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Abstract

Identifying linguistic bias in text requires un-001
derstanding what is said and what is meant.002
This requires going beyond what is being as-003
serted directly, and determining what is presup-004
posed. Large language models (LLMs) repre-005
sent a potential automatic approach for identi-006
fying presupposed content, but it is unknown007
how well LLM judgments correspond to human008
judgments. Further, LLMs may exhibit their009
own biases in determining what is presupposed.010

To study this empirically, we prompt multiple011
LLMs to make presupposition judgments for012
texts of varying domains from three different013
human-labeled datasets. We calculate the agree-014
ment between LLMs and human raters, and find015
that variations in text domain, verb factivity,016
context window size, and the type of presuppo-017
sition trigger result in changes to human-model018
agreement scores.019

We also observe discrepancies in agreement020
scores that indicate potential biases from LLMs.021
The gender of the subject appears to impact022
agreement, as female pronouns are associated023
with lower agreement than male pronouns.024
Across multiple dimensions, differences in po-025
litical ideology also correspond to differences026
in human-model agreement.027

1 Introduction028

As language models have become increasingly ca-029

pable of producing fluent, coherent text, the impor-030

tance of studying bias mitigation in NLP has grown.031

This is exemplified by the large body of recent work032

in bias mitigation (Blodgett et al., 2020). But de-033

tecting subtle forms of bias with no clear lexical034

signals is an ongoing challenge for NLP systems035

(ElSherief et al., 2021). This is partly because mea-036

suring and quantifying bias introduces challenges037

that cannot be approached from a computational038

perspective alone. Studying bias in language re-039

quires that researchers engage with literature that040

Figure 1: An example of subtle biases present in Chat-
GPT. Though most humans would agree that “he" and
“she" refers to the nurse in both examples, ChatGPT
mistakes “he" as referring to the doctor in the second
example, reflecting existing gender stereotypes.

studies how language interplays with social dynam- 041

ics (Blodgett et al., 2020). Recasens et al. (2013), 042

who studied bias mitigation via Wikipedia edits, 043

found that subtle linguistic biases in text often oc- 044

cur via presupposition, where the speaker takes 045

for granted that the listeners know or accept cer- 046

tain information without explicitly stating it. An 047

example of this phenomenon can be seen below: 048

(1) Married women should know how to commu- 049

nicate with their man. 050

Though it is not explicitly stated, this statement 051

presupposes that married women must be married 052

to a man, though in reality marriages can and do 053

occur between individuals of any gender. This 054

statement thus contains a subtle bias, in this case 055

towards an outdated and heteronormative view of 056

marriage. To automatically detect this type of bias 057

in text, models must look beyond content that is di- 058

rectly asserted, and determine what is presupposed. 059

In this work, we examine whether large language 060

models (LLMs) can be reliably used to identify 061

presupposed content by prompting them to make 062

projection judgments, which are commonly used 063
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by linguists as a diagnostic tool for presupposed064

content (§2). To do so, we prompt multiple LLMs065

to make projection judgments on texts from three066

English datasets, which contain linguistic presup-067

position triggers and are annotated with human068

projection judgments. We calculate agreement069

scores between humans and LLMs, and utilize NLP070

tools and existing metadata to determine how fac-071

tors such as text domain, presupposition trigger,072

verb factivity, and context impact these agreement073

scores. Among the factors we study are ones asso-074

ciated with societal biases, such as the gender of075

the subject and the political ideology of the text, as076

LLMs have demonstrated biases that can impact077

their ability to make inferences (Figure 1). We fo-078

cus on answering the following research questions:079

I. How close are language models’ projection080

judgments to human judgments?081

II. What factors impact human-model agreement,082

and are any of these factors related to societal083

biases?084

Our results indicate that changes to text domain,085

presupposition trigger, context window size, and086

verb factivity can impact human-model agreement.087

Further, gender and political ideology appear to088

influence agreement, indicating potential biases in089

the LLMs’ judgments. Human-model agreement090

worsens when the subject is female compared to091

when the subject is male, and large differences in092

agreement arise for texts discussing different polit-093

ical ideologies across three dimensions: economic,094

social, and foreign. We discuss these findings in095

detail below, and provide recommendations for re-096

searchers who wish to use LLMs to automatically097

determine which content is presupposed, particu-098

larly within the space of bias mitigation.099

2 Background100

2.1 Presupposition and Projection101

Recasens et al. (2013) found that subtle bias in text102

is often expressed via presupposed content: con-103

tent that the speaker takes for granted as part of104

the common ground, which is necessary in order105

for the listeners to understand the meaning of the106

speaker’s assertion. A simple example of presup-107

position is as follows:108

(2) “Sally left the house to pick up some milk."109

Though it is not directly stated by the speaker, 110

most English speakers would agree that this state- 111

ment entails that Sally had previously been in the 112

house. However, when this sentence is negated, 113

this entailment still remains: 114

(3) “Sally did not leave the house to pick up some 115

milk." 116

Most English-speaking listeners would still as- 117

sume, upon hearing this sentence, that Sally had 118

previously been in the house, and in this case con- 119

tinued to be in the house instead of leaving to 120

pick up milk. This phenomenon, where an en- 121

tailed proposition is not cancelled even under an 122

entailment-cancelling operator, is known as pro- 123

jection, which is considered by standard semantics 124

accounts to occur as a result of that proposition 125

being presupposed, and is commonly used as a di- 126

agnostic for presupposition (Heim, 1983; Van der 127

Sandt, 1992; De Marneffe et al., 2019). 128

2.2 Presupposition Triggers 129

Presupposition is defined by the Stanford Encyclo- 130

pedia of Philosophy as “the phenomenon whereby 131

speakers mark linguistically information as being 132

taken for granted, rather than being part of the main 133

propositional content of a speech act." (Beaver 134

et al., 2021). Current linguistics research on presup- 135

position focuses largely on how presuppositions are 136

triggered (Beaver et al., 2021). Presupposition trig- 137

gers include change-of-state (see Example 2.1) and 138

clause-embedding predicates. It should be noted 139

that the presence of these triggers does not guaran- 140

tee projection. For instance, the two sentences be- 141

low contain the clause-embedding predicate show, 142

but most would agree that b does not entail the 143

proposition that racial bias is prevalent in policing 144

(referred to as the clausal complement). 145

(4) a. He showed that racial bias is prevalent in 146

policing. 147

b. He did not show that racial bias is preva- 148

lent in policing. 149

However, take the following sentences: 150

(5) He knew that racial bias is prevalent in polic- 151

ing. 152

(6) He did not know that racial bias is prevalent 153

in policing. 154
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NOPE

And then there's big talks of conspiracies ; 
like the parents are saying, Oh, I can't 
believe that they gave that word. It's a very 
big deal and everyone's like not thinking 
something is up sometimes, so...

Indicate how likely you think the following 
statement is to be true, rating from 0.0 to 
100.0, using the information in the text 
above and your background knowledge of 
how the world works: 
Something is up sometimes

CommitmentBank

Speaker: Nevertheless, life went on as it always 
does. By the accidents of distance and dates of 
birth both the Kiwi Keith and the Mackenzie 
houses had been spared the effects of war and 
neither knew the pain of loss or the sadness of 
wounds in young bodies. Indeed it could be said 
that they had prospered.

Tell us how certain the speaker is that the Kiwi 
Keith and the Mackenzie houses had 
prospered. Use a scale from -3 to 3, where -3 
means the speaker is certain that it is false, 0 
means the speaker is not certain whether it is 
true or false, and 3 means the speaker is 
certain that it is true.

MegaVeridicality

Someone surmised that a particular 
thing happened.

Did that thing happen? Answer 
"No", "Maybe or maybe not", or 
"Yes".

Figure 2: Examples of prompts for NOPE, CommitmentBank, and MegaVeridicality. In purple in the top stanza
is the sentence containing the presupposed content; the rest of the text in the top stanza is the added context. The
bottom stanza contains the instructions to the model, with the hypothesis in orange.

For both sentences, most readers would conclude155

that the speaker is committed to the proposition that156

racial bias is prevalent in policing. Thus, this state-157

ment projects under the clause-embedding predi-158

cate know, while it does not project under the verbs159

claim or asserted. Since Kiparsky and Kiparsky160

(1970), it is commonly held that clause-embedding161

verbs fall into two categories: factives, which lex-162

ically encode presupposition, and non-factives,163

which do not. Recent works have questioned this bi-164

nary distinction between factives and non-factives,165

pointing to examples where factives do not lexi-166

cally encode presuppositions and conducting ex-167

periments that reveal high variability in projection168

judgments that cannot be solely attributed to the169

factive vs. non-factive distinction (De Marneffe170

et al., 2019).171

3 Related Work172

Several works have used crowd-sourcing to col-173

lect human projection judgments with Amazon Me-174

chanical Turk (MTurk) (White and Rawlins, 2018;175

De Marneffe et al., 2019; Parrish et al., 2021), and176

have used this annotated data to study variations177

in human judgments. However, only one of these178

works has studied the impact of various linguistic179

features on language model projection judgments180

(Parrish et al., 2021), and this work did not study181

how LLMs behave for this task. If researchers182

wish to automatically evaluate the types of biases183

in text that occur via presupposition, the extent184

to which LLMs are capable of making these pro-185

jection judgments should be well-understood, and186

potential biases introduced by LLMs when mak-187

ing these judgments should be documented. This188

is the first work to comprehensively study LLMs’ 189

projection judgments across three different human- 190

annotated datasets, and to closely examine the fac- 191

tors affecting human-model agreement. We study 192

how different linguistic features, such as text genre 193

and trigger type, impact agreement, and examine 194

whether sources of societal bias influence agree- 195

ment. Below, we describe the three datasets we use 196

to evaluate our baselines in more detail. 197

3.1 NOPE 198

The NOPE corpus (Parrish et al., 2021) was devel- 199

oped to investigate the context-sensitivity of pro- 200

jection judgments under different presupposition 201

triggers. The authors extracted naturally-occurring 202

sentences from the Corpus of Contemporary Amer- 203

ican English (COCA) (Davies, 2009) containing 204

any of the following 10 presupposition triggers: as- 205

pectual verbs, change of state, clause-embedding 206

predicates, clefts, comparatives, embedded ques- 207

tions, implicative predicates, numeric determin- 208

ers, re-verbs, and temporal adverbs (examples of 209

each of these triggers can be found in Parrish et al. 210

(2021)). They crowdsourced entailment judgments 211

from MTurk workers to determine for which ex- 212

amples projection occurs (§2.1).The authors also 213

used this dataset to test language models’ capabili- 214

ties for inferring presuppositions. They evaluated 215

a Bag-of-Words (BOW) model, InferSent (Con- 216

neau et al., 2017), RoBERTa (Liu et al., 2019), 217

and DeBERTa (He et al., 2020) on their dataset. 218

All of these models were trained (BOW and In- 219

ferSent) or finetuned (RoBERTa and DeBERTa) on 220

the MNLI (Williams et al., 2018), SNLI (Bowman 221

et al., 2015), ANLI (Nie et al., 2020), and FEVER 222
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(Thorne et al., 2018) datasets before they were eval-223

uated on the NOPE dataset. The authors found that224

the models exhibited especially high performance225

on examples with clefts, numeric determiners, and226

temporal adverbs, and struggled with implicatives227

and clause-embedding predicates.228

3.2 CommitmentBank229

The CommitmentBank dataset (De Marneffe et al.,230

2019) was developed to investigate the conditions231

under which the finite clausal compliments of232

clause-embedding predicates project (§2.1). Does233

the so-called “factivity" of an embedding predicate234

(§2.2) determine projection, and to what degree?235

The dataset consists of 1200 naturally-occurring236

discourse segments from three different corpora,237

each in a different domain: Wall Street Journal238

(WSJ) news articles, the fiction component of the239

British National Corpus (BNC), and Switchboard240

dialogues (SWBD). MTurk crowdworkers were241

hired to annotate each example based on how cer-242

tain they believed the speaker was about the truth243

of the clausal complement (CC). Crowdworkers244

annotated on a scale from -3 (speaker is certain that245

the CC is false) to 3 (speaker is certain that the CC246

is true), with 0 indicating uncertainty either way.247

Other factors that may impact projection were also248

annotated, such as the lemma of the subject, tempo-249

ral reference of the matrix clause (“past", “present",250

or “future"), and the plausibility of the CC based251

on the context. The authors then analyzed the ef-252

fects of these factors on crowdworkers’ ratings.253

They find that, though factives are in general more254

likely to be projective than non-factives, there is no255

distinct separation between the two. For instance,256

examples with the non-factive predicate “accept"257

are rated more projective on average than most of258

the “factive" verbs. They also found evidence that259

the tense of the predicate and person of the subject260

may impact projection.261

3.3 MegaVeridicality262

The MegaVeridicality dataset (White and Rawl-263

ins, 2018) was compiled to test the role of factivity264

(§2.2) and veridicality (truthfulness) in determining265

clause selection for verbs (the semantic interpre-266

tation of their arguments). The authors selected267

517 verbs from the MegaAttitude dataset (White268

and Rawlins, 2016) and recruited participants on269

MTurk to provide veridicality ratings based on a270

series of frames such as “Someone {thought, didn’t271

think} that a particular thing happened" and “Some-272

one {was, wasn’t} told that a particular thing hap- 273

pened". Raters were asked to answer the question 274

did that thing happen? by choosing one of three 275

response options: yes, maybe or maybe not, and no. 276

For each item, 10 different ratings were given, each 277

from a different participant. The authors found that 278

veridicality and factivity do not serve as reliable 279

predictors of selection. 280

4 Methods 281

Model Pearson Spearman Tau

davinci-3 0.3899 0.4303 0.3307
turbo-3.5 0.4465 0.3935 0.3075
mixtral 0.4290 0.4022 0.2967
llama2-70b 0.1745 0.1905 .1430
phi 0.0706 0.1194 0.0838

Table 1: The Pearson, Spearman, and Kendall’s Tau
correlations between the average human rating and the
model rating for each baseline, averaged over 3 runs.

To collect veridicality judgments from LLMs, 282

we prompt our baselines using language similar 283

to the directions human raters were given for their 284

annotation task. We test on a variety of baselines, 285

and use the highest-performing model and settings 286

to run the remainder of our experiments. Below, 287

we detail our prompting strategies for each dataset 288

and describe the procedures used to choose our 289

experimental settings. 290

4.1 Prompting Strategies 291

To prompt our baselines, we simulate the human 292

rating tasks used for all three datasets: the NOPE 293

dataset (Parrish et al., 2021), CommitmentBank 294

(De Marneffe et al., 2019), and MegaVeridicality 295

(White and Rawlins, 2018) (see §3). The prompt 296

given to our baselines for each rating task is kept as 297

similar as possible to the one presented to human 298

raters in the corresponding dataset. We provide the 299

templates, and examples, for the prompts given to 300

the baselines in Figure 2. 301

4.2 Experimental Settings 302

We choose our baseline empirically based on agree- 303

ment between the model and human raters, as well 304

as variability between runs. We ultimately choose 305

GPT’s text-davinci-003 model at a temper- 306

ature of 0.0 and with a max token length of 5 (since 307

all valid answers contain less than 5 tokens - see 308

prompting strategies for details). Below, we detail 309

this process. 310
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Trigger Pearson Spearman Tau

Aspectual Verbs 0.2162 0.2332 0.1731
Change of State 0.3099 0.3301 0.2499
Clause-Emb. Pred. 0.7071 0.7058 0.5601
Clefts 0.5254 0.2895 0.2363
Comparatives 0.5959 0.5928 0.4602
Embedded Q 0.2157 0.2845 0.2221
Implicative Pred. 0.2485 0.2951 0.2285
Numeric Det. 0.2814 0.2697 0.2122
Re-Verbs 0.2363 0.2949 0.2207
Temporal Adv. 0.3340 0.1714 0.1401

Overall 0.3910 0.4326 0.3324

Table 2: The Pearson, Spearman, and Kendall’s Tau cor-
relations between the average human rating and model
rating for each NOPE corpus trigger type, with clause-
embedding predicates yielding the highest correlation.

Agreement with human raters We start by mea-311

suring human-model agreement on the NOPE cor-312

pus for multiple LLM baselines at a temperature313

of 0.0.Among these baselines are two GPT mod-314

els from OpenAI: GPT-3 (davinci-3) (Ouyang315

et al., 2022) and ChatGPT 3.5(gpt-3.5-turbo)316
1, and three open-source LLMs: Meta’s Llama 2317

model (llama2-70b) (Touvron et al., 2023), Mi-318

crosoft Research’s phi2 (Gunasekar et al., 2023;319

Li et al., 2023), and Mistral AI’s Mixtral 8x7B320

(mixtral) (Jiang et al., 2024). As shown in Ta-321

ble 1, gpt-3.5-turbo has the best linear cor-322

relation with human ratings, while davinci-3323

has the best rank correlations with human ratings.324

As we are more interested in studying the com-325

parative ratings between examples, we prioritize326

the model with the highest rank order. Thus, we327

use text-davinci-003 as our baseline for the328

remainder of our experiments.329

Variability between runs To measure vari-330

ability, we run our chosen baseline, GPT-3331

(text-davinci-003), on the NOPE dataset332

three times, at temperatures of 0.0, 0.25, and 0.5.333

We then calculate the average pairwise correlation334

between runs using the Pearson, Spearman, and335

Kendall’s Tau correlation coefficients. We report336

our results in Table 6 in Appendix A. Though we337

find higher variability at higher temperatures, the338

correlation between runs remains above .85 at all of339

the tested temperature levels. As expected, variabil-340

ity is lowest at a temperature of 0.0 (>.98). Thus,341

we set the model temperature to 0 for the remainder342

of our experiments.343

1https://openai.com/blog/chatgpt

Pearson Spearman Tau

W/ context 0.3910 0.4326 0.3324

No Context 0.4144 0.4173 0.3216

Table 3: Pearson, Spearman, and Kendall’s Tau correla-
tions between the average human rating and the model
rating with and without context; we observe slightly
higher linear correlations for the model without context
and vice versa for rank correlations.

5 Results 344

In the following, we detail our findings from exper- 345

iments conducted on the three corpora described in 346

§3 using the baseline model (GPT-3) chosen from 347

the experiments in §4. In addition to presenting our 348

results, we outline the main takeaways and discuss 349

their implications. 350

5.1 NOPE Corpus 351

Errors between GPT and transformer models of- 352

ten do not align for different trigger types. Par- 353

rish et al. (2021) found that transformers are most 354

accurate when classifying entailment for presuppo- 355

sition triggers on the NOPE dataset: clefts, numeric 356

determiners, and temporal adverbs. They reported 357

the worst performance for clause-embedding predi- 358

cates and implicatives. Inversely, we find the high- 359

est correlation between human and GPT judgments 360

for clause-embedding predicates (Table 2). GPT 361

achieves low performance for temporal adverbs 362

and numeric determiners, and low rank correla- 363

tions from clefts. We speculate that transformers 364

models’ near-ceiling performance on these cate- 365

gories in the NOPE corpus may in part result from 366

the high frequency of entailment labels in these 367

categories and the models’ tendency to predict an 368

entailment label. We provide a more fine-grained 369

examination of GPT’s behavior in Appendix B. 370

Context does not have much effect on projection 371

judgments. We also tested the effects of context 372

on GPT’s projection judgments for the examples 373

in the NOPE corpus. To do so, we prompted GPT 374

with 1) only the sentence containing the presup- 375

position trigger (no context) and 2) the sentence 376

containing the presupposition trigger, prepended 377

with the two sentences immediately before it. As 378

shown in Table 3, we find that trends in GPT’s 379

rating patterns for hypotheses and their negations 380

are largely unchanged with and without context. 381

Further, the correlations with human ratings vary 382
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Pearson Spearman Tau

Overall 0.6758 0.6846 0.5464

WSJ 0.6785 0.6809 0.5526
BNC 0.6580 0.6676 0.5307
SWBD 0.5816 0.5822 0.4600

Table 4: The Pearson, Spearman, and Kendall’s Tau
correlations between the average human rating and
the model rating across the whole CommitmentBank
dataset, and for each domain in the dataset. Wide dis-
crepancies in agreement occur between domains.

only slightly between the contextually-aware and383

context-free model (Table 2). This may indicate a384

lack of context-sensitivity among the examples as385

a whole, or it may reflect an issue with GPT when386

processing large contexts.387

5.2 CommitmentBank388

Overall, model ratings and human ratings in the389

CommitmentBank are more strongly correlated390

than those in the NOPE corpus, but statements with391

clause-embedding predicates as a presupposition392

trigger in the NOPE corpus show a slightly stronger393

correlation.394

Text genre and style may impact human-model395

agreement The CommitmentBank contains texts396

from three different datasets: Wall Street Jour-397

nal (WSJ) news articles, British National Corpus398

(BNC) fiction texts, and Switchboard dialogues.399

In addition to calculating the overall correlation400

between model predictions and average human rat-401

ings, we calculate the correlation for each of the402

domains contained in the CommitmentBank to de-403

termine whether the model is likely to agree more404

on certain texts. We report our results in Table 4.405

We find that WSJ news texts have the highest cor-406

relation between human and model ratings: .6785407

for Pearson, .6809 for Spearman, and 0.5526 for408

Kendall’s Tau. BNC fiction texts exhibit a slightly409

lower correlation for each metric (Pearson, Spear-410

man, and Kendall’s Tau), but within 3 points of the411

WSJ correlations for each metric. The Switchboard412

dialogues, however, exhibit the lowest correlation413

by a larger margin: for each metric, we report a414

9 to 10-point decrease from the WSJ correlations.415

We speculate that the structure of the Switchboard416

dialogues may be less familiar to GPT than the417

paragraph structure of fiction or news articles, but418

the effects of the text’s domain and structure on419

GPT’s ability to predict implicature should be stud-420

Figure 3: Human vs. model ratings for Commitment-
Bank data with GPT text-davinci-003 for factive vs.
non-factive verbs for the whole corpus and individual do-
mains. Factives and non-factives exhibit similar trends
across the dataset as a whole, but more variation was
observed within-domain, particularly for WSJ.

ied further. 421

Factive verbs often yield lower agreement than 422

non-factive verbs, but this effect varies across 423

domains. Given that the CommitmentBank was 424

created to empirically study the “factive"-vs. “non- 425

factive" distinction, we are interested in studying 426

whether factivity may impact the relationship be- 427

tween human and model ratings: specifically, do 428

models agree more with humans when the trigger 429

is a factive verb compared to a non-factive verb? 430

Across the whole dataset, and within each domain, 431

we calculate the correlations between human and 432

model judgments and plot a linear regression line 433

for 1) non-factives and 2) factives. We use the 434

CommitmentBank paper’s lists of factive and non- 435

factive verbs to determine factivity (De Marneffe 436

et al., 2019). Our results can be found in Figure 3. 437

We find that overall, there is a slightly higher linear 438

correlation between human and model judgments 439

for factive verbs, while a higher rank correlation is 440

observed for non-factives. But within each domain, 441

the correlations are lower for factives than non- 442

factives across all metrics. These differences are 443

often more pronounced within-domain than for the 444

dataset as a whole. Within the WSJ texts, factives 445

exhibit a Spearman’s Rank correlation that is 11 446

points below that of non-factives. The BNC texts 447

show the highest differences between factives and 448

non-factives: 9 points for Pearson, 21 points for 449

Spearman, and 17 points for Kendall’s Tau. The 450

SWBD texts have, at most, a 6 point difference 451
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Figure 4: Human vs. model ratings for Commitment-
Bank data with GPT text-davinci-003 for factive vs.
non-factive verbs for male and female subjects. We find
lowest agreement (for each metric and verb type) for
female subjects.

between factives and non-factives.452

The regression line equations for factives vs.453

non-factives are near-identical for the dataset over-454

all. However, we observe different trends within455

specific domains. Figure 3 shows slight (not statis-456

tically significant) differences between the lines of457

best fit for factives and non-factives for the BNC458

and SWBD texts. For WSJ texts, on the other hand,459

the lines of best fit are significantly different for460

factives vs. non-factives (smaller positive slope for461

factives). We note that a possible contributor is the462

small number of factive examples in the WSJ text.463

The gender of the subject impacts human-model464

agreement. To determine whether our baseline465

model exhibits any signs of bias, we start by look-466

ing at a relatively easy-to-identify characteristic467

within our data: gender of the subject. We cal-468

culate the correlations between human and model469

predictions, and plotted regression lines, for factive470

vs. non-factive verbs when the gender of the sub-471

ject is specified as female vs. male. To get these472

results, we used a simple heuristic and looked at the473

lemma of the subject; if the lemma was “she", we474

marked the subject as female, while if the lemma475

was “he", we marked the subject as male (if nei-476

ther, the example was not used for either category).477

We chose this heuristic to ensure that the subjects478

would be unambiguously read as female or male for479

the human rater and the language model. In Figure480

4, we compare the results for 1) the whole dataset,481

2) male subjects, and 3) female subjects. We find a482

much lower overall correlation between human and483

model ratings for female subjects than for male sub-484

jects, which is especially pronounced for factives485

when compared to nonfactives. In particular, we486

observe the model is prone to predicting neutral to487

positive entailment labels for female subjects, even488

in cases where human raters have determined that489

the speaker is certain about a statement being false, 490

and that this trend is less pronounced for male sub- 491

jects (see Figure 8 for distributions). Thus suggests 492

that GPT may be less inclined to predict that a fe- 493

male subject believes a statement to be false than 494

a male subject, and that its predictions for male 495

subjects are more aligned with the ground truth. 496

The political ideology discussed may impact 497

human-model agreement. We also wish to ex- 498

amine whether more subtle, difficult-to-detect 499

sources of bias may influence the LLM’s judg- 500

ments. To do so, we use the set of WSJ articles 501

in the CommitmentBank and run the political ide- 502

ology classifier developed by (Sinno et al., 2022) 503

on the concatenation of the context sentences and 504

the target sentence. This classifier predicts the po- 505

litical ideology under discussion in the text (left, 506

right, or neutral) across three different dimensions: 507

economic, social, and foreign. We calculate the 508

correlation between human and model judgments 509

for texts labeled as ideologically left, right, and 510

neutral for each dimension and compare these cor- 511

relations. Our results can be found in Table 5. We 512

find that, for each dimension, only a few examples 513

are tagged as right-leaning, while more examples 514

are tagged as left-leaning and most examples are 515

tagged as neutral. We also find that the model ex- 516

hibits the lowest agreement with human judgments 517

for examples labeled as economic right; for each 518

coefficient, the model judgments are negatively 519

correlated with human judgments. By contrast, for 520

examples labeled socially right-leaning, the model 521

is more strongly correlated with human judgments 522

than for neutral or left-leaning examples. For each 523

dimension, the model is more highly correlated 524

with human judgments for left-leaning examples 525

than for neutral examples, despite the presence of 526

more neutral examples in the dataset. This suggests 527

that the model’s inferences may vary depending on 528

the political ideology under discussion, and that 529

these variations may exhibit different patterns for 530

different political dimensions. 531

5.3 MegaVeridicality 532

GPT is less likely to predict entailment than hu- 533

mans when given very generic propositions To 534

isolate the effects of verb properties on the accept- 535

ability of statements, the authors of the MegaVeridi- 536

cality corpus (White and Rawlins, 2018) include 537

as little semantic content as possible in their exam- 538

ples. As such, this dataset serves as a useful testing 539

7



Dimension Lean Pear. Spear. Tau #

Economic Right -.1642 -.2412 -.1793 7
Left .6517 .6337 .5395 19
Neutral .5990 .5955 .4729 78

Social Right .7715 .6156 .5270 5
Left .5841 .5766 .4667 33
Neutral .5695 .5553 .4560 66

Foreign Right .6592 .6801 .5446 11
Left .6721 .6525 .5323 38
Neutral .5032 .4926 .3998 55

Table 5: Correlations between human and model agree-
ment given ideological polarization labels for WSJ texts
in each dimension. Examples discussing left-leaning
topics produce higher agreement than examples marked
as neither left nor right, despite the latter containing
more examples for each dimension.

Figure 5: Average model (left) vs. human (right) veridi-
cality judgments for each verb. The model is much less
prone to predicting that a statement is veridical than that
it is not veridical, even for verbs considered “factive" in
the MegaVeridicality corpus.

ground to examine how GPT behaves when given540

very little information besides the clause embed-541

ding predicate (e.g. “Someone knew that something542

happened"). To compare model behavior to human543

behavior for this dataset, rather than calculate cor-544

relation between human and model ratings (since545

there are only three possible labels), we compare546

the model’s answers to gold labels, derived by tak-547

ing the majority label assigned by annotators (when548

there is no majority, that examples is discarded).549

We find that, in comparison to humans, GPT is550

much more likely to answer No than Yes to the551

question of “did that thing happen"? This is shown552

in Table 7 in Appendix D, where the “Yes" label553

has high precision and low recall and the “No" la-554

bel has low precision and high recall. This can also555

be visualized more clearly in Figure 5. This pattern556

was not as evident in the NOPE dataset (6) or the557

CommitmentBank dataset (3), both of which con-558

tain more specific, contextually grounded clausal559

complements found “in-the-wild".560

Using gendered pronouns for subjects may in- 561

fluence GPT’s agreement with human ratings 562

Because a portion of the MegaVeridicality dataset 563

denotes its subjects using only the indefinite, gen- 564

derless pronoun “Someone", it is trivial to con- 565

duct experiments where the gender of the subject is 566

changed in the prompt and compare model results 567

to the human annotations given for the original ex- 568

ample with “Someone". We experiment with sub- 569

stituting “Someone" with “A man" or “A woman" 570

for each example constructed from the [NP _ that 571

S] frame. For each example, we calculate the ac- 572

curacy and correlation between the model predic- 573

tion on the altered example and the average human 574

label for the original example using “Someone". 575

As is shown in Table 8, differences in model per- 576

formance were observed for male-gendered exam- 577

ples vs. female-gendered examples. We (unsur- 578

prisingly) find that the model performs best when 579

given the same prompt as the humans are given, 580

with “Someone" as the subject. When changing 581

the subject to “a man" in the model prompt, we 582

observe a slight drop in accuracy and a much larger 583

decrease in correlation. Notably, when subject in 584

the model prompt is changed to ”a woman", the 585

accuracy and correlation between model and hu- 586

man ratings drop by several points compared to 587

“a man". These results, along with the Commit- 588

mentBank results (Figure 4), heavily indicate that 589

LLMs’ judgments are closer to human judgments 590

when the subject is male rather than female. 591

6 Conclusion 592

In the above, we provide the first comprehensive 593

set of experiments comparing human projection 594

judgments with LLM projection judgments, to de- 595

termine how reliably LLMs can be used to identify 596

presupposed content. We also examine how factors 597

such as specificity, text domain, presupposition trig- 598

ger type, and word factivity impact agreement, and 599

find that changes in these variables can heavily im- 600

pact on how closely the model’s predictions align 601

with humans’. Additionally, we find evidence that 602

changes to gender and political ideology may im- 603

pact the model’s agreement, suggesting that certain 604

social biases may impact the model’s judgments. 605

We thus urge practitioners using language models 606

to perform these inferences at a large scale to eval- 607

uate their systems carefully, and to determine the 608

conditions under which they succeed and whether 609

they may reflect existing societal biases. 610
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7 Limitations611

Because these datasets were manually annotated,612

with each example annotated by multiple raters,613

they are relatively small, on the order of thousands614

of examples. The set of Wall Street Journal arti-615

cles in the CommitmentBank is even smaller. Thus,616

our findings, particularly on bias, should be investi-617

gated on a larger scale to determine whether they618

hold for larger sets across additional text domains.619

8 Ethics620

In this work, we evaluate the performance of LLMs621

on existing datasets, and do not release any new622

publicly-available datasets with gold labels. We623

also do not use, or release, any LLMs that have624

previously not been released to the public. We625

do study the use of LLMs to detect biases that626

arise from presupposition, and release our prompt-627

ing techniques for these experiments. However,628

given that our findings indicate potential biases in629

LLMs’ projection judgments, we urge practitioners630

to study this technique further before relying on631

automatic methods alone to detect epistemological632

biases. If practitioners are to use LLMs to make633

claims about biases in text, they should also use634

manual evaluation techniques, and should carefully635

study the agreement between LLMs and humans,636

as well as the factors that impact this agreement.637
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Figure 6: Regression lines fitted to the model predictions as a function of human judgments for each NOPE trigger
type.

Class Precision Recall F1 Support

Yes 0.71 0.01 0.02 491
Maybe 0.35 0.42 0.38 251
No 0.02 0.82 0.04 11

Table 7: Precision, recall, F1, and support for GPT-3
text-davinci-003 at a temperature of 0 when compared
to the gold MegaVeridicality labels (obtained by taking
the majority label between the human raters when one
existed; when one did not, the label was thrown out).

Distributions of model predictions by trigger817

type As can be seen in Figure 6, in our experi-818

ments GPT had a tendency to cluster its ratings at819

the midpoint and extremes: around 0%, 50%, and820

100%. Further, GPT predictions were heavily con-821

centrated in the 90-100% range (Figure 7). Thus,822

rather than predict 0% or 50% for examples that823

averaged a 55-85% rating from humans, GPT may824

have opted to instead predict 90%, 95%, or 100%.825

It is of note that GPT’s predictions are not normally826

distributed, as one might expect for human ratings;827

they are either skewed entirely towards 100% or bi-828

or tri-modal. This suggests that GPT may default829

to picking the extreme values in this type of task.830

C CommitmentBank831

D MegaVeridicality832

Figure 7: Distributions of entailment judgments for
negated and non-negated statements for each trigger
type in the NOPE corpus. Clause-embedding predicates
yield the largest difference in mean between negated
and non-negated statements. These results mirror the
results of the NOPE corpus.
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Figure 8: Distributions of model ratings (purple) compared to human ratings (light) for male vs. female subjects.
The model predicts false values less often for female subjects than male subjects.

Accuracy Pearson Spearman Kendall’s Tau

Unchanged .3647 .4187 .4302 .3622
Someone → a man .3040 .1642 .1410 .1196
Someone → a woman .2808 .1169 .0981 .0833

Table 8: Correlations between model judgments (for GPT-3 text-davinci-003 at a temperature of 0) and human
judgments when the prompt given to the model 1) was unchanged, 2) replaced the word “someone" with “he", and
replaced the word “someone" with “she".

Figure 9: Model vs. average human judgments for each example when model prompt is unchanged from human
prompt (left), model prompt replaces “someone" with “he" (center), and model prompt replaces “someone" with
“she" (right).
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