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ABSTRACT

The evaluation of vision-language models (VLMs) has mainly relied on English-
language benchmarks, leaving significant gaps in both multilingual and multicul-
tural coverage. While multilingual benchmarks have expanded, both in size and
language, many rely on translations of English datasets, failing to capture cultural
nuances. In this work, we propose KALEIDOSCOPE, as the most comprehensive
exam benchmark to date for the multilingual evaluation of vision-language models.
KALEIDOSCOPE is a large-scale, in-language multimodal benchmark designed
to evaluate VLMs across diverse languages and visual inputs. KALEIDOSCOPE
covers 18 languages and 14 different subjects, amounting to a total of 20,911
multiple-choice questions. Built through an open science collaboration with a
diverse group of researchers worldwide, KALEIDOSCOPE ensures linguistic and
cultural authenticity. We evaluate top-performing multilingual vision-language
models and find that they perform poorly on low-resource languages and in com-
plex multimodal scenarios. Our results highlight the need for progress on culturally
inclusive multimodal evaluation frameworks.

Figure 1: Overview of the KALEIDOSCOPE Benchmark. (a) Multilingual-Multimodal MCQ
Samples (b) Language and Multimodal Samples Distribution. (c) Exam Category Breakdown.

1 INTRODUCTION

Evaluations are the backbone of measuring progress in machine learning, yet many benchmarks –
especially for language models – remain English and Western-centric (Joshi et al., 2020; Fan et al.,
2020; Dodge et al., 2021; Liu et al., 2021; Chung et al., 2022; Gehrmann et al., 2022; Lucy et al.,
2024). This imbalance becomes even more striking at frontier of AI, where generative models are
rapidly expanding into multimodal territory (OpenAI et al., 2024; Google et al., 2024; Anthropic,
2024; Deitke et al., 2024; Yue et al., 2025; Qwen-Team, 2025), seeking to represent a richer world
made up of different modalities such as image, text, sound. In recent years, the community has
made promising strides toward broader multilingual text evaluation (Ahuja et al., 2023; Singh et al.,
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2024b;a; Aakanksha et al., 2024; Pozzobon et al., 2024; Romanou et al., 2024; Singh et al., 2025;
Adelani et al., 2024), and multimodal benchmarks are starting to take shape (Bugliarello et al., 2022;
Fu et al., 2023; Yue et al., 2024a;b; Li et al., 2024a; Xu et al., 2025). Yet reliable evaluation at the
intersection of multilingual and multimodal tasks remains rare. This gap motivates our work.

A common but imperfect solution is translating English benchmarks into other languages. While
convenient, this often falls short of capturing cultural context and nuance. Translated datasets can
easily reinforce Western-centric knowledge and assumptions (van Miltenburg et al., 2017; Frank
et al., 2018; Singh et al., 2025; Longpre et al., 2025) limiting their ability to assess performance
across diverse settings. Moreover, automated data curation pipelines frequently amplify existing
quality issues (Luccioni & Viviano, 2021; Caswell et al., 2020; Kreutzer et al., 2022), with translation
artifacts such as translationese muddying evaluations (Koppel & Ordan, 2011; Zhang & Toral, 2019;
Bizzoni et al., 2020; Vanmassenhove et al., 2021). While translated data has its place, especially
for some particularly low-resource tasks (Zhou et al., 2021; Thapliyal et al., 2022; Qiu et al., 2022;
Ramos et al., 2024; Geigle et al., 2025; Dang et al., 2024; Üstün et al., 2024; Aakanksha et al., 2024),
it is an imperfect substitute for genuinely diverse, in-language benchmarks.

In this work, we introduce the largest benchmark of real-world, in-language exam questions blending
image and text modalities. Our dataset pushes beyond simple captioning, challenging models to
reason about visual content in various topics, the way humans are evaluated in exams worldwide.
Through a large-scale open science effort across 18 languages, we construct KALEIDOSCOPE (see
Figure 1), featuring a diverse selection of knowledge domains across 14 subjects. With 55% of the
total 20,911 questions requiring image understanding for accurate resolution, our work establish a
comprehensive, and inclusive evaluation framework for multimodal language models. We evaluate a
wide range of state-of-the-art models on KALEIDOSCOPE, including Claude 3.5 Sonnet (Anthropic,
2024), GPT-4o (OpenAI et al., 2024), and Gemini-V (Google et al., 2024), as well as smaller open-
weight VLMs, such as Aya-Vision model family (Cohere-For-AI-Team, 2025), Molmo (Deitke et al.,
2024) Pangea (Yue et al., 2025), and Qwen2.5-VL model family (Qwen-Team, 2025). Our key
contributions and findings are highlighted here:

KALEIDOSCOPE Benchmark: We present the largest multilingual multimodal exam set, covering
high resource (e.g., English, Spanish) to underrepresented languages (e.g., Bengali, Telugu) across
diverse subjects from sociology to STEM. Most languages (10/18) include 5+ topics, with the rest
focusing on multi-subtopics like mathematics or engineering. Questions emphasize vision grounded
reasoning through tasks like interpreting graphs, pictures, and region-specific diagrams, supported by
fine-grained metadata for model diagnostics.

Modality-Specific Performance Disparities: All models perform substantially better on text-only
questions, revealing a clear disparity across modalities. The gap widens in larger modelsl; for instance,
GPT-4o shows a 21.6% difference between text-only and multimodal performance, while smaller
models like Molmo exhibit a much narrower gap of 3.69%. (Section 4.1). Furthermore, multimodal
performance varies significantly by visual data type: models are more capable of answering questions
about tables (76.5%) and photographs (81.5%) compared to diagrams (62.9%).

Domain-Specific Performance Disparities: We observe a significant performance gap between
questions requiring knowledge of Humanities & Social Sciences and those focused on STEM subjects
(Section 4.4). On average, models present accuracy of 83.7% for humanities versus 59.2% for STEM
(based on the best scores across models). Models struggle more with STEM questions, suggesting
that while they can often recognize visual content and retrieve related knowledge, they lack the
reasoning capabilities needed to arrive at the correct answers in STEM domains.

Crosslingual Performance Disparities: Model performance varies across languages, with better re-
sults in high-resource languages and weaker performance in mid- and low-resource ones (Section 4.3).
Crosslingual transfer appears to play a role, as models perform better on average in languages using
Latin scripts compared to those with non-Latin scripts.

2 THE KALEIDOSCOPE BENCHMARK

The KALEIDOSCOPE Benchmark is a global collection of multiple-choice questions sourced from
real-world exams, with the goal of evaluating multimodal and multilingual understanding in VLMs.
The collected exams are in a Multiple-choice question answering (MCQA) format which provides a
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structured framework for evaluation by prompting models with predefined answer choices (Hendrycks
et al., 2021; Lu et al., 2023; Wang et al., 2024a; Yue et al., 2024a; Romero et al., 2024; Romanou
et al., 2024), closely mimicking conventional human testing methodologies. Our work is built around
three core design principles that guide the selection, curation, processing, and addition of exams:

Õ Multimodality: Images are central to KALEIDOSCOPE, as we aim to evaluate how VLMs
integrate and reason about visual information to answer questions. We prioritize multimodal
questions with diverse image types, complemented by a similar proportion of text-only
questions for a complete assessment and comparison.

� Multilinguality: The benchmark contains questions in 18 languages, with a focus on
under-represented mid- and low-resource languages (e.g., Nepali, Lithuanian) alongside
high-resource languages (e.g., English, Spanish) for a thorough evaluation across a broad
range of languages.

� Diversity: Our goal is to collect exams covering as wide a range of topics as possible
ranging from Mathematics and Sociology, to Medicine and Driving Licenses, ensuring
comprehensive evaluation across various domains. The final collection includes exams
from 14 different domains, collected from 18 countries and with varying educational levels,
allowing detailed clustering and comprehensive evaluation.

2.1 GLOBAL COLLABORATION

Our work entailed an extensive, open science process to manually collect data by working directly
with native speakers of different languages (Elliott et al., 2016; Liu et al., 2021; Thapliyal et al.,
2022; Li et al., 2024c; Üstün et al., 2024; Singh et al., 2024b). This is acutely needed in the field of
machine learning, where recent studies have highlighted that dataset creators remain predominantly
Western-centric (Longpre et al., 2025). The manual curation of datasets is a costly process that
requires careful attention to detail in every language to ensure high-quality, contextually relevant
content for evaluation. In this work, we engage in a large-scale open science collection process,
which brings together contributors spanning 20 nations across four continents to ensure linguistic and
cultural authenticity. For related participatory research see Appendix C.1.

2.2 DATA PIPELINE

Collection: We collected KALEIDOSCOPE following guidelines on type of exams and questions
required, formatting, specifications, and quality control measures. Data was collected through
a global call for contributions and distributed across global communities, with the majority of
contributors being independent researchers in the open science community. This effort resulted in
20,911 questions from 18 countries and languages, sourced in their original languages to maintain
linguistic authenticity. We prioritized original, domain-expert-written questions (e.g., from teachers),
ensuring real-world relevance and quality. The exams were gathered from various repositories,
including official government websites, question banks, and other publicly available repositories with
educational materials. Throughout the process, contributors also annotated associated licenses with
each dataset to allow for documentation of data provenance (Longpre et al., 2024).

Processing: The annotation process involves two stages. First, we perform automated parsing and
extraction. For directly parsable text, we use PDF or web parsers, while for non-parsable text, we
employ OCR API’s, such as Mathpix1, along with vision-language models such as GPT-4o. These
tools allow us to extract both text and image elements from exam source formats, which are then
converted into structured outputs in LaTeX, Markdown, and JSON formats, as required. Since
automated parsing can sometimes result in misaligned images and text, in the second stage we refine
the extracted text. Applying heuristic rules, as well as high-performing LLMs (Claude 3.5 Sonnet and
GPT-4o), we restructure the output, ensuring proper alignment of questions, text, and answer choices.
Human verification follows, ensuring images are correctly linked to the corresponding questions, and
checking that extracted formulas match the expected equation format.

Quality Assessment: Maintaining reliable and high quality data is essential, especially given
the large-scale international collaboration in this project. To ensure integrity, we include manual

1https://mathpix.com/convert
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validation in three stages of the collection and annotation pipeline. First, at the end of the collection
stage, two independent annotators validate each exam to ensure conformity with the guidelines. We
include a strict revision to confirm compliance with the distribution license requirements. Only exams
approved by both independent annotators are included in the dataset. Next, following the annotation
process, a validation script checks for JSON formatting errors, duplicates, and malformed strings
that do not conform to identified entry specifications (see Appendix E.3). Finally, at the last stage,
two separate validators perform a final manual review of the collected files before merging them into
KALEIDOSCOPE.

Quality control also extends to the evaluation, where we analyze the most prominent failure modes.
During inference, suspicious outputs, such as ambiguous answers, no response, or consistent failures
across models, are flagged for manual review. If an issue is identified, the entire exam containing the
problematic question is reviewed for correction or removal. This process guarantees that any errors in
the benchmark questions are identified and addressed, further enhancing the reliability of the dataset.

2.3 DATA STATISTICS

The final KALEIDOSCOPE benchmark contains 20,911 questions across 18 languages belonging to
8 language families. A total of 11,459 questions require an image to be answered (55%), while
the remaining 9,452 (45%) are text-only. The dataset covers 14 different subjects, grouped into
6 broad domains. Figure 1 presents an overview of the dataset; detailed statistics can be found
in Appendix B.3. The majority of questions in KALEIDOSCOPE are multimodal, with the exact
proportion varying across languages, ranging from 50% to 100%, with some languages always
requiring images for resolution.

Each exam question contains 17 fields, including source country, language, license, educational level,
category, and multimodal information. These fields are detailed in Appendix E.3. The questions are
formatted in MCQA format with 4 options and a single correct answer. The subject is labeled in
both English and the source language. The educational level (e.g., high school, university entrance,
professional licensing) is also included to ensure diverse representation. Multimodal questions
additionally specify the type of image, such as graphs, tables, or diagrams. Additionally, each entry
includes metadata such as source details, licensing status, and ISO 639-1 language codes. For a fine-
grained analysis, each question includes detailed metadata, with examples provided in Appendix E.1.
The metadata allows us to evaluate how visual and textual elements interact in multimodal reasoning
tasks, making the benchmark valuable for evaluating models across diverse scenarios.

KALEIDOSCOPE covers a wide range of languages, including low- and mid-resource languages such
as Nepali, Lithuanian, Bengali, Telugu, Persian, Ukrainian, Croatian, Serbian, and Hungarian, as well
as high-resource languages such as English, Spanish, Portuguese, Russian, French, German, Arabic,
Hindi, and Dutch. This selection allows us to evaluate how performance is affected by the amount of
resources available for a given language. The dataset spans 8 different language families, providing a
broad linguistic range. The number of questions per language varies significantly, from 126 for Nepali
to 2000 for Portuguese, Serbian, and Persian. The linguistic diversity present in KALEIDOSCOPE
enables a robust evaluation of models across both widely spoken and underrepresented languages,
making the dataset suitable for comprehensive multilingual assessment.

3 EXPERIMENTAL SETUP

3.1 MODELS

We benchmark both open-weights and closed multimodal vision-language models on KALEIDO-
SCOPE, focusing on lighter open-weight models and larger closed models to assess performance across
a wide range of model sizes. The open-weight models2 include Aya-Vision-8B and 32B (Cohere-
For-AI-Team, 2025), Molmo-7B-D (Deitke et al., 2024), Pangea-7B (Yue et al., 2025), and all
sizes of Qwen2.5-VL-Instruct (Qwen-Team, 2025) (3B, 7B, 32B, and 72B) to analyze the impact

2All open-weight models are evaluated locally using 1×NVIDIA Ampere A100 GPU with 64GB of memory
for models up to 8B, and 4×A100 for models on the range 32B–72B. Closed models were accessed via API. To
ensure a consistent evaluation environment, we set the temperature to 0.7, the maximum token generation to
1024, and the image size to 512×512 for all models.
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of model scale on KALEIDOSCOPE. All models have image and multilingual support; Aya-Vision
supports 23 languages, Qwen2.5-VL supports 29 languages, and Pangea was trained on a dataset
spanning 39 different languages, making them strong candidates for multimodal and multilingual
evaluation. For the closed models, we evaluate GPT-4o (OpenAI et al., 2024) (2024/08/06), Claude
3.5 Sonnet (Anthropic, 2024) (2024/10/22), and Gemini 1.5 Pro (Google et al., 2024).

3.2 EVALUATION SETUP

We designed two distinct evaluation setups to accommodate VLMs’ varying reasoning and instruction-
following capabilities. For closed models, we employed zero-shot prompts using the Chain-of-
Thought (CoT) method (Wei et al., 2022), instructing the model to reason step-by-step before selecting
the final answer within specific <ANSWER> </ANSWER> tags—a natural approach aligned with
real-world MCQ applications. Using a common template (see Appendix D.5), we ensured equal
evaluation conditions across models, with instructions translated into all evaluated languages for a
fully in-language setup, following Romanou et al. (2024). For smaller open-weight models, which
showed limited CoT effectiveness in preliminary experiments (Appendix D.2), we instead used a
direct answer generation approach, prompting models to output their choice in a JSON-structured
{’choice’: ...} field. This simplified the task by reducing reasoning or formatting errors,
with instructions always in English regardless of question language. Further discussion on model
output errors is in section 5. Due to KALEIDOSCOPE’s evaluating nature, we employ accuracy as our
main metric (further evaluation metrics details can be found in Appendix D.1).

4 RESULTS

Table 1: Performance Evaluation on KALEIDOSCOPE. Results are reported as macro-averaged
accuracy (%) across all languages (equal weight per language). Acc.: Accuracy over all samples; F.E.:
Format Error rate (invalid responses); Valid Acc.: Accuracy excluding invalid responses. Metrics
are shown for the full dataset (Overall), multimodal inputs (Multimodal), and text-only inputs
(Text-only).

Overall Multimodal Text-only

Valid Responses Valid Responses Valid Responses

Model Acc. F.E. Acc. Acc. F.E. Acc. Acc. F.E. Acc.

Claude 3.5 Sonnet 62.91 1.78 63.87 55.63 3.24 57.24 73.54 0.02 73.57
Gemini 1.5 Pro 62.10 1.62 62.95 55.01 1.46 55.71 72.35 1.81 73.45
GPT-4o 58.32 6.52 62.10 49.80 10.50 55.19 71.40 1.71 72.39

Qwen2.5-VL-72B 52.94 0.02 53.00 48.40 0.03 48.41 60.00 0.02 60.01
Aya-Vision-32B 39.27 1.05 39.66 35.74 1.49 36.28 44.73 0.51 45.00
Qwen2.5-VL-32B 48.21 0.88 48.64 44.90 0.28 45.05 53.77 1.61 54.60
Aya-Vision-8B 35.09 0.07 35.11 32.35 0.05 32.36 39.27 0.10 39.30
Molmo-7B-D 32.87 0.04 32.88 31.43 0.06 31.44 35.12 0.01 35.13
Pangea-7B 31.31 7.42 34.02 27.15 13.52 31.02 37.84 0.03 37.86
Qwen2.5-VL-7B 39.56 0.08 39.60 36.85 0.04 36.88 43.91 0.11 43.96
Qwen2.5-VL-3B 35.56 0.19 35.63 33.67 0.32 33.79 38.51 0.03 38.53

4.1 OVERALL PERFORMANCE

We benchmark a wide variety of models on KALEIDOSCOPE, with results summarized in Table 1.
Claude 3.5 Sonnet and Gemini 1.5 Pro lead among closed models, while GPT-4o’s performance is
impacted by high format errors—particularly in the multimodal split—though its accuracy improves
significantly when considering only valid answers (see Section 5). Among open-weight models,
Qwen2.5-VL-72B achieves the highest accuracy, followed by lightweight models like Qwen2.5-VL-
7B, which leads the 7-8B category.

A key trend is the performance drop in multimodal questions compared to text-only ones, with closed
models showing the largest gaps (e.g., GPT-4o’s steep decline). In contrast, open-weight models
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(a) Accuracy as a function of modality. (b) Accuracy as a function of textual script.

Figure 2: Model Performance Analysis on KALEIDOSCOPE. (a) Accuracy (%) of models on
multimodal and text-only questions, highlighting low performance on multimodal samples. (b)
Accuracy (%) by script type, revealing biases for latin scripts. Accuracy over valid responses is used
to generate both figures. Identity line is added to show parity.

exhibit smaller gaps, suggesting greater robustness across modalities despite lower overall scores.
This gap narrows further for smaller models, with Molmo displaying the most balanced performance.
This lightweight model’s consistency is depicted in Figure 2a (by being closer to the identity line),
reinforcing that open models while less specialized, handle multimodal tasks more uniformly.

4.2 NOT ALL IMAGE TYPES ARE EQUAL

Table 2: Model Performance Breakdown by Image Type in KALEIDOSCOPE. Accuracy (%) over
valid answers across image type. Bold values indicate top-performing model.

Model Diagram Figure Graph Map Photo Formula Table Text
(2,182) (6,178) (733) (392) (631) (487) (597) (257)

Claude 3.5 Sonnet 62.9 50.5 74.2 80.1 77.8 52.1 75.0 85.2
Gemini 1.5 Pro 59.4 51.3 67.9 69.4 75.8 68.3 76.0 85.2
GPT-4o 59.6 48.2 68.4 78.8 81.5 64.4 76.5 86.2
Qwen2.5-VL-72B 51.1 43.9 59.4 66.1 70.5 48.7 61.5 86.0
Aya-Vision 32B 38.6 33.4 42.0 50.0 60.2 32.4 33.1 68.8
Qwen2.5-VL-32B 46.7 41.0 53.1 58.2 65.0 47.3 58.0 82.5
Aya-Vision 8B 32.7 29.9 37.2 38.6 42.3 29.2 34.1 54.9
Molmo-7B-D 30.3 31.5 36.7 37.8 45.0 25.1 30.6 56.8
Pangea-7B 31.0 31.0 32.9 38.5 45.0 32.2 29.4 66.3
Qwen2.5-VL-7B 38.0 34.0 44.3 48.0 53.9 34.9 40.9 76.3
Qwen2.5-VL-3B 32.8 32.3 40.2 41.2 48.2 34.7 35.2 72.8

KALEIDOSCOPE contains eight visual information types, with accuracy varying significantly by
complexity (Table 2). Simpler inputs like text-rich images (Qwen2.5-VL-7B: 76.3%; GPT-4o: 86.2%)
and photos score higher than technical categories like Formulas and Diagrams (Qwen2.5-VL-7B:
38.0%; GPT-4o: 62.9%). Notably, Qwen2.5-VL-72B ranks second in text-rich images, surpassing
both Gemini and Claude. Larger models show specialized strengths: Gemini 1.5 Pro dominates
Formulas and Figures, GPT-4o leads in text-rich images, and Claude 3.5 Sonnet achieves the highest
scores in Diagrams, Graphs, and Maps. In contrast, Qwen2.5-VL-7B consistently outperforms all
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lightweight models across categories, demonstrating broader capability despite lower absolute scores.
The results reveal a clear hierarchy: models handle simple visuals well but struggle with structured or
symbolic data, a pattern consistent across architectures but more pronounced in smaller models.

4.3 RESOURCE AND SCRIPT SENSITIVITY IN MODELS

Figure 3: Multimodal Accuracy by Language in KALEIDOSCOPE. Reports performance (accuracy
%) for closed models and open-weight models on multimodal questions.

Performance in KALEIDOSCOPE varies widely across all 18 languages (see Figure 3). Models
generally perform well in high-resource languages (e.g., English, Spanish, German) but struggle
with lower- and mid-resource ones, such as Nepali and Telugu. This can be attributed to the limited
training data for these languages, complex scripts, and the exclusive use of multimodal samples for
these languages (see Appendix B.3), which are inherently more challenging. Lithuanian, despite
being mid-resource language, stands out as the highest-performing language, with Claude 3.5 Sonnet
leading in accuracy. This might be due the fact that all Lithuanian questions belong to College
Graduation Exams, and have a major subject composition of Social Sciences and Humanities in
opposition to STEM subjects, which may align well with the models’ capabilities. Closed models
show similar performance within each language, except for German, where Claude excels. In contrast,
Qwen2.5-VL-7B consistently leads all lightweight models for almost every language, and the heavier
Qwen2.5-VL-72B shows the benefits of model scale.

The results show that all models are biased towards Latin script languages. As shown in Figure 2b, all
models are above the parity line, exhibiting consistent higher performance for Latin scripts compared
to non-Latin scripts. Full results can be found in Appendix D.3.

4.4 STEM QUESTIONS EXPOSE MODEL DEFICIENCIES

KALEIDOSCOPE consists of exams covering 14 subjects and domains. We observe that all models
perform significantly better on Humanities & Social Science questions compared to other domains.
The closed models achieve high accuracy in areas like Sociology (Claude: 93.4%, GPT-4o: 93.2%),
Social Sciences (GPT-4o: 88.1%, Gemini: 85.7%), and Language (GPT-4o: 85.8%, Claude: 85.5%).
In contrast, performance in STEM subjects, including Mathematics, Physics, and Engineering, is
notably lower, with most models scoring below 50%. This suggests that while they are generally
capable of recognizing visual content and retrieving surface-level knowledge, they fall short when it
comes to performing the multi-step reasoning and problem-solving required in STEM subjects. An-
swering these questions often demands not just factual recall but also the ability to interpret complex
diagrams, apply mathematical concepts, and reason through scientific principles – capabilities that
current models have yet to fully master. This highlights a key gap in their ability to bridge perception
and reasoning, particularly in tasks that require deeper analytical thinking. Refer to Appendix D.3,
Table 9, for multimodal and complete results of model performance across subjects.
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5 ANALYSIS

5.1 HOW SENSITIVE ARE VLMS TO MISSING OR INCORRECT IMAGES?

Table 3: Image Relevance Analysis for Qwen2.5-VL-7B on KALEIDOSCOPE. Model performance
across the standard multimodal, Random Image, and No-Image setups to assess the impact of visual
information on question-answering accuracy.

Valid Responses

Setup Accuracy Format Error Accuracy

Standard Multimodal 36.85 0.04 36.88
Random Image 32.56 3.12 33.53
No Image 33.44 0.03 33.45

To evaluate the dependency of multimodal questions on images, and the impact of incorrect image
associations, we conducted an experiment using the multimodal split of KALEIDOSCOPE. Follow-
ing Elliott (2018); Thomason et al. (2019), we created two modified versions of the dataset: (1) a ‘No
Image’ split, where all images were removed, and (2) a ‘Random Image’ split, where images were
randomly reassigned to questions. The aim of this experiment is to assess how much the models rely
on the visual information. We evaluate the performance of Qwen2.5-VL-7B on these modified splits,
and the results are shown in Table 3.

We observe that the model performs above the random baseline (25%) across all three splits, indicating
some ability to reason from text alone. However, there is a drop in performance (−3.41% in Total
Accuracy) when questions are presented without images, suggesting that the model does rely on visual
information for accurate answers. The performance drop is similar for both modifications; however,
we observe a significantly larger format error when the model is tested with irrelevant images. In
several of these cases, the model actually acknowledges that the image does not correspond to the
question. In contrast, in experiments with no images, the format error rate is almost zero, indicating
that the model attempts to answer even when visual inputs are missing.3

5.2 SCALING MODEL SIZE IMPROVES PERFORMANCE

Figure 4: Model Size Analysis for Qwen2.5-VL Models. Performance improvement across three
model sizes (3B, 7B, 32B, and 72B parameters) on KALEIDOSCOPE’s multimodal tasks, demonstrat-
ing consistent gains from increased model capacity. Note that x-axis is shown in log-scale.

To analyze the impact of model size on KALEIDOSCOPE performance, we evaluated all four variants
of Qwen2.5-VL. We selected this model family for its well-distributed size range, as well as being
the best performing model in the open weight model category. We follow the same experimental
setup for all model versions.

Figure 4 shows the performance of Qwen2.5-VL variants on KALEIDOSCOPE. Model size is shown
in the x-axis (log-scale), while the y-axis displays accuracy for multimodal and text-only splits, and

3We observed that Qwen2.5-VL-7B tends to hallucinate when no image is present. In a simple experiment
using the prompt “Describe the following image”, the model correctly describes the input image
when provided. However, when no image is passed, the model hallucinates and generates a random description.
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overall score. We observe a linear relationship between the logarithm of the model size and accuracy,
with larger models showing significant gains. The largest open model model evaluated, Qwen2.5-
VL-72B, still underperforms the closed models, however, these results highlight the effectiveness of
scaling for open models, with clear and predictable improvements at each size tier.

5.3 FORMAT ERRORS

While our experimental setup ensures a majority of answers were extracted from model outputs,
we observe occasional failures: models struggle to follow instructions, outputs contain formatting
errors, or models refuse to answer (particularly for health-related or ethical questions). Appendix
Figure 5 shows that unanswered questions concentrate in mid- to low-resource languages, and the
distribution accumulates over non-latin scripts, likely due to tokenization challenges, insufficient
language-specific training data, or visual-textual alignment difficulties. Pangea-7B shows the highest
refusal rates, especially for Telugu (452), Hindi (130), Persian (160), and Serbian (125). While
other open models show minimal unanswered counts, indicating better format adherence. Closed
models (Claude 3.5 Sonnet, GPT-4o) display distinct behavior: their refusals concentrate on non-
Latin, low-resource languages, but they also show high error rates for English questions, primarily
health/medical queries due to policy constraints. This underscores the trade-off between content
moderation and benchmark performance.

6 RELATED WORK

While VLMs excel in multimodal tasks, existing benchmarks (Li et al., 2024b; Vayani et al., 2024;
Nayak et al., 2024; Schneider et al., 2025) predominantly evaluate high-resource languages (e.g., En-
glish (Zang et al., 2024; Schneider et al., 2025), Chinese (Fu et al., 2023; He et al., 2024)), neglecting
linguistic diversity and cultural nuances (Hengle et al., 2024; Bird, 2022). Translating benchmarks via
tools like ChatGPT (Lai et al., 2023), GPT-4 (Yue et al., 2025) or Google Translate (Li et al., 2023),
often introduces errors and cultural mismatches (Singh et al., 2024a; Huang et al., 2025). Recent mul-
tilingual benchmarks attempt to bridge this gap: MMLU-ProX (Xuan et al., 2025) covers reasoning
in 13, CVQA (Romero et al., 2024) integrates cultural visuals across 31, and PangeaBench aggregates
47 languages (Yue et al., 2025). However, cultural benchmarks like MaRVL (binary evaluation) (Liu
et al., 2021) and CULTURALVQA (English-only open-ended questions) (Nayak et al., 2024) remain
limited in scope or format. Moreover, the MaXM benchmark (Changpinyo et al., 2023) addresses
bias and provides multilingual, multimodal assessment across 7 languages but does not focus on
cultural aspects, an area where KALEIDOSCOPE offers added value. KALEIDOSCOPE advances these
efforts by combining regionally sourced multimodal exam questions with MCQA structure, enabling
granular, culturally conscious evaluation across 18 languages. Exam-style benchmarks assess VLMs
under structured multilingual settings. M3Exam (Zhang et al., 2023) uses real exams in 9 languages
but only 23% image-dependent questions. EXAMS-V (Das et al., 2024) spans 11 languages with
multimodal STEM content, yet 75% of its 20,932 questions are text-only. While M5 (Schneider
& Sitaram, 2024) evaluates 41 languages across vision-language tasks, it avoids MCQA formats.
KALEIDOSCOPE surpasses these by combining 18 languages, STEM & cultural coverage, and 55%
image-dependent MCQA (Table C.2), offering comprehensive multilingual exam evaluation.

7 CONCLUSION

As generative models become increasingly multimodal and multilingual, the need for robust and
culturally grounded evaluation benchmarks has never been more urgent. We take a step toward
closing this gap by introducing the largest benchmark of real-world, in-language multimodal exam
questions. By grounding evaluation in authentic exam settings from around the world, our benchmark
challenges models to reason about images in ways that mirror human assessment, capturing both
linguistic and cultural complexity. Our findings highlight the limitations of current models in handling
this intersection of skills: multilingual understanding, visual reasoning, and culturally aware problem-
solving. We hope this benchmark serves not only as a valuable tool for measuring progress but
also as a call to action for developing models that are truly capable of operating across languages,
cultures, and modalities. Continued investment in representative, high-quality evaluation datasets
will be essential to ensure that future AI systems are equitable and globally relevant.
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A LIMITATIONS

While our benchmark represents an important step toward more representative multilingual multi-
modal evaluations, several limitations still remain. First, the dataset is inherently imbalanced across
languages. Coverage varies depending on the availability and accessibility of exam sources, with some
languages significantly underrepresented. Second, difficulty levels are not uniformly controlled. Since
questions are drawn directly from real-world exams across diverse educational systems, variations in
exam design, curricular focus, and intended grade levels introduce potential inconsistency in task
complexity across languages and modalities. Further the chosen MCQA question format, inherent to
many exams, has issues, see Appendix C.3. For instance: Exploitation of biases: Models may guess
correct answers by exploiting statistical patterns or poorly designed distractors, inflating performance
metrics without demonstrating genuine understanding. Limited real-world applicability: Unlike
open-ended queries typical in real-world applications, MCQA provides predefined options, which
may not reflect natural user interactions. Choice-order sensitivity: Performance can vary based on
the order of answer choices, introducing inconsistencies unrelated to model capability. Finally, while
the dataset expands coverage beyond English, the overall language diversity remains limited. Many
languages, especially those spoken in low-resource regions, are still missing due to the scarcity of
suitable exam material and annotators.

Intended Use. KALEIDOSCOPE is designed as an evaluation-only benchmark for assessing multi-
lingual and multimodal reasoning under exam-style, multiple-choice conditions. Appropriate uses
include: diagnosing modality gaps between image-text and text-only settings; analyzing model
behavior across languages, scripts, subjects, and image types; and studying cross-lingual or culturally
grounded biases within a controlled MCQA format. KALEIDOSCOPE is not intended for evaluating
free-form generation, long-context reasoning, conversational or interactive capabilities, or open-ended
problem solving. It is also not designed for model training or fine-tuning.

B DATA COLLECTION DETAILS

B.1 LICENSE

To ensure ethical data usage, we prioritize sources that permit redistribution and academic use. During
data collection, we filter out content from sources with restrictive licensing policies. Additionally,
our dataset does not include personally identifiable information, and all collected exams are either
publicly available or obtained under appropriate agreements. To further guarantee compliance, we
employ a two-stage validation process in which two blinded annotators independently verify the
license of each exam included in our dataset. Only items that pass both validations are included in
the final dataset.

B.2 DIFFICULTY LEVELS

To better contextualize cross-language performance variability, we introduce a unified four-tier
difficulty taxonomy (Basic, Intermediate, Advanced, Expert) derived from the original heterogeneous
level metadata. To construct the mapping, we sampled 30 examples for each "level" category and
determined the typical age and educational stage at which humans would encounter similar material.
This served as a proxy for aligning the original categories to our four standardized bins.

Table 4 reports the resulting difficulty distribution for each language in KALEIDOSCOPE. Each cell
lists both the raw count of questions and the corresponding percentage of that language’s total. While
the difficulty profiles vary across languages, reflecting differences in the types of publicly available
exams, the overall benchmark is centered around Intermediate and Advanced material, corresponding
broadly to high-school and undergraduate-level content.

We provide these difficulty assignments as additional metadata while preserving the original level
tags, allowing the community to refine or reinterpret the taxonomy according to their research needs.
For full transparency, we include the final mapping used to convert the original level categories into
our four-tier difficulty scheme in our code.
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Table 4: Difficulty distribution across languages in KALEIDOSCOPE. Each cell shows percentages
with raw counts in grey.

Language Basic Intermediate Advanced Expert Total

Arabic 0.0% | 0 100.0% | 382 0.0% | 0 0.0% | 0 382
Bengali 0.0% | 0 72.6% | 581 18.0% | 144 9.4% | 75 800
German 0.0% | 0 0.0% | 0 100.0% | 722 0.0% | 0 722
English 0.0% | 0 65.4% | 1065 17.0% | 277 17.6% | 286 1628
Spanish 0.0% | 0 58.9% | 873 3.8% | 56 37.3% | 553 1482
Persian 0.0% | 0 76.3% | 1526 23.7% | 474 0.0% | 0 2000
French 0.0% | 0 100.0% | 762 0.0% | 0 0.0% | 0 762
Hindi 13.1% | 248 28.6% | 540 21.2% | 399 37.1% | 699 1886
Croatian 0.0% | 0 100.0% | 324 0.0% | 0 0.0% | 0 324
Hungarian 0.0% | 0 100.0% | 1120 0.0% | 0 0.0% | 0 1120
Lithuanian 0.0% | 0 100.0% | 680 0.0% | 0 0.0% | 0 680
Nepali 0.0% | 0 100.0% | 126 0.0% | 0 0.0% | 0 126
Dutch 0.0% | 0 24.2% | 246 75.8% | 772 0.0% | 0 1018
Portuguese 0.0% | 0 0.0% | 0 100.0% | 2000 0.0% | 0 2000
Russian 0.0% | 0 100.0% | 1744 0.0% | 0 0.0% | 0 1744
Serbian 0.0% | 0 100.0% | 2000 0.0% | 0 0.0% | 0 2000
Telugu 0.0% | 0 0.0% | 0 100.0% | 1000 0.0% | 0 1000
Ukrainian 35.3% | 437 0.0% | 0 64.7% | 800 0.0% | 0 1237

All languages 3.3% | 685 62.8% | 12,869 39.5% | 8,094 9.4% | 1,929 20,911

B.3 DATASET STATISTICS

Table 5: Statistics of the KALEIDOSCOPE Dataset. Breakdown of subjects (Subjects), total questions
(Total), multimodal questions (Visual), and text-only questions (Text) per language. Languages
are covered by multiple sources with single-subject cases containing specialized subdomains. Õ:
Supports evaluation of both multimodal (image+text) and unimodal (text-only) capabilities. � :
Languages are classified by resource level (high/mid/low) following Joshi et al. (2019); Singh et al.
(2024b). �: Enables granular analysis of model performance across modalities, languages, and
subject domains.

Language Code Subjects Total Visual Text Resources Family
Portuguese pt 11 2000 1000 1000 High Italic
Serbian sr 1 2000 1000 1000 High Balto-Slavic
Persian fa 5 2000 1000 1000 High Iranian
Hindi hi 12 1886 1000 886 High Indo-Aryan
Russian ru 1 1744 872 872 High Balto-Slavic
English en 9 1628 814 814 High Germanic
Spanish es 6 1482 741 741 High Italic
Hungarian hu 1 1120 560 560 High Uralic
Dutch nl 10 1018 509 509 High Germanic
French fr 1 762 381 381 High Italic
German de 1 722 361 361 High Germanic
Arabic ar 10 382 191 191 High Semitic
Croatian hr 1 324 162 162 High Balto-Slavic
Ukrainian uk 8 1237 1000 237 Mid Balto-Slavic
Bengali bn 6 800 400 400 Mid Indo-Aryan
Lithuanian lt 6 680 340 340 Mid Balto-Slavic
Telugu te 1 1000 1000 0 Low South Dravidian
Nepali ne 1 126 126 0 Low Indo-Aryan

Total (18) 14 20,911 11,457 9,454 – –
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C EXPANDED RELATED WORK

C.1 PARTICIPATORY OPEN SCIENCE PROJECTS

Participatory research empowers diverse communities to actively contribute to research processes,
capturing linguistic subtleties and cultural nuances directly from native speakers. Prior participatory
NLP research has primarily targeted region-specific tasks such as translation, character recognition,
and audio transcription. We highlight notable initiatives here which served as our motivation and
backbone framework for building KALEIDOSCOPE.

In Africa, the Masakhane4 community exemplifies impactful participatory NLP by focusing on
grassroots-led data collection, annotation, and model creation for African languages. Nekoto et al.
(2020) demonstrated that communities in low-resource environments significantly contribute to NLP,
even without formal training. Subsequent efforts by Adelani et al. (2023) have further advanced
dataset curation and model development for underrepresented African languages using similar
participatory frameworks. Similarly, the MaRVL dataset (Multicultural Reasoning over Vision
and Language; Liu et al., 2021) employed native speakers from diverse linguistic backgrounds
(Indonesian, Swahili, Tamil, Turkish, and Mandarin Chinese) to contribute culturally representative
images, subsequently annotated by professional linguists. Despite its cultural richness, MaRVL’s
modest scale (under 8,000 data points) limits broader applicability beyond evaluation.

In Latin America, participatory research has also emerged and is continuously growing through
the help of communities. Recent works include Hernandez Mena & Meza Ruiz (2022), which
developed eight open-access linguistic resources via structured social service programs, engaging
student volunteers in transcription and segmentation tasks. Concurrently, Cañete et al. (2020) and
Guevara-Rukoz et al. (2020) spearheaded crowd-sourced corpora addressing dialectal diversity and
resource scarcity specific to Latin American Spanish.

Table 6: Comparison of Multimodal Benchmarks. †All but 40 questions are in English that measure
machine translation capability from Chinese to English.

Benchmark Languages Samples Multimodal Modalities Human An-
notation

Answer type

MMMU (Yue et al.,
2024a)

1 11,550 11,264 Image-Text Yes MCQA

SEED-Bench (Li et al.,
2024a)

1 19,242 19,242 Image-Text,
Video-Text

Partial MCQA

MME (Fu et al., 2023) 1† 2,194 0 Image-Text Partial Y/N
M3Exam (Zhang et al.,
2023)

9 12,317 2,816 Image-Text Yes MCQA

EXAMS-V (Das et al.,
2024)

11 20,932 5,086 Image-Text Yes MCQA

M5 (Schneider & Sitaram,
2024)

41 237,094 1,422 Image-Text Yes Mix

KALEIDOSCOPE 18 20,911 11,459 Image-Text Yes MCQA

In Southeast Asia, Project SEALD5, a collaboration between AI Singapore and Google Research,
facilitated multilingual dataset collection to support regional Large Language Models (LLMs).
Outputs from SEALD underpin open-source multilingual models such as SEA-LION6, Wangchan-
Lion (Phatthiyaphaibun et al., 2024), and Sahabat-AI7. Related initiatives include NusaCrowd
for aggregating and standardizing Indonesian NLP datasets (Cahyawijaya et al., 2023) and the
SEACrowd and SEA-VL projects aimed at comprehensive evaluation and benchmarking of LLMs
across Southeast Asian languages (Cahyawijaya et al., 2025; Lovenia et al., 2024).

On a global scale, the CVQA dataset (Romero et al., 2024) was created using a participatory
approach, involving native speakers and cultural experts from over 30 countries. Annotators were

4https://www.masakhane.io/
5Southeast Asian Languages in One Network Data; https://aisingapore.org/aiproducts/

southeast-asian-languages-in-one-network-data-seald/
6https://sea-lion.ai
7https://sahabat-ai.com
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selected for their fluency in local languages and cultural familiarity. Many contributors were also
recognized as co-authors based on their level of involvement, reinforcing a collaborative, community-
driven effort. The Aya Initiative employed participatory methods, engaging over 3,000 contributors
to curate instruction datasets across 114 languages, resulting in one of the largest multilingual datasets
for language model training (Singh et al., 2024b; Üstün et al., 2024). Similarly, the INCLUDE
benchmark (Romanou et al., 2024) leveraged participatory approaches closely aligned with our
methodology. The BigScience ROOTS corpus, developed collaboratively for the BLOOM model,
exemplifies large-scale participatory data collection. Approximately 62% of ROOTS data was crowd-
sourced via global hackathons and open submissions, involving over 1,000 researchers from 60
countries and more than 250 institutions, resulting in 1.6 terabytes of multilingual data (Laurençon
et al., 2022). Additionally, Uzuner et al. (2010) underscored the viability of community-driven
annotation for complex, domain-specific NLP tasks like clinical text annotation, highlighting broader
applicability of participatory frameworks beyond general NLP domains.

Participatory methods have also successfully extended into reinforcement learning from human feed-
back (RLHF). For instance, the OpenAssistant project, led by LAION, utilized global crowdsourcing
to construct a multilingual corpus comprising over 161,000 messages annotated by 13,500 volunteers.
This dataset facilitated robust training of dialogue-aligned language models through extensive human
feedback annotations (Köpf et al., 2023).

C.2 COMPARISON WITH OTHER BENCHMARKS

Table 6 offers a concise comparison of key multimodal benchmarks. MMMU (Yue et al., 2024a),
SEED-Bench (Li et al., 2024a), and MME (Fu et al., 2023) are single-language datasets focused
mainly on image-text pairs, with SEED-Bench also incorporating video-text. MME is notably
smaller and only partially human-annotated, using mostly true/false formats. In contrast, M3Exam
(Zhang et al., 2023), EXAMS-V (Das et al., 2024), and M5 (Schneider & Sitaram, 2024) introduce
multilingualism—M5 being the most extensive with 41 languages—though much of its content is not
multiple-choice and lacks verified annotations.

KALEIDOSCOPE stands out by offering a balanced composition of 20,911 samples across 18 lan-
guages, with a strong focus on multimodal reasoning (11,459 Image-Text samples), comprehensive
human annotation, and a consistent multiple-choice setup. Compared to existing benchmarks, KALEI-
DOSCOPE is more linguistically diverse than M3Exam and EXAMS-V, includes more multimodal
samples than M5, and ensures higher quality through expert-verified annotations, making it a robust
and equitable benchmark for evaluating multilingual multimodal models.

C.3 EVALUATION METRICS AND THE MCQA FRAMEWORK

Traditional evaluation metrics for VLMs, such as exact match accuracy, BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and CIDEr (Vedantam et al., 2015), rely on surface-level n-gram comparisons
that often penalize semantically equivalent answers phrased differently from reference texts. In
contrast, the multiple-choice question answering (MCQA) framework (Hendrycks et al., 2021;
Romero et al., 2024; Lu et al., 2022; Yue et al., 2024a) offers a more human-like evaluation paradigm
by providing predefined answer options. This reduces ambiguity in scoring and facilitates the creation
of evaluation datasets that capture both domain knowledge and linguistic/cultural nuances across
languages. Although concerns regarding oversaturation and reliance on superficial cues in MCQA
exist (Du et al., 2023; Yuksekgonul et al., 2022), these can be mitigated by extending the answer
option space and applying rigorous filtering strategies (Wang et al., 2024b; Yue et al., 2024a). Our
primary challenge lies in the scarcity of questions that are both multimodal and culturally agnostic.
As demonstrated by results from KALEIDOSCOPE and related studies (Maaz et al., 2024; Nayak
et al., 2024), oversaturation is not a prevalent issue. Consequently, bridging this evaluation gap is of
key importance. To ensure high data quality, source data in KALEIDOSCOPE are manually verified
by qualified processors in accordance with established criteria (2.2), maintaining a clear distinction
between verified and unverified data.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

D EXPERIMENT DETAILS & ADDITIONAL EXPERIMENTS

D.1 EVALUATION METRICS

Given the multiple-choice nature of the task, we use accuracy as the primary evaluation metric. We
report overall accuracy across all questions, as well as accuracy on the subset of questions where the
model produces valid responses. A response is considered valid if the model successfully provides an
answer in the expected format and selects a valid option (i.e., one of the letters A, B, C, D). Invalid
responses typically result from missing the selected choice, selecting an invalid option, or refusal to
answer. To quantify these cases, we report the Format Error Rate, which measures the proportion of
questions for which the model fails to generate a valid answer. For grouped results, we report the
macro average of valid answer accuracy across languages, i.e. all languages have equal weight when
computing the score.

D.2 PROMPT ABLATION: COT VS. DIRECT APPROACHES

To benchmark the models, we initially designed a CoT prompt instructing them to think step-by-step
and then provide the correct answer, marking the choice with the tags <ANSWER> </ANSWER>.
However, in preliminary experiments, we found this instruction too complex for mid- to small-sized
models (32B–3B), which struggled to follow it consistently.

In Table 7, we compare results using the CoT prompt versus the direct English-language prompt
adopted in our final evaluation. The error rate was considerably higher for most models under the CoT
setup, even after cleaning and extracting answers with regex matching their typical output formats.
Two exceptions were Pangea and Molmo, which showed lower error rates with the CoT prompt;
however, this occurred because both models ignored the reasoning instruction and directly output the
selected option, making extraction easier. Overall, prompt choice significantly impacted performance:
the direct English prompt improved results across all models except Pangea, whose performance
remained unchanged.

For closed models, we also compare the performance of CoT versus the direct prompt on GPT-4o
in Table 8. We observe an interesting trade-off: while CoT improves accuracy, it also increases the
format error rate. As detailed in Section 5.3, these errors are tightly related with implicit refusals,
especially in questions involving medical or safety-relevant content. We hypothesize that CoT gives
the model more room to reason toward the correct answer but also increases the likelihood of refusals,
thereby raising the format-error rate.

Based on these findings, we select the best-performing prompting strategy for each class of models:
the direct prompt for open-weight models and CoT for closed-weight models.

Table 7: Comparison of CoT and direct English prompting on KALEIDOSCOPE for small models.
Reported values are macro-averaged accuracy (%) across all languages.

Overall CoT Overall In-English

Valid Responses Valid Responses

Model Acc. F.E. Valid Acc. Acc. F.E. Valid Acc.

Aya-Vision-32B 38.94 8.04 42.06 39.27 1.05 39.66
Aya-Vision-8B 33.08 6.22 35.15 35.09 0.07 35.11
Molmo-7B-D 32.86 0.01 32.87 32.87 0.04 32.88
Pangea-7B 31.24 5.61 33.45 31.31 7.42 34.02
Qwen2.5-VL-7B 35.18 6.34 37.64 39.56 0.08 39.60
Qwen2.5-VL-3B 32.90 1.40 33.33 35.56 0.19 35.63
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Table 8: Comparison of different prompting strategies on GPT-4o. Results are shown disaggre-
gated by language. Global accuracy, valid answer accuracy and format error rate are reported.

Direct Prompt CoT Prompt

Language Total Acc. Valid Acc. F.E. Total Acc. Valid Acc. F.E.

Arabic 49.7 50.4 1.3 52.9 57.7 8.4
Bengali 57.4 57.5 0.2 65.6 67.3 2.5
Croatian 33.3 33.8 1.2 49.7 52.6 5.6
Dutch 57.1 58.1 1.8 58.9 62.4 5.6
English 63.9 64.0 0.1 60.8 73.4 17.1
French 37.7 37.7 0.1 61.8 64.6 4.3
German 70.8 70.8 0.0 71.6 72.6 1.4
Hindi 48.6 48.7 0.2 60.1 64.0 6.1
Hungarian 34.0 34.4 1.1 47.2 50.6 6.7
Lithuanian 83.4 83.4 0.0 86.5 88.4 2.2
Nepali 23.8 24.0 0.8 19.0 20.5 7.1
Persian 40.2 40.3 0.3 47.0 47.9 2.0
Portuguese 75.4 75.4 0.0 82.6 85.2 3.0
Russian 36.6 36.6 0.1 51.5 54.5 5.5
Serbian 33.1 33.4 1.0 47.0 52.6 10.6
Spanish 75.4 75.5 0.2 77.7 80.1 3.0
Telugu 42.1 44.3 4.9 41.6 47.9 13.2
Ukrainian 71.4 72.2 1.1 68.1 75.3 9.5

Overall 51.9 52.2 0.7 58.3 62.1 6.5

D.3 COMPLETE RESULTS

We report full results on multimodal performances grouped by subject in table Tables 9, and full
results for all questions grouped by subject, Table 10, and language, Table 11. Each table reports,
for each model and category; Total Accuracy %: the accuracy over all samples, Valid Accuracy
%: the accuracy over successfully extracted answers and Format Error % (FE): the proportion of
unextracted answers.

Table 9: Subject-wise Performance on KALEIDOSCOPE’s Multimodal Questions. Valid accuracy
(%) across examination subjects for only multimodal samples, with bold highlighting top-performing
models.

Closed Weights Open Weights

Gemini Claude GPT-4o Qwen2.5-3B Molmo-7B Pangea-7B Qwen2.5-7B Aya V-8B Aya V-32B Qwen2.5-72B

Humanities & Social Sciences

Economics 64.1 63.8 66.7 37.7 27.5 33.9 42.7 30.9 29.8 58.8
Geography 72.8 81.5 80.4 40.7 37.6 36.7 51.0 39.5 50.5 70.4
History 78.7 83.7 86.4 48.9 42.1 42.4 52.9 45.6 61.4 77.1
Language 83.5 85.5 85.8 72.2 60.1 66.0 75.7 56.6 71.2 85.1
Social Sciences 85.7 82.9 88.1 52.9 52.2 53.8 68.6 58.0 64.3 80.0
Sociology 92.3 93.4 93.2 64.1 61.0 57.3 73.1 57.7 70.5 87.2

STEM

Biology 60.3 62.9 63.9 37.6 35.3 33.4 42.6 35.4 40.7 53.8
Chemistry 60.4 59.7 52.9 33.2 33.5 34.1 38.5 28.0 34.8 50.0
Engineering 57.3 64.4 56.3 28.9 24.4 24.2 32.4 30.3 34.8 48.4
Mathematics 48.6 44.4 44.0 30.4 28.8 29.0 30.1 28.6 29.6 40.3
Physics 57.8 58.7 54.7 33.7 26.7 28.9 34.7 27.1 33.0 42.3

Reasoning, Health Science, and Practical Skills

Reasoning 52.0 53.3 51.0 27.4 27.5 26.6 29.5 25.1 27.6 42.3
Medicine 70.2 73.8 75.6 36.7 40.4 38.4 45.8 35.4 52.3 63.3
Driving License 64.4 64.2 73.1 39.0 44.9 39.4 44.9 41.6 47.1 54.5
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Table 10: Total Accuracy %, Valid Accuracy % and Format Error % (FE) grouped by Subject in
KALEIDOSCOPE for multimodal samples.

Biology Chemistry Driving
License Economics Engineering Geography History Language Mathematics Medicine Physics Reasoning Social

Sciences Sociology

Gemini 1.5 Pro
Total Acc. 60.1 60.2 64.4 64.1 57.0 72.8 78.7 83.5 46.9 69.6 57.4 51.2 85.7 92.3
Valid Acc. 60.3 60.4 64.4 64.1 57.3 72.8 78.7 83.5 48.6 70.2 57.8 52.0 85.7 92.3
FE 0.3 0.4 0.0 0.0 0.4 0.0 0.0 0.0 3.5 0.8 0.7 1.7 0.0 0.0

Claude 3.5 Sonnet
Total Acc. 61.6 59.0 64.2 63.4 50.0 81.4 83.7 85.1 43.7 72.9 58.4 52.2 82.9 91.0
Valid Acc. 62.9 59.7 64.2 63.8 64.4 81.5 83.7 85.5 44.4 73.8 58.7 53.3 82.9 93.4
FE 2.1 1.2 0.0 0.8 22.4 0.2 0.0 0.5 1.5 1.2 0.6 2.0 0.0 2.6

GPT-4o
Total Acc. 60.7 47.1 65.5 64.1 45.7 76.2 70.8 78.3 39.4 64.6 51.9 43.9 74.3 87.2
Valid Acc. 63.9 52.9 73.1 66.7 56.3 80.4 86.4 85.8 44.0 75.6 54.7 51.0 88.1 93.2
FE 5.1 11.1 10.4 3.8 18.9 5.2 18.1 8.7 10.5 14.6 5.1 13.9 15.7 6.4

Qwen2.5-VL-72B
Total Acc. 37.6 33.2 39.0 37.4 28.8 40.6 48.9 72.2 30.1 36.7 33.7 27.4 52.9 64.1
Valid Acc. 37.6 33.2 39.0 37.7 28.9 40.7 48.9 72.2 30.4 36.7 33.7 27.4 52.9 64.1
FE 0.0 0.0 0.0 0.8 0.2 0.2 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0

Aya-Vision-32B
Total Acc. 40.2 34.6 47.1 29.8 34.6 50.5 61.4 71.0 28.8 52.1 31.8 27.5 64.3 70.5
Valid Acc. 40.7 34.8 47.1 29.8 34.8 50.5 61.4 71.2 29.6 52.3 33.0 27.6 64.3 70.5
FE 1.3 0.5 0.0 0.0 0.7 0.0 0.0 0.2 2.8 0.4 3.6 0.3 0.0 0.0

Aya-Vision-8B
Total Acc. 53.8 50.0 54.5 58.8 48.4 70.4 77.1 84.9 40.3 63.3 42.3 42.3 80.0 87.2
Valid Acc. 53.8 50.0 54.5 58.8 48.4 70.4 77.1 85.1 40.3 63.3 42.3 42.3 80.0 87.2
FE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0

Molmo-7B-D
Total Acc. 35.2 33.5 44.9 27.5 24.4 37.6 42.1 60.1 28.7 40.4 26.7 27.5 51.4 60.3
Valid Acc. 35.3 33.5 44.9 27.5 24.4 37.6 42.1 60.1 28.8 40.4 26.7 27.5 52.2 61.0
FE 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 1.4 1.3

Pangea-7B
Total Acc. 30.9 22.0 38.2 32.1 21.4 35.6 42.1 65.8 24.8 35.0 24.7 21.9 50.0 55.1
Valid Acc. 33.4 34.1 39.4 33.9 24.2 36.7 42.4 66.0 29.0 38.4 28.9 26.6 53.8 57.3
FE 7.5 35.3 2.9 5.3 11.5 3.0 0.6 0.2 14.4 8.8 14.7 17.6 7.1 3.8

Qwen2.5-VL-7B
Total Acc. 34.3 16.2 41.2 22.1 30.3 38.7 45.3 56.6 28.6 35.4 27.1 24.3 57.1 57.7
Valid Acc. 35.4 28.0 41.6 30.9 30.3 39.5 45.6 56.6 28.6 35.4 27.1 25.1 58.0 57.7
FE 3.0 42.2 1.1 28.2 0.0 1.9 0.6 0.0 0.3 0.0 0.0 3.4 1.4 0.0

Qwen2.5-VL-3B
Total Acc. 42.6 38.5 44.9 42.7 32.4 51.0 52.9 75.7 30.1 45.8 34.7 29.5 68.6 73.1
Valid Acc. 42.6 38.5 44.9 42.7 32.4 51.0 52.9 75.7 30.1 45.8 34.7 29.5 68.6 73.1
FE 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0

Table 11: Total Accuracy %, Valid Accuracy % and Format Error % (FE) grouped by Language
in KALEIDOSCOPE for multimodal samples.

Latin Script Non-Latin Script
English French German Dutch Portuguese Spanish Arabic Bengali Croatian Hindi Hungarian Lithuanian Nepali Persian Russian Serbian Telugu Ukrainian

Gemini 1.5 Pro
Total Acc. 62.7 54.6 52.6 61.5 81.8 78.5 44.5 51.8 46.9 62.6 39.1 75.0 22.2 41.2 45.0 41.9 58.1 70.3
Valid Acc. 63.2 55.2 52.6 62.5 83.4 78.5 44.7 52.7 48.1 63.2 40.5 75.0 22.8 42.1 46.2 43.6 58.3 70.3
FE 0.9 1.0 0.0 1.6 1.9 0.0 0.5 1.8 2.5 0.9 3.4 0.0 2.4 2.1 2.6 3.8 0.4 0.0

Claude 3.5 Sonnet
Total Acc. 36.9 51.7 73.7 65.2 83.8 77.6 50.3 49.5 46.9 57.1 38.8 81.2 27.8 45.6 45.3 38.9 56.0 75.2
Valid Acc. 63.2 51.7 73.7 65.6 83.8 77.7 50.3 49.6 47.5 57.2 38.9 81.4 28.0 45.6 45.4 39.6 56.0 75.2
FE 41.6 0.0 0.0 0.6 0.0 0.1 0.0 0.2 1.2 0.1 0.4 0.3 0.8 0.0 0.2 1.8 0.0 0.0

GPT-4o
Total Acc. 42.6 46.2 52.4 60.1 76.6 73.8 41.9 60.2 36.4 53.0 36.4 76.2 19.0 41.3 37.6 32.4 41.6 68.5
Valid Acc. 64.5 49.2 53.7 66.8 81.0 78.6 49.7 62.8 40.4 59.0 40.7 79.7 20.5 42.6 40.3 38.7 47.9 77.5
FE 33.9 6.0 2.5 10.0 5.4 6.1 15.7 4.0 9.9 10.1 10.5 4.4 7.1 3.0 6.7 16.2 13.2 11.6

Qwen2.5-VL-72B
Total Acc. 53.8 46.2 49.3 57.4 73.3 72.5 36.1 49.5 33.3 46.2 37.5 69.1 23.8 35.4 39.3 35.9 47.0 65.2
Valid Acc. 53.8 46.4 49.3 57.5 73.3 72.5 36.1 49.5 33.3 46.2 37.6 69.1 23.8 35.4 39.3 35.9 47.0 65.2
FE 0.0 0.5 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Aya-Vision-32B
Total Acc. 32.9 27.6 39.1 47.5 57.4 53.2 30.4 26.0 29.6 32.9 26.1 48.5 22.2 30.3 29.0 28.4 34.8 47.1
Valid Acc. 33.0 29.3 39.5 48.7 58.8 55.5 30.5 26.1 29.6 33.7 26.5 48.5 22.2 31.1 29.4 28.5 34.8 47.1
FE 0.4 6.0 1.1 2.4 2.4 4.2 0.5 0.2 0.0 2.3 1.6 0.0 0.0 2.5 1.3 0.4 0.1 0.0

Aya-Vision-8B
Total Acc. 28.9 30.2 32.4 42.2 47.6 46.3 27.2 18.2 29.0 29.2 27.1 34.4 23.8 27.7 25.2 28.5 11.1 36.6
Valid Acc. 28.9 30.2 32.4 42.2 47.6 46.3 27.2 25.9 29.0 29.3 27.1 34.4 24.2 27.8 25.2 28.5 25.7 36.8
FE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.5 0.0 0.2 0.0 0.0 1.6 0.3 0.0 0.0 56.8 0.6

Molmo-7B-D
Total Acc. 26.9 33.1 19.9 41.5 47.6 47.8 21.5 26.0 30.9 30.0 25.5 35.3 25.4 28.3 29.2 27.2 33.9 35.8
Valid Acc. 27.0 33.3 19.9 41.5 47.6 47.8 21.5 26.0 30.9 30.1 25.5 35.3 25.4 28.3 29.2 27.2 33.9 35.8
FE 0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Pangea-7B
Total Acc. 24.7 25.5 17.2 37.3 48.8 46.2 20.4 27.8 17.9 24.3 23.9 32.6 17.5 21.2 25.5 26.4 18.6 33.0
Valid Acc. 27.9 31.1 19.6 39.0 51.0 49.4 22.3 31.8 21.0 29.7 26.2 33.4 23.9 25.2 28.9 30.1 33.9 33.9
FE 11.4 18.1 12.2 4.3 4.3 6.5 8.4 12.8 14.8 18.3 8.8 2.4 27.0 16.0 11.9 12.4 45.2 2.6

Qwen2.5-VL-7B
Total Acc. 36.4 35.2 26.6 46.4 59.2 57.8 36.1 35.0 25.9 33.8 28.6 50.3 22.2 30.3 28.8 27.5 37.6 45.4
Valid Acc. 36.4 35.3 26.6 46.4 59.2 57.8 36.1 35.1 26.1 33.9 28.6 50.3 22.2 30.3 28.8 27.5 37.6 45.4
FE 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.2 0.6 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Qwen2.5-VL-3B
Total Acc. 35.0 32.3 21.1 41.8 52.2 53.3 33.5 32.8 25.9 31.3 28.2 35.6 23.8 30.3 29.0 27.8 31.8 40.1
Valid Acc. 35.0 32.4 21.1 41.8 52.3 53.3 33.7 32.8 26.4 31.3 29.2 35.6 23.8 30.4 29.0 28.1 31.8 40.1
FE 0.0 0.3 0.0 0.0 0.1 0.0 0.5 0.2 1.9 0.0 3.2 0.0 0.0 0.2 0.0 1.1 0.0 0.0
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Table 12: Valid Accuracy (%) for All Questions and All Models, by Language and General
Category. Languages are grouped by script. Empty cells indicate either no questions for that category,
or only format errors in the answers from the model.

Latin Script Non-Latin Script
General Category Model English French German Dutch Portuguese Spanish Arabic Bengali Croatian Hindi Hungarian Lithuanian Nepali Persian Russian Serbian Telugu Ukrainian

Health Sciences

Gemini 1.5 Pro – – – 0.562 1.000 0.781 – – – 1.000 – – – – – – – –
Claude 3.5 Sonnet – – – 0.57 1.000 0.833 – – – 1.000 – – – – – – – –
GPT-4o – – – 0.6 1.000 0.861 – – – 1.000 – – – – – – – –
Qwen2.5-72B – – – 0.570 1.000 0.743 – – – 1.000 – – – – – – – –
Aya-Vision-32B – – – 0.565 1.000 0.591 – – – 1.000 – – – – – – – –
Aya-Vision-8B – – – 0.430 0.333 0.439 – – – 1.000 – – – – – – – –
Molmo-7B-D – – – 0.488 1.000 0.432 – – – 0.000 – – – – – – – –
Pangea-7B – – – 0.500 1.000 0.444 – – – 1.000 – – – – – – – –
Qwen2.5-7B – – – 0.523 1.000 0.556 – – – 1.000 – – – – – – – –
Qwen2.5-3B – – – 0.419 0.667 0.458 – – – 0.000 – – – – – – – –

Humanities & Culture

Gemini 1.5 Pro 0.96 – – 0.68 0.92 0.87 0.592 – – 1.0 – 0.871 – – – – – 0.7
Claude 3.5 Sonnet 0.97 – – 0.741 0.925 0.875 0.631 – – 1.000 – 0.94 – – – – – 0.79
GPT-4o 0.971 – – 0.732 0.924 0.861 0.59 – – 1.000 – 0.93 – – – – – 0.84
Qwen2.5-72B 0.956 – – 0.706 0.906 0.888 0.530 – – 0.333 – 0.787 – – – – – 0.701
Aya-Vision-32B 0.779 – – 0.671 0.824 0.737 0.506 – – 0.333 – 0.592 – – – – – 0.490
Aya-Vision-8B 0.721 – – 0.486 0.723 0.659 0.398 – – 0.333 – 0.414 – – – – – 0.352
Molmo-7B-D 0.588 – – 0.493 0.659 0.626 0.313 – – 1.000 – 0.342 – – – – – 0.323
Pangea-7B 0.676 – – 0.479 0.671 0.736 0.349 – – 0.000 – 0.375 – – – – – 0.348
Qwen2.5-7B 0.809 – – 0.528 0.796 0.832 0.422 – – 0.333 – 0.479 – – – – – 0.424
Qwen2.5-3B 0.765 – – 0.493 0.701 0.816 0.494 – – 0.333 – 0.346 – – – – – 0.420

General Knowledge

Gemini 1.5 Pro 0.55 – – – – 0.712 – 0.792 – 0.634 – – – 0.582 – – – 0.57
Claude 3.5 Sonnet 0.53 – – – – 0.746 – 0.87 – 0.582 – – – 0.678 – – – 0.642
GPT-4o 0.5 – – – – 0.722 – 0.79 – 0.631 – – – 0.8 – – – 0.66
Qwen2.5-72B 0.500 – – – – 0.710 – 0.821 – 0.522 – – – 0.442 – – – 0.540
Aya-Vision-32B 0.500 – – – – 0.653 – 0.737 – 0.468 – – – 0.404 – – – 0.451
Aya-Vision-8B 0.350 – – – – 0.609 – 0.564 – 0.488 – – – 0.404 – – – 0.412
Molmo-7B-D 0.500 – – – – 0.634 – 0.385 – 0.373 – – – 0.519 – – – 0.419
Pangea-7B 0.467 – – – – 0.602 – 0.718 – 0.395 – – – 0.347 – – – 0.347
Qwen2.5-7B 0.500 – – – – 0.602 – 0.590 – 0.465 – – – 0.442 – – – 0.423
Qwen2.5-3B 0.550 – – – – 0.645 – 0.487 – 0.336 – – – 0.462 – – – 0.362

Reasoning

Gemini 1.5 Pro 0.31 – – – – – – 0.58 – 0.7 – – 0.23 – – – – –
Claude 3.5 Sonnet 0.35 – – – – – – 0.58 – 0.66 – – 0.28 – – – – –
GPT-4o 0.4 – – – – – – 0.57 – 0.67 – – 0.21 – – – – –
Qwen2.5-72B 0.311 – – – – – – 0.500 – 0.501 – – 0.238 – – – – –
Aya-Vision-32B 0.284 – – – – – – 0.336 – 0.338 – – 0.222 – – – – –
Aya-Vision-8B 0.176 – – – – – – 0.235 – 0.308 – – 0.214 – – – – –
Molmo-7B-D 0.176 – – – – – – 0.379 – 0.273 – – 0.254 – – – – –
Pangea-7B 0.203 – – – – – – 0.302 – 0.300 – – 0.239 – – – – –
Qwen2.5-7B 0.230 – – – – – – 0.409 – 0.353 – – 0.222 – – – – –
Qwen2.5-3B 0.230 – – – – – – 0.280 – 0.295 – – 0.238 – – – – –

STEM

Gemini 1.5 Pro 0.72 0.69 0.7 0.58 0.83 0.8 0.51 0.53 0.58 0.64 0.54 0.85 – 0.52 0.58 0.58 0.58 0.76
Claude 3.5 Sonnet 0.75 0.67 0.83 0.6 0.83 0.76 0.52 0.47 0.56 0.58 0.5 0.87 – 0.52 0.57 0.53 0.56 0.77
GPT-4o 0.74 0.65 0.73 0.58 0.79 0.77 0.53 0.65 0.53 0.6 0.51 0.89 – 0.47 0.54 0.53 0.48 0.77
Qwen2.5-72B 0.641 0.507 0.673 0.507 0.627 0.709 0.386 0.478 0.373 0.487 0.410 0.742 – 0.395 0.427 0.403 0.470 0.687
Aya-Vision-32B 0.484 0.290 0.519 0.378 0.461 0.485 0.328 0.276 0.285 0.361 0.281 0.472 – 0.299 0.285 0.291 0.348 0.457
Aya-Vision-8B 0.407 0.265 0.471 0.353 0.384 0.442 0.270 0.248 0.259 0.329 0.280 0.395 – 0.301 0.292 0.270 0.346 0.404
Molmo-7B-D 0.379 0.301 0.285 0.339 0.343 0.457 0.219 0.288 0.284 0.284 0.279 0.379 – 0.272 0.302 0.272 0.339 0.346
Pangea-7B 0.424 0.287 0.322 0.342 0.408 0.443 0.249 0.299 0.240 0.285 0.290 0.397 – 0.266 0.286 0.286 0.339 0.347
Qwen2.5-7B 0.480 0.362 0.422 0.376 0.473 0.540 0.352 0.324 0.300 0.345 0.301 0.581 – 0.312 0.298 0.282 0.376 0.484
Qwen2.5-3B 0.453 0.331 0.355 0.325 0.398 0.477 0.313 0.354 0.305 0.317 0.305 0.331 – 0.276 0.303 0.271 0.318 0.425

Social Sciences

Gemini 1.5 Pro 1.0 – – 0.8 0.9 – 0.65 0.66 – 0.75 – 0.8 – – – – – 0.76
Claude 3.5 Sonnet 0.9 – – 0.84 0.92 – 0.7 0.66 – 0.88 – 0.86 – – – – – 0.87
GPT-4o 1.0 – – 0.88 0.91 – 0.7 0.7 – 0.88 – 0.84 – – – – – 0.85
Qwen2.5-72B 0.923 – – 0.813 0.874 – 0.591 0.605 – 0.875 – 0.765 – – – – – 0.688
Aya-Vision-32B 0.154 – – 0.738 0.788 – 0.538 0.333 – 0.500 – 0.535 – – – – – 0.561
Aya-Vision-8B 0.154 – – 0.525 0.677 – 0.515 0.290 – 0.375 – 0.392 – – – – – 0.428
Molmo-7B-D 0.250 – – 0.475 0.632 – 0.258 0.256 – 0.375 – 0.348 – – – – – 0.376
Pangea-7B 0.182 – – 0.550 0.652 – 0.379 0.354 – 0.500 – 0.397 – – – – – 0.337
Qwen2.5-7B 0.462 – – 0.600 0.759 – 0.470 0.387 – 0.250 – 0.529 – – – – – 0.543
Qwen2.5-3B 0.308 – – 0.600 0.680 – 0.523 0.331 – 0.375 – 0.352 – – – – – 0.370
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Table 13: Valid Accuracy (%) for Multimodal Questions for All Models, by Language and
General Category. Languages are grouped by script. Empty cells indicate either no questions for
that category, or only format errors in the answers from the model.

Latin Script Non-Latin Script
General Category Model English French German Dutch Portuguese Spanish Arabic Bengali Croatian Hindi Hungarian Lithuanian Nepali Persian Russian Serbian Telugu Ukrainian

Health Sciences

Gemini 1.5 Pro – – – 0.538 1.000 0.719 – – – – – – – – – – – –
Claude 3.5 Sonnet – – – 0.538 1.000 0.761 – – – – – – – – – – – –
GPT-4o – – – 0.565 1.000 0.779 – – – – – – – – – – – –
Qwen2.5-72B – – – 0.500 1.000 0.648 – – – – – – – – – – – –
Aya-Vision-32B – – – 0.481 1.000 0.524 – – – – – – – – – – – –
Aya-Vision-8B – – – 0.286 0.500 0.400 – – – – – – – – – – – –
Molmo-7B-D – – – 0.393 1.000 0.400 – – – – – – – – – – – –
Pangea-7B – – – 0.423 1.000 0.372 – – – – – – – – – – – –
Qwen2.5-7B – – – 0.429 1.000 0.457 – – – – – – – – – – – –
Qwen2.5-3B – – – 0.250 1.000 0.376 – – – – – – – – – – – –

Humanities & Culture

Gemini 1.5 Pro 1.000 – – 0.691 0.902 0.872 0.75 – – – – 0.805 – – – – – 0.701
Claude 3.5 Sonnet 1.000 – – 0.794 0.893 0.872 0.375 – – – – 0.878 – – – – – 0.792
GPT-4o 1.000 – – 0.785 0.912 0.863 0.5 – – – – 0.843 – – – – – 0.839
Qwen2.5-72B 0.667 – – 0.731 0.908 0.888 0.625 – – – – 0.720 – – – – – 0.701
Aya-Vision-32B 0.500 – – 0.687 0.779 0.737 0.500 – – – – 0.622 – – – – – 0.490
Aya-Vision-8B 0.500 – – 0.529 0.686 0.659 0.375 – – – – 0.463 – – – – – 0.352
Molmo-7B-D 0.167 – – 0.574 0.644 0.626 0.250 – – – – 0.341 – – – – – 0.323
Pangea-7B 0.333 – – 0.529 0.640 0.736 0.250 – – – – 0.375 – – – – – 0.348
Qwen2.5-7B 0.333 – – 0.603 0.776 0.832 0.500 – – – – 0.488 – – – – – 0.424
Qwen2.5-3B 0.167 – – 0.574 0.699 0.816 0.375 – – – – 0.402 – – – – – 0.420

General Knowledge

Gemini 1.5 Pro 0.526 – – – – 0.625 – 0.917 – 0.827 – – – 0.577 – – – 0.557
Claude 3.5 Sonnet 0.5 – – – – 0.875 – 0.917 – 0.707 – – – 0.673 – – – 0.567
GPT-4o 0.462 – – – – 1.000 – 0.917 – 0.795 – – – 0.8 – – – 0.636
Qwen2.5-72B 0.474 – – – – 0.875 – 0.917 – 0.632 – – – 0.442 – – – 0.493
Aya-Vision-32B 0.474 – – – – 0.625 – 0.833 – 0.571 – – – 0.404 – – – 0.388
Aya-Vision-8B 0.316 – – – – 0.875 – 0.667 – 0.586 – – – 0.404 – – – 0.373
Molmo-7B-D 0.474 – – – – 0.875 – 0.250 – 0.462 – – – 0.519 – – – 0.413
Pangea-7B 0.429 – – – – 0.375 – 0.917 – 0.476 – – – 0.347 – – – 0.311
Qwen2.5-7B 0.474 – – – – 0.625 – 0.833 – 0.557 – – – 0.442 – – – 0.373
Qwen2.5-3B 0.526 – – – – 0.500 – 0.583 – 0.391 – – – 0.462 – – – 0.358

Reasoning

Gemini 1.5 Pro 0.31 – – – – – – 0.333 – 0.67 – – 0.228 – – – – –
Claude 3.5 Sonnet 0.355 – – – – – – 0.289 – 0.667 – – 0.28 – – – – –
GPT-4o 0.396 – – – – – – 0.372 – 0.648 – – 0.205 – – – – –
Qwen2.5-72B 0.311 – – – – – – 0.422 – 0.502 – – 0.238 – – – – –
Aya-Vision-32B 0.284 – – – – – – 0.244 – 0.295 – – 0.222 – – – – –
Aya-Vision-8B 0.176 – – – – – – 0.178 – 0.304 – – 0.214 – – – – –
Molmo-7B-D 0.176 – – – – – – 0.311 – 0.296 – – 0.254 – – – – –
Pangea-7B 0.203 – – – – – – 0.308 – 0.280 – – 0.239 – – – – –
Qwen2.5-7B 0.230 – – – – – – 0.333 – 0.326 – – 0.222 – – – – –
Qwen2.5-3B 0.230 – – – – – – 0.178 – 0.303 – – 0.238 – – – – –

STEM

Gemini 1.5 Pro 0.658 0.552 0.526 0.583 0.774 0.785 0.438 0.513 0.481 0.542 0.405 0.775 – 0.412 0.462 0.436 0.583 0.76
Claude 3.5 Sonnet 0.671 0.517 0.737 0.598 0.784 0.735 0.491 0.42 0.475 0.45 0.389 0.812 – 0.444 0.454 0.396 0.56 0.769
GPT-4o 0.666 0.492 0.537 0.613 0.731 0.746 0.489 0.628 0.404 0.489 0.407 0.848 – 0.405 0.403 0.387 0.479 0.768
Qwen2.5-72B 0.556 0.466 0.493 0.499 0.590 0.683 0.344 0.438 0.333 0.378 0.376 0.638 – 0.349 0.393 0.359 0.470 0.686
Aya-Vision-32B 0.333 0.295 0.395 0.395 0.434 0.470 0.290 0.254 0.296 0.304 0.265 0.413 – 0.306 0.294 0.285 0.348 0.459
Aya-Vision-8B 0.302 0.265 0.357 0.369 0.366 0.445 0.270 0.242 0.204 0.284 0.267 0.338 – 0.297 0.290 0.268 0.346 0.405
Molmo-7B-D 0.275 0.332 0.199 0.381 0.331 0.439 0.202 0.284 0.309 0.259 0.255 0.400 – 0.270 0.292 0.272 0.339 0.347
Pangea-7B 0.284 0.310 0.196 0.326 0.401 0.434 0.218 0.302 0.210 0.250 0.262 0.299 – 0.247 0.289 0.301 0.339 0.348
Qwen2.5-7B 0.373 0.354 0.266 0.413 0.455 0.517 0.356 0.295 0.261 0.287 0.286 0.563 – 0.295 0.288 0.275 0.376 0.482
Qwen2.5-3B 0.360 0.325 0.211 0.363 0.382 0.483 0.313 0.340 0.264 0.299 0.292 0.375 – 0.295 0.290 0.281 0.318 0.426

Social Sciences

Gemini 1.5 Pro 1.000 – – 0.784 0.882 – 0.4 0.57 – – – 0.713 – – – – – 0.763
Claude 3.5 Sonnet 0.9 – – 0.838 0.902 – 0.65 0.624 – – – 0.785 – – – – – 0.867
GPT-4o 1.000 – – 0.867 0.877 – 0.562 0.678 – – – 0.756 – – – – – 0.849
Qwen2.5-72B 0.923 – – 0.811 0.843 – 0.400 0.557 – – – 0.702 – – – – – 0.688
Aya-Vision-32B 0.154 – – 0.716 0.673 – 0.350 0.228 – – – 0.455 – – – – – 0.561
Aya-Vision-8B 0.154 – – 0.514 0.608 – 0.450 0.242 – – – 0.320 – – – – – 0.428
Molmo-7B-D 0.250 – – 0.432 0.601 – 0.300 0.215 – – – 0.337 – – – – – 0.376
Pangea-7B 0.182 – – 0.527 0.570 – 0.250 0.287 – – – 0.331 – – – – – 0.337
Qwen2.5-7B 0.462 – – 0.581 0.660 – 0.350 0.389 – – – 0.483 – – – – – 0.543
Qwen2.5-3B 0.308 – – 0.595 0.614 – 0.526 0.338 – – – 0.326 – – – – – 0.370
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Table 14: Valid Accuracy (%) for All Models, by Language and Multimodal Content Type.
Languages are grouped by script. Empty cells indicate either no questions for that category, or only
format errors in the answers from the model.

Latin Script Non-Latin Script
General Category Model English French German Dutch Portuguese Spanish Arabic Bengali Croatian Hindi Hungarian Lithuanian Nepali Persian Russian Serbian Telugu Ukrainian

Diagram

Gemini 1.5 Pro 0.535 – 0.531 0.601 0.769 0.833 0.311 0.483 – 0.609 – 0.750 0.228 0.667 – – – 0.734
Claude 3.5 Sonnet 0.532 – 0.739 0.593 0.744 0.750 0.40 0.586 – 0.592 – 0.643 0.280 1.000 – – – 0.751
GPT-4o 0.539 – 0.560 0.636 0.750 0.875 0.333 0.724 – 0.576 – 0.643 0.205 0.667 – – – 0.728
Qwen2.5-72B 0.461 – 0.491 0.543 0.648 0.708 0.244 0.517 – 0.479 – 0.750 0.238 0.667 – – – 0.661
Aya-Vision-32B 0.334 – 0.400 0.416 0.490 0.625 0.273 0.241 – 0.365 – 0.393 0.222 0.333 – – – 0.452
Aya-Vision-8B 0.265 – 0.352 0.364 0.395 0.542 0.133 0.241 – 0.369 – 0.321 0.214 0.333 – – – 0.407
Molmo-7B-D 0.271 – 0.201 0.399 0.349 0.583 0.089 0.207 – 0.331 – 0.393 0.254 0.667 – – – 0.318
Pangea-7B 0.269 – 0.180 0.378 0.436 0.522 0.244 0.125 – 0.313 – 0.429 0.239 0.667 – – – 0.322
Qwen2.5-7B 0.325 – 0.274 0.491 0.481 0.792 0.333 0.276 – 0.379 – 0.500 0.222 0.333 – – – 0.446
Qwen2.5-3B 0.344 – 0.204 0.382 0.407 0.583 0.311 0.310 – 0.316 – 0.214 0.238 0.000 – – – 0.424

Figure

Gemini 1.5 Pro 0.512 0.548 – 0.677 0.941 0.762 0.368 0.435 0.481 0.500 0.405 0.815 – 0.419 0.462 0.436 0.583 0.679
Claude 3.5 Sonnet 0.562 0.515 – 0.677 0.928 0.718 0.368 0.441 0.475 0.467 0.389 0.800 – 0.460 0.454 0.396 0.560 0.738
GPT-4o 0.530 0.490 – 0.689 0.906 0.733 0.417 0.532 0.404 0.600 0.407 0.828 – 0.428 0.403 0.387 0.479 0.790
Qwen2.5-72B 0.450 0.470 – 0.635 0.889 0.667 0.316 0.429 0.333 0.467 0.376 0.754 – 0.354 0.393 0.359 0.470 0.646
Aya-Vision-32B 0.335 0.298 – 0.547 0.758 0.448 0.211 0.338 0.296 0.133 0.265 0.662 – 0.305 0.294 0.285 0.348 0.443
Aya-Vision-8B 0.343 0.264 – 0.531 0.673 0.444 0.263 0.261 0.204 0.267 0.267 0.400 – 0.305 0.290 0.268 0.346 0.409
Molmo-7B-D 0.273 0.333 – 0.531 0.595 0.413 0.211 0.273 0.309 0.200 0.255 0.385 – 0.279 0.292 0.272 0.339 0.430
Pangea-7B 0.305 0.316 – 0.429 0.596 0.429 0.167 0.387 0.210 0.071 0.262 0.297 – 0.245 0.289 0.301 0.339 0.370
Qwen2.5-7B 0.343 0.353 – 0.479 0.739 0.500 0.263 0.311 0.261 0.133 0.286 0.523 – 0.301 0.288 0.275 0.376 0.473
Qwen2.5-3B 0.347 0.329 – 0.469 0.641 0.460 0.263 0.317 0.264 0.200 0.292 0.400 – 0.302 0.290 0.281 0.318 0.401

Graph

Gemini 1.5 Pro 0.722 1.000 0.488 0.505 0.757 0.846 0.483 0.557 – 0.870 – 0.745 – – – – – 0.778
Claude 3.5 Sonnet 0.739 0.500 0.721 0.574 0.798 0.885 0.533 0.577 – 0.870 – 0.830 – – – – – 0.917
GPT-4o 0.654 0.500 0.372 0.56 0.718 0.885 0.643 0.585 – 0.846 – 0.793 – – – – – 0.817
Qwen2.5-72B 0.514 0.000 0.512 0.412 0.623 0.769 0.433 0.588 – 0.652 – 0.723 – – – – – 0.694
Aya-Vision-32B 0.361 0.500 0.357 0.410 0.500 0.615 0.400 0.227 – 0.348 – 0.457 – – – – – 0.500
Aya-Vision-8B 0.270 0.500 0.395 0.320 0.443 0.577 0.433 0.258 – 0.356 – 0.404 – – – – – 0.403
Molmo-7B-D 0.432 0.000 0.186 0.398 0.437 0.538 0.367 0.268 – 0.348 – 0.330 – – – – – 0.361
Pangea-7B 0.235 0.000 0.324 0.313 0.397 0.423 0.286 0.247 – 0.333 – 0.348 – – – – – 0.304
Qwen2.5-7B 0.486 0.000 0.209 0.359 0.514 0.615 0.333 0.392 – 0.348 – 0.521 – – – – – 0.528
Qwen2.5-3B 0.432 0.000 0.256 0.369 0.492 0.654 0.333 0.354 – 0.370 – 0.319 – – – – – 0.431

Map

Gemini 1.5 Pro 1.000 – – 0.667 0.892 – 0.444 0.583 – 1.000 – 0.646 – – – – – 0.677
Claude 3.5 Sonnet 1.000 – – 0.833 0.892 – 0.611 0.667 – – – 0.835 – – – – – 0.783
GPT-4o 1.000 – – 0.769 0.841 – 0.533 0.833 – – – 0.766 – – – – – 0.802
Qwen2.5-72B 1.000 – – 0.722 0.923 – 0.389 0.583 – 0.000 – 0.658 – – – – – 0.601
Aya-Vision-32B 0.000 – – 0.556 0.662 – 0.389 0.333 – 0.000 – 0.506 – – – – – 0.465
Aya-Vision-8B 0.000 – – 0.333 0.677 – 0.389 0.250 – 0.000 – 0.367 – – – – – 0.384
Molmo-7B-D 0.000 – – 0.222 0.631 – 0.222 0.167 – 0.000 – 0.367 – – – – – 0.343
Pangea-7B – – – 0.444 0.556 – 0.278 0.222 – 0.000 – 0.377 – – – – – 0.347
Qwen2.5-7B 0.000 – – 0.444 0.708 – 0.389 0.333 – 0.000 – 0.456 – – – – – 0.439
Qwen2.5-3B 1.000 – – 0.611 0.569 – 0.529 0.250 – 0.000 – 0.342 – – – – – 0.369

Photo

Gemini 1.5 Pro – – – 0.840 0.938 0.719 1.000 – – 1.000 – 0.867 – – – – – 0.682
Claude 3.5 Sonnet – – – 0.860 0.938 0.761 0.667 – – 1.000 – 0.867 – – – – – 0.699
GPT-4o – – – 0.927 0.969 0.779 0.500 – – 1.000 – 0.909 – – – – – 0.743
Qwen2.5-72B – – – 0.800 0.875 0.648 1.000 – – 1.000 – 0.600 – 0.000 – – – 0.661
Aya-Vision-32B – – – 0.680 0.821 0.524 1.000 – – 1.000 – 0.667 – 1.000 – – – 0.540
Aya-Vision-8B – – – 0.580 0.688 0.400 1.000 – – 0.000 – 0.333 – 0.000 – – – 0.395
Molmo-7B-D – – – 0.520 0.696 0.400 0.667 – – 1.000 – 0.533 – 1.000 – – – 0.351
Pangea-7B – – – 0.560 0.786 0.372 0.333 – – 0.000 – 0.357 – 1.000 – – – 0.336
Qwen2.5-7B – – – 0.600 0.795 0.457 0.667 – – 1.000 – 0.667 – 1.000 – – – 0.464
Qwen2.5-3B – – – 0.540 0.777 0.376 0.667 – – 1.000 – 0.467 – 1.000 – – – 0.418

Formula

Gemini 1.5 Pro 0.935 – – 0.674 0.767 1.000 0.554 0.8 – 0.612 – 0.889 – – – – – 0.800
Claude 3.5 Sonnet 0.75 – – 0.771 0.900 0.667 0.554 0.391 – 0.374 – 0.944 – – – – – 0.633
GPT-4o 0.909 – – 0.711 0.800 0.667 0.531 0.864 – 0.529 – 1.000 – – – – – 0.724
Qwen2.5-72B 0.625 – – 0.604 0.700 0.333 0.411 0.553 – 0.381 – 0.667 – – – – – 0.667
Aya-Vision-32B 0.419 – – 0.489 0.567 0.667 0.268 0.128 – 0.300 – 0.333 – – – – – 0.267
Aya-Vision-8B 0.344 – – 0.396 0.367 0.333 0.304 0.234 – 0.278 – 0.278 – – – – – 0.267
Molmo-7B-D 0.313 – – 0.229 0.433 0.667 0.179 0.298 – 0.224 – 0.222 – – – – – 0.267
Pangea-7B 0.417 – – 0.356 0.567 0.333 0.170 0.333 – 0.265 – 0.412 – – – – – 0.393
Qwen2.5-7B 0.375 – – 0.417 0.700 0.333 0.321 0.435 – 0.244 – 0.611 – – – – – 0.400
Qwen2.5-3B 0.406 – – 0.354 0.300 0.333 0.286 0.404 – 0.323 – 0.500 – – – – – 0.433

Table

Gemini 1.5 Pro 0.880 0.625 – 0.471 0.875 0.795 0.333 0.566 – 0.716 – 0.756 – 0.474 – – – 0.719
Claude 3.5 Sonnet 0.865 0.625 – 0.526 0.909 0.769 0.667 0.528 – 0.768 – 0.800 – 0.217 – – – 0.750
GPT-4o 0.879 0.571 – 0.571 0.826 0.718 0.583 0.680 – 0.707 – 0.800 – 0.333 – – – 0.844
Qwen2.5-72B 0.772 0.375 – 0.579 0.636 0.744 0.267 0.434 – 0.453 – 0.585 – 0.348 – – – 0.750
Aya-Vision-32B 0.301 0.125 – 0.579 0.400 0.447 0.267 0.208 – 0.253 – 0.293 – 0.550 – – – 0.469
Aya-Vision-8B 0.262 0.250 – 0.211 0.398 0.462 0.333 0.208 – 0.232 – 0.244 – 0.182 – – – 0.281
Molmo-7B-D 0.225 0.375 – 0.421 0.386 0.538 0.400 0.226 – 0.263 – 0.293 – 0.391 – – – 0.344
Pangea-7B 0.254 0.143 – 0.222 0.395 0.462 0.200 0.340 – 0.284 – 0.175 – 0.474 – – – 0.156
Qwen2.5-7B 0.435 0.500 – 0.421 0.432 0.436 0.667 0.377 – 0.326 – 0.415 – 0.348 – – – 0.344
Qwen2.5-3B 0.337 0.250 – 0.368 0.471 0.487 0.467 0.264 – 0.263 – 0.390 – 0.391 – – – 0.250

Text

Gemini 1.5 Pro 1.000 – – 0.500 0.844 0.872 0.600 – – 1.000 – – – – – – – 0.800
Claude 3.5 Sonnet 1.000 – – 1.000 0.867 0.866 0.200 – – 1.000 – – – – – – – 0.867
GPT-4o 1.000 – – 1.000 0.884 0.858 0.500 1.000 – 1.000 – – – – – – – 0.917
Qwen2.5-72B 1.000 – – 1.000 0.844 0.888 0.400 1.000 – 0.000 – – – – – – – 0.733
Aya-Vision-32B 0.000 – – 1.000 0.711 0.720 0.200 0.000 – 1.000 – – – – – – – 0.400
Aya-Vision-8B 0.000 – – 1.000 0.636 0.636 0.000 0.000 – 0.000 – – – – – – – 0.133
Molmo-7B-D 0.000 – – 0.500 0.578 0.615 0.000 0.000 – 1.000 – – – – – – – 0.200
Pangea-7B 0.000 – – 1.000 0.578 0.714 0.200 – – 0.000 – – – – – – – 0.462
Qwen2.5-7B 0.000 – – 1.000 0.778 0.818 0.400 0.000 – 0.000 – – – – – – – 0.267
Qwen2.5-3B 0.000 – – 1.000 0.622 0.797 0.200 1.000 – 0.000 – – – – – – – 0.400
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Table 15: Format error disaggregated analysis. For answers which were identified as Format Error,
we report how many correspond to answer refusal (R) vs another type of format errors (NR). Empty
N-NR refusal pairs indicate that the model did not have Format Errors on that language. Note that for
most models in all languages, format errors are not due to answer refusals but to other reasons like
inability to follow MCQ tagging instructions. The only exception is Pangea, which seems to exhibit a
higher refusal rate.

Model ↔
Language ↕

Aya 8b Aya 32b Claude 3.5 Sonnet Gemini 1.5 pro GPT-4o Molmo Pangea Qwen2.5 7b Qwen2.5 3b Qwen2.5 32b Qwen2.5 72b
R NR R NR R NR R NR R NR R NR R NR R NR R NR R NR R NR

Arabic 0 2 1 1 5 27 14 2 0 1
Bengali 0 204 0 3 1 0 0 7 2 18 38 13 1 0 0 1
Croatian 0 1 1 1 0 6 4 14 17 7 0 1 0 3 0 15
Dutch; Flemish 0 19 2 1 8 27 17 40 13 9 0 13 0 1
English 0 11 1 339 0 9 1 278 0 2 71 23 0 2
French 0 24 0 14 0 33 0 3 27 42 0 1 0 1 0 20 0 2
German 0 0 4 0 10 41 3 0 1 0 3
Hindi 0 6 0 24 1 0 0 18 5 110 0 3 127 56 0 2 0 20 0 1
Hungarian 0 14 1 1 0 30 11 64 23 26 0 1 0 18 0 19 0 1
Lithuanian 0 7 0 1 12 3 6 2
Nepali 0 2 0 1 0 3 5 4 27 7
Persian 0 6 0 31 0 38 3 36 116 44 0 3 0 1
Portuguese 0 29 0 35 0 60 24 19 0 7 0 2 0 36
Russian 0 13 0 2 0 84 0 96 67 38 0 11
Serbian 0 6 3 15 0 50 7 205 74 51 0 11 0 41
Spanish 0 31 0 1 0 2 9 36 42 6 0 4 0 5
Telugu 75 493 0 1 0 4 6 126 309 143
Ukrainian 0 7 0 1 0 1 44 73 0 1 20 6

D.4 FORMAT ERRORS

We report the distribution of format errors for all evaluated models in Figure 5. Table 15 provides a
finer-grained breakdown, showing which format errors correspond to refusals versus missing answers.

Figure 5: Distribution of the number of format errors for each model/language combination.
The languages are represented in their ISO 639 (set 1) code.

D.5 PROMPTS

The prompts that we used to perform all experiments were designed to ensure consistency across
languages. Examples are shown both in English and Spanish as an overview. Below is a summary of
the key components.

D.5.1 SYSTEM MESSAGE

A system message sets the context for the model, instructing it to act as an expert in solving multiple-
choice questions. For zero-shot CoT prompting, the message is provided in all the evaluation
languages to support language-specific evaluation.
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• Zero-shot CoT:

– English: You are an expert at solving multiple-choice
questions. Carefully analyze the question, think step
by step, and provide your FINAL answer between the tags
<ANSWER> X </ANSWER>, where X is ONLY the correct choice.
Do not write any additional text between the tags.

– Spanish: Eres un experto en resolver preguntas de opción
múltiple. Analiza cuidadosamente la pregunta, piensa
paso a paso y proporciona tu respuesta FINAL entre las
etiquetas <ANSWER> X </ANSWER>, donde X es ÚNICAMENTE
la opción correcta. No escribas ningún texto adicional
entre las etiquetas.

• Direct answer:

You are a helpful assistant who answers multiple-choice
questions. For each question, output your final answer
in JSON format with the following structure: {"choice":
"The correct option (e.g., A, B, C, or D)"}. ONLY output
this format exactly. Do not include any additional text or
explanations outside the JSON structure.

D.5.2 KEYWORDS

Language-specific keywords are used to structure the prompts consistently across languages. These
include terms for "Question," "Options," and "Answer" to be included when generating the prompt.
For example:

• English: {"question": "Question", "options": "Options",
"answer": "Answer"}

• Spanish: {"question": "Pregunta", "options": "Opciones",
"answer": "Respuesta"}

D.5.3 PROMPT EXAMPLES

System messages D.5.1 and Keywords D.5.2 are used to systematically craft the prompt for a model
in a specific language. We show examples of both a closed and an open model in Table 16.
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Table 16: Prompt examples in KALEIDOSCOPE. Multimodal prompt samples with interleaved
image are shown for an open model and a closed model.

Open Model Closed Model

SYSTEM:
You are a helpful assistant
who answers multiple-choice
questions. For each question,
output your final answer in
JSON format with the following
structure: "choice":"The correct
option (e.g., A, B, C, or D)".
ONLY output this format exactly.
Do not include any additional
text or explanations outside
the JSON structure. Output your
choice in the specified JSON
format.

USER:

Question: Make CORRECT match
between Group-I and Group-II, in
relation to
interaction between two species.
Options:
A.) P-I, Q-II, R-III, S-IV
B.) P-III, Q-II, R-IV, S-I
C.) P-IV, Q-III, R-II, S-I
D.) P-III, Q-IV, R-II, S-I
Answer:

SYSTEM:
Eres un experto en resolver
preguntas de opción múltiple.
Analiza cuidadosamente la
pregunta, piensa paso a paso y
proporciona tu respuesta FINAL
entre las etiquetas <ANSWER> X
</ANSWER>, donde X es ÚNICAMENTE
la opción correcta. No escribas
ningún texto adicional entre las
etiquetas.
USER:

Pregunta: Ante esta imagen en un
paciente con un trastorno motor
en miembros inferiores, señale la
respuesta INCORRECTA:
Opciones:
A.) Debemos buscar una
malformación de Chiari
B.) En algunos casos se asocia a
hidrocefalia
C.) Se caracteriza por una
pérdida de la sensibilidad táctil
y vibratoria con preservación de
la sensación térmica y dolorosa
D.) Puede producirse tras
traumatismos o infecciones

Respuesta:
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Table 17: Caption+OCR prompt examples in KALEIDOSCOPE. Prompts are shown for open and
closed models in English and Spanish. Caption and OCR additions are highlighted in green.

Open Model Closed Model

SYSTEM:
You are a helpful assistant
who answers multiple-choice
questions. For each question,
output your final answer in
JSON format with the following
structure: "choice":"The correct
option (e.g., A, B, C, or D)".
ONLY output this format exactly.
Do not include any additional
text or explanations outside the
JSON structure.

USER:

Caption: The code initializes
character variables ’a’ to
’P’ and ’b’ to ’x’. It then
calculates ’c’, ’d’, and ’e’
using bitwise operations (\&, |,
^) and character addition with
’*’, ’-’, and ’+’, respectively.
The ‘printf‘ function (...)a

Ellipses (...) within the
tables indicate omitted values
between the shown characters.
OCR: ##include<stdio.h>\}\n
\nint main(int argc,\n \nchar
a = ’P’;\nchar b = ’x’;\nchar c
= (a &\nchar d = (a |\nchar e
= (a \u 201c\n \nprintf (\"sc
\%\nreturn 0;\n \n \}\n \nchar
*argv[]) \{\n \nby + te;\nb ) -
’-\%3\nb ) + \"Hy\n se\\n\", c,
d, e);\n \nASCII encoding for
relevant characters is given
below\n \n 42| 43) 45\n \n
Question: What is printed by the
following ANSI C program? Options:
A.) z K s B.) 122 75 83 C.) * - +
D.) P x +
Answer:

aCaption was trimmed for visualization pur-
poses.

SYSTEM:
Eres un experto en resolver
preguntas de opción múltiple.
Analiza cuidadosamente la
pregunta, piensa paso a paso y
proporciona tu respuesta FINAL
entre las etiquetas <ANSWER> X
</ANSWER>, donde X es ÚNICAMENTE
la opción correcta. No escribas
ningún texto adicional entre las
etiquetas.

USER:

Caption: This table presents
data on total weight, measured in
grams, across four months. The
table consists of two columns:
M̈es(̈Month) and P̈eso total(̈Total
Weight). Month 1 shows a weight
of 1,500 grams, Month 2 shows
2,600 grams, Month 3 shows 3,700
grams, and Month 4 shows 4,800
grams. The table is a simple
grid format with plain black text
on a white background.
OCR: Wes | Pesototal\n 1 [1500
gramos\n 2 |_2600 grmos\n 3 |
3700 gemoe\na \n \n \u 201cZOO
grams\n \n
Pregunta: Un perro cachorro
tenía un peso de 1.500 gramos al
mes de nacido. En la tabla se
muestra el peso del cachorro en
los primeros cuatro meses. De
acuerdo con la tabla, ¿Cuál es
el cambio del peso del cachorro
entre un mes y el mes siguiente?
Opciones:
A.) Disminuyó 1.500 gramos
B.) Disminuyó 2.600 gramos
C.) Aumentó 1.100 gramos
D.) Aumentó 3.300 gramos
Respuesta:
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D.6 TO WHAT EXTENT DO TEXTUAL AUGMENTATIONS BOOST VLM CAPABILITIES?

The significant performance gap between text-only and multimodal responses raises critical questions
about the strengths and weaknesses of the visual processing in the tested models. In this analysis,
we investigate to what extent do visual processing constraints limit multimodal capabilities, and
conversely, can automatically generated textual augmentation improve model performance?

To explore this direction, we generate synthetic captions (using Gemini 1.5 Pro) and Optical Character
Recognition (OCR) text (Tesseract (Smith, 2007)) for all images in KALEIDOSCOPE, aligning with
the methodology of (Das et al., 2024). Unlike prior work that completely replaces images with text,
we evaluate whether a VLM augmented with these textual inputs can boost performance.

Table 18: Accuracy on augmented multimodal inputs with image captions. Results are grouped
by image type. We report Valid Accuracy (%); the highest scores are highlighted in bold for each
model. Macro averaged accuracy is reported over language for both methods.

Qwen2.5-VL-7B Gemini 1.5 Pro

Samples Image +Caption Image +Caption

Diagram 2,182 38.0 37.9 59.4 59.6
Figure 6,178 34.0 34.8 51.3 50.0
Graph 733 44.3 45.2 67.9 68.2
Map 392 48.0 46.7 69.4 70.9
Photo 631 53.9 54.1 75.8 74.3
Formula 487 34.9 37.3 68.3 68.7
Table 597 40.9 34.6 76.0 76.1
Text 257 76.3 79.8 85.2 83.7

Macro Avg. 11,457 36.88 36.83 55.71 54.81

Table 18 shows the results of augmenting visual inputs with synthetic captions and OCR text across
diverse image types in KALEIDOSCOPE, measured by valid accuracy (%). Overall, the addition
of a caption and OCR text improves the performance of the selected models in 5 out of 8 image
types. Both models experienced a performance boost coordinately for Graph and Formula. The
experiment reveals that the utility of textual augmentation depends critically on image content type.
While Gemini 1.5 Pro dominates overall performance, Qwen2.5-VL-7B demonstrates selective gains
when provided with captions and OCR: improvements in Graph (+0.9%), Photo (+0.2%), Formula
(+2.4%), and Text (+3.5%) suggest that textual augmentation aids interpretation of content where
visual elements are tightly coupled with symbolic or linguistic features (e.g., labeled axes, embedded
text, or mathematical notation). Conversely, performance declines for Diagram (−0.1%), Map
(−1.3%), and Table (−6.3%) with augmentation, implying that synthetic captions may introduce
noise or fail to capture structural relationships critical to these categories. Gemini’s robustness across
modalities (≤ 2% variation in most categories) suggests its stronger native visual understanding
reduces reliance on supplementary text. The results underscore that captioning effectiveness is
context-dependent: text augmentation benefits models most when (1) visual content inherently
contains extractable text (e.g., Photo with signs, Text regions) or (2) symbolic patterns (e.g., formulas,
graphs) require disambiguation. However, for structurally complex or text-sparse images (e.g., Map,
Diagram), captioning may not compensate for deficiencies in spatial or relational reasoning. Full
results, including total accuracy and format error, can be found in Table 19.
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Table 19: Total Accuracy %, Valid Accuracy % and Format Error % (FE) grouped by Image
Type in KALEIDOSCOPE for captioning + OCR experiment.

Qwen2.5-VL-7B Gemini 1.5 Pro
Total Acc. Valid Acc. FR Total Acc. Valid Acc. FR

Diagram 37.8 37.9 0.3 58.9 59.6 1.2
Figure 34.6 34.8 0.7 49.0 50.0 1.9
Graph 45.2 45.2 0.0 67.4 68.2 1.2
Map 46.7 46.7 0.0 70.9 70.9 0.0
Photo 53.9 54.1 0.5 74.2 74.3 0.2
Formula 37.0 37.3 0.8 66.7 68.7 2.9
Table 34.5 34.6 0.2 74.7 76.1 1.8
Text 79.8 79.8 0.0 83.7 83.7 0.0

D.6.1 CAPTIONING & OCR

We instantiated Gemini 1.5 Pro with the following instructions to generate synthetic captions from
the images in KALEIDOSCOPE. Prompts with image augmentations are shown in Table 17.

Gemini 1.5 Pro’s prompt for captioning:

**Instruction:**
You are an expert image captioner. Generate highly detailed, precise,
and academically relevant textual descriptions of images sourced from
exam questions, ensuring all critical visual elements are captured for
accurate problem-solving.

**Guidelines:**

Exam-Specific Analysis:

- Primary Elements: Identify and describe key components (e.g.,
diagrams, charts, graphs, labels, symbols, annotations) and their
exact attributes (e.g., numerical values, units, directional arrows,
text annotations).

- Secondary Details: Note stylistic features (e.g., "black-and-white
schematic," "color-coded bars in a graph"), spatial relationships
(e.g., "force vectors pointing northwest"), and contextual clues
(e.g., axes labels, legends, scales).

- Textual Elements: Explicitly transcribe all visible text (e.g.,
labels like "Mitochondria," numbers like "5V," titles like "Figure 2:
Velocity vs. Time").

Academic Precision:

- Technical Focus: Prioritize details critical to exam questions (e.g.,
"a right triangle with hypotenuse labeled c = 10 cm," "a bar graph
comparing GDP of 5 countries,with Japan’s bar shaded blue at 4.3
trillion").

- Diagrams/Charts: Specify type (e.g., "pie chart," "circuit diagram")
and components (e.g., "resistor symbol connected to a battery").

- Scientific Relevance: Highlight measurements, units, symbols (e.g.,
"T = 25°C," "a pulley system with frictionless ropes").
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Structure & Clarity:

- Begin with the image’s purpose (e.g., "A biology diagram of a plant
cell") followed by a systematic breakdown (left-to-right, top-to-bottom,
or by functional layers).

- Use neutral, objective language. Avoid assumptions unless implied by
context (e.g.,"a downward arrow labeled 9.8 m/s² likely representing
gravitational acceleration").

**Output Format:**

- Single paragraph (4-6 sentences).

- Example:
"A physics diagram depicts two blocks on a frictionless inclined plane:
Block A (5 kg) is connected via a rope to Block B (3 kg) over a pulley.
Angle theta = 30°, with vectors labeled F_normal and F_gravity. A scale
beside the plane shows time t = 0sto t = 5s. Text at the bottom reads:
‘Calculate tension in the rope.’ The image is monochrome, with dashed
lines indicating motion direction."

Constraints:

- Avoid Omissions: Ensure no labels, numbers, or symbols are overlooked,
even if small or peripheral.

- Neutral Tone: Exclude subjective interpretations (e.g., "messy
handwriting" or "complex diagram") unless style is exam-relevant (e.g.,
"a hand-drawn sketch with annotations").
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D.7 CROSS-BENCHMARK PERFORMANCE

Table 20 presents a comparison of Kaleidoscope’s overall valid accuracy with MMMU-Pro and
MMMU-Validation on the overlapping subset of models. The results show that Kaleidoscope
occupies a difficulty range comparable to existing high-quality multimodal benchmarks: most
models perform slightly above their MMMU-Pro scores but below their MMMU-Validation scores.
Importantly, the rank ordering of models is not identical across benchmarks. Several models with
similar performance on MMMU diverge noticeably on Kaleidoscope, reflecting the benchmark’s
unique emphasis on culturally grounded, in-language multimodal reasoning. These discrepancies
reinforce that Kaleidoscope is not merely a parallel version of existing datasets, but a complementary
evaluation that probes multilingual and cross-cultural generalization more directly.

Table 20: Cross-benchmark comparison on KALEIDOSCOPE, MMMU-Pro, and MMMU. Results
are reported as overall accuracy (%). KALEIDOSCOPE values use valid accuracy. Asterisks (*)
indicate results provided directly by the original authors.

Model Kaleidoscope (Valid Acc.) MMMU-Pro (Acc.) MMMU Validation (Acc.)

Claude 3.5 Sonnet 63.87 51.5 68.3
Gemini 1.5 Pro 62.95 46.9 65.8
GPT-4o 62.10 51.9 69.1

Qwen2.5-VL-72B 53.00 46.2 64.5
Qwen2.5-VL-32B 48.64 N/A N/A
Aya-Vision-32B 39.66 45.11* N/A
Aya-Vision-8B 35.11 39.9* N/A
Qwen2.5-VL-7B 39.60 38.3* 58.6*
Qwen2.5-VL-3B 35.63 31.6* 53.1*
Molmo-7B-D 32.88 N/A N/A
Pangea-7B 34.02 N/A N/A

E DATASET SAMPLES

E.1 CATEGORIES OF VISUAL ELEMENTS

We group the visual elements into eight primary categories in KALEIDOSCOPE in Table 21. If an
image falls into multiple categories, we assign the most representative based on the image’s content.

E.2 SELECTED DATASET SAMPLES

Table 22 presents one sample from each dataset, including the question, the associated image, the
provided answers, and the correct answer highlighted in green.

E.3 DATASET FIELDS

We provide a description of the fields in KALEIDOSCOPE in Table 23.
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Table 21: Types of visual elements or images in the Kaleidoscope benchmark. The correct
answer is highlighted in Bold Green. Some samples are reformatted for better presentation.

Visual Element Category Question Image Question and Answer

Diagram. Technical or
schematic drawings illustrating
processes, structures, or con-
cepts.

Question: Wie verhält sich die Ver-
armungszone in der hier dargestellten
Halbleiterdiode?
Options:
A. Sie erweitert sich.
B. Sie verengt sich.
C. Sie verändert sich nicht.
D. Sie verschwindet.

Figure. Illustrations, draw-
ings, or visual representations of
objects, patterns, or symbols.

Question: Applicable for D of stem
’B’-
Options:
A. contains more genes
B. unable to replicate
C. present in the nucleus
D. used as a vector

Charts. Images showing data
plotted on axes, such as line
graphs, bar charts, scatter
plots, pie charts, flowcharts, or-
ganizational charts, and so on.

Question: Em uma xícara que já
contém certa quantidade de açúcar,
despeja-se café. A curva abaixo
representa a função exponencial M(t),
que fornece a quantidade de açúcar
não dissolvido (em gramas), t minutos
após o café ser despejado. Pelo gráfico,
podemos concluir que.
Options:
A. m(t) = 2(4−t/75)

B. m(t) = 2(4−t/50)

C. m(t) = 2(5−t/50)

D. m(t) = 2(5−t/150)

Map. Geographical or spatial
representations.

Question: Діяльність якого гетьмана
можна характеризувати, спираючись на
подану карту?
Options:
A. Б. Хмельницького
B. І. Виговського
C. Д. Многогрішного
D. І. Самойловича

Continued on next page
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Visual Element Category Question Image Question and Answer

Photographs. Photographic
images of real-world scenes, ob-
jects, or people.

Question: Wat kun je zeggen over
het verzorgingsgebied van deze Mc-
Donald’s in Arnhem?
Options:
A. Het verzorgingsgebied beperkt
zich tot de stad Arnhem.
B. Het verzorgingsgebied beperkt zich
tot de provincie Gelderland.
C. Het verzorgingsgebied beperkt zich
tot Nederland.
D. Het verzorgingsgebied beperkt zich
tot de regio Arnhem en omstreken.

Formula. Mathematical equa-
tions, chemical formulas, math-
ematical diagrams, or related
concepts.

Question: अɢभɟक्रया इस छɟव में ɞदखाए
गए समीकरण कʏ ɟवघटन कʏ कोɞट, साम्यावȸा
ɜȸरांक Kp में सम्बद्ध है।
Options:
A.

√
1+2Kp

2

B. 1+2Kp

2

C. 2Kp

1+2Kp

D. 2
√

Kp

1+2
√

Kp

Table. Structured data ar-
ranged in rows and columns.

Question:
عددهای با را روبه رو نيمه پر جدول می توان طريق چند به
عدد ستونی و سطر هيچ در که کرد پر طوری ۴ تا ۱

باشيم؟ نداشته تکراری
Options:
A. 0
B. 1
C. 2
D. !4

Text. Images containing pri-
marily textual information.

Question: যিদ E এবং F AB এবং
AC-েক এমনভােব েছদ কের েযন EF || BC
হয়, তাহেল
Options:
A. ১৩২◦

B. ১৬০◦
C. ১৮০◦
D. ১০৮◦
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Table 22: Samples from various exams in the Kaleidoscope benchmark. The correct answer is
highlighted in Bold Green. Some samples are reformatted for better presentation.

Language Question Image Question and Answer

Arabic

High School Exam Physics

Question:
...... ૭૜؇وي ۰ොෘިৎ৊ا اᄴᄟا߉ߵة ሒᇭ اࠍ੆ݠاري ଫଐ݁٭৙৑ا ڢݠاءة

Options:
A. 0.2 A
B. 2 A
C. 0.02 A
D. 20 A

Arabic

High School Exam Geology

Question:
ෑෂෑෂال ؇ዝཚّأݠ ༡؇ل ً ๤ཟّرا ا৙৑ڢܭ ᄭᄟوᄴᄟا اݿྥٷٺھ اࠍ੊ڎول ఈః༠ل ݆݁

Options:

ل .A
ع .B

ص .C
س .D

Bengali

BRTA Driving Test Driving

Question: এই িচহ্নিট Ćারা িক বুঝায়?
Options:
A. শ‍ুধুমাÛ সাইেকল চলাচেলর জনয্
B. সাইেকল চলাচল িনেষধ
C. েমাটরসাইেকল চলাচল িনেষধ
D. শ‍ুধুমাÛ েমাটরসাইেকল চলাচেলর জনয্

Bengali

HSC Exam Geography

Question: উśীপেকর 'ক' ও 'খ' বায়ুàবােহর সাধারণ ৈবিশƧয্- i.
দǬক্ষণ-পǭƠম িদেক àবািহত হয় ii. ডান িদেক েবঁেক যায় iii. সম
উƩতািবিশƧ
িনেচর েকানিট সিঠক?
Options:
A. i ও ii
B. i ও iii
C. ii ও iii
D. i, ii ও iii

Bengali

BCS Exam Reasoning

Question: িনেচর িচেÛ কয়িট িÛভɊজআেছ?
Options:
A. ৫িট
B. ৬িট
C. ৮িট
D. ৪িট

Continued on next page
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2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Language Question Image Question and Answer

Dutch

Dutch Central Exam Economics

Question: Bekijk bovenstaand diagram. Hoeveel ton
klein chemisch afval werd er in Nederland in 2000 ingeza-
meld?
Options:
A. “21.000 ton”
B. “19.500 ton”
C. “23.000 ton”
D. “20.500 ton”

English

SAT Mathematics

Question: In the equation, p and t are constants. Which
of the following could be the value of p?
Options:
A. 2
B. 3
C. 4
D. 9

English

UCEED Exam Design

Question: Four spheres start revolving clockwise in con-
centric circles from their initial positions as shown below.
Yellow travels at 2m/sec, green at 4m/sec, red at 2m/sec
and blue at 4m/sec. Which of the following statement(s)
is/are TRUE?
Options:
A. Yellow and green never cross (overtake) each
other
B. Red and blue takes the same time to complete one rev-
olution
C.Yellow takes less time than green to complete one rev-
olution
D. Blue and red will cross each other twice after the first
3 complete revolutions of blue

English

HSC Exam Biology

Question: Which type of food digest in lebelled ’S’ men-
tioned in the figure?
Options:
A. Potato
B. Pulse
C. Oil
D. Ghee

Continued on next page
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Language Question Image Question and Answer

English

GATE Engineering

Question: Consider the CMOS circuit shown in the fig-
ure (substrates are connected to their respective sources).
The gate width W to gate length L ratios W/L of the
transistors are as shown. Both transistors have the same
gate oxide capacitance per unit area. For the pMOSFET,
the threshold voltage is −1V and the mobility of holes
is 40 cm2/V.s. For the nMOSFET, the threshold voltage
is 1V and the mobility of electrons is 300 cm2/V.s. The
steady-state output voltage Vo is ________
Options:
A. equal to 0 V
B. more than 2 V
C. less than 2 V
D. equal to 2V

Flemish

Physician Exam Language

Question: Figuur 1A toont de A-weging voor het
menselijk gehoor. Deze figuur leert ons dat
Options:
A. de mens tonen rond de 1000 Hz het beste hoort.
B. mensen tonen van 10.000 Hz niet meer kunnen horen.
C. een toon met dezelfde fysische geluidssterkte altijd even
intens wordt gehoord.
D. bij gelijke geluidssterkte, een mens 100 Hz zachter hoort
dan 50 Hz.

French

Mathematical Kangaroo Mathematics

Question: On attache ensemble des anneaux comme in-
diqué ci-contre de façon à former une chaîne de 1,7 m de
longueur. Combien d’anneaux sont nécessaires ?
Options:
A. 30
B. 42
C. 21
D. 85

German

Amateur Radio Exam Engineering

Question: Wie groß ist die Gate-Source-Spannung, wenn
sich der Schleifer von R3 am Anschlag 1 befindet?
Options:
A. 3,5 V
B. 2,77 V
C. 3,7 V
D. 0,45 V

Continued on next page
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Language Question Image Question and Answer

Hindi

Science Olympiad Biology

Question: अजय अपने घर से 20 ɠमनट पैदल चलकर दोपहर के
3.30 बजे ɡसनेमा हॉल पहुँचा। वह जल्दʍ-जल्दʍ ɡसनेमा हॉल में घुस गया। इसे
अस-पास साफ-साफ देखने में कुछ समय लगा। इस दौरान उसकʏ आँखों में
ɟकस तरह के पɝरवतर्न आए होंगे?

Options:
A. वृȉीय और रेɟडयल मांसपेɡशयां ɡशɡथल होती हैं जबɟक पुतɡलयां संकुɡचत
होती हैं।
B. वृȉीय मांसपेɢशयां ɢशɡथल होती हैं, रेɟडयल मांसपेɢशयां संकुɡचत
होती हैं और पुतɡलयां फैलती हैं।
C. वृȉीय और रेɟडयल मांसपेɡशयां संकुɡचत होती हैं जबɟक पुतɡलयां फैलती
हैं।
D. वृȉीय मांसपेɡशयां संकुɡचत होती हैं, रेɟडयल मांसपेɡशयां ɡशɡथल होती हैं
और पुतɡलयां संकुɡचत होती हैं।

Hindi

JEE (Main) Physics

Question: ɡचत्र (a), (b), (c), (d) देखकर ɟनधार्ɝरत करें ɟक ये ɡचत्र
क्रमशः ɟकन सेमीकंडक्टर ɟडवाइसों के अɢभलक्षणांक ग्राफ हैं :
Options:
A.साधारण डायोड, जीनर डायोड, सोलर सेल, LDR (लाइट ɟडपेंडेंट
रेɣजस्टेंस)
B. जीनर डायोड, साधारण डायोड, LDR (लाइट ɟडपेंडेंट रेɣजस्टेंस), सोलर
सेल
C. सोलर सेल, LDR (लाइट ɟडपेंडेंट रेɣजस्टेंस), जीनर डायोड, साधारण
डायोड
D. जीनर डायोड, सोलर सेल, साधारण डायोड, LDR (लाइट ɟडपेंडेंट
रेɣजस्टेंस)

Hindi

UP-CET Social Sciences

Question: ɡचत्र में ɞदए ɟकले को पहचाɟनये।
Options:
A. जोधपुर ɟकला
B. ग्वाɡलयर ɟकला
C. लाल ɟकला
D. आमेर ɟकला

Hindi

JEE (Main) Mathematics

Question: यɞद इस छɟव में ɞदखाए गए समीकरण के अनुसार, तो k बराबर
है :
Options:
A. 1
B. 2
C. 3
D. 4

Continued on next page
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2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
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2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
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2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Language Question Image Question and Answer

Hindi

SSC CGL Exam Reasoning

Question: ɟवɢभȡ देशों कʏ औद्योɟगक वृɣद्ध (₹ करोड़ में) में ɟनम्नɡलɤखत
में से ɟकतने देशों कʏ औद्योɟगक वृɣद्ध औसत औद्योɟगक वृɣद्ध से अɠधक है?
Options:
A. 4
B. 2
C. 3
D. 1

Lithuanian

High School Exam Geography

Question: Kiek platumos laipsnių yra tarp Šiaurės poliarinio
rato ir Pietų atogrąžos?
Options:
A. Apie 23◦.
B. Apie 90◦.
C. Apie 100◦.
D. Apie 132◦.

Nepali

PSC Exam Reasoning

Question: ɞदइएको ɡचत्र १,२,३,४ र ५ मध्येबाट कुनै तीन ɡचत्रहरु एक
आपसमा ɠमलाउदा पुणर् आकारको ɟत्रभुजको ɡचत्र बन्दछ । उक्त पूणर् आकारको
बनाउने ɡचत्रहरुको नम्बरहरु ɞदइएको ɟवकल्पबाट छनौट गनुर्होस् ।
Options:
A. 124
B. 234
C. 245
D. 345

Persian

Olympiad of Informatics Math

Question:
و دور ۚٷڎ ۱ފྥٷڎ. ଫଜدرܓ ܾ۱ ؇ً ᄊჳ ቕቓدار රතخ دࢾࣖه ّأڎادی زߦߵ ႟ႆނ ޗٴݑ
دور ٞ܂ دڢچگ؇ a රතخ دࢾࣖه ی ؇ّ ෫ຳݠ༠؇َࡰࡲ را b دࢾࣖه ي රතخ ࣖ࣎؇ً ۏ۳ب ᄕჳام در
݁ٺިݿޔ රතخ دࢾࣖه ۱؇ی ۸، ܔިۚ܂ රතخ دࢾࣖه ی دࢾࣖه ۱؇ی ّأڎاد ෫ຳݠ༠ڎ؟ ݿ؇؜ب ா஫د

اݿب. ۳۲ ߓ߳رگ රතخ دࢾࣖه ۱؇ی و ۱۶
Options:

ݿ؇؜ب ா஫د دور 1 .A
ى؇دݿ؇؜ب ா஫د دور 1 .B

ݿ؇؜ب ா஫د دور 2 .C
ոຑബഞ࠯ࡇ را a ബഞخ د࠯ࡇه ی ଄૲ܤ ׂܙان .D

Continued on next page
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2565
2566
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2568
2569
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2583
2584
2585
2586
2587
2588
2589
2590
2591

Language Question Image Question and Answer

Persian

Driving Test Driving

Question:
༰ྱފب؟ ّ؇ًߺࠊ દતا ؜ٷިان

Options:

ۚس) ً۬ ਜಶۉ ඔඒܳاو) ሏᆾ در ሏᆾ ۱؇ى ਜಶۉ .A
را۰֙) ּٝ ঍ధغ അഃاوڤ) ᆀᄯ در ᆀᄯ ո٢ى ঍ధغ .B

راݿب ً۬ ਜಶۉ .C
ۚس ً۬ ਜಶۉ .D

Persian

High School Exam Engineering

Question:
اݿب؟ ᄕჳام ୍଺َ؇ٞ؇ஓ஁ ݁گ؇ًܭ ႟ႆނ

Options:

লছܹݠ دوم ڢ؇َިن .A
݁۬ ً؇َ܁ ᘣٞۯ (َޙݠ .B

જઍ۳ی راه ٤ᝮڗ۾ոن .C
ᄊᄅ݁ راه .D

Persian

University Entrance Exam Physics

Question:
ߓߵاߓߵ ۚٷڎ B ؇ّ A از وزن ଫଜَوی Ⴄၖر ሏᇧ ܔٷڎ. ޗ޳ را ႟ႆނ ݁ޚ؇ًݑ ݁ފଫଜی ᄩᄟިၯၕ ای

اݿب؟ C ؇ّ B از وزن ଫଜَوی Ⴄၖر
Options:
A. 1.5
B. 1.25
C. 1.2
D. 2

Persian

University Entrance Exam Geology

Question:
ᄕჳام ࢹࣖ࣎ࣖه દતۏިان ߙߵ و દત޳ ߙߵஓ஑ڢڎ ߙߵོྱص ً۬ روߓߵو ႟ႆނ در ،؇۱ ۬ ਍ೋ ஼஫ ً۬ ۬༥ިّ ؇ً

اݿب؟
Options:

༟؇دی ܓފܭ – ؇ٞ در ๤དྷྱུوی .A
دا׏ٳ ׏ۂ ݊ݤر – ո׏ در ෕඿ඦوی .B

ܾ ނྱص ۱ ௤௔ިݿٺਜಶ؇َ – ؇ٞ در ๤དྷྱུوی .C
༟؇دی ܓފܭ – ๤๎ีوی .D

Continued on next page
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2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
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2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Language Question Image Question and Answer

Portuguese

UNESP Social Sciences

Question: Observe as fachadas de duas igrejas. À es-
querda, a Basílica de San Michele, construída no século
XII em Pavia, na Itália. À direita, a Catedral de Reims,
erguida a partir do século XIII em Reims, na França.
(Georges Duby e Michel Laclotte (orgs.). História artís-
tica da Europa: a Idade Média II, 1998.)
As duas fachadas
Options:
A. diferenciam-se pela pouca ornamentação de San
Michele, que expressa o estilo românico, e pela
monumentalidade e sofisticação de Reims.
B. diferenciam-se pela solidez de San Michele, que sim-
boliza a força espiritual do catolicismo, e pela carência de
detalhes na sede papal em Reims.
C. igualam-se na suntuosidade e no rebuscamento ar-
quitetônico, indicando o poderio econômico da Igreja
católica.
D. diferenciam-se pela discrição de San Michele, que rev-
ela o rigor na conduta dos protestantes, e pela ostentação
da riqueza católica de Reims.

Portuguese

FAMERP Entrance Exam Physics

Question: Quando um gerador de força eletromotriz 12 V
é ligado a um resistor R de resistência 5, 8Ω, uma corrente
elétrica i de intensidade 2,0 A circula pelo circuito.
R
A resistência interna desse gerador é igual a
Options:
A. 0, 40Ω.
B. 0, 20Ω
C. 0, 10Ω.
D. 0, 30Ω.

Portuguese

Unicamp Entrance Exam Language

Question: A imagem a seguir apresenta a transcrição de
um diálogo em um vídeo publicado no Instagram.
No diálogo, a principal característica da reformulação da
fala da médica é a inserção de
Options:
A. expressões que utilizam verbos frasais para recontextu-
alizar o tratamento da paciente.
B. abreviações de substantivos, através das quais a médica
amplia as informações do caso.
C. gírias que utilizam diversas classes de palavras para es-
pecificar melhor o diagnóstico da paciente.
D. vocábulos marcados pela oralidade, através dos
quais a médica atualiza os procedimentos futuros.

Continued on next page
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2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Language Question Image Question and Answer

Portuguese

ENEM, Brazil Mathematics

Question: Um segmento de reta está dividido em duas
partes na proporção áurea quando o todo está para uma
das partes na mesma razão em que essa parte está para a
outra. Essa constante de proporcionalidade é comumente
representada pela letra grega φ, e seu valor é dado pela
solução positiva da equação φ2 = φ+ 1.
Assim como a potência φ2, as potências superiores de φ
podem ser expressas da forma aφ + b, em que a e b são
inteiros positivos, como apresentado no quadro.
A potência φ7, escrita na forma aφ+ b ( a e b são inteiros
positivos), é
Options:
A. 7φ+ 2
B. 9φ+ 6
C. 11φ+ 7
D. 13φ+ 8

Serbian

Mathematical Kangaroo Mathematics

Question: Колико процената површине троугла на слици је
осенчено?
Options:
A. 88 %
B. 90 %
C. 85 %
D. 80 %

Russian

Mathematical Kangaroo Mathematics

Question: Каких геометрических фигур нет на рисунке?
Options:
A. кругов
B. все эти фигуры есть
C. прямоугольников
D. треугольников

Spanish

Medicine Exam Pulmonology

Question: Varón de 60 años, fumador activo, que presenta
tos y expectoración diaria de años de evolución, ocasionalmente
hemoptoica. En los últimos meses se añade disnea progresiva.
Presenta acropaquia y en la auscultación pulmonar destacan roncus
y sibilantes teleinspiratorios en pulmón izquierdo. La TC pulmonar
de alta resolución se muestra en la imagen adjunta. ¿Cuál es el
diagnóstico más probable?

Choices:
A. Carcinoma quístico.
B. Enfisema pulmonar.
C. Tuberculosis cavitada.
D. Bronquiectasias.

Continued on next page
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2701
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2703
2704
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2707
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2716
2717
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2721
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2723
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2728
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2731
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2734
2735
2736
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2738
2739
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2741
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2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Language Question Image Question and Answer

Spanish

Undergraduate Exam Biophysics

Question: Calcule el valor de la primera resistencia (R1)
Options:
A. 42 Ω
B. 6 Ω
C. 12 Ω
D. 24 Ω

Spanish

High School Exam, Colombia Biology

Question: En un laboratorio se estudia el comportamiento del
volumen de un gas ideal al variar su temperatura, obteniendo la
siguiente gráfica: Teniendo en cuenta la información de la gráfica,
si la temperatura aumenta de -153 ◦C a -33 ◦C, ¿qué pasa con el
volumen del gas?
Options:
A. Disminuye de 30 L a 25 L.
B. Disminuye de 10 L a 5 L.
C. Aumenta de 0 L a 10 L.
D. Aumenta de 10 L a 20 L.

Telugu

Undergraduate Exam Chemistry

Question: ఇచిచ్న చితȷంలో సమేమ్ళనంయొకక్మోలార్‍ దȹవయ్రాశి ఎంత?
Options:
A. 304.9
B. 304.4
C. 301.9
D. 303.4

Ukrainian

ZNO Vision Mathematics

Question: Пластикові кульки радіуса 6 см зберігають у
висувній шухлядці, що має форму прямокутного паралелепіпеда
(див. рисунок). Якою з наведених може бути висота h цієї
шухлядки?
Options:
A. 3 см
B. 6 см
C. 10 см
D. 13 см

Ukrainian

Driving Test Driving

Question: По якій траєкторії можна продовжити рух праворуч
легковому автомобілю?
Options:
A. Тільки по А.
B. Тільки по Б.
C. По А і Б.
D. По будь-якій.
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2775
2776
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2798
2799
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2803
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2805
2806
2807
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Table 23: Structured dataset fields with descriptions used in data collection protocol.

Field Description
language The language in which the question is written (e.g., "en" for English).

country The country where the exam originated (e.g., "United States").

contributor_country The contributor’s country of residence (e.g., "Spain").

file_name The internal database filename for the original exam document.

source The URL or reference to the original exam document.

license Licensing information of the exam (e.g., "Unknown" if not stated).

level The educational level of the exam (e.g., "University
Entrance").

category_en The exam subject category in English (e.g., "Chemistry").

category_source
_lang

The subject category as written in the original language (language).

original_question
_num

The original question number in the source document.

question The text of the question.

options A list of possible answer choices.
For example, ["Option A", "Option B", "Option C",
"Option D"].

answer The index of the correct answer (e.g., 3 for the fourth option).

question_image The extracted diagram, graph, or table associated with the question.

image_information A label indicating the importance of the question_image for an-
swering the question. Possible values include:
• "useful" - The image provides additional clarification.
• "essential" - The image is necessary to answer the question.

image_type The category of question_image (e.g., "figure", "graph",
"table") as described in Appendix E.1.
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