demon-
stration, we use our framework to benchmark several prevailing VGMs, offering
insight into their causal reasoning capabilities. Our work lays the foundation for
systematically addressing the causal understanding deficiencies in VGMs and con-
tributes to advancing their reliability and real-world applicability.

1 INTRODUCTION

Figure 1: Videos generated by OpenAI Sora, shown as frames. The text prompt of the Above is: a
stone is thrown into a swimming pool; Below is: a feather is thrown into a swimming pool. Both the
generations show noticeable splashes, which is correct for the above (stone) scene but incorrect for
the below (feather) scene.

With the rapid development of Video Generation Models (VGMs), generated videos are becoming
increasingly indistinguishable from real recordings. VGMs, particularly text-to-video (T2V) mod-
els1, are expected to serve as “world models” or “world simulators”, allowing users to generate
scenes from text descriptions of real-world events or environments. This approach is cheaper, faster,
and more scalable than arranging and recording real-world scenes and is expected to benefit fields
like robotics, autonomous driving, and video understanding.

1In this paper, the term VGM is referred specifically to T2V models. Text-conditioned generation is the
most versatile and user-friendly method in world simulation, whereas image-conditioned models can enable
T2V generation by combining with a text-to-image model.
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However, the “hallucination” problem hinders the progress, which refers to a generation that seems
correct but contains factual errors or fabrications. While VGMs have made significant strides in
video quality—such as clarity, dynamic range, and continuity—they still struggle with issues like
cause-and-effect confusion, detail errors, and incorrect object relationships, making the videos ap-
pear misleading upon closer inspection.

In Figure 1, OpenAI Sora (OpenAI, 2024b) is required to generate videos for two scenarios: “a
stone is thrown into a swimming pool” and “a feather is thrown into a swimming pool”. In both
cases, an obvious splash and ripples occur around the object. While in the stone scenario the splash
is accurate, the feather scenario fails to follow the correct physics principles, as the feather is too
light to create a noticeable splash or ripples in reality. Here, the model seems to learn a spurious
correlation between “object hitting water” and “splash”, without understanding the actual causal
factors, such as mass and velocity. We provide similar results with other VGMs in Appendix A.

Although some work has acknowledged the hallucination problem in VGMs and proposed pre-
liminary benchmarks to identify commonsense violations (Bansal et al., 2024; Meng et al., 2024),
most of them rely on manual rule design and focus on limited fields. However, real-world causal
relationships are highly complex, with different scenarios involving different physical laws. Fur-
thermore, even a simple scenario can involve various causal relationships. For instance, in the case
of “two objects collision”, dynamics might focus on mass, velocity, and elasticity to determine the
object motion after collision, while material properties like hardness or brittleness might determine
whether the objects deform or break. More complex relationships, like sparks from a flint or splashes
from wet objects, further highlight this complexity, making it difficult to systematically address the
hallucination problem through manual labeling.

To address this challenge, we propose an automatic method for identifying causal rules in specific
scenarios and evaluating models’ causal understanding. Our process, utilizing an LLM, generates
possible causal rules (referred to as the causal system) for a given scenario. Intervention experi-
ments (Pearl, 2009) are then used to assess causal behaviors in VGMs by varying the text prompts
with different factor values. For example, as shown in Figure 1, replacing a heavy stone with a light
feather revealed that the VGM had not correctly learned the causal rules related to density.

To analyze causal learning in VGMs, we define three levels of consistency: text consistency, gener-
ation consistency and rule consistency. These metrics assess the model’s ability to follow explicit
causes (and results), maintain consistent generation under the same conditions, and learn correct
causal rules, with progressively higher levels of difficulty.

In summary, we introduce the Video Automatic Causal Testing (VACT) system, which requires no
human annotation, scoring, or intervention. To our knowledge, this is the first approach to auto-
matically apply causal analysis tools for testing causal understanding in VGMs. It is scalable,
generalizable, and can be applied across various fields without additional manual effort, while also
providing a detailed causal analysis of model behavior. To validate its effectiveness and generaliz-
ability, we conducted crowd experiments, where 60 causal systems under 20 different scenarios by
our system (involving various scenarios such as motion, force, light, heat, fluid, material, etc.) are
compared to human annotation, showing that automatic annotations achieve comparable (and even
better) performance with human annotation. We also use these 60 systems to construct a benchmark
to assess current video generation models, revealing that no existing model achieves satisfactory
causal learning. This system offers a powerful tool to enhance our understanding of VGM relia-
bility and lays the groundwork for a systematic solution to the hallucination problem, like dataset
supplementation or alignment by reinforcement learning.

2 RELATED WORK

Text-to-Video(T2V) generation models. T2V models generate videos from textual descriptions.
Early methods using generative adversarial networks (GANs)(Wang et al., 2020) and variational
autoencoders (VAEs)(Li et al., 2018; Pan et al., 2017) faced limitations like low resolution and
diversity. Starting with Video Diffusion Models (Ho et al., 2022), recent advances in diffusion
models have significantly improved T2V generation. CogVideo (Hong et al., 2022) combines a
pre-trained text-to-image model with a text-to-video framework, facilitating more effective learning.
LaVie (Wang et al., 2024) enhances video quality with interpolation and super-resolution techniques.
VideoCrafter2 (Chen et al., 2024) leverages Diffusion Transformers(DiT) (Peebles & Xie, 2023) to
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synthesize high-quality videos by refining generated sequences with high-resolution images. Models
like Gen-3 Alpha (Esser et al., 2023), HunyuanVideo (Tencent, 2025), and Sora (OpenAI, 2024b)
further push the boundaries with advanced architectures and processing techniques. Comprehensive
reviews on these developments are available in Xing et al. (2024) and Sun et al. (2024).

Evaluation for video generation models. The rapid advancement of VGMs has underscored the
need for accurate quality evaluation. Traditional metrics like IS (Salimans et al., 2016), FVD (Un-
terthiner et al., 2019), and CLIP (Hessel et al., 2022; Liu et al., 2023) assess only limited aspects
like frame quality, and often fail to align with human judgment. To address this, benchmarks like
V-Bench (Huang et al., 2024) and EvalCrafter (Liu et al., 2024) provide more comprehensive evalua-
tions, considering factors like subject consistency, spatial relationships, and action continuity. How-
ever, these metrics still focus on visual quality while overlooking the logical coherence of events
and scenes in videos.

Evaluation for world simulators. As video quality further improves and the concept of a “world
simulator” becomes an expectation, the focus has shifted from aesthetics to authenticity — ensuring
generated content follows real-world physics rules. Recent benchmarks including VideoPhy (Bansal
et al., 2024) and PhyGenBench (Meng et al., 2024) have made initial attempts to address this. Video-
Phy uses human annotations to verify commonsense violations, making it labor-intensive and diffi-
cult to generalize. Their attempts to fine-tune a vision-text model for automatic ranking have yet to
align well with human assessments, limiting its scalability. PhyGenBench (Meng et al., 2024) tests
on 27 human-designed physics laws, using LLM-generated questions to check rule fidelity in videos
by a video language model. Our work further expands this series of work in two aspects: 1) Full au-
tomation: our approach eliminates manual rule design, allowing physical rules to be automatically
inferred from a short textual descriptions, enhancing scalability. 2) Causal evaluation: We intro-
duce intervention experiments to test whether models truly understand physics rather than relying
on shortcuts, ensuring a more robust assessment. Additionally, other works like Kang et al. (2024)
explore 2D physics simulation in VGMs, while WorldSimBench(Qin et al., 2024) assesses world
simulators from an embodied perspective. These works, along with ours, collectively contribute to
a multi-faceted understanding of world simulators,

3 VACT: THE PIPELINE OF AUTOMATIC CAUSAL RULE TESTING

3.1 SCENARIO-BASED CAUSAL RULE TESTING

Our tests begin with scenarios, short text descriptions of a event, such as “something is thrown
into a swimming pool” (Figure 1). Each scenario involves variables representing object or event
properties, linked by causal relationships modeled using a causal graph and a causal system.

Definition 1 (Causal graph and system (Pearl, 2009)). A deterministic causal system over a set of
variables V is a directed acyclic graph G with node set V and edge set E, and a series of structural
equations Vj = fj(pa(Vj)) for every Vj ∈ V, where pa(Vj) = {Vk ∈ V : Vk → Vj ∈ E}.
Furthermore, let X = {Vj ∈ V : pa(Vj) = ∅} be the root (cause) variables and Y = V \X be the
non-root (outcome) variables.

High 
Density

Large 
Size

High 
Speed

Object
Sink

Obvious
Splash

Water
Sparkling

Rules for each non-root node:
Object Sink = High Density,
Water Sparkling = Obvious Splash,
Obvious Splash = (High Density ∧

Large Size ∧ High Speed)

Figure 2: An example causal
graph and system: “throw-
ing something into a swim-
ming pool”. Blue denotes
root nodes and orange denotes
non-root nodes.

We provide an example in Figure 2. The system describes some
physics commonsense that density affects whether the object will
sink and speed, size and density affect the splash. Directed edges in
the graph represent causal relationships between variables, like the
edge “high density” → “object sink” indicating causation while no
causal effect existing between “large size” and “object sink”, as a
dense object will sink regardless of its size. The basic unit of our
VACT is a causal system, consists of these rules. One scenario may
generate different test cases depending on the selected factors.

For clarity, all variables in our system are Boolean, meaning the
rules are Boolean functions. This simplification reasonably ab-
stracts physical relationships, avoiding complex calculations while
preserving essential causal structures. Continuous properties, such
as speed or mass, can be binarized (e.g., “fast” vs. “slow” or “light”
vs. “heavy”), as we often make judgments using such discrete cat-
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Answer Retrieve

Input: scenario

Factor Analysis

Causal Graph
density speed

splash

Self-check

Rule-based check & Self-check

Causal System
“splash = speed ∧ density”

Rule-based check & Self-check

Reasoning LLM

Causal System

Value Sample
#(den = True, spd = True) = 7 …

Prompt Generation
TT: [“A stone is thrown rapidly …”,]
TF: …, FT: … , FF: …

T2V Generation
Pyramid

Videos

Videos & Probes 

Probe questions
“Is the object at high speed?”

LLM

Output: scores
Level 1: text consistency

Level 2: generation consistency

Level 3: rule consistencyLLM

VLLM

Figure 3: Pipeline of VACT
egories in daily life. Additionally, variables must be visually discernible2 (visibility) to ensure suit-
ability for video evaluation, and all root nodes can be independently sampled. If a video generation
model learns the physical laws of a scenario, it should have learned the rule f . Thus, by analyz-
ing variable states in generated videos under different conditions, we can assess whether the model
understands the underlying law.

3.2 LLM-AIDED AUTOMATIC GENERATION OF THE TEST CASES

As discussed in Section 1, extracting key causal rules from a scenario is challenging due to its
complexity and diversity, requiring creativity (to imagine alternative scenarios) and commonsense
(to identify common causal patterns). Fortunately, the advanced commonsense reasoning of LLMs
enables automation of this task. We designed a multi-step annotation process using LLMs. As
shown in Figure 3 (yellow part), the system takes a scenario (a short text description) as input and
prompts the LLM to: (1) analyze key causal factors, (2) construct a causal graph linking variables
and outcomes, and (3) derive Boolean expressions representing these relationships. The final test
case consists of the expression with the scenario. We designed self-checking and external checking
for these steps, leveraging the LLM’s self-correction ability to improve result reliability. For detailed
generation requirements, inspection indicators and the full process, see Appendix B.

Table 1: Scores from crowd experiments
Source Requirement Rationality Soundness Average

LLM 3.91±0.02 3.49±0.04 3.78±0.03 3.73±0.02

Human 3.80±0.03 3.51±0.04 3.63±0.04 3.65±0.03

Crowd experiments. We evaluate the ef-
fectiveness of the automatic generation by
crowd experiments. We collected 20 di-
verse scenarios (listed in Appendix C) and
generated three causal systems for each.
For comparison, three undergraduates manually annotated the same scenarios using identical in-
structions given to the LLM, resulting in another 60 causal systems. Another five undergraduates
then blindly scored both human and LLM annotations based on three criteria: requirement (adher-
ence to visibility, binarity and root-independence), rationality (reasonableness of factor selection),
and soundness (accuracy of causal rules). As shown in Table 1, LLM-generated annotations surpris-
ingly outperformed those from human, demonstrating the effectiveness of the LLM-driven process
and its strong alignment with human reasoning. For further details and analysis, see Appendix D.

3.3 AUTOMATIC INTERVENTION EXPERIMENT PIPELINE

Given a causal system, our testing as an intervention experiment contains five parts: sampling,
prompt generation, video generation, answer retrieval, and evaluation, as shown in Figure 3. Details
of these steps can be found in Appendix E.
Sampling. We sample various combinations of root values X for intervention experiments. The
number of samples per X value is determined by the metrics outlined in Section 4 and detailed in
Appendix F.4. In our experiments, we collected approximately 30 - 45 samples per causal system.
Prompt generation. Given X values, we use an LLM to generate sentences to constrain the scenario
accordingly. For example, in the scenario “throwing something into a swimming pool”, the prompt
“a large rock was thrown quickly into the pool” sets three root variables: high density, large size,
and high speed to true, while “a tiny stone is gently placed on the water” alert large size and high
speed to false. These sentences serve as text prompts for video generation.
Video generation. The prompts generated are provided to the tested VGM. These models are treated
as black boxes, requiring no constraints on their structure.

2The visualization here is a relative requirement. For example, although density is essentially invisible, we
can infer the density of an object through its visible material.
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Answer retrieval. Each generated video serves as an observation of the intervention experiments
for the causal system. We check (1) whether it follows the text description of variable values X and
(2) whether the generated values Y align with the causal rules. Following Meng et al. (2024), we
use a vision-LLM (VLLM) to retrieve the observed values X̂ and Ŷ by prompting the VLLM with
“yes-no” questions (i.e., probes, generated alongside the causal system).

We adopt an LLM and an Video-LLM to automate the steps prompt generation and Answer retrieval.
To ensure the correctness, we performed random manual checks. We found that the vast majority of
the results are reliable. The detailed analysis and check results are shown in Appendix G.

4 THREE LEVELS OF CAUSAL ABILITY AND THE CORRESPONDING METRICS

To assess the deviation of the model’s understanding of the objective world, we propose a three-level
framework of causal capabilities with corresponding evaluation metrics. The detailed mathematical
definitions are provided in Appendix F. Here, we focus on an intuitive description of them.

Text consistency. The first level assesses whether the model accurately reflects the state of every
variable described in the prompt. By generating a video from a detailed prompt specifying certain
variable values, the resulting video should correctly reflect those values. This ensures the model
faithfully interprets input text—a fundamental requirement for our intervention experiments, where
we need to control video variables through text. We use two types of prompts: “root” specifies all
root variables X and “all” specifies all variables V. For each setting, the metric is measured by the
average accuracy of whether observed values match the described ones.

Generation consistency. The second level evaluates whether the model stably produces the same
outcomes given identical causes X, or if its outcomes vary arbitrarily due to unrelated factors like
random seed or wording differences. To measure this, we group samples by identical X values, and
calculate the mean variance of outcomes Yi within each group. To address errors from imperfect
text consistency, we use two scoring criteria: Groundtruth-based grouping (X) evaluates end-to-
end consistency, while observation-based grouping (X̂) ignores condition generation errors. As text
consistency improves, both scores should converge.

Rule consistency. The third level, our main long-term goal, tests the model’s ability to learn and
apply causal rules consistent with the real world. For sampled videos S, the rule consistency is
calculated as the average of a score m(Y(s), Ŷ(s)). We use the average accuracy among variables
Y:

∑
Yi∈Y 1(Yi = Ŷi)/|Y|, and threshold 0-1 score 1{mean(1(Yi = Ŷi)) ≥ t}) as the score m.

We also distinguish two scores, one using the groundtruth pa(Yi) and another using the observed
p̂a(Yi) to get the expected Yi = f(pa(Yi)) where the latter excluding errors from unexpected causes.

These metrics can be also applied to individual videos, convenient to identify specific instances
where the model’s performance deviates, providing insights into its learning mechanisms. See Ap-
pendix F for detailed definitions and some analysis in Appendix I.2.

5 A BENCHMARK OF CAUSAL RULE TESTING

In this section, we use the collected 60 causal systems from 20 different scenarios (see Section 3.2) as
a testbed to evaluate causal learning of prevailing VGMs. We found that these models occasionally
generate videos that are off-topic or with missing subjects and confusing logic. So we allowed the
VLLM to answer “N/A” (in addition to yes/no) during answer retrieval, filtering out all observations
marked as “N/A” across all metrics. Here, rule consistency is calculated as the average accuracy
score. For details on the models, costs, the impact of N/A, sample efficiency, and threshold-based
rule consistency, see Appendix H.1 to H.5.

Table 2 shows our benchmarking results on some prevailing open- or closed-source models. We
observed that all the existing models did not perform satisfactorily, with only minor differences
between them. Specifically:

Text consistency: The accuracy ranged from 55-65%, with random guessing at 50%, indicating
that models struggle to generate variables accurately based on the provided text, for both causal
and outcome variables (no significant difference between all and root). While text fidelity has im-
proved (Sun et al., 2024), our tests require handling multiple variables simultaneously. Additionally,
some values correspond to less common scenarios (like feather instead of stone into water). The

5
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Table 2: VACT benchmark on prevailing VGMs.

Model Names N/A ratio Text Consistency ↑ Generation Consistency ↓ Rule Consistency ↑
all root truth observe truth observe

CogVideoX1.5-5B .07 .56±.01 .61±.01 .10±.00 .09±.01 .55±.01 .72±.02

CogVideoX-5B .07 .58±.01 .64±.02 .09±.00 .09±.01 .56±.01 .71±.03

CogVideoX-2B .09 .56±.01 .63±.01 .09±.01 .09±.01 .59±.02 .72±.03

VideoCrafter2 .12 .55±.01 .58±.02 .08±.01 .06±.01 .53±.02 .73±.03

Pyramid Flow .10 .56±.01 .61±.02 .07±.00 .06±.01 .56±.01 .72±.03

HunyuanVideo .07 .58±.01 .63±.01 .08±.01 .07±.01 .57±.01 .70±.02

Pika .10 .57±.01 .60±.01 .09±.00 .08±.01 .56±.01 .76±.02

Hailuo .07 .59±.01 .64±.01 .10±.00 .08±.01 .59±.01 .73±.02

Gen-3 Alpha .06 .63±.01 .63±.01 .08±.00 .08±.01 .57±.01 .74±.02

Kling .07 .63±.01 .64±.01 .07±.00 .07±.01 .57±.02 .71±.02

low score here highlights the models’ difficulty in handling less common, variable-replacement
situations, implying that models are strongly limited to the common situations and cannot easily
generalize to combine independent variables in scenarios.

Generation consistency: Roughly estimated, with a two-point distribution variance of p(1 − p),
a value around 0.1 corresponds to a 10% deviation rate, indicating that the model has learned a
relative stable “rule” of outcomes, that is, producing relatively consistent outcomes for the same X.
However, this stability is not necessarily a positive sign. When considering both level 1 and level 2
results, despite around 40% of root variables being generated incorrectly, the truth and observation
scores for metric 2 are very close. This suggests that the model’s stability reflects a “degenerative”
rule, where models often generate a fixed outcome Y ignoring variations in X (like a constant
function). Just as shown in Figure 1, any object entering water always generates a splash. We also
confirmed it through manual inspection, see I.1.

Rule consistency: Finally, we directly assess the correctness of the rules learned by the models. The
results align with our previous analysis: the model’s average rule accuracy is below 60% for the truth
and only around 70% for observation, with random guessing corresponding to 50%. Further analysis
with the threshold scores provided in the Appendix H.5 shows that fewer than 20% of the rules
match the groundtruth in 95% of the samples, while nearly 30% of the rules have an accuracy below
65%. These findings clearly indicate that the models have not correctly understood the relationship
between outcomes and causes (or parents), revealing weak rule learning of the current models.

We also benchmark some models using the human-annotated causal systems, obtaining similar re-
sults (shown in Appendix H.6). This serves an evidence for both the effectiveness of our automatic
annotation and the validity of our benchmark conclusions.

6 CONCLUSION & LIMITATION

In this paper, we propose an automated system for modeling causal relationships in scenarios and
evaluating the causal behavior of VGMs. By combining LLM’s commonsense understanding with
intervention experiments, our automatic system can assess the causal learning in VGMs across di-
verse domains, scenarios, and rules. We validated its effectiveness through crowd experiments and
manual checks. We introduced three progressive causal metrics to comprehensively analyze the
model’s causal behavior. Using this system, we created a benchmark and identified key causal flaws
in existing models. As a long-term target, this work lays the foundation for large-scale detection of
shortcut or biased learning, supplement comprehensive training datasets, or reinforcement learning.

However, we acknowledge several limitations in our current work. First, although the LLMs can
generate high-quality testbeds, occasional errors may still occur. For scenarios requiring extremely
high quality assurance, human assistance is still recommended. Second, our causal system con-
struction involves certain simplifications, such as focusing only on visualized factors and binarizing
variables, which may need refinement for more complex scenarios, such as extending binarization
to multiple discrete levels. This remains our future work. Lastly, our evaluation assumes that model
generate high-quality videos but some models still struggle with text understanding and coherent
video generation, hindering the analysis of their causal behavior. We view our system as a forward-
looking tool, believing that as video generation models rapidly improve, causal behavior analysis
will become more critical.
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A THE “STONE” AND “FEATHER” EXAMPLE FOR OTHER MODELS

In Figure 1, we demonstrate that OpenAI’s Sora (OpenAI, 2024b) fails to distinguish between the
different effects of a stone and a feather falling into water. This is not an isolated case of Sora.
In figure 4, we show the generation of CogVideoX-2 (Hong et al., 2022) and Runway Gen-3 Al-
pha (Runway, 2024), showing that this spurious correlation is a common phenomenon that may
exist in various models. These models seem to “directly” substitute the stone with the feather, with-
out understanding the significant differences in the outcomes.

(a) OpenAI Sora Generation

(b) CogVideoX-2 Generation

(c) Gen-3 Alpha Generation

Figure 4: Videos generated by (a) OpenAI Sora, (b) CogVideoX-2 and (c) Gen-3 Alpha, shown as
frames. For each model, the text prompt of the Above is: a stone is thrown into a swimming pool;
Below is: a feather is thrown into a swimming pool. Both generation show noticeable splashes,
which is correct for the above (stone) scene but incorrect for the below (feather) scene.

On the one hand, this spurious correlation, we believe, comes from the distribution of the data
set. We found that videos of stones being thrown into water are abundant online, while videos of
feathers being thrown into water are significantly less common. As supporting evidence, a search
for “thrown stone into water video” returns approximately 180,000,000 results, while replacing
“stone” with “feather” reduces the results to around 31,000,000. This data bias means that the
model may have seen enough scenes of stones entering the water during training but not enough
scenes of feathers doing the same. Additionally, this issue stems from the widespread overfitting
of current VGM models, which causes them to rely heavily on common data in the dataset without
fully understanding the underlying rules of the scene; in contrast, the current LLM like GPT-4o can
more effectively grasp the different outcomes caused by various objects falling into the water. In this
case, the language model can distinguish that feathers falling into the water will not cause splashes.

B DETAILS OF AUTOMATIC GENERATION OF CAUSAL SYSTEMS

B.1 DETAILS OF GENERATING PROCESS

We use the official API of OpenAI o1 model (o1-2024-12-17) (OpenAI, 2024a) to generate the
causal systems. The three tasks are divided and prompted sequentially, with the LLM completing
them through multiple rounds of dialogue. Throughout this process, the entire dialogue history
is retained within the context window. The model will proceed to the next task either once the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

maximum number of attempts is reached or when the external checks are passed and the LLM
retains its answer after a self-check.

We require that the generated content for each step includes a file containing specific information,
where:

• Factor analysis: a json file as a list of dictionary containing:

– “type”: choices from “factor” or “result”.
– “name”: the name of the factor or result variable. They could be some words or a

short sentence that can summarize the key meaning.
– “explanation”: A short explanation about how the factor or result can affect the

scenario and why the variable is visible, binary and important.

• Causal Graph: a dot file that constructs a digraph, which first declares each factor as a
node, then declares some directed edges between nodes.

• Causal System: a json file as a list of dictionary containing:

– “scenario”: a string describing the event,
– “roots”: a list of strings, each of which is a name of cause variable,
– “non roots”: a list of strings, each of which is a name of outcome variable,
– “rules”: a dictionary where each outcome variable corresponds to a Boolean func-

tion of its parents in the causal graph. The boolean function should be expressed as a
disjunctive normal form (DNF), where each conjunctive clause are expressed as a dic-
tionary (A∧B∧¬C expressed as {’A’: True, ’B’: True, ’C’: False}.
And the DNF is expressed as a list of the dictionary-expressed conjunctive clause.

The complete generation process consumes roughly 20k reading tokens (10k cached) and 10k pre-
diction tokens, costing about $0.74 per causal system. This is approximately one-third the cost of
manual labeling, which is 15 CNY per annotation.

B.2 REQUIREMENT: RULE-BASED & SELF CORRECTION

We have specific requirements for both the internal results and the final output causal systems. The
detailed requirements can be found in the prompt in Appendix B.3. To ensure these requirements
are met as thoroughly as possible, we have designed a check-and-correction loop.

Except for the first step “factor analysis”, we use both the rule-based check and self-check for the
answer generated by LLM. For the “causal graph”, we check the following requirements by a Python
program:

• whether the generated answer consists of a legal dot file,

• whether the graph is a DAG,

• whether there is an isolated node in the graph.

For the “causal system”, we check that

• whether the returned rules keep the legal format, that is, it is a json file, with the correct keys
(roots, non-roots, rules) and all values are in the correct format. Especially for the rules, we
define a standard format to use a python list of dictionary to represent a disjunctive normal
(DNF). We check whether the generated answer is a legal DNF.

• whether the rules leads to the same causal graph generated in the “causal graph” step,

• whether all the non-root nodes have exact one DNF and the root nodes do not have their
DNF.

If any requirement has not been met, an error message will be the feedback to the LLM with the full
history, and the LLM is required to regenerate its answer given the error message and the history
information.

10
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If the rule-based check has passed, we prompt the LLM to further check its answer by itself. The
self-check prompts repeat the requirement in a more detailed way. These prompts are shown in
Appendix B.3.

Although the current reasoning models like OpenAI o1 has learned to self-check during its thinking
steps, we find the explicit self-check prompt can further help to improve the performance. For
example, when asked to identify key factors in the scenario “Knife slicing through (butter)”, o1
initially identifies “Butter is cold and firm”, where, while accurate, the temperature is not easily
visible in the video. After a self-check process, o1 revises its answer to “Butter is in block form”, a
factor that can be more easily identified in the video. We believe that it could be because in this step,
an LLM can think in more detail about whether the answer satisfies the condition without having to
take into account the generation task at the same time.

Considering that we have adopted a step-by-step strategy, we also allow the model to regret the
previous answer in the subsequent steps. For example, when generating causal rules, if the model
finds that the previous causal graph is unreasonable during the process, we allow the model to
generate <regenerate graph> to go back to the previous step. While this situation is rare, we
have found that it effectively reduces the likelihood of the model producing low-quality answers.

We allow the model to generate <keep answer> after self-checking. If this occurs, we skip the
subsequent checking steps. We found that after a total of three checks, most conditions are met, and
the model is typically satisfied with its answer, generating <keep answer>.

B.3 PROMPTS

In this section, we provide all of the prompts we use to facilitate the LLM to generate causal systems.

Prompt for Identifying Key Factors in a Scenario:

You will be provided with a brief description of a scenario. There could be some physical phe-
nonmenon in this scenario. Please identify some **important** and **common** potential
factors whose changes could significantly influence some important outcome of the scenario.
These factors can fall into one of the following categories:

1. The objects or their properties in the scenario.

2. The object in the environment or the properties of the environment.

3. The actions or some properties of the action.

For each factor, ensure that it meets the following criteria:

1. It should be **visible** and easily recognizable in a video.

2. It should be **binary**, meaning it can be clearly labeled as either “yes” or “no”, rather
than a continuous value.

3. It should be **independent**, not dependent on other factors.

4. Its effect on the outcome should be **deterministic** (i.e., it directly leads to a certain
result, rather than just increasing or decreasing the probability).

5. The resulting effect should also be **visible** in a video.

If there is a pair bracket in the description, it means the content in the bracket is expected to
be a variable (factors or outcome). For example, “A (large) stone is thrown into a swimming
pool (and splash water).” means we expect “does the water splash” as one of the outcome and
whether the stone is large enough is expected as one of “factors”. But notice that it does not
mean that other factors or outcomes are not allowed, you can also propose other factors or
outcomes.

Please organize your answer as a **json** file as a list of dict, where each dict is like {
“type”: “factor or result”, “name”: “factor or result name”, “explanation”: “how it affects

11
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the scenario and why you believe it is important and common”}. Start your answer with a
〈json〉tag and end with a 〈/json〉tag.

Prompt for Causal Graph Construction:

Based on the factors you proposed and their expected results, generate a causal graph that
summarizes the physical relationships between them. In the graph, include only the most
important and common factors or results; omit any overly detailed or trivial ones.

The graph should be a **directed acyclic graph**, where:

- Each **node** represents a factor or a result.

- Each **edge** represents a direct causal relationship between two nodes.

The graph should be formatted in **DOT** format. Begin the DOT file with a 〈dot〉tag and
end it with a 〈/dot〉tag.

Prompt for Causal Rule Generation:

Given the causal graph you generated, please create a Boolean expression for each **non-
root** factor (factors with incoming edges) that represents the conditions under which that
factor is **true**. The Boolean expression for each non-root factor should involve only the
**parent factors** (i.e., the factors directly connected to it in the causal graph). The condition
should be expressed as a **disjunctive normal form** (DNF), which is a disjunction (OR) of
conjunctions (AND) of literals.

Your response should include a set of boolean expressions, formatted as a ‘dict[str, list[dict[str,
bool]]]’, where the key is the name of this non-root factor and the value is a list of conditions
(disjunctions), where each condition is a conjunction clauses (AND). Each condition is repre-
sented as a dictionary, where the key is the name of the parent factor and the value is a boolean
value (True or False).

For example, if a factor A is true when B is true or (C is true and D is false), the boolean
expression should be ‘{“A”: [{“B”: True}, {“C”: True, “D”: False}]}’.

Your final answer should be a JSON file with the following keys

- “roots”: a list of root factors.

- “non roots”: a list of non-root factors.

- “rules”: a dictionary where each non-root factor is associated with its corresponding Boolean
expression.

Please begin your response with a 〈json〉tag and end with a 〈/json〉tag.

For self-check prompt for factors:

Please review the factors you have proposed. Ensure that each factor satisfies the following 5
requirements:

1. It should be **visible** and easily recognizable in a video.

2. It should be **binary**, meaning it can be clearly labeled as either “yes” or “no”, rather
than a continuous value.

12
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3. It should be **independent**, not dependent on other factors.

4. Its effect on the outcome should be **deterministic** (i.e., it directly leads to a certain
result, rather than just increasing or decreasing the probability).

5. The resulting effect should also be **visible** in a video.

Please ensure that the content in the bracket has been correctly identified as a variable (factor
or outcome) in your answer.

Additionally, filter out any factors that are:

- **Too detailed**, **corner-case**, or **uncommon** in the scenario.

- Have an effect that is **too indirect** or difficult to understand.

If necessary, you may regenerate the factors to meet the criteria. It’s OK to keep your previous
answer by just generate 〈keep factor〉 without any other words but you should carefully check
every requirement for every factor and result.

For self-check prompt for graph:

Please review your causal graph. Ensure that it meets the following criteria:

1. All nodes are **visible** and **binary**.

2. All root nodes are **independent** of each other, which means the choice of one root node
should not influence the choice of another root node.

3. All edges in the graph is a **direct** and **deterministic** causal relation

4. Include all **important** causes and results, while omitting trivial or overly detailed nodes.

Please ensure that the content in the bracket has been correctly identified as a variable (factor
or outcome) in your answer.

If necessary, regenerate the causal graph to meet these requirements. It’s OK to keep your
previous graph if it already meets the criteria by just generate 〈keep graph〉 without any other
words but you should carefully check every requirement for every node and edge.

For self-check prompt for rules:

Please review your answer. Ensure your answer meets the following criteria:

1. The “roots” and “non roots” list must be consistent with the causal graph.

2. For the bool expressions:

- All the nonroot factors are included in the rules dict, and no other factors are mistakenly
included as keys.

- All variables in the Boolean expressions are exactly the parents of the corresponding non-root
factors in the causal graph.

- The boolean expressions should correctly represent the physical rules in the real world.

If necessary, regenerate the json file to meet the requirements. It’s OK to keep your previous
rules if they already meet the criteria by just generate 〈keep rule json〉 without any other words
but you should carefully check every requirement for every variable and rule.

If you find that you need to modify your generated causal graph, please generate 〈regener-
ate graph〉〈dot〉... 〈/dot〉where the content between 〈dot〉and 〈/dot〉is the new causal graph.

13
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C 20 SCENARIOS IN CROWD EXPERIMENTS AND BENCHMARK

The 20 scenarios used in our crowd experiments and benchmarks are listed below. These scenarios
vary in the types of relationships they involve, their complexity, and the extent to which they include
variables. To simulate situations where users may already have specific variables of interest, we
also designed a “bracket” representation to prompt the LLM, indicating that the content within the
brackets MUST be treated as a variable. Note that the ”stone into water” scenario is not included in
the list, as it serves as our debug case for adjusting the prompt and providing an example for human
annotators.

1. A small ball impacts the ground.
2. A bullet is shot towards an object.
3. A hand squeezes a sponge.
4. A burning ball of paper was thrown into a pile of paper.
5. A burning candle is placed with (wind and rain).
6. A person strikes an ice block with a hammer.
7. Sunlight shines on the water surface, (creating sparkling reflections).
8. Two children of (different weights) are sitting on a seesaw.
9. Pour one liquid into another.

10. Rubber eraser rubs off (pencil) marks on paper.
11. Knife slicing through (butter).
12. Swinging a bat to hit a ball.
13. A boot stomps into a puddle of mud.
14. A ray of light is shining on a wooden block.
15. Flag waving (in the wind) at the top of pole.
16. A broom drags across the (dirty) ceramic floor.
17. After being released, the ball rolls down the slope on its own.
18. A paper airplane is thrown and glides through the air.
19. Drop dye into the water.
20. Sprinkle (iron) filings around a magnet.

We also show some LLM-generated examples of various relationships between variables on the
above 20 scenarios. These examples illustrate the diversity and effectiveness of automatic genera-
tion.

In the scenario “A hand squeezes a sponge”, the LLM identifies key factors like “Sponge is wet”,
“Hand applies strong grip”, and “Hand fully releases the sponge”. It generates diverse relationships
by considering the states of the objects, the actions, and their sequence. The model recognizes state-
based relationships (e.g., wet sponge, strong grip), causal relationships (hand’s grip expels water),
and temporal relationships (the sequence of squeezing and releasing). Additionally, it captures in-
teraction relationships, where the sponge’s wetness and the hand’s pressure influence the outcome,
such as “Water is expelled”.

In the scenario “After being released, the ball rolls down the slope on its own”, the LLM identifies
factors such as “Is ball on slope”, “Is slope steep enough”, and “Is path clear of obstacles”. The
model links the position of the ball and the steepness of the slope to the ball’s ability to roll, under-
standing that the ball will move if both conditions are satisfied. It also incorporates the influence
of obstacles, recognizing that any obstruction along the path can prevent the ball from reaching the
bottom. The LLM successfully identifies the relationship between the final outcome, ”Ball reaches
bottom,” and the various factors involved, while considering the entire process, including the poten-
tial for obstacles to interrupt the ball’s descent.

In the scenario “Rubber eraser rubs off (pencil) marks on paper”, the LLM identifies factors like
“Is pencil mark”, “Eraser in contact”, and “Rubbing motion present”. These factors work together
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to determine the outcome, “Pencil mark removed”. The model recognizes that the presence of a
pencil mark and the eraser’s contact are necessary for the process to start. Additionally, the rubbing
motion, combined with the eraser’s pressure, results in the final outcome of mark removal.

D DETAILS OF CROWD EXPERIMENT

We conducted a crowd experiment to validate our automatic annotation of causal systems based
on scenario descriptions. We first invite three undergraduates (2 from physics school and 1 from
computer science school) to annotate the same 20 text scenarios. We provide them with the same
requirements as we provided to LLM. We first check their annotation with first 5 attempts and then
feedback some obvious misalignment with our requirement. We also instructed the annotators to
avoid (1) referencing textbooks, as we wanted them to rely on commonsense rather than profes-
sional background knowledge, (2) using LLMs or other automatic annotation tools, to ensure their
annotations reflected human intuition, and (3) communicating with each other to prevent bias. For
human annotators, we prompted them to think in three steps similar to LLM; but we only collected
the final rules. In order to ensure the seriousness of the annotators, we took a small number of
samples and asked the annotators to explain their annotation reasons, which were checked by the
authors. For the purpose of real comparison, we allowed a small number of non-systematic errors
or deviations in the annotations — because this reflects the true level of human annotators.

These 60 annotations collected for the 20 scenario will be randomly shuffled together with the 60
annotations generated by LLM and given to five other annotators for scoring. The five annotators
were also undergraduates (3 from computer science, 1 from mathematics, and 1 from economics).

The scoring standard we provide is:

• Requirement: whether the annotation meets all of our requirements including visibility,
binary, and root node independence.

• Rationality: whether all the nodes in the causal system are consistent with public knowl-
edge and common; and whether the most important factors and causal relations are included
in the annotation.

• Soundness: whether all the rules in the causal graph are correct and definitive (from both
physics and commonsense).

Each criterion is scored on a scale of 1-4, where

• 4: the annotation is completely correct (or meet the requirement),

• 3: there are minor errors,

• 2: there are obvious errors,

• 1: there are essential errors and the annotation needs to be rewritten.

The average scores have shown in Table 1 in the main paper. Here, we provide the detailed distribu-
tion of each scorer in Figure 5.

For “requirement” and “soundness”, the LLM achieve excellent performance with a larger propor-
tion of scores clustering around the top rating of 4 and the average score is significantly higher
than human annotations. For rationality, the LLM- and human-annotation can not be clearly distin-
guished. The overall tendency of the five raters was consistent. Surprisingly, scorer 2 and 4 gave
full marks of 4 points to all 60 items of LLM in requirement and soundness respectively.

Several examples highlight the reasons for the superior performance of the LLM in certain areas.
Regarding the Requirement scores, the explicit guidelines provided in the prompt ensured that the
LLM annotations generally met the requirements, resulting in consistently high scores. In contrast,
human annotators occasionally failed to adhere to these requirements, either due to imprecise ex-
pressions or inadvertent oversights. For instance, in the scenario “Pour one liquid into another”, one
human annotator included the nodes “the densities of the liquids differ greatly” and “the chemical
structures of the liquids are similar”, both of which are unobservable factors. The LLM, however,
avoided such missteps.
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Figure 5: The violin plot as detailed distribution of 5 scorers. The width shows the number of the
samples. The x-axis represents the 5 annotators.

In terms of Soundness, where we require that the rules in the causal graph be both correct and
definitive, human annotations displayed considerable variability across different scenarios. Some
annotations included many nodes and rules, while others were sparse. In cases where a larger num-
ber of rules were included, human annotators sometimes overcomplicated their annotations, which
led to errors. For example, in the scenario “A bullet is shot towards an object”, a human annotator
included the rule (A bullet hole appeared on the back of the object)= (The bullet moves quickly) ∧
(The object is hard). The increased complexity of the rule, while addressing multiple factors, led to
inaccuracies. The LLM, by contrast, considered fewer factors and produced simpler, more accurate
rules.

For the Rationality criterion, which required the inclusion of the most important factors and causal
relationships, human annotators excelled in some scenarios but failed to fully account for relevant
factors in others. This variability resulted in a broader distribution of scores, with a greater number
of high and low ratings for human annotations. Overall, the performance of both human and LLM
annotations in this category was similar.

We took great care to ensure that all annotations generated in this experiment adhered to ethical
guidelines, ensuring that no violent, pornographic, discriminatory, or offensive content was included
in the annotated scenarios. To safeguard against potential ethical violations, we closely monitored
the content throughout the annotation process and implemented a strict review mechanism. Addi-
tionally, all annotators were explicitly instructed on the importance of maintaining a respectful and
non-harmful approach in their work.

In recognition of the effort and time invested by the annotators, they were compensated at a rate
of 100 CNY per hour, which is in line with standard industry practices for similar tasks. This
compensation not only reflects the value of their contributions but also ensures that the annotators
were fairly incentivized for their participation in the study. Furthermore, we provided a feedback
loop for annotators, encouraging them to express any concerns or challenges they faced during the
annotation process, fostering an open and transparent working environment.

E DETAILS OF TEST PIPELINE

Here we introduce the details of the test pipeline. For step “prompt generation”, see Appendix E.1.
For step answer retrieval, see Appendix E.2 and Appendix E.3.
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E.1 DETAILS OF TEXT PROMPT GENERATION

Given a causal system as a test case, we need to generate some text prompts, which constrain the
variable values in the scenario and are used to prompt the VGMs to generate corresponding videos.
(In other words, they are used as the input of the tested T2V models.)

The step can be automated by an LLM. In this paper, we utilize the OpenAI gpt-4o (gpt-4o-2024-
08-06) to finish it. To reduce communication overhead, we adopt the strategy of generating first
and then sampling from the generated sentences, which is slightly different from the one described
in the pipeline. Specifically, we provide the LLM with the original sentence description of the
scenario and the list of variables (roots and non-roots separately). We require the model to generate
m sentences for every 2N possible combinations of X where N = |X|. We find for most situation
N < 5, the strategy of generating all value combinations at once is effective and works better
than generating one value at a time. We observed that the former allows the model to consciously
distinguish different values of X. For cases where N is too large, we take the approach of generating
one value of X at a time. In our experiments, we set m = 10. In this setting, for each causal system,
About 500 tokens are reading and 500 - 1000 tokens are generated by gpt-4o, costing about $0.005.

The prompt we use in the step is shown as follows:

Prompt for sentence generation without results:

You are a helpful assistant to generate corresponding short description about a scenario given
some conditions. You will be provided with a short sentence to describe a scenario as well as
some factors (variables) in the scenario. You should generate some short sentences which are
slightly different from the originial sentence and describe the situation where the scenario is
the same but the corresponding variables take given different value from original situation.

The scenario is: {scenario}
In this scenario, there are some factors are considered as (binary) variables and you should
generate new description to change the original scenario to meet the corresponding value.

Factors: {str(factors)}.

There are also some results variables which are the outcome of the above factors: {non roots}.
The values of these variables should not be mentioned in the generated sentences.

Each variable can take value as “yes” or “no” independently so that there are 2**{num factors}
= {num comb} compositions. You should generate {num sent} sentences for each yes/no
composition for these variables.

Please make sure (1) each sentence meet and explicitly express the corresponding value of
variables and (2) the generated sentences as diverse as possible. Notice that you can add,
delete or modify some words in original description to get the new sentence.

Your answer should be following the schema provided. Here,

- factors: The names of provides variables.

- compositions: Samples for all compositions. It is a list (len = 2**{num factors} =
{num comb}) where each element has two parameters:

value: a list of bool. One-to-one correspondence with the values or the variables in the factors
list.

samples: a list contains the given number of generated sentences.

Prompt for sentence generation with results:

17
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You are a helpful assistant to generate corresponding short description about a scenario given
some conditions. You will be provided with a short sentence to describe a scenario as well as
some factors (variables) in the scenario. You should generate some short sentences which are
slightly different from the originial sentence and describe the situation where the scenario is
the same but the corresponding variables take given different value from original situation.

The scenario is: {scenario}
In this scenario, there are some factors are considered as (binary) variables and you should
generate new description to change the original scenario to meet the corresponding value.

Factors: {str(factors)}.

There are also some results variables which are the outcome of the above factors with their
expected value: {non roots}. In each possible composition of factor values, you should first
induce the corresponding value of the results variables and then generate the sentences.

In these sentences, please explicitly and clearly express the corresponding value of both
the factors and the results variables in the generated sentences. The rules of the results:
{“\n”.join(rules)}
Each variable can take value as “yes” or “no” independently so that there are 2**{num factors}
= {num comb} compositions. You should generate {num sent} sentences for each yes/no
composition for these variables.

Please make sure (1) each sentence meet and explicitly express the corresponding value of
variables and (2) the generated sentences as diverse as possible. Notice that you can add,
delete or modify some words in original description to get the new sentence.

Your answer should be following the schema provided. Here,

- factors: The names of provided factor variables.

- results: The names of provided results variables.

- compositions: Samples for all compositions. It is a list (len = 2**{num factors} =
{num comb}) where each element has three parameters:

value: a list of bool. One-to-one correspondence with the values or the variables in the factors
list.

results: a list of bool. One-to-one correspondence with the values or the variables in the results
list. Calculated by the given rules.

samples: a list contains the given number of generated sentences.

E.2 DETAILS OF PROBE QUESTION GENERATION

We utilize GPT-4o-mini-2024-07-18 to generate questions for each variable. In a single conversa-
tion, we provide a short description of the scenario along with the factors that should be focused
on. We instruct the model to generate questions for all root and non-root factors simultaneously.
The prompt we design requires the model to generate a simple yes-no question for each factor in the
scenario, ensuring that the questions are directly focused on the specific factor without incorporating
any assumptions or conditions related to other factors.

The prompt we use in this step is shown as follows:

Prompts for Probe Question Generation:

You are a helpful assistant to help generate some questions about some factors in a scenario.
You will be provided with a short description of a scenario and some factors that should be
focused on. You should generate **ONE** yes-no questions for **EACH** of the factors in

18
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the scenario. These questions will be used to asked a video language model to test the actual
situation in a video about the scenario. Notice that your questions should be simple, clear and
direct to the target factor, and should not contain any assumption or conditions about other
factors.

The scenario is {scenario}.

The factors are: {factors}.

E.3 DETAILS OF ANSWER RETRIEVAL

We tested two models to answer questions based on video content: Gemini and OpenAI 4o. Gemini
has built-in video reading capabilities, extracting one frame per second for processing. In contrast,
OpenAI 4o can process multiple images, so we extract one frame every 10 frames from the video
and provide these key frames to the model for question answering. Ultimately, we adopted OpenAI
4o as the primary model for our experiments due to its superior performance.

For each video, we need to ask multiple questions. To ensure that the model relies strictly on the
video content rather than commonsense or context, we explored two distinct questioning strategies.
The first strategy involves asking one question at a time, ensuring the independence of each answer,
though this approach incurs higher costs. The second strategy involves asking all the questions in
a single round, within a single prompt. To avoid the model inferring subsequent questions based
on prior answers or external commonsense, we topologically sort the nodes in the causal graph,
ensuring that result variables are queried before cause variables. This method prevents the model
from reasoning through previous answers when addressing subsequent questions. Additionally, we
specify in the prompt that the model should answer based solely on the video.

For each question, we allow the model to respond with True, False, or N/A. Some videos suffer
from lower generation quality, or fail to align with the textual descriptions, causing critical factors
to be unobservable. In these cases, when the video does not provide enough evidence to answer the
question, we allow the model to respond with N/A.

The prompt we use in this step is shown as follows:

Prompt for Video Analysis and Question Answering:

You are a professional video analysis expert, specialized in answering questions based on
video content. Please answer the following question based **strictly** on the video provided.
Ensure that your response is based on the video itself, and not on your own guesses or general
knowledge.

You will be provide some yes/no questions related to the video. Your answer should be in
“true”, “false” or “N/A”. Besides, you should provide a brief explanation or evidence for your
answer.

You should answer “N/A” if:

1. The video quality is too low, or the content is too unclear to make any meaningful inference.

2. The content in the video is not continuous or complete. The temporal and spatial disconti-
nuities in the video make it impossible to make reasonable predictions.

3. The question asks about something that cannot be observed or recognized in the video (e.g.,
an object, event, or action that is not present).

4. The video does not provide enough context or evidence to form a conclusion.

5. The answer is unclear or could be interpreted in multiple ways, leading to ambiguity.

6. The question asks about an action, and the necessary prior action (for example, the ball hit-
ting the ground before it can bounce) is not observed. Without the prior action, it is impossible
to determine if the subsequent event occurred.
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if you believe you can answer yes or no with a reasonable degree of confidence, you should not
answer “N/A”. Especially, if the question asks about whether something is present, or an event
has occurred, and the videos shows that it is absent or has not occurred, you should answer
“false” instead of “N/A”. For these questions, you can answer “N/A” only if the video quality
is too low to make a meaningful inference.

If the question asks about an object, and the object is not observed, answer “false”. Do not
answer “N/A”.

For detect an action, you should refer to some continuous frames to make sure the action is
happening, instead of just one frame.

In addition, you should judge each question as independently as possible, and do not answer
another question based on the content of another question. In particular, the content of another
question itself should not be used as the basis for answering the current question.

Based on the above guidelines, please answer the following questions:

“\n”.join({questions})

F DETAILED DEFINITION FOR METRICS

In this subsection, we give a detailed definition for our proposed metrics in Section 4.

First we review the definitions and symbols. Let V be a set of variables representing all factors of
interest in a causal system. Let G a directed acyclic graph with node set V and edge set E. For
every Vj ∈ V, let pa(Vj) = {Vk ∈ V : Vk → Vj ∈ E} be the set of nodes that has a directed
edge pointing to Vj . Suppose there is a deterministic structural equation model over V. That is, for
every Vj ∈ V such that pa(Vj) ̸= ∅, there exists a function fj such that Vj = fj(pa(Vj)). Denote
X = {Vj ∈ V : pa(Vj) = ∅} and Y = V \ X. We also write X = (X1, X2, . . . , Xm1) and
Y = (Y1, Y2, . . . , Ym2) as random vectors. Then X is called the set of root (or cause) variables, and
Y is called the set of non-root (or outcome) variables. In structural equation Yj = fj(pa(Yj)) for
every Yj ∈ Y, the function fj is called the rule of Yj . The structural equations can be equivalently
represented as Y = f(X). Since the value of non-root variables is determined by root variables, we
also write Yj = f ′

j(X) for every Yj ∈ Y. Let D(X) denote the domain of X, that is, the set of all
possible values of X.

In our pipeline, we use a large language model for generating prompt from the given causal system
and specified variables, a video generation model for generating video from the prompt, and an
multi-modale LLM for retrieving the value of variables from the video. For specified X,Y, let
fP (X,Y) denote the generated prompt under the given causal system, with specifying both X and
Y. Let fP (X) denote the generated prompt under the given causal system with only specifying only
X. Note that fP includes an independent error εP implicitly, so it is not a deterministic function
of X and Y. For a prompt P , let fV (P ) denote the video generated by video generation model
with prompt P . Finally, let X̂, Ŷ = fA(fV (P )) denote the observation of all variables from the
generated video. For simplicity, we also write X̂, Ŷ = fV A(P ). In this situation, we also call X,Y

the ground truth. For the i-th sample, let Xi,Yi denote the ground truth and X̂i, Ŷi denote the
observation. For any V ∈ V, X ∈ X and Y ∈ Y, we use Vi, Xi, Yi or V̂i, X̂i, Ŷi to denote the
corresponding component of Xi,Yi or X̂i, Ŷi, just as we use V,X, Y to denote the corresponding
component of X,Y. We also use Xij to denote the component Xj in vector Xi. For variable
Yj ∈ Y, we use p̂a(Yj) to denote the observed value of pa(Yj).

F.1 TEXT CONSISTENCY

For text consistency, let X1,X2, . . . ,Xn1
be n1 samples that are i.i.d. are uniform distributed over

D(X). Let Yi = f(Xi) for i = 1, 2, . . . , n1.

Since we have specified the value of every variable in the prompt, we expect that the value of every
observed variable matches with its ground truth. However, due to the internal causal mechanism in
the video generation model, the value of outcome variables in the video may be influenced by the
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value of root variables in the video. Therefore, we propose two versions of metric: sall1 by comparing
the observed value of all variables with their ground truth, and sroots1 by comparing the observed
value of only root variables with their ground truth. For sroots1 , we generate prompt Pi = fP (Xi)
by specifying only root variables, and for sall1 , we generate prompt Pi = fP (Xi,Yi) by specifying
both Xi and Yi. Finally, we get observation X̂i, Ŷi = fV A(Pi) by generating video from prompts
and asking questions from videos.

The metrics for text consistency is defined as:

sall1 =
1

n1(m1 +m2)

n1∑
i=1

∑
V ∈V

1(Vi = V̂i), sroots1 =
1

n1m1

n1∑
i=1

∑
X∈X

1(Xi = X̂i),

where 1(·) denotes the indicator function.

F.2 GENERATION CONSISTENCY

For generation consistency, we construct some groups of samples. Samples within the same group
should have the same ground truth. Therefore, by comparing observations within the same group,
we can test whether generations for the same ground truth are consistent.

Formally, let x1,x2, . . . ,xn2 be n2 different values that are randomly selected from D(X). We
construct n2 groups, with r samples in each group, that is, letting

X1 = · · · = Xr = x1, . . . ,X(n2−1)r+1 = · · · = Xn2r = xn2 .

For i = 1, 2, . . . , n2r, let Pi = fP (Xi) be the generated prompt and X̂i, Ŷi = fV A(Pi) be the
observation.

To measure the inconsistency of observations within a group, we propose two versions of metric:
struth2 and sobserve2 . For struth2 , we assume that text consistency holds, that is, observation of root
variables should remains the same within each group. Therefore, we compare all variables for each
group. For sobserve2 , we allow for observation of root variables to be different within each group.
Relatively, we see the observed root variables as the truth understood by the video generation model.
So we reconstruct the groups by partitioning the samples by X̂i, and compare the observed outcome
variables within each group.

Formally, for an index set S ⊆ {1, 2, . . . , n2r} and variable V ∈ V, denote V̄S = 1
|S|

∑
i∈S V̂i be

the mean, and d(V,S) = 1
|S|

∑
i∈S

(
V̂i − V̄S

)2

be the sample variance of V in subgroup S. For
group index k = 1, 2, . . . , n2, let Sk = {(k−1)r+1, (k−1)r+2, . . . , kr} be the index of samples
within group k. Then we have

struth2 =
1

n2m2

n2∑
k=1

∑
Y ∈Y

d(Y,Sk).

For definition of sobserve2 , for each x ∈ D(X), let Sx = {i : X̂i = x}, and let S = {Sx ̸= ∅ : x ∈
D(X)}. Then we have

sobserve2 =
1

m2|S|
∑
Y ∈Y

∑
Sx∈S

d(Y,Sx).

F.3 RULE CONSISTENCY

For rule consistency, we generate samples for each outcome variable independently. For each Yj ∈
Y, let ST

j = {x ∈ D(X) : f ′
j(x) = 1} be the set of values of X that making Yj = f ′

j(X) = 1,

and let SF
j = D(X) \ ST

j . Then for ground truth X and Y = f(X), we have Yj = 1 if and only if
X ∈ ST

j .

To test whether the video generation model has learned this rule, we draw n3 samples
X1,X2, . . . ,Xn3 uniformly from ST

j , and n3 samples Xn3+1,Xn3+2, . . . ,X2n3 uniformly from
SF
j . Comparing to drawing sample uniformly from D(X), this sampling method avoids the bias
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that may arise when |ST
j |/|SF

j | is near 0 or 1. For i = 1, 2, . . . , 2n3, let Pi = fP (Xi) be the
generated prompt and X̂i, Ŷi = fV A(Pi) be the observation.

We also propose two versions of metrics for rule consistency, struth3 and sobserve3 . For struth3 , we
assume that text consistency holds, and check whether the value of observed outcome variables
matches its ground truth. For sobserve3 , we see the observed parents of each outcome variabe as the
truth understood by the video generation model. Therefore, we calculate the value of outcome vari-
ables from the rules and its observed parents, and compare them with observed outcome variables.
Formally, we have

struth3 (Yj) =
1

2n3

2n3∑
i=1

1
(
Yij = Ŷij

)
, struth3 =

1

m2

∑
Yj∈Y

struth3 (Yj).

For sobserve3 , we propose a strategy to rebalance samples such that the expected value of Yj ,
fj(p̂a(Yj)), has equal weights over {0, 1}. Therefore, denote gj =

∑2n3

i=1 fj(p̂a(Yj)) as the to-
tal number of samples such that the expected value of Yj is 1, then we reweight each sample and
define sobserve3 (Yj) as

sobserve3 (Yj) =
1

2

2n3∑
i=1

1
(
Ŷj = fj(p̂a(Yj))

)(
fj(p̂a(Yj))

gj
+

1− fj(p̂a(Yj))

2n3 − gj

)
,

sobserve3 =
1

m2

∑
Yj∈Y

sobserve3 (Yj).

F.4 SAMPLE STRATEGY FOR THREE-LEVEL METRICS

We propose a unified sampling framework designed to optimize sample efficiency across different
evaluation metrics. First, we perform sampling for each metric. Specifically, for Metric 1: text
consistency, we collect n1 samples, where the X values are uniformly random from the set D(X) =
{1, 0}|X|. For Metric 2: generation consistency, we collect n2 groups, each containing r samples
with the same X value. For Metric 3: rule consistency, for each Yj ∈ Y, we collect n3 samples from
the positive set ST

j and the negative set SF
j , respectively. During each sampling step, we record the

number of samples corresponding to different X.

With the separate sampling results, we construct a total sample set, where for each possible X value,
the sample count is the maximum across the three metrics. While each sample may be used mul-
tiple times to compute different metrics or different rule accuracies for Yj , within the same metrics
(or within metric 3 for the same Yj), each sample is used only once. The framework ensures that no
sample is reused within the calculation of any single metric. By doing so, we maintain the indepen-
dent and identically distributed (IID) conditions for sampling, while preserving the integrity of each
metric’s evaluation criteria. The architecture also achieves significant storage efficiency, reducing
redundancy compared to traditional independent sampling approaches, without compromising the
statistical validity of the results. Finally, we use the total sample set to select the corresponding text
prompts and generate videos.

In our benchmark, we set the parameters as follows: n1 = 10, n2 = 5, n3 = 10, and r = 3.
Using these values, we apply our strategy to draw samples. Appendix H.4 demonstrate that this
sample size is sufficient for distinguishing between metrics across different models. Specifically, we
draw n1 samples for the evaluation of text consistency, n2r samples for the evaluation of generation
consistency, and 2n3|Y| samples for the evaluation of rule consistency. In contrast, without this
strategy, a total of N = 25+ 20|Y| samples would be required for each causal system, which could
significantly increase computational costs. The distribution of sample sizes for each causal system
is depicted in Figure 6, which illustrates a considerable reduction in the number of samples needed
by our approach.

F.5 SAMPLE-BASED SCORES

Our metrics can also be applied to each sample, showing how each sample contributes to the evalu-
ation. The definitions are as follows.
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Figure 6: Distribution of sample sizes over causal systems.

For text consistency, the metrics for a sample i are defined as

sall1,i =
1

m1 +m2

∑
V ∈V

1(Vi = V̂i), sroots1,i =
1

m1

∑
X∈X

1(Xi = X̂i).

For the sake of sample efficiency, samples with same ground truth X are reused in testing generation
consistency and rule consistency. Let i be the index of a sample in a group S. Similarly, let V̄S =
1
|S|

∑
i∈S V̂i be the mean of observed values for variable V ∈ V. Then the metrics for generation

consistency on sample i is defined as

struth2,i =
1

m2

∑
Y ∈Y

(Ŷi − ȲSk
)2, sobserve2,i =

1

m2

∑
Y ∈Y

(Ŷi − ȲSx)
2,

where Sk and Sx, as defined in Appendix F.2, are groups which contains sample i.

For rule consistency, samples are reused so that some samples are contained in the test samples for
multiple outcome variables. Let i be the index of a sample. Write Y = (Y1, Y2, . . . , Ym2), and let
Zi ⊆ {1, 2, . . . ,m2} be the index of all outcome variables whose test samples contains sample i.
Then metrics for sample i are

struth3,i =
1

|Zi|
∑
j∈Zi

1
(
Yij = Ŷij

)
,

sobserve3,i =
1

Ti

∑
j∈Zi

n31
(
Ŷj = fj(p̂a(Yj))

)(
fj(p̂a(Yj))

gj
+

1− fj(p̂a(Yj))

2n3 − gj

)
,

where

Ti =
∑
j∈Zi

n3

(
fj(p̂a(Yj))

gj
+

1− fj(p̂a(Yj))

2n3 − gj

)
.

G MANUAL VERIFICATION OF AUTOMATIC RESULTS

For automatic annotation of causal systems, we have verified the effectiveness through crowd exper-
iments. Here we verify other automatic steps, including:

• Section G.1: generating text prompts from value combinations,

• Section G.2: generation probe questions from factors,

• Section G.3: retrieve observed value from videos.

For each step, we randomly choice some automatic generation in our 60 test cases from our VACT
benchmark and manually check whether the automatic annotation is correct.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

G.1 MANUAL VERIFICATION OF PROMPT CORRECTNESS

Below are randomly selected scenarios and corresponding prompts from our dataset. We manually
verify the correctness by checking whether the two types of prompts (with and without non-root
nodes ) match the given values for the variables.

We examined a total of four scenarios and their corresponding 106 prompts. Nearly all of the
prompts passed inspection, with the exception of two. The issue with the first prompt arises from
our setting the variable “sponge is wet” to false, while the prompt only specifies that the hand is
dry and fails to clarify the condition of the sponge. The second issue pertains to a prompt that
was expected to contain only root nodes; however, it includes the word “slide”, which introduces a
non-root value.

We show these 106 samples as follows, where we marked the correct ones with ✓ and the 2 incorrect
results with ×.

Scenario:

Rules for each non-root node:

Pile Catches Fire = (Ball Actively Burning ∧ Ball Contact Pile)

X1 = Ball Actively Burning X2 = Ball Contact Pile Y = Pile Catches Fire

Prompts:

Without non-root nodes:

(X1 = False , X2 = True)

A smoldering paper ball, now unlit, was tossed but missed the stack of old newspapers.✓

A ball of paper that had stopped burning eventually settled into a stack of paper.✓

A cooling ball of paper was placed carelessly into a mound of papers.✓

An extinguished paper sphere was accidentally dropped into a heap of documents. ✓

A barely expired paper ball softly landed in a collection of scraps. ✓

(X1 = True , X2 = True)

A flaming ball of paper crashed into a stack of old newspapers. ✓

A lit paper ball was hurled into a heap of documents.✓

A burning paper sphere landed directly in a pile of loose-leaf papers. ✓

A fireball of paper was tossed straight into a mound of papers. ✓

An ignited ball of paper rolled into a collection of scraps. ✓

(X1 = True , X2 = False)

A burning ball of paper was thrown close to but missed hitting a pile of paper. ✓

A flaming ball of paper flew past a stack of old newspapers without making contact. ✓

A lit paper ball was launched near a heap of documents, but it didn’t touch them. ✓

(X1 = False , X2 = False)

A ball of paper, which had extinguished, was thrown away from a pile of paper.✓

A smoldering paper ball, now unlit, was tossed but missed the stack of old newspapers.
✓
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A once aflame ball of paper, now out, was hurled and did not touch the paper heap. ✓

With non-root nodes:

(X1 = False , X2 = False, Y = False)

An unlit ball of paper passed by the paper pile without touching it, leaving the pile
unburned.✓

(X1 = False , X2 = True, Y = False)

Since the ball wasn’t on fire upon contact, the paper pile stayed unharmed.✓

A non-burning, thrown ball of paper landed on the pile but didn’t ignite it. ✓

Though the ball reached the pile, it was not burning, and thus the pile remained safe. ✓

A ball that wasn’t actively burning was thrown onto the pile, and the pile stayed unig-
nited. ✓

The paper ball made contact with the pile, but without being on fire, the pile did not catch
alight. ✓

(X1 = True , X2 = True, Y = True)

The flaming paper sphere, still ablaze, was thrown and hit the paper pile, which then
caught fire.✓

A blazing ball of paper made contact with a stack of paper, causing the pile to ignite,
since the ball was burning and it struck the pile.✓

(X1 = True , X2 = False, Y = False)

Despite being actively on fire, the paper ball missed the pile, and as a result, the pile did
not catch fire. ✓

Even though the ball was burning, it did not make contact with the pile of paper, so the
pile remained unburned. ✓

Scenario:

Rules for each non-root node:

Butter Sliced = (Butter Solid ∧ Downward Slicing Motion Applied)

X1 = Butter Solid X2 = Downward Slicing Motion Applied Y = Butter Sliced

Prompts:

Without non-root nodes:

(X1 = False , X2 = True)

A knife pierces the soft butter with effortless downward motion.✓

The knife sweeps downward, slicing perfectly through softened butter.✓

Swiftly moving downwards, the knife glides through the creamy butter easily. ✓

(X1 = True , X2 = True)

A knife slides effortlessly downward through a solid block of butter. ✓

The solid butter yields smoothly as a knife slices through it with a downward motion.✓

With a straight down slice, the knife cuts cleanly through the solid butter. ✓
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Cutting a solid piece of butter with a knife moving downward feels like slicing through
soft clay.✓

A sturdy push downward sends the knife through the solidified butter seamlessly. ✓

(X1 = True , X2 = False)

Simply pressing a knife against the solid butter won’t cut it.✓

The knife doesn’t glide through the solid butter without a downward push. ✓

A knife pressed horizontally against the solid butter fails to cut through.✓

(X1 = False , X2 = False)

A knife resting on soft butter is ineffective without downward force. ✓

No downward motion makes the knife linger atop the soft butter. ✓

Simply resting a knife on soft butter won’t achieve a cut. ✓

Without cutting downward, a knife barely breaks the soft butter surface. ✓

The knife sits idle against the soft butter, lacking downward pressure. ✓

With non-root nodes:

(X1 = False , X2 = False, Y = False)

There is no slicing of the butter, as it is neither solid nor subjected to a downward motion.
✓

With the butter not solid and without a downward motion, no slicing occurs. ✓

Neither solid state nor downward motion is present, leaving the butter unsliced.✓

The butter is not solid, and no downward slicing motion is applied, so the butter is not
sliced. ✓

(X1 = True , X2 = True, Y = True)

Since the butter is solid and a downward force is used, the knife slices the butter.✓

Solid butter is easily sliced through as a downward slicing motion is applied.✓

The butter, being solid, is sliced through as a downward slicing motion is applied. ✓

The butter is solid, and a downward slicing motion is applied, resulting in the butter
being sliced. ✓

With the butter in a solid state and a downward slicing motion in action, the butter gets
sliced. ✓

(X1 = True , X2 = False, Y = False)

The butter is solid but no downward slicing motion is applied, so the butter is not sliced.✓

Scenario:

Rules for each non-root node:

Water Emerges from Sponge = (Sponge is Wet ∧ Hand Fully Compresses Sponge)

Sponge Shape Visibly Changes = (Hand Fully Compresses Sponge)

X1 = Sponge is Wet X2 = Hand Fully Compresses Sponge

Y1 = Water Emerges from Sponge Y2 = Sponge Shape Visibly Changes
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Prompts:

Without non-root nodes:

(X1 = False , X2 = True)

A dry sponge is entirely compressed by a hand squeezing it.✓

The hand fully compresses a dry sponge with its grip.✓

A hand squeezes a dry sponge until it’s fully compressed. ✓

Fully closing, a hand compresses a dry sponge.✓

The hand squeezes a dry sponge as much as it will go. ✓

(X1 = True , X2 = True)

The hand squeezes a wet sponge, fully compressing it. ✓

A hand grips a wet sponge and fully squeezes it.✓

The hand exerts force on a wet sponge, squeezing it flat.✓

A wet sponge is completely compressed by a hand. ✓

A wet sponge is gripped and fully squeezed by a hand. ✓

(X1 = True , X2 = False)

Squeezing a wet sponge, the hand stops before fully compressing it.✓

A hand grips a wet sponge, compressing it only slightly. ✓

The hand applies pressure but doesn’t fully squeeze the wet sponge.✓

A hand gently squeezes a wet sponge without fully compressing it. ✓

A wet sponge is partially squeezed by a hand. ✓

(X1 = False , X2 = False)

The hand applies some pressure to a dry sponge but doesn’t compress it completely.✓

A hand holds and gently squeezes a dry sponge without full compression. ✓

The hand grips and squeezes a dry sponge lightly, without full compression. ✓

A hand partially squeezes a dry sponge without complete compression. ✓

With non-root nodes:

(X1 = False , X2 = False, Y1 = False, Y2 = False)

The dry sponge remains unchanged when the hand gives it a gentle squeeze both in terms
of shape and water release. ✓

(X1 = True , X2 = True, Y = True, Y2 = True)

When the hand squeezes the wet sponge completely, the sponge visibly deforms and
water emerges.✓

With a wet sponge being fully pressed by the hand, water seeps out and the sponge’s
form changes.✓

The wet sponge is fully compressed by the hand, resulting in a change in its shape and
water being squeezed out. ✓

(X1 = False , X2 = True, Y1 = False , Y2 = True)

A dry hand compresses the sponge completely, causing its shape to change, but no water
releases.×
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(X1 = True , X2 = False, Y1 = False , Y2 = False)

The damp sponge is only partially squeezed by the hand, meaning no water is released
and the shape remains consistent.✓

A hand lightly squeezes the wet sponge, leaving its shape and water content unchanged.✓

Although the sponge is wet, the hand does not fully compress it, so no water comes out,
and its shape stays the same. ✓

Scenario:

Rules for each non-root node:

Ice Block Moves = (¬ Ice Block On Stable Surface)

Ice Block Cracks = (Hammer Head Metal)

X1 = Ice Block On Stable Surface X2 = Hammer Head Metal

Y1 = Ice Block Moves Y2 = Ice Block Cracks

Prompts:

Without non-root nodes:

(X1 = False , X2 = True)

A person strikes an ice block with a metal hammer, causing it to slide on the surface.×

A metal-headed hammer is wielded by a person to hit an ice block that’s not stably
placed.✓

Someone hits a sliding ice block with a metal hammer. ✓

An individual uses a metal hammer to strike an ice block that isn’t on stable footing. ✓

(X1 = True , X2 = True)

A person uses a metal-headed hammer to hit an ice block resting on a stable base. ✓

An individual strikes a stable ice block with a metallic hammer.✓

A hammer with a metal head is used by a person to hit a stable ice block.✓

An ice block on a stable platform is struck by someone wielding a metal hammer. ✓

(X1 = True , X2 = False)

An individual hits a secure ice block with a hammer that lacks a metal head. ✓

Someone uses a non-metallic hammer to hit an ice block resting stably.✓

A person uses a hammer with a non-metal head to hit an ice block on a stable surface.✓

Striking a solidly placed ice block with a hammer that doesn’t have a metal head. ✓

(X1 = False , X2 = False)

A person hits an ice block with a non-metal hammer, and the block is not stable.✓

Striking a shifting ice block with a hammer that has a non-metal head. ✓

The hand fully compresses a dry sponge with its grip.Using a non-metal headed hammer,
a person hits an unsteady block of ice.✓

The ice block, not secure, is struck by a person with a non-metal hammer. ✓
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Someone uses a hammer without a metal head to hit a loosely sitting ice block. ✓

With non-root nodes:

(X1 = True , X2 = True, Y1 = False, Y2 = True)

The ice block, resting securely on a stable surface, is struck by a hammer with a metal
head, which causes it to crack. ✓

(X1 = False , X2 = False, Y = True, Y2 = False)

The ice block on an unsteady surface moves but does not crack when struck with a non-
metal hammer. ✓

Even on an unsteady surface, the ice block only shifts without cracking when hit by a
non-metal hammer.✓

A non-metal hammer causes the ice block on an unstable surface to move but avoids
cracking. ✓

An ice block shifts on its unstable foundation, though uncracked, under a non-metal
hammer blow. ✓

(X1 = True , X2 = False, Y1 = False , Y2 = False)

The ice block, placed securely on a stable surface, does not move or crack when struck
by a non-metal hammer.✓

Striking the ice block on a stable foundation with a non-metal hammer results in no
movement or cracking.✓

A hammer with a non-metal head hits an ice block on stable ground, neither moves nor
cracks it.✓

The ice block, secured by its stable surface, withstands the non-metal hammer blow
without cracking or shifting. ✓

A non-metal hammer strikes the ice block on stable ground, leaving it neither cracked
nor moved. ✓

G.2 MANUAL VERIFICATION OF FACTOR-QUESTION ALIGNMENT

To evaluate whether the generated videos comply with causal rules, we utilize a VLLM to extract
the values of both root and non-root nodes. When posing “yes-no” questions about the video, it
is essential to ensure that the questions are appropriately aligned with the relevant factors in each
specific scenario.

In this section, We randomly selected 7 scenarios, comprising a total of 23 factor-question pairs, all
of which were found to be correct.

Scenario: A small ball impacts the ground.

Factor Question Correctness

ball is deflated Is the ball deflated? ✓
the ground is soft Is the ground soft? ✓

ball bounces Does the ball bounce? ✓

Scenario: Sunlight shines on the water surface, creating sparkling reflections.
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Factor Question Correctness

direct sunlight present Is direct sunlight present on the water surface? ✓
water ripples visible Are water ripples visible on the surface? ✓

unobstructed water surface Is the water surface unobstructed? ✓

Scenario: A person strikes an ice block with a hammer.

Factor Question Correctness

block is small Is the ice block small? ✓
direct hammer strike Is the hammer striking the ice block directly? ✓

block breaks Does the ice block break when struck? ✓

Scenario: Flag waving in the wind at the top of pole.

Factor Question Correctness

is flag hoisted Is the flag hoisted at the top of the pole? ✓
is there wind Is there wind present in the environment? ✓
flag waving Is the flag waving? ✓

Scenario: Flag waving in the wind at the top of pole.

Factor Question Correctness

is flag hoisted Is the flag hoisted at the top of the pole? ✓
is there wind Is there wind present in the environment? ✓
flag waving Is the flag waving? ✓

Scenario: A broom drags across the dirty ceramic floor.

Factor Question Correctness

broom bristles contact floor Are the broom bristles making contact with the floor? ✓
floor is wet Is the floor wet? ✓

obstruction on floor Is there an obstruction on the floor? ✓
floor becomes clean Does the floor become clean after using the broom? ✓

Scenario: Drop dye into the water.

Factor Question Correctness

dye is water soluble Is the dye water soluble? ✓
water is stirred Is the water stirred? ✓

water becomes colored Does the water become colored? ✓
water becomes uniformly colored Does the water become uniformly colored? ✓
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G.3 MANUAL VERIFICATION OF VLLM ANSWER RETRIEVAL CORRECTNESS

The answers provided by VLLM serve as the foundation for calculating the final score of the gen-
erated videos. Therefore, it is essential to manually verify the accuracy of these responses. In this
section, we select four models and examine three distinct scenarios, each accompanied by three
corresponding prompts.

The sampled scenarios encompass both challenging and easy prompts, with and without non-root
nodes, and feature answers classified as True, False, or N/A. A comprehensive explanation of the
conditions under which VLLM provides an N/A response is available in H.3. For example, the
explanation provided by VLLM for the N/A response regarding a video generated by Pika, as pre-
sented in Table 8, is: “The images do not provide a clear view of the top of the boot. It is not possible
to determine if it is sealed or not from the given angles.” for the factor “boot top sealed”, which is
consistent with our observations.

Regarding the accuracy of model responses, we find that VLLM demonstrates sufficient capability
to handle simple scenarios and prompts (such as those in Table 5, Table 7,Table 8,Table 9,Table 10,
and Table 11). However, its performance declines when addressing more complex questions (such as
those in Table 3, Table 4, and Table 6). Currently, the accuracy of this approach hovers around 95%,
which is acceptable but still leaves room for improvement. The shortcomings in correctness primar-
ily stem from two factors. First, the VGMs often generate videos with low quality and ambiguity,
which increases the difficulty for VLLM to provide accurate answers. Additionally, VLLMs still
lack the ability to clearly understand intricate details in images or videos, particularly when dealing
with more complex questions. Nevertheless, we are optimistic that as the foundational capabilities
of VLLMs continue to improve, the performance of this video description system will experience
significant enhancement.

The checked question-answer pairs are shown below, accompanied by the generated videos. Our
verification results are presented in a table that closely follows each prompt.

Scenario: A ray of light is shining on a wooden block.

Prompt-1:A beam of light grazes the polished surface of a wooden block in dust.
(Videos:Figure 7;Results: Tabel 3)

(a) HunyuanVideo Generation

(b) Pika Generation

(c) Hailuo Generation

(d) Pyramid Generation

Figure 7: Model Generation
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Model Factor Model Answer Correctness

HunyuanVideo

in direct path True ✓
surface polished False ×

environment dusty False ✓
block illuminated True ✓
reflection visible False ✓

beam visible in air True ✓

Pika

in direct path False ✓
surface polished True ✓

environment dusty False ✓
block illuminated False ✓
reflection visible False ✓

beam visible in air False ✓

Hailuo

in direct path N/A ✓
surface polished False ✓

environment dusty False ✓
block illuminated True ✓
reflection visible True ×

beam visible in air False ✓

Pyramid

in direct path True ✓
surface polished False ✓

environment dusty True ✓
block illuminated True ✓
reflection visible False ✓

beam visible in air True ✓

Table 3: Verification of VLLM Answer Correctness

Prompt-2:The polished surface of a wooden block directly catches the light amid dust.
(Videos:Figure 8;Results: Tabel 4)

(a) HunyuanVideo Generation

(b) Pika Generation

(c) Hailuo Generation

(d) Pyramid Generation

Figure 8: Model Generation
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Model Factor Model Answer Correctness

HunyuanVideo

in direct path False ✓
surface polished False ✓

environment dusty True ✓
block illuminated False ✓
reflection visible False ✓

beam visible in air False ✓

Pika

in direct path False ✓
surface polished False ×

environment dusty True ✓
block illuminated False ✓
reflection visible False ✓

beam visible in air True ✓

Hailuo

in direct path False ✓
surface polished False ✓

environment dusty True ✓
block illuminated False ✓
reflection visible False ✓

beam visible in air False ✓

Pyramid

in direct path True ✓
surface polished False ✓

environment dusty True ✓
block illuminated True ✓
reflection visible True ×

beam visible in air False ✓

Table 4: Verification of VLLM Answer Correctness

Prompt-3:A ray of light directly illuminates a polished wooden block and the environment is dusty,
causing both the block to be lit and reflections to be visible, with the beam clearly seen in the air.
(Videos:Figure 9;Results: Tabel 5)

(a) HunyuanVideo Generation

(b) Pika Generation

(c) Hailuo Generation

(d) Pyramid Generation

Figure 9: Model Generation
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Model Factor Model Answer Correctness

HunyuanVideo

in direct path True ✓
surface polished False ✓

environment dusty True ✓
block illuminated True ✓
reflection visible False ✓

beam visible in air True ✓

Pika

in direct path True ✓
surface polished False ✓

environment dusty True ✓
block illuminated False ✓
reflection visible False ✓

beam visible in air True ✓

Hailuo

in direct path True ✓
surface polished True ✓

environment dusty False ✓
block illuminated True ✓
reflection visible False ✓

beam visible in air True ✓

Pyramid

in direct path True ✓
surface polished False ✓

environment dusty True ✓
block illuminated True ✓
reflection visible False ✓

beam visible in air True ✓

Table 5: Verification of VLLM Answer Correctness

Scenario: A boot stomps into a puddle of mud.

Prompt-1:An intense stomp by an open-topped boot into a puddle of watery mud occurs.
(Videos:Figure 10;Results: Tabel 6)

(a) HunyuanVideo Generation

(b) Pika Generation

(c) Hailuo Generation

(d) Pyramid Generation

Figure 10: Model Generation
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Model Factor Model Answer Correctness

HunyuanVideo

watery mud True ✓
big downward stomp True ✓

boot top sealed False ✓
mud splashes out of puddle True ✓

mud enters the boot False ✓

Pika

watery mud True ✓
big downward stomp False ✓

boot top sealed True ×
mud splashes out of puddle False ✓

mud enters the boot False ✓

Hailuo

watery mud True ✓
big downward stomp True ✓

boot top sealed N/A ✓
mud splashes out of puddle True ×

mud enters the boot False ✓

Pyramid

watery mud True ✓
big downward stomp True ✓

boot top sealed False ✓
mud splashes out of puddle True ✓

mud enters the boot False ✓

Table 6: Verification of VLLM Answer Correctness

Prompt-2:In non-watery mud, no splashes occur, but mud enters an unsealed boot during light step-
ping. (Videos:Figure 11;Results: Tabel 7)

(a) HunyuanVideo Generation

(b) Pika Generation

(c) Hailuo Generation

(d) Pyramid Generation

Figure 11: Model Generation
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Model Factor Model Answer Correctness

HunyuanVideo

watery mud True ✓
big downward stomp False ✓

boot top sealed False ✓
mud splashes out of puddle False ✓

mud enters the boot False ✓

Pika

watery mud True ✓
big downward stomp False ✓

boot top sealed True ✓
mud splashes out of puddle False ✓

mud enters the boot False ✓

Hailuo

watery mud True ✓
big downward stomp True ✓

boot top sealed True ✓
mud splashes out of puddle True ✓

mud enters the boot False ✓

Pyramid

watery mud True ✓
big downward stomp True ✓

boot top sealed False ✓
mud splashes out of puddle True ✓

mud enters the boot N/A ✓

Table 7: Verification of VLLM Answer Correctness

Prompt-3:A boot with a sealed top makes a big downward stomp into watery mud, causing mud to
splash out of the puddle but none enters the boot. (Videos:Figure 12;Results: Tabel 8)

(a) HunyuanVideo Generation

(b) Pika Generation

(c) Hailuo Generation

(d) Pyramid Generation

Figure 12: Model Generation
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Model Factor Model Answer Correctness

HunyuanVideo

watery mud True ✓
big downward stomp True ✓

boot top sealed True ✓
mud splashes out of puddle True ✓

mud enters the boot False ✓

Pika

watery mud True ✓
big downward stomp True ✓

boot top sealed N/A ✓
mud splashes out of puddle True ✓

mud enters the boot N/A ✓

Hailuo

watery mud True ✓
big downward stomp True ✓

boot top sealed N/A ✓
mud splashes out of puddle True ✓

mud enters the boot False ✓

Pyramid

watery mud True ✓
big downward stomp True ✓

boot top sealed True ✓
mud splashes out of puddle True ✓

mud enters the boot False ✓

Table 8: Verification of VLLM Answer Correctness

Scenario: Knife slicing through butter.

Prompt-1:The knife meets little opposition as it slices through the butter. (Videos:Figure 13;Results:
Tabel 9)

(a) HunyuanVideo Generation

(b) Pika Generation

(c) Hailuo Generation

(d) Pyramid Generation

Figure 13: Model Generation
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Model Factor Model Answer Correctness

HunyuanVideo
blade in contact with butter True ✓

Knife is moving against butter True ✓
Butter is sliced True ✓

Pika
blade in contact with butter True ✓

Knife is moving against butter True ✓
Butter is sliced True ✓

Hailuo
blade in contact with butter True ✓

Knife is moving against butter True ✓
Butter is sliced True ✓

Pyramid
blade in contact with butter True ✓

Knife is moving against butter True ✓
Butter is sliced False ✓

Table 9: Verification of VLLM Answer Correctness

Prompt-2:With no movement or contact, the butter sits undisturbed. (Videos:Figure 14;Results:
Tabel 10)

(a) HunyuanVideo Generation

(b) Pika Generation

(c) Hailuo Generation

(d) Pyramid Generation

Figure 14: Model Generation
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Model Factor Model Answer Correctness

HunyuanVideo
blade in contact with butter False ✓

Knife is moving against butter False ✓
Butter is sliced False ✓

Pika
blade in contact with butter False ✓

Knife is moving against butter False ✓
Butter is sliced False ✓

Hailuo
blade in contact with butter False ✓

Knife is moving against butter False ✓
Butter is sliced False ✓

Pyramid
blade in contact with butter False ✓

Knife is moving against butter False ✓
Butter is sliced False ✓

Table 10: Verification of VLLM Answer Correctness

Prompt-3:Contact with the butter is established, but without motion, the butter remains unsliced.
(Videos:Figure 15;Results: Tabel 11)

(a) HunyuanVideo Generation

(b) Pika Generation

(c) Hailuo Generation

(d) Pyramid Generation

Figure 15: Model Generation
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Model Factor Model Answer Correctness

HunyuanVideo
blade in contact with butter False ✓

Knife is moving against butter False ✓
Butter is sliced False ✓

Pika
blade in contact with butter False ✓

Knife is moving against butter False ✓
Butter is sliced False ✓

Hailuo
blade in contact with butter True ✓

Knife is moving against butter True ✓
Butter is sliced True ✓

Pyramid
blade in contact with butter False ✓

Knife is moving against butter False ✓
Butter is sliced False ✓

Table 11: Verification of VLLM Answer Correctness

H DETAILS AND MORE DISCUSSION ABOUT BENCHMARKS

H.1 EVALUATED MODELS

To conduct a comprehensive benchmark, we evaluate a total of 6 open-source models and 4 closed-
source models. Detailed information about the models included in our evaluation is provided in this
section.

Open-Source Models:

For the open-source models, we benchmark

• CogVideoX (Hong et al., 2022), a recent state-of-the-art video generation model. Specif-
ically, we use three versions in our experiment: CogVideoX1.5-5B, CogVideoX-5B, and
CogVideoX-2B;

• VideoCrafter2 (Chen et al., 2024), the latest version of the VideoCrafter series, which is an
open-source toolbox for video generation and editing;

• Pyramid Flow miniFLUX (Jin et al., 2024), utilizing its 768p checkpoint. This variant of
the Pyramid Flow series supports the generation of both high-quality images and videos;

• HunyuanVideo (Tencent, 2025), developed by Tencent. HunyuanVideo is currently the
largest open-source video generation model, with over 13 billion parameters, and provides
performance comparable to leading closed-source models.

All of the open-source models used in our experiments were downloaded from the Huggingface
website.

Close-Source Models:

For the close-source models, we benchmark

• Gen-3 Alpha (Runway, 2024), The latest version released by Runway shows improvements
in fidelity, consistency, and motion compared to Gen-2;

• Pika (Pika, 2024), developed by Pika Labs, is used in its free beta version, accessed through
the Pika Discord Bot;

• Hailuo (MiniMax, 2024), developed by MiniMax, is used in its T2V-01 version;
• Kling 1.0 (Kuaishou, 2024), a closed VGM released by Kuaishou.

We access all the closed-source models by calling their APIs, either through their official websites
or third-party interfaces. Detailed information can be found in H.2. Some of the models provide
an additional prompt enhancement trick but for fair comparison, we do not turn it on if there is an
option. See discussion about this trick in Appendix J.
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H.2 COST OF BENCHMARKING

We report the time and money cost of benchmarking each model here.

Open-Source Models:

Name Device Time / Video Total Time (above 2000 videos)

CogVideoX1.5-5B NVIDIA A800-SXM4-80GB ∼ 15min ∼ 500 GPU hours
CogVideoX-5B NVIDIA A800-SXM4-80GB ∼ 3min ∼ 100 GPU hours
CogVideoX-2B NVIDIA A800-SXM4-80GB ∼ 1min ∼ 33 GPU hours
Pyramid Flow NVIDIA A800-SXM4-80GB ∼ 2.5min ∼ 83 GPU hours
HunyuanVideo NVIDIA A800-SXM4-80GB ∼ 10min ∼ 330 GPU hours
VideoCrafter2 NVIDIA A800-SXM4-80GB ∼ 3min ∼ 100 GPU hours

Close-Source Models:

Name API Source Cost / Video Total Cost (above 2000 videos)

Gen-3 Alpha Useapi.net Unlimited Subscription $ 95
Pika Useapi.net Pika Discord Bot Free

Kling PiAPI $ 0.13 $ 260
Hailuo Official Unlimited Subscription $ 94.99

H.3 ABOUT N/A RESULTS

When we retrieve the observed values in a video by a VLLM, we allow the model to answer ‘N/A’
besides yes or no. We prompt the model the conditions of answering N/A as follows:

1. The video quality is too low, or the content is too unclear to make any meaningful inference.

2. The content in the video is not continuous or complete. The temporal and spatial disconti-
nuities in the video make it impossible to make reasonable predictions.

3. The question asks about something that cannot be observed or recognized in the video (e.g.,
an object, event, or action that is not present).

4. The video does not provide enough context or evidence to form a conclusion.

5. The answer is unclear or could be interpreted in multiple ways, leading to ambiguity.

6. The question asks about an action, and the necessary prior action (for example, the ball hit-
ting the ground before it can bounce) is not observed. Without the prior action, it is impossible
to determine if the subsequent event occurred.

We report the N/A ratio in all observation in Table 2 and we also report the ‘N/A : correct : incorrect’
ratio for all test we used in Level 1 all sall1 in Table 12.

We acknowledge that the appearance of N/A may introduce some bias to subsequent metrics. For
example, if the model generates N/A in scenarios where it performs poorly, removing these N/A
responses could lead to inflated scores. This would make the model appear better than it actually
is, or falsely narrow the performance gap between different models. But as we mentioned in the
introduction (Section 1), as a longer-term goal, our evaluation focuses more on the evaluation of
the “world simulator”, and the guarantee of general video generation quality should be taken as a
prerequisite rather than the focus of this article. At the same time, we observe that better (newer,
larger) models tend to have a lower N/A ratio, which is in line with our expectations and shows that
as the model generation capability continues to improve, the probability of obvious serious errors
will gradually decrease.
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Table 12: The ratio of N/A variables, correct variables and incorrect variables for text consistency.

Name N/A ratio correct ratio incorrect ratio
CogVideoX1.5-5B .06 .53 .41
CogVideoX-5B .06 .55 .39
CogVideoX-2B .08 .52 .40
VideoCrafter2 .14 .48 .39
Pyramid Flow .10 .51 .39
HunyuanVideo .07 .55 .39

Pika .11 .52 .38
Hailuo .07 .55 .38
Gen-3 Alpha .07 .60 .33
Kling .07 .58 .35

H.4 EXPERIMENT FOR SAMPLE SIZE

We conduct an empirical study to determine the minimum sample size required for statistically
distinguishing performance metrics between two video generation models (VGMs). The experiment
compares CogVideoX-2B (representing open-source models) and Pika (representing closed-source
models) under a specific causal system where both models exhibited competent video generation
quality. We vary sample sizes from 2 to 100 for text consistency, group sizes from 2 to 16 for
generation consistency, and sample sizes for each outcome variable from 2 to 50 samples for rule
consistency. To ensure statistical validity, we employ bootstrap resampling (1,000 iterations) with
finite-population correction to estimate standard deviations of metric estimators. Standard deviations
are adjusted for matching our scenario pool (60 causal systems). For text consistency metrics, we
implement two evaluation protocols: 1) excluding missing (N/A) observations, and 2) treating N/A
values as incorrect responses. Confidence intervals (95% coverage) are constructed using bias-
corrected accelerated bootstrap methods centered on the minimum-variance unbiased estimator.

The results, visualized in Figure 16, reveal distinct sample size requirements across metrics. As a
efficiency-accuracy trade-off, we established an operational criterion where the minimal sufficient
sample size occurs when the confidence interval of one model’s metric no longer overlaps with the
point estimate of the competitor model. From the figure we can see that:

• For text consistency, drawing n1 = 10 samples is enough to distinguish metrics between
two models in most cases. When N/A observed variables are seen as incorrect, sall1 between
two models cannot be distinguished for any number of samples.

• For generation consistency, drawing n2 = 5 groups can distinguish metrics between two
models.

• For rule consistency, drawing n3 = 10 samples for each outcome variable can distinguish
metrics between two models.

Based on these findings, our benchmark protocol adopts n1 = 10, n2 = 5, and n3 = 10 as optimal
parameters balancing statistical power and evaluation efficiency, leading to total 2079 video samples.
The sample numbers of these 60 causal systems are shown in Figure 17.

H.5 THRESHOLD-BASED METRICS FOR RULE CONSISTENCY

For revealing more intuition under the evaluation of rule consistency, we implement the metrics by
applying threshold during evaluation. Let t denote the threshold, then metrics for rule consistency
are defined as:

struth,threshold3 =
1

m2

∑
Yj∈Y

1
(
struth3 (Yj) ≥ t

)
,

sobserve,threshold3 =
1

m2

∑
Yj∈Y

1
(
sobserve3 (Yj) ≥ t

)
.
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(a) sall1 with N/A as incorrect (b) sall1 with N/A ignored

(c) sroots1 with N/A as incorrect (d) sroots1 with N/A ignored

(e) struth2 (f) sobserve2

(g) struth3 (h) sobserve3

Figure 16: Estimated confidence interval for each metric as the sample size increases.
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Figure 17: Sample numbers of the 60 causal systems in VACT benchmark.

These metrics measures the probability that for a given causal rule, the model gives a correct value
for the outcome variable corresponding to this rule. We calculate these two metrics for threshold in
{0.65, 0.75, 0.85, 0.95} for each model.

Table 13: Metrics for rule consistency by applying threshold for each rule.

Name struth,threshold3 sobserve,threshold3

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95

CogVideoX1.5-5B .19±.04 .08±.03 .02±.01 .00±.00 .61±.05 .48±.05 .30±.05 .15±.04

CogVideoX-5B .24±.04 .10±.03 .00±.00 .00±.00 .60±.05 .45±.05 .28±.05 .14±.04

CogVideoX-2B .32±.05 .17±.04 .06±.02 .04±.02 .59±.05 .54±.05 .34±.05 .23±.05

VideoCrafter2 .18±.04 .07±.03 .01±.02 .00±.01 .59±.05 .52±.05 .36±.05 .23±.05

Pyramid Flow .23±.04 .07±.02 .00±.00 .00±.00 .63±.04 .45±.05 .32±.05 .21±.05

HunyuanVideo .30±.05 .08±.03 .03±.02 .00±.00 .56±.04 .45±.05 .30±.05 .18±.05

Pika .27±.05 .06±.02 .00±.00 .00±.00 .66±.05 .57±.05 .35±.05 .26±.05

Hailuo .28±.05 .15±.04 .05±.02 .00±.00 .66±.05 .53±.05 .35±.06 .17±.05

Gen-3 Alpha .26±.05 .15±.04 .03±.02 .00±.00 .63±.05 .51±.05 .39±.05 .23±.05

Kling .23±.04 .11±.03 .05±.02 .01±.01 .60±.04 .45±.05 .29±.06 .20±.04

Results are shown in Table 13. From the table we can see that, for a specific model and thresh-
old, struth,threshold3 is much smaller than sobserve,threshold3 , showing that compared with incorrect
understanding of causal rules, the incorrectness of outcome variable is much more caused by the
inconsistency of root variables. For a threshold as high as 0.95, sobserve,threshold3 is also significant
for all models, revealing that these models have a correct understanding of causal rules for some
causal systems. However, struth,threshold3 is insignificant for threshold 0.95, which may because that
the models do not understand the correct value of root variables described in the prompt.

H.6 HUMAN-SOURCED BENCHMARKING

To validate the effectiveness of automatically generated causal systems, we manually annotated
an additional 60 causal systems for these 20 scenarios through crowd experiments under identical
instructions. For these human-annotated causal systems, we conducted experiments using three
video generation models: CogVideoX1.5-5B, Hailuo, and Pika. The metric results are presented
in Table 14, with missing value (N/A) cases analogous to Appendix H.3 shown in Table 15, and
threshold sensitivity experiments similar to Appendix H.5 summarized in Table 16.
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Table 14: VACT benchmark on prevailing VGMs on human-sourced causal systems.

Model Names N/A ratio Text Consistency ↑ Generation Consistency ↓ Rule Consistency ↑
all root truth observe truth observe

CogVideoX1.5-5B .11 .58±.01 .58±.02 .09±.01 .08±.01 .54±.02 .69±.02

Pika .18 .57±.01 .55±.02 .07±.01 .06±.01 .54±.02 .67±.02

Hailuo .14 .63±.01 .62±.02 .07±.01 .08±.01 .55±.01 .70±.02

The results demonstrate that all metric scores derived from human-annotated causal systems closely
align with those obtained from automated causal systems. This indicates that the automatically
generated causal systems effectively capture scenario-specific features and critical variables while
establishing valid rules. Notably, the N/A ratio in observational data increased across all models
compared to results from automated causal systems. Concurrently, model performance on rule con-
sistency metrics exhibited degradation. These observations suggest that video generation models
face slightly bigger challenges in interpreting human-annotated causal systems, likely due to in-
creased complexity and ambiguity in manually defined causal relationships.

Table 15: The ratio of N/A variables, correct variables and incorrect variables for text consistency
on human-sourced causal systems.

Name N/A ratio correct ratio incorrect ratio
CogVideoX1.5-5B .12 .51 .37

Pika .17 .48 .35
Hailuo .13 .54 .33

Table 16: Metrics for rule consistency on human-sourced causal systems by applying threshold for
each rule.

Name struth,threshold3 sobserve,threshold3

0.65 0.75 0.85 0.95 0.65 0.75 0.85 0.95

CogVideoX1.5-5B .23±.04 .14±.03 .03±.02 .03±.02 .56±.04 .47±.05 .29±.04 .11±.03

Pika .19±.04 .09±.03 .05±.02 .05±.02 .45±.04 .38±.05 .30±.04 .20±.04

Hailuo .22±.04 .12±.03 .03±.01 .01±.01 .56±.04 .42±.04 .29±.05 .16±.04

I CASE STUDY ON BENCHMARK RESULTS

I.1 ABOUT THE “DEGENERATIVE” RULES

Since our metric 2 only focus on the stability but not the correctness, we are worried that the lower
(better, stabler) metric 2 combined with the poorer metric 1 and metric 3 (low accuracy) actually
implies that the model learns shortcut on common scenario. In many cases, models ignore the
changes in X but directly generate the most common results. We support our concern through some
case studies.

In the scenario about “A burning candle is placed with (wind and rain).”, a key outcome is whether
the candle remains lit or is extinguished by these environmental factors. However, we found that
most of the VGMs consistently generate a candle that continues to burn, without accounting for
these influences. For Gen-3 Alpha, in three test cases of this scenario, the expected outcome—an
extinguished candle—occurred 11, 10, and 10 times, respectively. However, the actual results were
only 2, 0, and 3 instances where the candle was extinguished. This makes the “candle extinguished”
result appear almost as a constant “False”. Similar phenomenon can be found about the outcome
“whether the pencil mark has been removed” in the scenario “Rubber eraser rubs off (pencil) marks
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on paper.”. Similarly, the statement “the water color is uniform” is always false after “Dropping dye
into the water” regardless of “whether the water is stirred sufficiently”.

I.2 ABOUT SAMPLE-BASED SCORE

Here we demonstrate how the sample-based scores provide a more detailed analysis of model be-
havior by an example. Taking the model CogVideoX1.5-5B and the scenario “A hand squeezes a
sponge.” as the example, one of the generated causal system is:

“hand squeeze sponge ∧ sponge is wet → water is squeezed out”.

By checking the scores of the generated videos, we observe that some videos have a metric 3 score
(rule consistency) of 1.0 (full score), indicating that these videos comply with all rules. We show
these videos are shown in Figure 18, corresponding to some successful generation. As comparison,
some of generation have much lower metric 3 score and are shown in Figure 19. Intuitively, we
can see the gap in generated causal content between them. In this way, we can select some better
samples which could be used to further finetune the model to achieve better causal alignment in this
scenario.

(a) No squeeze, not wet, no water squeezed out.

(b) Squeeze, not wet, no water squeezed out.

(c) Squeeze, wet (deeper color in first several frames), water squeezed out.

Figure 18: Good examples with rule consistency score 1.0.

(a) Squeeze, wet, no water squeezed out.

(b) Squeeze, not wet, water squeezed out (water droplets appear in the last two images).

Figure 19: Bad examples with rule consistency score 0.0.

J DISCUSSION ABOUT LLM PROMPT ENHANCEMENT TECHNIQUE

Sora (OpenAI, 2024b) inherits a technique from Dall-E (Betker et al., 2023) called prompt enhance-
ment, where the model doesn’t directly rely on the provided text prompt for generation. Instead, it
first uses a pre-trained LLM to expand the prompt, adding missing elements such as environmental
details and turning abstract concepts into more intuitive descriptions. Some models have already
integrated this functionality into their latest VGM versions.

We indeed observed that this technique slightly improved the model’s ability to correctly understand
causal rules. However, when scenarios became slightly more complex, either the LLM’s expansion
did not address the relevant parts, or even if the LLM did provide an expansion, the VGM still
failed to generate reasonable results. We believe that, this technique is not the ultimate solution to
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creating a world simulator. On one hand, it supplements the VGM’s shortcomings by leveraging
the LLM’s capabilities, but it doesn’t address the VGM’s core strengths. On the other hand, prompt
enhancement cannot capture every detail because vision is much more complicated and informative
than text, and once a scenario goes beyond the scope of the prompt, the VGM will struggle to
respond appropriately.

To faithfully reflect the performance of the VGMs themselves, we disabled the prompt enhancement
option for all closed-source models (where possible). Specifically, for Gen-3 and Hailuo, we turned
off this feature. For Kling and Pika, however, we couldn’t find any official description on whether
this technique was used.

47


	Introduction
	Related work
	VACT: the pipeline of automatic causal rule testing
	Scenario-based causal rule testing
	LLM-aided automatic generation of the test cases
	Automatic intervention experiment pipeline

	Three levels of causal ability and the corresponding metrics
	A benchmark of causal rule testing
	Conclusion & Limitation
	The ``stone'' and ``feather'' example for other models
	Details of automatic generation of causal systems
	Details of generating process
	Requirement: rule-based & self correction
	Prompts

	20 scenarios in crowd experiments and benchmark
	Details of crowd experiment
	Details of test pipeline
	Details of text prompt generation
	Details of probe question generation
	Details of answer retrieval

	Detailed definition for metrics
	Text consistency
	Generation consistency
	Rule consistency
	Sample strategy for three-level metrics
	Sample-based scores

	Manual verification of automatic results
	Manual verification of prompt correctness
	Manual Verification of Factor-Question Alignment
	Manual verification of VLLM answer retrieval correctness

	Details and more discussion about benchmarks
	Evaluated Models
	Cost of benchmarking
	About N/A results
	Experiment for sample size
	Threshold-based metrics for rule consistency
	Human-sourced benchmarking

	Case study on benchmark results
	About the ``degenerative'' rules
	About sample-based score

	Discussion about LLM prompt enhancement technique

