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ABSTRACT

The evaluation of vision-language models (VLMs) has mainly relied on English-
language benchmarks, leaving significant gaps in both multilingual and multicul-
tural coverage. While multilingual benchmarks have expanded, both in size and
language, many rely on translations of English datasets, failing to capture cultural
nuances. In this work, we propose KALEIDOSCOPE, as the most comprehensive
exam benchmark to date for the multilingual evaluation of vision-language models.
KALEIDOSCOPE is a large-scale, in-language multimodal benchmark designed
to evaluate VLMs across diverse languages and visual inputs. KALEIDOSCOPE
covers 18 languages and 14 different subjects, amounting to a total of 20,911
multiple-choice questions. Built through an open science collaboration with a
diverse group of researchers worldwide, KALEIDOSCOPE ensures linguistic and
cultural authenticity. We evaluate top-performing multilingual vision-language
models and find that they perform poorly on low-resource languages and in com-
plex multimodal scenarios. Our results highlight the need for progress on culturally
inclusive multimodal evaluation frameworks.
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Figure 1: Overview of the KALEIDOSCOPE Benchmark. (a) Multilingual-Multimodal MCQ
Samples (b) Language and Multimodal Samples Distribution. (c) Exam Category Breakdown.

1 INTRODUCTION

Evaluations are the backbone of measuring progress in machine learning, yet many benchmarks —
especially for language models — remain English and Western-centric (Joshi et al.| [2020; |[Fan et al.,
2020; |Dodge et al.| 2021} [Liu et al., 2021} |Chung et al |2022} |Gehrmann et al.l [2022; Lucy et al.,
2024). This imbalance becomes even more striking at frontier of Al, where generative models are
rapidly expanding into multimodal territory (OpenAl et al.| 2024; |Google et al., 2024; |Anthropic},
2024; Deitke et al., [2024} | Yue et al.| 2025} |Qwen-Team), 2025)), seeking to represent a richer world
made up of different modalities such as image, text, sound. In recent years, the community has
made promising strides toward broader multilingual text evaluation (Ahuja et al.| 2023} |Singh et al.,
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2024bza; |Aakanksha et al.| 2024} |Pozzobon et al., 2024; Romanou et al.| 2024; Singh et al., 2025}
Adelani et al.,|2024)), and multimodal benchmarks are starting to take shape (Bugliarello et al.| 2022}
Fu et al.,[2023; Yue et al., |2024a;b; |L1 et al., 2024a; Xu et al., 2025). Yet reliable evaluation at the
intersection of multilingual and multimodal tasks remains rare. This gap motivates our work.

A common but imperfect solution is translating English benchmarks into other languages. While
convenient, this often falls short of capturing cultural context and nuance. Translated datasets can
easily reinforce Western-centric knowledge and assumptions (van Miltenburg et al., 2017; |[Frank
et al., 2018} |Singh et al., 2025} [Longpre et al., [2025) limiting their ability to assess performance
across diverse settings. Moreover, automated data curation pipelines frequently amplify existing
quality issues (Luccioni & Viviano, 2021} Caswell et al.| [2020; Kreutzer et al.|[2022)), with translation
artifacts such as translationese muddying evaluations (Koppel & Ordan, [2011; Zhang & Toral, 2019;
Bizzoni et al. [2020; Vanmassenhove et al. [2021)). While translated data has its place, especially
for some particularly low-resource tasks (Zhou et al.,[2021; Thapliyal et al., {2022} |Qiu et al., 2022;
Ramos et al., 2024; |Geigle et al., 2025} |Dang et al., 2024; Ustiin et al., 2024; |Aakanksha et al., 2024),
it is an imperfect substitute for genuinely diverse, in-language benchmarks.

In this work, we introduce the largest benchmark of real-world, in-language exam questions blending
image and text modalities. Our dataset pushes beyond simple captioning, challenging models to
reason about visual content in various topics, the way humans are evaluated in exams worldwide.
Through a large-scale open science effort across 18 languages, we construct KALEIDOSCOPE (see
Figure[I)), featuring a diverse selection of knowledge domains across 14 subjects. With 55% of the
total 20,911 questions requiring image understanding for accurate resolution, our work establish a
comprehensive, and inclusive evaluation framework for multimodal language models. We evaluate a
wide range of state-of-the-art models on KALEIDOSCOPE, including Claude 3.5 Sonnet (Anthropic,
2024), GPT-40 (OpenAl et al.| 2024), and Gemini-V (Google et al.,[2024), as well as smaller open-
weight VLMs, such as Aya-Vision model family (Cohere-For-Al-Team, [2025)), Molmo (Deitke et al.|
2024) Pangea (Yue et al.| [2025), and Qwen2.5-VL model family (Qwen-Team, 2025). Our key
contributions and findings are highlighted here:

KALEIDOSCOPE Benchmark: We present the largest multilingual multimodal exam set, covering
high resource (e.g., English, Spanish) to underrepresented languages (e.g., Bengali, Telugu) across
diverse subjects from sociology to STEM. Most languages (10/18) include 5+ topics, with the rest
focusing on multi-subtopics like mathematics or engineering. Questions emphasize vision grounded
reasoning through tasks like interpreting graphs, pictures, and region-specific diagrams, supported by
fine-grained metadata for model diagnostics.

Modality-Specific Performance Disparities: All models perform substantially better on text-only
questions, revealing a clear disparity across modalities. The gap widens in larger modelsl; for instance,
GPT-40 shows a 21.6% difference between text-only and multimodal performance, while smaller
models like Molmo exhibit a much narrower gap of 3.69%. (Section[d.T). Furthermore, multimodal
performance varies significantly by visual data type: models are more capable of answering questions
about tables (76.5%) and photographs (81.5%) compared to diagrams (62.9%).

Domain-Specific Performance Disparities: We observe a significant performance gap between
questions requiring knowledge of Humanities & Social Sciences and those focused on STEM subjects
(Section4.4). On average, models present accuracy of 83.7% for humanities versus 59.2% for STEM
(based on the best scores across models). Models struggle more with STEM questions, suggesting
that while they can often recognize visual content and retrieve related knowledge, they lack the
reasoning capabilities needed to arrive at the correct answers in STEM domains.

Crosslingual Performance Disparities: Model performance varies across languages, with better re-
sults in high-resource languages and weaker performance in mid- and low-resource ones (Section[4.3).
Crosslingual transfer appears to play a role, as models perform better on average in languages using
Latin scripts compared to those with non-Latin scripts.

2 THE KALEIDOSCOPE BENCHMARK

The KALEIDOSCOPE Benchmark is a global collection of multiple-choice questions sourced from
real-world exams, with the goal of evaluating multimodal and multilingual understanding in VLMs.
The collected exams are in a Multiple-choice question answering (MCQA) format which provides a
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structured framework for evaluation by prompting models with predefined answer choices (Hendrycks
et al.| 2021} |Lu et al., 2023} [Wang et al., [2024a} [Yue et al.| [2024a; Romero et al., 2024} |Romanou
et al.,|2024)), closely mimicking conventional human testing methodologies. Our work is built around
three core design principles that guide the selection, curation, processing, and addition of exams:

(2a) Multimodality: Images are central to KALEIDOSCOPE, as we aim to evaluate how VLMs
integrate and reason about visual information to answer questions. We prioritize multimodal
questions with diverse image types, complemented by a similar proportion of text-only
questions for a complete assessment and comparison.

@ Multilinguality: The benchmark contains questions in 18 languages, with a focus on
under-represented mid- and low-resource languages (e.g., Nepali, Lithuanian) alongside
high-resource languages (e.g., English, Spanish) for a thorough evaluation across a broad
range of languages.

% Diversity: Our goal is to collect exams covering as wide a range of topics as possible
ranging from Mathematics and Sociology, to Medicine and Driving Licenses, ensuring
comprehensive evaluation across various domains. The final collection includes exams
from 14 different domains, collected from 18 countries and with varying educational levels,
allowing detailed clustering and comprehensive evaluation.

2.1 GLOBAL COLLABORATION

Our work entailed an extensive, open science process to manually collect data by working directly
with native speakers of different languages (Elliott et al., 2016} [Liu et al., 2021} Thapliyal et al.,
2022; [Li et al., [2024ct [Ustiin et al | [2024; Singh et al., 2024b)). This is acutely needed in the field of
machine learning, where recent studies have highlighted that dataset creators remain predominantly
Western-centric (Longpre et al., |2025)). The manual curation of datasets is a costly process that
requires careful attention to detail in every language to ensure high-quality, contextually relevant
content for evaluation. In this work, we engage in a large-scale open science collection process,
which brings together contributors spanning 20 nations across four continents to ensure linguistic and
cultural authenticity. For related participatory research see Appendix [C.1]

2.2 DATA PIPELINE

Collection: We collected KALEIDOSCOPE following guidelines on type of exams and questions
required, formatting, specifications, and quality control measures. Data was collected through
a global call for contributions and distributed across global communities, with the majority of
contributors being independent researchers in the open science community. This effort resulted in
20,911 questions from 18 countries and languages, sourced in their original languages to maintain
linguistic authenticity. We prioritized original, domain-expert-written questions (e.g., from teachers),
ensuring real-world relevance and quality. The exams were gathered from various repositories,
including official government websites, question banks, and other publicly available repositories with
educational materials. Throughout the process, contributors also annotated associated licenses with
each dataset to allow for documentation of data provenance (Longpre et al., 2024)).

Processing: The annotation process involves two stages. First, we perform automated parsing and
extraction. For directly parsable text, we use PDF or web parsers, while for non-parsable text, we
employ OCR API’s, such as Mathpi along with vision-language models such as GPT-40. These
tools allow us to extract both text and image elements from exam source formats, which are then
converted into structured outputs in LaTeX, Markdown, and JSON formats, as required. Since
automated parsing can sometimes result in misaligned images and text, in the second stage we refine
the extracted text. Applying heuristic rules, as well as high-performing LLMs (Claude 3.5 Sonnet and
GPT-40), we restructure the output, ensuring proper alignment of questions, text, and answer choices.
Human verification follows, ensuring images are correctly linked to the corresponding questions, and
checking that extracted formulas match the expected equation format.

Quality Assessment: Maintaining reliable and high quality data is essential, especially given
the large-scale international collaboration in this project. To ensure integrity, we include manual
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validation in three stages of the collection and annotation pipeline. First, at the end of the collection
stage, two independent annotators validate each exam to ensure conformity with the guidelines. We
include a strict revision to confirm compliance with the distribution license requirements. Only exams
approved by both independent annotators are included in the dataset. Next, following the annotation
process, a validation script checks for JSON formatting errors, duplicates, and malformed strings
that do not conform to identified entry specifications (see Appendix [E.3). Finally, at the last stage,
two separate validators perform a final manual review of the collected files before merging them into
KALEIDOSCOPE.

Quality control also extends to the evaluation, where we analyze the most prominent failure modes.
During inference, suspicious outputs, such as ambiguous answers, no response, or consistent failures
across models, are flagged for manual review. If an issue is identified, the entire exam containing the
problematic question is reviewed for correction or removal. This process guarantees that any errors in
the benchmark questions are identified and addressed, further enhancing the reliability of the dataset.

2.3 DATA STATISTICS

The final KALEIDOSCOPE benchmark contains 20,911 questions across 18 languages belonging to
8 language families. A total of 11,459 questions require an image to be answered (55%), while
the remaining 9,452 (45%) are text-only. The dataset covers 14 different subjects, grouped into
6 broad domains. Figure [I] presents an overview of the dataset; detailed statistics can be found
in Appendix [B.3] The majority of questions in KALEIDOSCOPE are multimodal, with the exact
proportion varying across languages, ranging from 50% to 100%, with some languages always
requiring images for resolution.

Each exam question contains 17 fields, including source country, language, license, educational level,
category, and multimodal information. These fields are detailed in Appendix [E.3] The questions are
formatted in MCQA format with 4 options and a single correct answer. The subject is labeled in
both English and the source language. The educational level (e.g., high school, university entrance,
professional licensing) is also included to ensure diverse representation. Multimodal questions
additionally specify the type of image, such as graphs, tables, or diagrams. Additionally, each entry
includes metadata such as source details, licensing status, and ISO 639-1 language codes. For a fine-
grained analysis, each question includes detailed metadata, with examples provided in Appendix
The metadata allows us to evaluate how visual and textual elements interact in multimodal reasoning
tasks, making the benchmark valuable for evaluating models across diverse scenarios.

KALEIDOSCOPE covers a wide range of languages, including low- and mid-resource languages such
as Nepali, Lithuanian, Bengali, Telugu, Persian, Ukrainian, Croatian, Serbian, and Hungarian, as well
as high-resource languages such as English, Spanish, Portuguese, Russian, French, German, Arabic,
Hindi, and Dutch. This selection allows us to evaluate how performance is affected by the amount of
resources available for a given language. The dataset spans 8 different language families, providing a
broad linguistic range. The number of questions per language varies significantly, from 126 for Nepali
to 2000 for Portuguese, Serbian, and Persian. The linguistic diversity present in KALEIDOSCOPE
enables a robust evaluation of models across both widely spoken and underrepresented languages,
making the dataset suitable for comprehensive multilingual assessment.

3 EXPERIMENTAL SETUP

3.1 MODELS

We benchmark both open-weights and closed multimodal vision-language models on KALEIDO-
SCOPE, focusing on lighter open-weight models and larger closed models to assess performance across
a wide range of model sizes. The open-weight modelsE] include Aya-Vision-8B and 32B (Cohere-
For-Al-Team, |2025), Molmo-7B-D (Deitke et al., |2024), Pangea-7B (Yue et al., [2025), and all
sizes of Qwen2.5-VL-Instruct (Qwen-Team) 2025) (3B, 7B, 32B, and 72B) to analyze the impact

2All open-weight models are evaluated locally using 1 xNVIDIA Ampere A100 GPU with 64GB of memory
for models up to 8B, and 4 x A100 for models on the range 32B—72B. Closed models were accessed via APIL. To
ensure a consistent evaluation environment, we set the temperature to 0.7, the maximum token generation to
1024, and the image size to 512x512 for all models.
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of model scale on KALEIDOSCOPE. All models have image and multilingual support; Aya-Vision
supports 23 languages, Qwen2.5-VL supports 29 languages, and Pangea was trained on a dataset
spanning 39 different languages, making them strong candidates for multimodal and multilingual
evaluation. For the closed models, we evaluate GPT-40 (OpenAl et al.| 2024) (2024/08/06), Claude
3.5 Sonnet (Anthropic},|2024) (2024/10/22), and Gemini 1.5 Pro (Google et al.|[2024).

3.2 EVALUATION SETUP

We designed two distinct evaluation setups to accommodate VLMs’ varying reasoning and instruction-
following capabilities. For closed models, we employed zero-shot prompts using the Chain-of-
Thought (CoT) method (Wei et al.,[2022), instructing the model to reason step-by-step before selecting
the final answer within specific <ANSWER> </ANSWER> tags—a natural approach aligned with
real-world MCQ applications. Using a common template (see Appendix [D.5)), we ensured equal
evaluation conditions across models, with instructions translated into all evaluated languages for a
fully in-language setup, following Romanou et al.[(2024). For smaller open-weight models, which
showed limited CoT effectiveness in preliminary experiments (Appendix [D.2)), we instead used a
direct answer generation approach, prompting models to output their choice in a JSON-structured
{’choice’: ...} field. This simplified the task by reducing reasoning or formatting errors,
with instructions always in English regardless of question language. Further discussion on model
output errors is in section 5] Due to KALEIDOSCOPE’s evaluating nature, we employ accuracy as our
main metric (further evaluation metrics details can be found in Appendix [D.T).

4 RESULTS

Table 1: Performance Evaluation on KALEIDOSCOPE. Results are reported as macro-averaged
accuracy (%) across all languages (equal weight per language). Acc.: Accuracy over all samples; F.E.:
Format Error rate (invalid responses); Valid Acc.: Accuracy excluding invalid responses. Metrics
are shown for the full dataset (Overall), multimodal inputs (Multimodal), and text-only inputs
(Text-only).

Overall Multimodal Text-only

Valid Responses Valid Responses Valid Responses
Model Acc. FE. Acc. Acc. FE. Acc. Acc. FE. Acc.
Claude 3.5 Sonnet ~ 62.91 1.78 63.87 55.63 3.24 57.24 73.54 0.02 73.57
Gemini 1.5 Pro 62.10 1.62 62.95 55.01 1.46 55.71 72.35 1.81 73.45
GPT-40 5832 652 62.10 49.80  10.50 55.19 7140 171 72.39

Qwen2.5-VL-72B 5294  0.02 53.00 48.40 0.03 48.41 60.00  0.02 60.01

Aya-Vision-32B 39.27 1.05 39.66 35.74 1.49 36.28 4473 0.1 45.00
Qwen2.5-VL-32B 4821  0.88 48.64 44.90 0.28 45.05 53.77 1.61 54.60

Aya-Vision-8B 35.09 0.07 35.11 32.35 0.05 32.36 39.27  0.10 39.30
Molmo-7B-D 32.87  0.04 32.88 31.43 0.06 31.44 3512 0.01 35.13
Pangea-7B 3131  7.42 34.02 27.15 13.52 31.02 37.84  0.03 37.86

Qwen2.5-VL-7B 39.56  0.08 39.60 36.85 0.04 36.88 4391 0.11 43.96

Qwen2.5-VL-3B 3556  0.19 35.63 33.67 0.32 33.79 38.51 0.03 38.53

4.1 OVERALL PERFORMANCE

We benchmark a wide variety of models on KALEIDOSCOPE, with results summarized in Tablem
Claude 3.5 Sonnet and Gemini 1.5 Pro lead among closed models, while GPT-40’s performance is
impacted by high format errors—particularly in the multimodal split—though its accuracy improves
significantly when considering only valid answers (see Section[5). Among open-weight models,
Qwen2.5-VL-72B achieves the highest accuracy, followed by lightweight models like Qwen2.5-VL-
7B, which leads the 7-8B category.

A key trend is the performance drop in multimodal questions compared to text-only ones, with closed
models showing the largest gaps (e.g., GPT-40’s steep decline). In contrast, open-weight models
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Figure 2: Model Performance Analysis on KALEIDOSCOPE. (a) Accuracy (%) of models on
multimodal and text-only questions, highlighting low performance on multimodal samples. (b)
Accuracy (%) by script type, revealing biases for latin scripts. Accuracy over valid responses is used
to generate both figures. Identity line is added to show parity.

exhibit smaller gaps, suggesting greater robustness across modalities despite lower overall scores.
This gap narrows further for smaller models, with Molmo displaying the most balanced performance.
This lightweight model’s consistency is depicted in Figure 24| (by being closer to the identity line),
reinforcing that open models while less specialized, handle multimodal tasks more uniformly.

4.2 NOT ALL IMAGE TYPES ARE EQUAL

Table 2: Model Performance Breakdown by Image Type in KALEIDOSCOPE. Accuracy (%) over
valid answers across image type. Bold values indicate top-performing model.

Model Diagram Figure Graph Map Photo Formula Table Text
(2,182)  (6,178)  (733)  (392)  (631) (487) (597)  (257)
Claude 3.5 Sonnet 62.9 50.5 74.2 80.1 778 52.1 75.0 85.2
Gemini 1.5 Pro 59.4 51.3 67.9 694  75.8 68.3 76.0 85.2
GPT-40 59.6 48.2 68.4 78.8  81.5 64.4 76.5 86.2
Qwen2.5-VL-72B 51.1 439 59.4 66.1  70.5 48.7 61.5 86.0
Aya-Vision32B 38,6 334 420 500 602 = 324 331 688
Qwen2.5-VL-32B 46.7 41.0 53.1 58.2  65.0 47.3 58.0 82.5
Aya-Vision8B 327 299 372 386 423 292 341 549
Molmo-7B-D 30.3 31.5 36.7 37.8  45.0 25.1 30.6 56.8
Pangea-7B 31.0 31.0 329 385 45.0 322 29.4 66.3
Qwen2.5-VL-7B 38.0 34.0 44.3 480 539 349 40.9 76.3
Qwen2.5-VL-3B 32.8 323 402 412 482 347 352 728

KALEIDOSCOPE contains eight visual information types, with accuracy varying significantly by
complexity (Table[2). Simpler inputs like text-rich images (Qwen2.5-VL-7B: 76.3%; GPT-40: 86.2%)
and photos score higher than technical categories like Formulas and Diagrams (Qwen2.5-VL-7B:
38.0%; GPT-40: 62.9%). Notably, Qwen2.5-VL-72B ranks second in text-rich images, surpassing
both Gemini and Claude. Larger models show specialized strengths: Gemini 1.5 Pro dominates
Formulas and Figures, GPT-40 leads in text-rich images, and Claude 3.5 Sonnet achieves the highest
scores in Diagrams, Graphs, and Maps. In contrast, Qwen2.5-VL-7B consistently outperforms all
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lightweight models across categories, demonstrating broader capability despite lower absolute scores.
The results reveal a clear hierarchy: models handle simple visuals well but struggle with structured or
symbolic data, a pattern consistent across architectures but more pronounced in smaller models.

4.3 RESOURCE AND SCRIPT SENSITIVITY IN MODELS

p Closed Models
100 —{ () Gemini1.5Pro
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DRl D
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s N
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Figure 3: Multimodal Accuracy by Language in KALEIDOSCOPE. Reports performance (accuracy
%) for closed models and open-weight models on multimodal questions.

Performance in KALEIDOSCOPE varies widely across all 18 languages (see Figure [3). Models
generally perform well in high-resource languages (e.g., English, Spanish, German) but struggle
with lower- and mid-resource ones, such as Nepali and Telugu. This can be attributed to the limited
training data for these languages, complex scripts, and the exclusive use of multimodal samples for
these languages (see Appendix [B.3)), which are inherently more challenging. Lithuanian, despite
being mid-resource language, stands out as the highest-performing language, with Claude 3.5 Sonnet
leading in accuracy. This might be due the fact that all Lithuanian questions belong to College
Graduation Exams, and have a major subject composition of Social Sciences and Humanities in
opposition to STEM subjects, which may align well with the models’ capabilities. Closed models
show similar performance within each language, except for German, where Claude excels. In contrast,
Qwen2.5-VL-7B consistently leads all lightweight models for almost every language, and the heavier
Qwen2.5-VL-72B shows the benefits of model scale.

The results show that all models are biased towards Latin script languages. As shown in Figure[2b} all
models are above the parity line, exhibiting consistent higher performance for Latin scripts compared
to non-Latin scripts. Full results can be found in Appendix [D.3]

4.4 STEM QUESTIONS EXPOSE MODEL DEFICIENCIES

KALEIDOSCOPE consists of exams covering 14 subjects and domains. We observe that all models
perform significantly better on Humanities & Social Science questions compared to other domains.
The closed models achieve high accuracy in areas like Sociology (Claude: 93.4%, GPT-40: 93.2%),
Social Sciences (GPT-40: 88.1%, Gemini: 85.7%), and Language (GPT-40: 85.8%, Claude: 85.5%).
In contrast, performance in STEM subjects, including Mathematics, Physics, and Engineering, is
notably lower, with most models scoring below 50%. This suggests that while they are generally
capable of recognizing visual content and retrieving surface-level knowledge, they fall short when it
comes to performing the multi-step reasoning and problem-solving required in STEM subjects. An-
swering these questions often demands not just factual recall but also the ability to interpret complex
diagrams, apply mathematical concepts, and reason through scientific principles — capabilities that
current models have yet to fully master. This highlights a key gap in their ability to bridge perception
and reasoning, particularly in tasks that require deeper analytical thinking. Refer to Appendix[D.3]
Table 9] for multimodal and complete results of model performance across subjects.
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5 ANALYSIS

5.1 HOW SENSITIVE ARE VLMS TO MISSING OR INCORRECT IMAGES?

Table 3: Image Relevance Analysis for Qwen2.5-VL-7B on KALEIDOSCOPE. Model performance
across the standard multimodal, Random Image, and No-Image setups to assess the impact of visual
information on question-answering accuracy.

Valid Responses
Setup Accuracy Format Error Accuracy
Standard Multimodal 36.85 0.04 36.88
Random Image 32.56 3.12 33.53
No Image 33.44 0.03 33.45

To evaluate the dependency of multimodal questions on images, and the impact of incorrect image
associations, we conducted an experiment using the multimodal split of KALEIDOSCOPE. Follow-
ing [Elliott| (2018)); Thomason et al.| (2019), we created two modified versions of the dataset: (1) a ‘No
Image’ split, where all images were removed, and (2) a ‘Random Image’ split, where images were
randomly reassigned to questions. The aim of this experiment is to assess how much the models rely
on the visual information. We evaluate the performance of Qwen2.5-VL-7B on these modified splits,
and the results are shown in Table[3

We observe that the model performs above the random baseline (25%) across all three splits, indicating
some ability to reason from text alone. However, there is a drop in performance (—3.41% in Total
Accuracy) when questions are presented without images, suggesting that the model does rely on visual
information for accurate answers. The performance drop is similar for both modifications; however,
we observe a significantly larger format error when the model is tested with irrelevant images. In
several of these cases, the model actually acknowledges that the image does not correspond to the
question. In contrast, in experiments with no images, the format error rate is almost zero, indicating
that the model attempts to answer even when visual inputs are missing

5.2 SCALING MODEL SIZE IMPROVES PERFORMANCE

60

Text-only
55 O~ Multimodal
s=]
o

45

Accuracy (%)

40

35

30
Qwen2.5-VL-3B Qwen2.5-VL-7B Qwen2.5-VL-32B Qwen2.5-VL-72B

Figure 4: Model Size Analysis for Qwen2.5-VL Models. Performance improvement across three
model sizes (3B, 7B, 32B, and 72B parameters) on KALEIDOSCOPE’s multimodal tasks, demonstrat-
ing consistent gains from increased model capacity. Note that x-axis is shown in log-scale.

To analyze the impact of model size on KALEIDOSCOPE performance, we evaluated all four variants
of Qwen2.5-VL. We selected this model family for its well-distributed size range, as well as being
the best performing model in the open weight model category. We follow the same experimental
setup for all model versions.

Figure {] shows the performance of Qwen2.5-VL variants on KALEIDOSCOPE. Model size is shown
in the x-axis (log-scale), while the y-axis displays accuracy for multimodal and text-only splits, and

3We observed that Qwen2.5-VL-7B tends to hallucinate when no image is present. In a simple experiment
using the prompt “Describe the following image”, the model correctly describes the input image
when provided. However, when no image is passed, the model hallucinates and generates a random description.
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overall score. We observe a linear relationship between the logarithm of the model size and accuracy,
with larger models showing significant gains. The largest open model model evaluated, Qwen2.5-
VL-72B, still underperforms the closed models, however, these results highlight the effectiveness of
scaling for open models, with clear and predictable improvements at each size tier.

5.3 FORMAT ERRORS

While our experimental setup ensures a majority of answers were extracted from model outputs,
we observe occasional failures: models struggle to follow instructions, outputs contain formatting
errors, or models refuse to answer (particularly for health-related or ethical questions). Appendix
Figure[5|shows that unanswered questions concentrate in mid- to low-resource languages, and the
distribution accumulates over non-latin scripts, likely due to tokenization challenges, insufficient
language-specific training data, or visual-textual alignment difficulties. Pangea-7B shows the highest
refusal rates, especially for Telugu (452), Hindi (130), Persian (160), and Serbian (125). While
other open models show minimal unanswered counts, indicating better format adherence. Closed
models (Claude 3.5 Sonnet, GPT-40) display distinct behavior: their refusals concentrate on non-
Latin, low-resource languages, but they also show high error rates for English questions, primarily
health/medical queries due to policy constraints. This underscores the trade-off between content
moderation and benchmark performance.

6 RELATED WORK

While VLMs excel in multimodal tasks, existing benchmarks (Li et al.,[2024b}; |Vayani et al., [2024;
Nayak et al. 2024} Schneider et al.| |2025) predominantly evaluate high-resource languages (e.g., En-
glish (Zang et al.,2024; |Schneider et al., 2025)), Chinese (Fu et al., 2023} He et al., 2024)), neglecting
linguistic diversity and cultural nuances (Hengle et al.||2024; Bird, 2022). Translating benchmarks via
tools like ChatGPT (Lai et al., [2023)), GPT-4 (Yue et al., [2025) or Google Translate (Li et al., 2023),
often introduces errors and cultural mismatches (Singh et al.,2024a; [Huang et al., [2025). Recent mul-
tilingual benchmarks attempt to bridge this gap: MMLU-ProX (Xuan et al.,2025) covers reasoning
in 13, CVQA (Romero et al., 2024) integrates cultural visuals across 31, and PangeaBench aggregates
47 languages (Yue et al.| 2025)). However, cultural benchmarks like MaRVL (binary evaluation) (Liu
et al.,[2021) and CULTURALVQA (English-only open-ended questions) (Nayak et al.| [2024) remain
limited in scope or format. Moreover, the MaXM benchmark (Changpinyo et al.,[2023) addresses
bias and provides multilingual, multimodal assessment across 7 languages but does not focus on
cultural aspects, an area where KALEIDOSCOPE offers added value. KALEIDOSCOPE advances these
efforts by combining regionally sourced multimodal exam questions with MCQA structure, enabling
granular, culturally conscious evaluation across 18 languages. Exam-style benchmarks assess VLMs
under structured multilingual settings. M3Exam (Zhang et al.| [2023) uses real exams in 9 languages
but only 23% image-dependent questions. EXAMS-V (Das et al.,[2024) spans 11 languages with
multimodal STEM content, yet 75% of its 20,932 questions are text-only. While M5 (Schneider
& Sitaram| 2024) evaluates 41 languages across vision-language tasks, it avoids MCQA formats.
KALEIDOSCOPE surpasses these by combining 18 languages, STEM & cultural coverage, and 55%
image-dependent MCQA (Table[C.2), offering comprehensive multilingual exam evaluation.

7 CONCLUSION

As generative models become increasingly multimodal and multilingual, the need for robust and
culturally grounded evaluation benchmarks has never been more urgent. We take a step toward
closing this gap by introducing the largest benchmark of real-world, in-language multimodal exam
questions. By grounding evaluation in authentic exam settings from around the world, our benchmark
challenges models to reason about images in ways that mirror human assessment, capturing both
linguistic and cultural complexity. Our findings highlight the limitations of current models in handling
this intersection of skills: multilingual understanding, visual reasoning, and culturally aware problem-
solving. We hope this benchmark serves not only as a valuable tool for measuring progress but
also as a call to action for developing models that are truly capable of operating across languages,
cultures, and modalities. Continued investment in representative, high-quality evaluation datasets
will be essential to ensure that future Al systems are equitable and globally relevant.
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A LIMITATIONS

While our benchmark represents an important step toward more representative multilingual multi-
modal evaluations, several limitations still remain. First, the dataset is inherently imbalanced across
languages. Coverage varies depending on the availability and accessibility of exam sources, with some
languages significantly underrepresented. Second, difficulty levels are not uniformly controlled. Since
questions are drawn directly from real-world exams across diverse educational systems, variations in
exam design, curricular focus, and intended grade levels introduce potential inconsistency in task
complexity across languages and modalities. Further the chosen MCQA question format, inherent to
many exams, has issues, see Appendix[C.3] For instance: Exploitation of biases: Models may guess
correct answers by exploiting statistical patterns or poorly designed distractors, inflating performance
metrics without demonstrating genuine understanding. Limited real-world applicability: Unlike
open-ended queries typical in real-world applications, MCQA provides predefined options, which
may not reflect natural user interactions. Choice-order sensitivity: Performance can vary based on
the order of answer choices, introducing inconsistencies unrelated to model capability. Finally, while
the dataset expands coverage beyond English, the overall language diversity remains limited. Many
languages, especially those spoken in low-resource regions, are still missing due to the scarcity of
suitable exam material and annotators.

Intended Use. KALEIDOSCOPE is designed as an evaluation-only benchmark for assessing multi-
lingual and multimodal reasoning under exam-style, multiple-choice conditions. Appropriate uses
include: diagnosing modality gaps between image-text and text-only settings; analyzing model
behavior across languages, scripts, subjects, and image types; and studying cross-lingual or culturally
grounded biases within a controlled MCQA format. KALEIDOSCOPE is not intended for evaluating
free-form generation, long-context reasoning, conversational or interactive capabilities, or open-ended
problem solving. It is also not designed for model training or fine-tuning.

B DATA COLLECTION DETAILS

B.1 LICENSE

To ensure ethical data usage, we prioritize sources that permit redistribution and academic use. During
data collection, we filter out content from sources with restrictive licensing policies. Additionally,
our dataset does not include personally identifiable information, and all collected exams are either
publicly available or obtained under appropriate agreements. To further guarantee compliance, we
employ a two-stage validation process in which two blinded annotators independently verify the
license of each exam included in our dataset. Only items that pass both validations are included in
the final dataset.

B.2 DIFFICULTY LEVELS

To better contextualize cross-language performance variability, we introduce a unified four-tier
difficulty taxonomy (Basic, Intermediate, Advanced, Expert) derived from the original heterogeneous
level metadata. To construct the mapping, we sampled 30 examples for each "level" category and
determined the typical age and educational stage at which humans would encounter similar material.
This served as a proxy for aligning the original categories to our four standardized bins.

Table @ reports the resulting difficulty distribution for each language in KALEIDOSCOPE. Each cell
lists both the raw count of questions and the corresponding percentage of that language’s total. While
the difficulty profiles vary across languages, reflecting differences in the types of publicly available
exams, the overall benchmark is centered around Intermediate and Advanced material, corresponding
broadly to high-school and undergraduate-level content.

We provide these difficulty assignments as additional metadata while preserving the original level
tags, allowing the community to refine or reinterpret the taxonomy according to their research needs.
For full transparency, we include the final mapping used to convert the original level categories into
our four-tier difficulty scheme in our code.
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Table 4: Difficulty distribution across languages in KALEIDOSCOPE. Each cell shows percentages
with raw counts in grey.

Language Basic Intermediate Advanced Expert Total
Arabic 0.0% 1 0 100.0% 1 382 0.0% | 0 0.0% | 0 382
Bengali 0.0% 1 0 72.6% | 581 18.0% | 144 94% | 75 800
German 0.0% 1 0 0.0% | 0 100.0% 1 722 0.0% 1| 0 722
English 0.0% 1 0 65.4% | 1065 17.0% | 277 17.6% | 286 1628
Spanish 0.0% 1 0 58.9% | 873 3.8% 1 56 373% | 553 1482
Persian 0.0% 1 0 76.3% | 1526 23.7% | 474 0.0% 1 0 2000
French 0.0% 1 0 100.0% 1 762 0.0% | 0 0.0% 1 0 762
Hindi 13.1% | 248 28.6% | 540 21.2% | 399 37.1% | 699 1886
Croatian 0.0% 1 0 100.0% 1 324 0.0% | 0 0.0% 1 0 324
Hungarian 0.0% 1 0 100.0% 1 1120 0.0% | 0 0.0% 1 0 1120
Lithuanian 0.0% 1 0 100.0% 1 680 0.0% | 0 0.0% | 0 680
Nepali 0.0% 1 0 100.0% 1 126 0.0% | 0 0.0% | 0 126
Dutch 0.0% 1 0 242% | 246 75.8% | 772 0.0% | 0 1018
Portuguese 00% 1 0 0.0% 1 0O 100.0% 1 2000 00% 1 0O 2000
Russian 0.0% 1 0 100.0% | 1744 0.0% | 0 0.0% 1 0 1744
Serbian 0.0% 1 0 100.0% 1 2000 0.0% | 0 0.0% 1 0 2000
Telugu 0.0% 1 0 0.0% | 0 100.0% | 1000 0.0% | 0 1000
Ukrainian 353% | 437 0.0% | 0 64.7% | 800 0.0% | 0 1237
| | | |

All languages 3.3% 685 62.8% 12,869 39.5% 8,094 9.4% 1,929 20,911

B.3 DATASET STATISTICS

Table 5: Statistics of the KALEIDOSCOPE Dataset. Breakdown of subjects (Subjects), total questions
(Total), multimodal questions (Visual), and text-only questions (Text) per language. Languages
are covered by multiple sources with single-subject cases containing specialized subdomains. (Gal:
Supports evaluation of both multimodal (image+text) and unimodal (text-only) capabilities. @:
Languages are classified by resource level (high/mid/low) following Joshi et al.[(2019); Singh et al.
(2024b). %&: Enables granular analysis of model performance across modalities, languages, and
subject domains.

Language Code Subjects Total Visual Text Resources Family
Portuguese pt 11 2000 1000 1000 High Italic
Serbian St 1 2000 1000 1000 High Balto-Slavic
Persian fa 5 2000 1000 1000 High Iranian
Hindi hi 12 1886 1000 886 High Indo-Aryan
Russian ru 1 1744 872 872 High Balto-Slavic
English en 9 1628 814 814 High Germanic
Spanish es 6 1482 741 741 High Italic
Hungarian hu 1 1120 560 560 High Uralic
Dutch nl 10 1018 509 509 High Germanic
French fr 1 762 381 381 High Italic
German de 1 722 361 361 High Germanic
Arabic ar 10 382 191 191 High Semitic
Croatian hr 1 324 162 162 High Balto-Slavic
Ukrainian  uk 8 1237 1000 237 Mid Balto-Slavic
Bengali bn 6 800 400 400 Mid Indo-Aryan
Lithuanian It 6 680 340 340 Mid Balto-Slavic
Telugu te 1 1000 1000 0 Low South Dravidian
Nepali ne 1 126 126 0 Low Indo-Aryan
Total (18) 14 20911 11,457 9,454 - -
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C EXPANDED RELATED WORK

C.1 PARTICIPATORY OPEN SCIENCE PROJECTS

Participatory research empowers diverse communities to actively contribute to research processes,
capturing linguistic subtleties and cultural nuances directly from native speakers. Prior participatory
NLP research has primarily targeted region-specific tasks such as translation, character recognition,
and audio transcription. We highlight notable initiatives here which served as our motivation and
backbone framework for building KALEIDOSCOPE.

In Africa, the Masakhanfﬂ community exemplifies impactful participatory NLP by focusing on
grassroots-led data collection, annotation, and model creation for African languages. [Nekoto et al.
(2020) demonstrated that communities in low-resource environments significantly contribute to NLP,
even without formal training. Subsequent efforts by |Adelani et al.| (2023) have further advanced
dataset curation and model development for underrepresented African languages using similar
participatory frameworks. Similarly, the MaRVL dataset (Multicultural Reasoning over Vision
and Language; [Liu et al.| 2021) employed native speakers from diverse linguistic backgrounds
(Indonesian, Swahili, Tamil, Turkish, and Mandarin Chinese) to contribute culturally representative
images, subsequently annotated by professional linguists. Despite its cultural richness, MaRVL’s
modest scale (under 8,000 data points) limits broader applicability beyond evaluation.

In Latin America, participatory research has also emerged and is continuously growing through
the help of communities. Recent works include Hernandez Mena & Meza Ruiz (2022), which
developed eight open-access linguistic resources via structured social service programs, engaging
student volunteers in transcription and segmentation tasks. Concurrently, (Cafete et al.|(2020) and
Guevara-Rukoz et al.|(2020) spearheaded crowd-sourced corpora addressing dialectal diversity and
resource scarcity specific to Latin American Spanish.

Table 6: Comparison of Multimodal Benchmarks. T All but 40 questions are in English that measure
machine translation capability from Chinese to English.

Benchmark Languages Samples Multimodal Modalities Human An-  Answer type
notation

MMMU (Yue et al. 1 11,550 11,264 Image-Text Yes MCQA
2024a)
SEED-Bench (Li et al.| 1 19,242 19,242 Image-Text, Partial MCQA
2024a) Video-Text
MME (Fu et al.}[2023) 1t 2,194 0 Image-Text Partial Y/N
M3Exam (Zhang et al.| 9 12,317 2,816 Image-Text Yes MCQA
2023)
EXAMS-V (Das et al. 11 20,932 5,086 Image-Text Yes MCQA
2024)
MS5 (Schneider & Sitaram, 41 237,094 1,422 Image-Text Yes Mix
2024)

" KALEIDOSCOPE 18 20911 11,459  Image-Text  Yes | MCQA

In Southeast Asia, Project SEALlfl a collaboration between Al Singapore and Google Research,
facilitated multilingual dataset collection to support regional Large Language Models (LLMs).
Outputs from SEALD underpin open-source multilingual models such as SEA—LIONE], Wangchan-
Lion (Phatthiyaphaibun et al., 2024}, and Sahabat-AIﬂ Related initiatives include NusaCrowd
for aggregating and standardizing Indonesian NLP datasets (Cahyawijaya et al., [2023)) and the
SEACrowd and SEA-VL projects aimed at comprehensive evaluation and benchmarking of LLMs
across Southeast Asian languages (Cahyawijaya et al.| 2025} Lovenia et al., [2024).

On a global scale, the CVQA dataset (Romero et al.l 2024) was created using a participatory
approach, involving native speakers and cultural experts from over 30 countries. Annotators were

‘https://www.masakhane.io/

SSoutheast Asian Languages in One Network Data; https://aisingapore.org/aiproducts/
southeast-asian-languages—in-one-network-data-seald/

%https://sea—lion.ai

"nttps://sahabat-ai.com
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selected for their fluency in local languages and cultural familiarity. Many contributors were also
recognized as co-authors based on their level of involvement, reinforcing a collaborative, community-
driven effort. The Aya Initiative employed participatory methods, engaging over 3,000 contributors
to curate instruction datasets across 114 languages, resulting in one of the largest multilingual datasets
for language model training (Singh et al.| [2024b; [Ustiin et al., 2024). Similarly, the INCLUDE
benchmark (Romanou et al., [2024)) leveraged participatory approaches closely aligned with our
methodology. The BigScience ROOTS corpus, developed collaboratively for the BLOOM model,
exemplifies large-scale participatory data collection. Approximately 62% of ROOTS data was crowd-
sourced via global hackathons and open submissions, involving over 1,000 researchers from 60
countries and more than 250 institutions, resulting in 1.6 terabytes of multilingual data (Laurencon
et al., 2022). Additionally, Uzuner et al.| (2010) underscored the viability of community-driven
annotation for complex, domain-specific NLP tasks like clinical text annotation, highlighting broader
applicability of participatory frameworks beyond general NLP domains.

Participatory methods have also successfully extended into reinforcement learning from human feed-
back (RLHF). For instance, the OpenAssistant project, led by LAION, utilized global crowdsourcing
to construct a multilingual corpus comprising over 161,000 messages annotated by 13,500 volunteers.
This dataset facilitated robust training of dialogue-aligned language models through extensive human
feedback annotations (Kopf et al.| [2023).

C.2 COMPARISON WITH OTHER BENCHMARKS

Table@ offers a concise comparison of key multimodal benchmarks. MMMU (Yue et al., 2024a),
SEED-Bench (Li et al., [2024a), and MME (Fu et al.| [2023) are single-language datasets focused
mainly on image-text pairs, with SEED-Bench also incorporating video-text. MME is notably
smaller and only partially human-annotated, using mostly true/false formats. In contrast, M3Exam
(Zhang et al.}2023), EXAMS-V (Das et al.,2024)), and M5 (Schneider & Sitaram, [2024) introduce
multilingualism—MS5 being the most extensive with 41 languages—though much of its content is not
multiple-choice and lacks verified annotations.

KALEIDOSCOPE stands out by offering a balanced composition of 20,911 samples across 18 lan-
guages, with a strong focus on multimodal reasoning (11,459 Image-Text samples), comprehensive
human annotation, and a consistent multiple-choice setup. Compared to existing benchmarks, KALEI-
DOSCOPE is more linguistically diverse than M3Exam and EXAMS-V, includes more multimodal
samples than M5, and ensures higher quality through expert-verified annotations, making it a robust
and equitable benchmark for evaluating multilingual multimodal models.

C.3 EVALUATION METRICS AND THE MCQA FRAMEWORK

Traditional evaluation metrics for VLMs, such as exact match accuracy, BLEU (Papineni et al., [2002),
ROUGE (Lin, 2004)), and CIDEr (Vedantam et al.,|2015), rely on surface-level n-gram comparisons
that often penalize semantically equivalent answers phrased differently from reference texts. In
contrast, the multiple-choice question answering (MCQA) framework (Hendrycks et al.l 2021}
Romero et al., 2024} [Lu et al.| [2022} |Yue et al., [20244) offers a more human-like evaluation paradigm
by providing predefined answer options. This reduces ambiguity in scoring and facilitates the creation
of evaluation datasets that capture both domain knowledge and linguistic/cultural nuances across
languages. Although concerns regarding oversaturation and reliance on superficial cues in MCQA
exist (Du et al.| 2023} [Yuksekgonul et al., [2022)), these can be mitigated by extending the answer
option space and applying rigorous filtering strategies (Wang et al.| 2024b; Yue et al.,[2024a). Our
primary challenge lies in the scarcity of questions that are both multimodal and culturally agnostic.
As demonstrated by results from KALEIDOSCOPE and related studies (Maaz et al., 2024; Nayak
et al., 2024), oversaturation is not a prevalent issue. Consequently, bridging this evaluation gap is of
key importance. To ensure high data quality, source data in KALEIDOSCOPE are manually verified
by qualified processors in accordance with established criteria (2.2), maintaining a clear distinction
between verified and unverified data.
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D EXPERIMENT DETAILS & ADDITIONAL EXPERIMENTS

D.1 EVALUATION METRICS

Given the multiple-choice nature of the task, we use accuracy as the primary evaluation metric. We
report overall accuracy across all questions, as well as accuracy on the subset of questions where the
model produces valid responses. A response is considered valid if the model successfully provides an
answer in the expected format and selects a valid option (i.e., one of the letters A, B, C, D). Invalid
responses typically result from missing the selected choice, selecting an invalid option, or refusal to
answer. To quantify these cases, we report the Format Error Rate, which measures the proportion of
questions for which the model fails to generate a valid answer. For grouped results, we report the
macro average of valid answer accuracy across languages, i.e. all languages have equal weight when
computing the score.

D.2 PROMPT ABLATION: COT vS. DIRECT APPROACHES

To benchmark the models, we initially designed a CoT prompt instructing them to think step-by-step
and then provide the correct answer, marking the choice with the tags <ANSWER> </ANSWER>.
However, in preliminary experiments, we found this instruction too complex for mid- to small-sized
models (32B-3B), which struggled to follow it consistently.

In Table [/} we compare results using the CoT prompt versus the direct English-language prompt
adopted in our final evaluation. The error rate was considerably higher for most models under the CoT
setup, even after cleaning and extracting answers with regex matching their typical output formats.
Two exceptions were Pangea and Molmo, which showed lower error rates with the CoT prompt;
however, this occurred because both models ignored the reasoning instruction and directly output the
selected option, making extraction easier. Overall, prompt choice significantly impacted performance:
the direct English prompt improved results across all models except Pangea, whose performance
remained unchanged.

For closed models, we also compare the performance of CoT versus the direct prompt on GPT-40
in Table[8] We observe an interesting trade-off: while CoT improves accuracy, it also increases the
format error rate. As detailed in Section[5.3] these errors are tightly related with implicit refusals,
especially in questions involving medical or safety-relevant content. We hypothesize that CoT gives
the model more room to reason toward the correct answer but also increases the likelihood of refusals,
thereby raising the format-error rate.

Based on these findings, we select the best-performing prompting strategy for each class of models:
the direct prompt for open-weight models and CoT for closed-weight models.

Table 7: Comparison of CoT and direct English prompting on KALEIDOSCOPE for small models.
Reported values are macro-averaged accuracy (%) across all languages.

Overall CoT Overall In-English

Valid Responses Valid Responses
Model Acc. FE. Valid Acc. Acc. FE. Valid Acc.
Aya-Vision-32B 3894  8.04 4206 ~ 3927 105  39.66
Aya-Vision-8B 33.08 6.22 35.15 35.09  0.07 35.11
Molmo-7B-D 32.86  0.01 32.87 32.87  0.04 32.88
Pangea-7B 3124 5.61 33.45 3131 742 34.02
Qwen2.5-VL-7B  35.18 6.34 37.64 39.56  0.08 39.60

Qwen2.5-VL-3B 3290 1.40 33.33 3556  0.19 35.63

27



Under review as a conference paper at ICLR 2026

Table 8: Comparison of different prompting strategies on GPT-4o0. Results are shown disaggre-
gated by language. Global accuracy, valid answer accuracy and format error rate are reported.

Direct Prompt CoT Prompt
Language Total Acc.  Valid Acc. FE. Total Ace.  Valid Acc. F.E.

Arabic 49.7 50.4 1.3 52.9 57.7 8.4
Bengali 574 57.5 0.2 65.6 67.3 2.5
Croatian 333 33.8 1.2 49.7 52.6 5.6
Dutch 57.1 58.1 1.8 58.9 62.4 5.6
English 63.9 64.0 0.1 60.8 73.4 17.1
French 37.7 37.7 0.1 61.8 64.6 4.3
German 70.8 70.8 0.0 71.6 72.6 1.4
Hindi 48.6 48.7 0.2 60.1 64.0 6.1
Hungarian 34.0 344 1.1 47.2 50.6 6.7
Lithuanian 83.4 83.4 0.0 86.5 88.4 22
Nepali 23.8 24.0 0.8 19.0 20.5 7.1
Persian 40.2 40.3 0.3 47.0 47.9 2.0
Portuguese 75.4 75.4 0.0 82.6 85.2 3.0
Russian 36.6 36.6 0.1 51.5 54.5 55
Serbian 33.1 334 1.0 47.0 52.6 10.6
Spanish 75.4 75.5 0.2 71.7 80.1 3.0
Telugu 42.1 443 4.9 41.6 47.9 13.2
Ukrainian 71.4 72.2 1.1 68.1 75.3 9.5
Overall 51.9 52.2 0.7 58.3 62.1 6.5

D.3 COMPLETE RESULTS

We report full results on multimodal performances grouped by subject in table Tables[9] and full
results for all questions grouped by subject, Table[I0] and language, Table[IT] Each table reports,
for each model and category; Total Accuracy %: the accuracy over all samples, Valid Accuracy
% the accuracy over successfully extracted answers and Format Error % (FE): the proportion of
unextracted answers.

Table 9: Subject-wise Performance on KALEIDOSCOPE’s Multimodal Questions. Valid accuracy
(%) across examination subjects for only multimodal samples, with bold highlighting top-performing
models.

Closed Weights Open Weights
Gemini Claude GPT-40 Qwen2.5-3B  Molmo-7B  Pangea-7B  Qwen2.5-7B  Aya V-8B Aya V-32B  Qwen2.5-72B

Humanities & Social Sciences

Economics 64.1 63.8 66.7 37.7 27.5 339 427 309 29.8 58.8
Geography 72.8 81.5 80.4 40.7 37.6 36.7 51.0 39.5 50.5 70.4
History 78.7 83.7 86.4 48.9 42.1 424 529 45.6 61.4 71.1
Language 83.5 85.5 85.8 722 60.1 66.0 75.7 56.6 712 85.1
Social Sciences 85.7 829 88.1 529 522 53.8 68.6 58.0 64.3 80.0
Sociology 923 934 93.2 64.1 61.0 57.3 73.1 57.7 70.5 87.2
STEM

Biology 60.3 629 63.9 37.6 353 334 42.6 354 40.7 53.8
Chemistry 60.4 59.7 529 332 33.5 34.1 38.5 28.0 34.8 50.0
Engineering 573 64.4 56.3 289 24.4 242 324 30.3 34.8 484
Mathematics 48.6 44.4 44.0 304 28.8 29.0 30.1 28.6 29.6 40.3
Physics 57.8 58.7 54.7 33.7 26.7 289 34.7 27.1 33.0 423
Reasoning, Health Science, and Practical Skills

Reasoning 52.0 533 51.0 274 27.5 26.6 29.5 25.1 27.6 423
Medicine 70.2 73.8 75.6 36.7 40.4 384 45.8 354 52.3 63.3
Driving License ~ 64.4 64.2 73.1 39.0 44.9 394 44.9 41.6 47.1 545
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Table 10: Total Accuracy %, Valid Accuracy % and Format Error % (FE) grouped by Subject in
KALEIDOSCOPE for multimodal samples.

Biology Chemistry broin® g, E G History Language Mathematics Medicine Physics Reasoning (ool Sociology

Total Ace.  60.1 602 644 64l 57.0 7238 787 835 469 69.6 574 sl2 857 923

Gemini 15Pro  Valid Acc. 603 604 644 641 573 7238 787 835 486 702 578 520 857 923
FE 03 04 0.0 0.0 04 0.0 00 00 35 08 0.7 17 00 0.0

Total Ace. 616 59.0 642 634 50.0 814 8§37 851 57 729 584 522 829 910

Claude 3.5 Sonnet  Valid Acc. 629 59.7 642 638 644 81.5 837 855 444 738 587 533 829 934
FE 2.1 12 0.0 08 24 02 00 05 1.5 12 06 20 0.0 26

Total Ace. 607 47.1 655 641 457 762 708 783 394 646 519 439 743 872

GPT-do Valid Acc. 639 529 731667 56.3 80.4 864 858 440 756 547 510 881 932
FE 5.1 11 104 38 189 52 181 87 105 146 5.1 139 157 64

Total Ace. 376 332 390 374 288 106 89 72 30,1 36.7 $37 274 529 64l

Qwen25-VL-72B  Valid Ace. 376 332 90 377 289 407 489 722 304 367 B7 274 529 641
FE 00 00 0.0 08 02 02 00 00 0.9 0.0 00 00 0.0 0.0

Total Ace. 402 346 71 298 346 505 614 710 288 521 38 275 643 705

Aya-Vision-32B  Valid Acc. 407 348 471 298 348 505 614 712 296 523 B0 276 643 705
FE 1305 0.0 0.0 0.7 0.0 00 02 28 0.4 36 03 0.0 0.0

Total Ace. 538 50.0 545 588 184 704 770 849 403 633 03 43 800 872

Aya-Vision-8B  Valid Acc. 538 50.0 545 588 484 704 771 851 403 633 03 43 800 872
FE 00 00 0.0 0.0 0.0 0.0 00 02 0.1 0.0 00 00 0.0 0.0

Totl Ace. 352 335 49 275 244 376 D21 601 287 404 267 275 514 603

Molmo-7B-D  Valid Acc. 353 335 449 275 244 376 21 601 288 404 267 275 522 610
FE 0.1 0.0 0.0 0.0 0.1 0.0 00 00 0.1 0.0 00 00 14 13

Total Ace. 309 220 82 321 214 356 01 658 248 350 247 219 500 551

Pangea7B  Valid Acc. 334 341 94 339 242 36.7 424 660 290 384 289 266 538 573
FE 75 353 29 53 s 3.0 06 02 144 8.8 147 176 71 38

Total Ace. 343 162 a2 221 303 387 153 566 286 354 270 243 s 517

Qwen2.5-VL-TB  Valid Acc. 354 280 46 309 303 395 456 566 286 354 71 251 580 577
FE 30 422 11 282 0.0 19 06 00 03 0.0 00 34 14 0.0

Total Ace. 426 385 9y 07 324 510 529 757 30.1 158 347 295 686 731

Qwen2.5-VL-3B  Valid Acc. 426 385 4y 47 324 510 529 757 30,1 4538 347 295 686 731
FE 00 01 0.0 0.0 0.0 0.0 00 00 0.1 0.0 0.1 0.0 0.0 0.0

Table 11: Total Accuracy %, Valid Accuracy % and Format Error % (FE) grouped by Language
in KALEIDOSCOPE for multimodal samples.

Latin Script

Non-Latin Script

English French German Duich Portuguese Spanish Arabic Bengali Croatian Hindi Hungarian Lithuanian Nepali Persian Russian Serbian Telugu Ukrainian

Total Acc. 627 546 526 615 8I8 785 445 518 469 62.6 391 75.0 222 412 450 419 S81 703

Gemini 1L5Pro  ValidAcc. 632 552 526 625 834 785 447 527 48l 632 40.5 75.0 28 421 462 436 583 703
FE 09 10 0.0 16 19 0.0 05 18 25 09 34 0.0 24 21 26 38 0.4 0.0

Total Acc. 369 517 737 652 838 716 503 495 469 571 388 812 278 456 453 389 560 752

Claude 3.5 Sonnet  Valid Ace. 632 517 737 656 838 71.7 503 496 475 572 389 814 280 456 454 396 560 752
FE 416 00 0.0 06 0.0 0.1 00 02 12 01 04 03 08 00 02 18 0.0 0.0

Total Acc. 426 462 524 601 766 738 419 602 364 530 364 76.2 190 413 376 324 416 685

GPT-40 Valid Ace. 645 492 537 668 810 786 497 628 404 590 407 79.7 205 426 403 387 419 715

FE 339 60 25 100 54 6.1 157 40 9.9 101105 44 7.1 30 6.7 162 132 116

Total Acc. 538 462 493 574 133 725 361 495 333 462 375 69.1 238 354 393 359 470 652

Qwen25-VL-72B Valid Acc. 538 464 493 575 733 725 360 495 333 462 376 69.1 238 354 393 359 470 652
FE 0.0 05 0.0 02 00 0.0 00 00 00 00 02 0.0 00 00 00 00 0.0 0.0

Total Acc. 329 276  39.1 475 574 532 304 260 296 329 261 485 222 303 290 284 348 471

Aya-Vision-32B  ValidAcc. 330 293 395 487 588 55.5 305 261 296 337 265 48.5 222 311 294 285 348 471
FE 04 6.0 1.1 24 24 42 05 02 0.0 23 16 0.0 00 25 13 04 0.1 0.0

Towl Ace. 289 302 324 422 476 463 272 182 290 292 271 344 238 277 252 285 1.1 366

Aya-Vision-8B  ValidAcc. 289 302 324 422 476 46.3 272 259 290 293 271 344 242 278 252 285 257 368
FE 0.0 0.0 0.0 00 00 0.0 0.0 295 00 02 00 0.0 16 03 0.0 0.0 568 0.6

Total Acc. 269 331 199 415 476 478 215 260 309 300 255 353 254 283 292 272 339 358

Molmo-7B-D  ValidAce. 27.0 333 199 415 476 478 215 260 309 300 255 353 254 283 292 272 339 358
FE 02 0.8 0.0 00 00 0.0 00 00 0.0 02 00 0.0 00 00 0.0 0.0 0.0 0.1

Total Acc. 247 255 172 373 488 462 204 218 17.9 243 239 326 175 212 255 264 186 330

Pangea-7B Valid Ace. 279 3L1 196 390 510 494 223 318 210 297 262 334 239 252 289 301 339 339
FE 14 181 122 43 43 65 8.4 12.8 14.8 183 88 24 270 160 119 124 452 26

Total Acc. 364 352 266 464 592 57.8 361 350 259 338 286 503 222 303 288 275 376 454

Qwen2.5-VL-7B  ValidAce. 364 353 266 464 592 57.8 361 351 26.1 339 286 503 222 288 275 376 454
FE 0.0 03 0.0 00 00 0.0 00 02 0.6 02 02 0.0 0.0 0.0 0.0 0.0 0.0

Total Acc. 350 323 2Ll 418 522 533 335 328 259 313 282 35.6 238 290 278 318 401

Qwen2.5-VL-3B  Valid Ace. 350 324 211 418 523 533 337 328 264 313 292 356 238 200 281 318 401
FE 0.0 03 0.0 00 0.1 0.0 0.5 0.2 19 00 32 0.0 0.0 0.0 1.1 0.0 0.0
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Table 12: Valid Accuracy (%) for All Questions and All Models, by Language and General
Category. Languages are grouped by script. Empty cells indicate either no questions for that category,
or only format errors in the answers from the model.

Latin Script Non-Latin Script
General Category ~ Model English French German Dutch Portuguese Spanish  Arabic Bengali Croatian Hindi Hungarian Lithuanian Nepali Persian Russian Serbian Telugu  Ukrainian

Gemini 1.5 Pro - - - 0562 1.000 0.781 - - - 1.000 - - - - - - - -

Claude 3.5 Sonnet ~ — - - 1.000 03833 - - - 1.000 - - - - - - - -

GPT-4o - - - 1.000 0.861 - - - 1.000 - - - - - - - -

Health Sciences  Qwen2.5-72B - - - 1.000 0.743 - - - 1.000 - - - - - - - -
\a-Vision-32B - - - 1.000 0591 - - - 1.000 - - - - - - - -

Aya-Vision-8B - - - 0333 0439 - - - 1.000 - - - - - - - -

Molmo-7B-D - - - 1.000 0432 - - - 0.000 - - - - - - - -

Pangea-7B - - - 1.000 0444 - - - 1.000 - - - - - - - -

Qwen2.5-7B - - - 1.000 0556 - - - - - - - - -

Qwen2.5-3B - - - 0.667 0458 - - - - - - - - -

Gemini 1.5 Pro 0.96 - - X 0. 0.87 0.592 - 0.871 - - - - 0.7
Claude 3.5 Sonnet ~ 0.97 - - 0.741 0925 0875 0.631 - 0.94 - - - - - 0.79
GPT-40 0.971 - - 0.732 0.924 0.861 0.59 - 0.93 - - - - - 0.84
Humanities & Culture  Qwen2.5-72B 0.956 - - 0.706 0.906 0.888 0.530 - 0.787 - - - - - 0.701
Aya-Vision-32B 0.779 - - 0.671 0.824 0.737 0.506 - 0.592 - - - - - 0.490
Aya-Vision-8B 0.721 - - 0.486 0723 0659 0398 - 0414 - - - - - 0352
Molmo-7B-D 0.588 - - 0.493 0.659 0.626 0.313 - 0.342 - - - - - 0.323
- - 0.479 0.671 0.736 0.349 - 0.375 - - - - - 0.348
- - 0.528 0.796 0.832 0.422 - 0.479 - - - - - 0.424
- - 0.493 0.701 0816 0494 - 0.346 - - - - - 0.420

Gemini 1.5 Pro - - - - 0.712 - - - 0.582 - - - 0.57

Claude 3.5 Sonnet - - - - 0.746 - - - 0.678 - - - 0.642

GPT-40 - - - - 0.722 - - - 0.8 - - - 0.66

General Knowledge ~ Qwen2.5-72B - - - - 0.710 - - - 0.442 - - - 0.540
0.500 - - - - 0.653 - - - 0.404 - - - 0.451

a- - 0.350 - - - - 0.609 - - - 0.404 - - - 0.412

Molmo-7B-D 0.500 - - - - 0.634 - - - 0.519 - - - 0.419

Pangea-7B 0.467 - - - - 0.602 - - - 0.347 - - - 0.347

Qwen2.5-7B 0.500 - - - - 0.602 - - - 0.442 - - - 0.423

Qwen2.5-3B 0.550 - - - - 0.645 - - - 0.462 - - - 0.362

Gemini 1.5 Pro 031 - - - - - - - 023 z - - - .
Claude 3.5 Sonnet ~ 0.35 - - - - - - - 028 - - - - -

GPT-4o 0.4 - - - - - - - 021 - - - - -

Reasoning Qwen2.5-72B 0.311 - - - - - - - 0.238 - - - - —
Aya-Vision32B 0284 - - - - - - - 0222 - - - - -

n-8B 0176 - - - - - - - 0214 - - - - -

Molmo-7B-D 0.176 - - - - - - - 0.273 - - 0.254 - - - - -

Pangea-7B - - - - 0.300 - - 0.239 - - - - -

Qwen2.5-7B - - - - 0222 - - - - -

Qwen2.5-3B - - - - 0238 - - - - -

Gemini 1.5 Pro 0.69 - 058 058 076

Claude 3.5 Sonnet 075 067 083 - 057 053 077

GPT-4o 074 065 073 - 054 053 0.77

STEM Qwen2.5-72B 0641 0507 0673 - 0.403 0.687
ya-Vision-32B 0484 0290 0519 - 0291 0457

Aya-Vision-8B 0407 0265 0471 - 0270 0.404

Molmo-7B-D 0379 0301 0285 - 0272 0346

Pangea-7B 0287 0322 - 0347

Qwen2.5-7B 0362 0422 - 0484

3B 0331 0355 - 0425

Gemini 1.5 Pro 10 B = = - - - - 076

Claude 3.5 Sonnet 0.9 - - - - - - - - 0.87

GPT-do 10 - - - - - - - - 0.85

Social Sciences  Qwen2.5-72B 0923 - - - - - - - - 0.688
Aya-Vision-32B  0.154 - - . - - - - - - 0561

Aya-Vision-8B 0.154 - - - 0515 - - - - - - 0428

Molmo-7B-D 0250 - - - 0258 - - - - - - 0376

angea-TB 0.182 - - - 0379 - - - - - - 0337

0462 - - . - 0470 - - - - - - 0543

Qwen2.5-3B 0308 - — 0600 0680 - 0523 - - - - - - 0370
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Table 13: Valid Accuracy (%) for Multimodal Questions for All Models, by Language and
General Category. Languages are grouped by script. Empty cells indicate either no questions for

that category, or only format errors in the answers from the model.

Latin Script Non-Latin Script
General Category ~ Model English French German Dutch Portuguese Spanish  Arabic Bengali Croatian Hindi Hungarian Lithuanian Nepali Persian Russian Serbian Telugu  Ukrainian

Gemini 1.5 Pro - - - 1.000 0719 - - - - - - N N N - - -

Claude 3.5 Sonnet ~ — - - 1.000 0.761 - - - - - - - - - - - _

GPT-4o - - - 1.000 0.779 - - - - - - - - - - - -

Health Sciences  Qwen2.5-72B - - - 1.000 0.648 - - - - - - - - - - - -
\a-Vision-32B - - - 0524 - - - - - B

Aya-Vision-8B - - - - - - - - -

Molmo-7B-D - - -
Pangea-7B - - -
Qwen2.5-7B - - -
Qwen2.5-3B - - -
Gemini 1.5 Pro 10007 - -
Claude 3.5 Sonnet 1.000 - -
GPT-40 1.000 - -
Humanities & Culture  Qwen2.5-72B 0.667 - -
Aya-Vision32B 0500 - -
Aya-Vision-8B 0.500 - -

Molmo-7B-D

Gemini 1.5 Pro
Claude 3.5 Sonnet
GPT-40

General Knowledge ~ Qwen2.5-72B

Molmo-7B-D
Pangea-7B
Qwen2.5-7B
Qwen2.5-3B

Gemini 1.5 Pro
Claude 3.5 Sonnet
GPT-do
Qwen2.5-72B
ision-32B
n-8B
Molmo-7B-D
Pangea-7B
Qwen2.5-7B
Qwen2.5-3B

Reasoning

Gemini 1.5 Pro 0.552 0.785 0.438 0.513 0.481 0.542 0.405
Claude 3.5 Sonnet 0.517 0.735 0.491 0.42 0.475 0.45 0.389
GPT-40 0.492 0746 0489 0628 0404 0489 0407
STEM Qwen2.5-72B 0.466 0.683 0.344
\ya- n-32B 0.295 0.470 0.290
Aya-Vision-8B 0.265 0.445 0.270
Molmo-7B-D 0332 0439 0202
Pangea-7B 0.310 0.434 0218
Qwen2.5-7B 0.354 0.517 0.356
3B 0.325 0.483 0.313

Gemini 1.5 Pro - - 0.882
Claude 3.5 Sonnet - - 0.838 0.902
GPT-40 - - 0.867 0.877
Social Sciences Qwen2.5-72B - - 0.811 0.843
Aya-Vision-32B - - 0.716 0.673 .3
Aya-Vision-8B - - 0514 0.608 - 0.450
Molmo-7B-D - - 0.432 0.601 - 0.300
7B 0.182 - - 0.527 0.570 - 0.250
0.462 - - 0.581 0.660 - 0.350
Qwen2.5-3B 0.308 - - 0.595 0.614 - 0.526

0.775 - 04127 0462 0.436
0.812 - 0.444 0.454 0.396

- 0.297 0.290 0.268
- 0270 0292 0272
- 0.247 0.289 0.301
- 0.295 0.288 0.275

0.370
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Table 14: Valid Accuracy (%) for All Models, by Language and Multimodal Content Type.
Languages are grouped by script. Empty cells indicate either no questions for that category, or only
format errors in the answers from the model.

Latin Script Non-Latin Seript
General Category Model English French German Duich Portuguese Spanish Arabic Bengali Croatian Hindi Hungarian Lithuanian Nepali Persian Russian Serbian Telugu Ukrainian
Genmini 1.5 Pro 0535 - 0531 0601 0769 0833 0311 0483 - 0.609 - 0750 0228  0.667 - - - 0734
Claude 3.5 Sonnet 0,532 - 0739 0593 0744 0750 040 0586 - 0592 - 0643 0280  1.000 - - - 0751
GPT-4o 0539 - 0560 0636 0750 0875 0333 0724 - 0576 - 0643 0205 0.667 - - - 0728
Diagram Qwen2.5-72B 0.461 - 0491 0543 0648 0708 0244 0517 - 0479 - 0750 0238  0.667 - - - 0.661
Aya-Vision-32B 0.334 - 0400 0416 0490 0625 0273 0241 - 0365 - 0393 0222 0333 - - - 0452
Aya-Vision-8B 0265 - 0352 0364 0395 0542 0133 0241 - 0369 - 0321 0214 0333 - - - 0407
Molmo-7B-D 0271 - 0201 0399 0349 0583 0089 0207 - 0331 - 0393 0254 0.667 - - - 0318
Pangea-7B 0269 - 0180 0378 0436 0522 0244 0125 - 0313 0.667 -
Qwen2.5-7B 0325 - 0274 0.481 0276 - 0333 -
538 0344 - 0204 0.407 0310 - 0.000 -

Claude 3.5 Sonnet ~ 0.562 - 0.928 0.475 0.467 0.
GPT-40 0.530 0.490 - 0.906 0.404  0.600 0.
Figure Qwen2.5-72B 0.450 0.470 - 0.889 0.333 0.467 0.
Aya-Vision-32B 0.758 0.296  0.133 0.
Aya-Vision-8B 0.673 0204 0267 0.
Molmo-7B-D 0.595 0.309  0.200 0.
Pangea-7B 0.596 0210 0.071 0.
Qwen2.5-7B 0.739 0.261 0.133 0.2
Qwen2.5-3B 0.264  0.200 0.

Gemini 1.5 Pro

Gemini 1.5 Pro . K
Claude 3.5 Sonnet ~ 0.739 0.500 0.721
GPT-40 0.654 0.500 0.372
Graph Qwen2.5-72B 0.514 0.000 0.512
Aya-Vision-32B 0.361 0.500 0.357
Aya-Vision-8B 0.270 0.500 0.395
Molmo-7B-D 0.432 0.000 0.186
Pangea-7B 0.235 0.000 0.324
Qwen2.5-7B 0.486 0.000 0.209

Gemini 1.5 0.892 0.444

Claude 3.5 Sonnet  1.000 - - 0.892 - 0.611

GPT-40 1.000 - - 0.841 - 0.533 - - -
Map Qwen2.5-72B 1.000 - - 0.923 - 0.389 - 0.000 -

Aya-Vision-32B 0.000 - - 0.662 - 0.389 - 0.000 -

Aya-Vision-8B 0.000 - - 0.677 - 0.389 - 0.000 -

Molmo-7B-D 0.000 - - 0.631 - 0.222 - 0.000 -

Pangea-7B - - - 0.556 - 0.278 - 0.000 -

Qwen2.5-7B 0.000 - - 0.708 - 0.000 -

Qwen2.5-3B

Gemini 1.5 Pro

0.941

0.938

Claude 3.5 Sonnet - - - 0.938

GPT-40 - - - 0.969

Photo Qwen2.5-72B - - - 0.875
Aya-Vision-32B - - - 0.821
Aya-Vision-8B - - - 0.688

Molmo-7B-D - - - 0.696

Pangea-7B - - - 0.786

0.795

0.777

Gemini 1.5 Pro

Claude 3.5 Sonnet 0.900
GPT-40 0.909 - - 0.800
Formula Qwen2.5-72B 0.625 - - 0.700
Aya-Vision-32B 0.419 - - 0.567
Aya-Vision-8B 0.344 - - 0.367
Molmo-7B-D 0.313 - - 0.433
Pangea-7B - - 0.567
Qwen2.5-7B - - 0.700
ven2.5-3B - 35. 0.300
Gemini 1.5 Pro 0.880 0.625 - 0471 0.875 0.795 0.333
Claude 3.5 Sonnet ~ 0.865  0.625 - 0.526 0.909 0769 0.667
GPT-40 0879 0571 - 0.571 0.826 0718 0.583
Table Qwen2.5-72B 0772 0375 - 0.579 0.636 0744 0.267
Aya-Vision-32B 0.301 0.125 - 0.579 0.400 0.447 0.267
Aya-Vision-8B 0.262 0.250 - 0.211 0.398 0.462 0.333
Molmo-7B-D 0.225 0.375 - 0.538 0.400
Pangea-7B 0.254 0.143 - 0.462 0.200
5-7B 0.500 - 0.436 0.667
0.467

0.767

Claude 3.5 Sonnet  1.000 - - 1.000 0.867 .
GPT-40 1.000 - - 1.000 0.884 0.858 0.500
Text Qwen2.5-72B 1.000 - - 1.000 0.844 0.888 0.400
Aya-Vision-32B 0.000 - - 1.000 0.711 0.720 0.200
Aya-Vision-8B 0.000 - - 1.000 0.636 0.636 0.000
Molmo-7B-D 0.000 - - 0.500 0.578 0.615 0.000
Pangea-7B 0.000 - - 1.000 0.578 0.714 0.200
Qwen2.5-7B 0.000 - - 1.000 0.778 0.818 0.400
0.000 — - 1.000 0.622 0.797 0.200
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Table 15: Format error disaggregated analysis. For answers which were identified as Format Error,
we report how many correspond to answer refusal (R) vs another type of format errors (NR). Empty
N-NR refusal pairs indicate that the model did not have Format Errors on that language. Note that for
most models in all languages, format errors are not due to answer refusals but to other reasons like
inability to follow MCQ tagging instructions. The only exception is Pangea, which seems to exhibit a
higher refusal rate.

Model ++ Aya8b Aya32b Claude 3.5 Sonnet Gemini 1.5pro GPT-40 Molmo Pangea Qwen2.57b Qwen2.53b Qwen2.532b Qwen2.572b
Language { R NR R NR R NR R NR R NN R NN R NR R N R N R N R M
Arabic 0 2 1 1 5 27 14 2 0 1

Bengali 0 204 O 3 1 0 0 7 2 18 38 13 1 0 0 1

Croatian 0 1 1 1 0 6 4 14 17 7 0 1 0 3 0 15

Dutch; Flemish 0 19 2 1 8 27 17 40 13 9 0 13 0 1
English [ 1 339 0 9 I 2718 0 2 71 23 0 2

French 0 24 0 14 0 33 0 3 27 42 0 1 0 1 0 20 0 2
German 0 0 4 0 10 41 3 0 1 0 3

Hindi 0 6 0 24 1 0 0 18 5 110 0 3 127 56 0 2 0 20 0 1
Hungarian 0 14 1 1 0 30 11 64 23 26 0 1 0 18 0 19 0 1
Lithuanian 0 7 0 1 12 3 6 2

Nepali 0 2 0 1 0 3 5 4 27 7

Persian 0 6 0 31 0 38 3 36 116 44 0 3 0 1
Portuguese 0 29 0 35 0 60 24 19 0 7 0 2 0 36

Russian 0 13 0 2 0 84 0 9 67 38 0 11

Serbian 0 6 3 15 0 50 7 205 74 51 0 11 0 41

Spanish 0 31 0 1 0 2 9 36 42 6 0 4 0 5

Telugu 75 493 0 1 0 4 6 126 309 143

Ukrainian 0 7 0 I 0 1 4 73 0 1 20 6

D.4 FORMAT ERRORS

We report the distribution of format errors for all evaluated models in Figure 5] Table[I5]provides a
finer-grained breakdown, showing which format errors correspond to refusals versus missing answers.

Distribution of Unanswered Questions Across Languages and Models
Geminil.5Pr0 9 14 0 35 35 2 2 7 18 4 3 38 84 1 6 50 30 O
Claude 3.5Sonnet 340 0 0 3 0 1 0 1 1 0 1 0 2 1 2 18 2 1

GPT-40 279 33 10 57 60 45 32 20 115 132 9 39 9 117 18 212 75 15 400

Qwen25VL728 0 1 0 1 0 O O O 1 0 O 1 0 0 0 0 1 0 s

300 3

Aya-Vision-328 11 23 4 19 29 31 2 3 24 1 0 31 13 0 1 6 14 7 H

m

o

AyaVison-88 3 1 0 O 1 2 0 0 1 0 O 1 2 1 2 1 2 o0 200 g

Qwen25vi-76 0 0 O O 7 4 0 0O 2 0 0 0O O O 1 0 O0 © 100 g
Molmo-780 2 2 0 ©0O O O ©O O 3 0 0O 0 O 1 0 0 0 0

Pangea78 94 68 44 22 43 48 16 51 183 452 34 160 105 26 24 125 49 0 0

Qwen2.5-VL-3B 0 0 1 0 2 0 1 1 0 0 0 3 0 0 3 11 18 0

en fr de nl pt es a bn hi te ne fa ru uk hr st hu It

Figure 5: Distribution of the number of format errors for each model/language combination.
The languages are represented in their ISO 639 (set 1) code.

D.5 PROMPTS
The prompts that we used to perform all experiments were designed to ensure consistency across

languages. Examples are shown both in English and Spanish as an overview. Below is a summary of
the key components.

D.5.1 SYSTEM MESSAGE
A system message sets the context for the model, instructing it to act as an expert in solving multiple-

choice questions. For zero-shot CoT prompting, the message is provided in all the evaluation
languages to support language-specific evaluation.
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e Zero-shot CoT:

— English: You are an expert at solving multiple-choice
questions. Carefully analyze the question, think step
by step, and provide your FINAL answer between the tags
<ANSWER> X </ANSWER>, where X is ONLY the correct choice.
Do not write any additional text between the tags.

— Spanish: Eres un experto en resolver preguntas de opciédn
miltiple. Analiza cuidadosamente la pregunta, piensa
paso a paso y proporciona tu respuesta FINAL entre las
etiquetas <ANSWER> X </ANSWER>, donde X es UNICAMENTE
la opcidn correcta. No escribas ningun texto adicional
entre las etiquetas.

¢ Direct answer:

You are a helpful assistant who answers multiple-choice
questions. For each question, output your final answer

in JSON format with the following structure: {"choice":
"The correct option (e.g., A, B, C, or D)"}. ONLY output
this format exactly. Do not include any additional text or
explanations outside the JSON structure.

D.5.2 KEYWORDS

Language-specific keywords are used to structure the prompts consistently across languages. These
include terms for "Question," "Options," and "Answer" to be included when generating the prompt.
For example:

* English: {"question": "Question", "options": "Options",
"answer": "Answer"}

* Spanish: {"question": "Pregunta", "options": "Opciones",
"answer": "Respuesta"}

D.5.3 PROMPT EXAMPLES

System messages [D.5.1]and Keywords [D.5.2] are used to systematically craft the prompt for a model
in a specific language. We show examples of both a closed and an open model in Table [16]
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Table 16: Prompt examples in KALEIDOSCOPE. Multimodal prompt samples with interleaved
image are shown for an open model and a closed model.

Open Model Closed Model

SYSTEM:

Eres un experto en resolver
preguntas de opcidén multiple.
Analiza cuidadosamente la
pregunta, piensa paso a paso y
proporciona tu respuesta FINAL
entre las etiquetas <ANSWER> X
</ANSWER>, donde X es UNICAMENTE
la opcidén correcta. No escribas

SYSTEM:

You are a helpful assistant

who answers multiple-choice
questions. For each question,
output your final answer in

JSON format with the following
structure: "choice":"The correct
option (e.g., A, B, C, or D)".
ONLY output this format exactly.
Do not include any additional
text or explanations outside

the JSON structure. Output your
choice in the specified JSON
format.

ningtn texto adicional entre las
etiquetas.
USER:

USER:

Group-1
P. Neutralism

Group-1l
. neither can survive under natural condition without
the other

Q. Allclopathy

. direct inhibition of one species by the other species.
using toxic compound

R. Amensalism | TIL_neither is affected by the assaciation with the other

S_Mutualism__| IV. one is inhibited and the other is not affected

Question: Make CORRECT match
between Group—-I and Group—-II, in
relation to

Pregunta: Ante esta imagen en un

interaction between two species.

Options:

A.) P-I, Q-II, R-III, S-IV
B.) P-III, Q-II, R-IV, S-I
c.) P-IV, Q-III, R-II, S-I
D.) P-III, Q-IV, R-II, S-I

Answer:

paciente con un trastorno motor
en miembros inferiores, sehale la
respuesta INCORRECTA:

Opciones:

A.) Debemos buscar una
malformacidén de Chiari

B.) En algunos casos se asocia a
hidrocefalia

C.) Se caracteriza por una
pérdida de la sensibilidad tactil
y vibratoria con preservacidn de
la sensacidén térmica y dolorosa
D.) Puede producirse tras
traumatismos o infecciones

Respuesta:




1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
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Table 17: Caption+OCR prompt examples in KALEIDOSCOPE. Prompts are shown for open and

closed models in English and Spanish. Caption and OCR additions are highlighted in green.

Open Model

Closed Model

SYSTEM:

You are a helpful assistant

who answers multiple-choice
questions. For each question,
output your final answer in

JSON format with the following
structure: "choice":"The correct
option (e.g., A, B, C, or D)".
ONLY output this format exactly.
Do not include any additional
text or explanations outside the
JSON structure.

USER:

#include<stdio.h>

int main{int arge, char *argv[]){
char a = 'P';
char b = 'x';
char ¢ = (a & b) + '*';
char d = (a | b) - '-';
char e = (a * b) + '+';
printf("sc %c %c\n", ¢, d, e);
return 0;

}

ASCII encoding for relevant characters is given below

AlB|C| . |Z a|ble | .|z

65 66| 67| | 90 97| 98| 99| - | 12

42| 43| 45

Caption: The code initializes
character variables ’"a’ to

P’ and b’ to ’"x'. It then
calculates ’'c¢’, ’'d’, and ’e’
using bitwise operations (\&, |,
~) and character addition with
"x", '=', and ’"+’, respectively.
The ‘printf‘ function (...)ﬂ
Ellipses (...) within the
tables indicate omitted values
between the shown characters.
OCR: ##include<stdio.h>\}\n
\nint main (int argc, \n \nchar

a = 'P’;\nchar b = "x’;\nchar c
= (a &\nchar d = (a |\nchar e

= (a \u 201lc\n \nprintf (\"sc
\%\nreturn 0;\n \n \}\n \nchar

xargv[]) \{\n \nby + te;\nb ) -
"-\%3\nb ) + \"Hy\n se\\n\", c,

d, e);\n \nASCII encoding for
relevant characters is given
below\n \n 42| 43) 45\n \n
Question: What is printed by the
following ANSI C program? Options:

A.) z K s B.) 122 75 83 C.) » — +
D.) P x +
Answer:

“Caption was trimmed for visualization pur-
poses.

SYSTEM:

Eres un experto en resolver
preguntas de opcidén multiple.
Analiza cuidadosamente la
pregunta, piensa paso a paso y
proporciona tu respuesta FINAL
entre las etiquetas <ANSWER> X
</ANSWER>, donde X es UNICAMENTE
la opcidén correcta. No escribas
ningtn texto adicional entre las
etiquetas.

USER:
Mes Peso total
1 1.500 gramos
2 2 600 gramos
3 3.700 gramos
4 4,800 gramos
Caption: This table presents

data on total weight, measured in
grams, across four months. The
table consists of two columns:
Mes (Month) and Peso total (Total
Weight). Month 1 shows a weight
of 1,500 grams, Month 2 shows
2,600 grams, Month 3 shows 3,700
grams, and Month 4 shows 4,800
grams. The table is a simple
grid format with plain black text
on a white background.

OCR: Wes | Pesototal\n 1 [1500
gramos\n 2 |_2600 grmos\n 3 |
3700 gemoe\na \n \n \u 201cZz00
grams\n \n

Pregunta: Un perro cachorro
tenia un peso de 1.500 gramos al
mes de nacido. En la tabla se
muestra el peso del cachorro en
los primeros cuatro meses. De
acuerdo con la tabla, ¢Cudl es
el cambio del peso del cachorro
entre un mes y el mes siguiente?
Opciones:

A.) Disminuydé 1.500 gramos
B.) Disminuydé 2.600 gramos
C.) Aumentdé 1.100 gramos
D.) Aumentd 3.300 gramos
Respuesta:
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D.6 To WHAT EXTENT DO TEXTUAL AUGMENTATIONS BOOST VLM CAPABILITIES?

The significant performance gap between text-only and multimodal responses raises critical questions
about the strengths and weaknesses of the visual processing in the tested models. In this analysis,
we investigate to what extent do visual processing constraints limit multimodal capabilities, and
conversely, can automatically generated textual augmentation improve model performance?

To explore this direction, we generate synthetic captions (using Gemini 1.5 Pro) and Optical Character
Recognition (OCR) text (Tesseract (Smith, 2007))) for all images in KALEIDOSCOPE, aligning with
the methodology of (Das et al.,[2024). Unlike prior work that completely replaces images with text,
we evaluate whether a VLM augmented with these textual inputs can boost performance.

Table 18: Accuracy on augmented multimodal inputs with image captions. Results are grouped
by image type. We report Valid Accuracy (%); the highest scores are highlighted in bold for each
model. Macro averaged accuracy is reported over language for both methods.

Qwen2.5-VL-7B Gemini 1.5 Pro

Samples Image +Caption Image +Caption

Diagram 2,182 38.0 37.9 59.4 59.6
Figure 6,178 34.0 34.8 51.3 50.0
Graph 733 443 45.2 67.9 68.2
Map 392 48.0 46.7 69.4 70.9
Photo 631 53.9 54.1 75.8 74.3
Formula 487 349 37.3 68.3 68.7
Table 597 40.9 34.6 76.0 76.1
Text 257 76.3 79.8 85.2 83.7

Macro Avg. 11,457 36.88 36.83 55.71 54.81

Table|18|shows the results of augmenting visual inputs with synthetic captions and OCR text across
diverse image types in KALEIDOSCOPE, measured by valid accuracy (%). Overall, the addition
of a caption and OCR text improves the performance of the selected models in 5 out of 8 image
types. Both models experienced a performance boost coordinately for Graph and Formula. The
experiment reveals that the utility of textual augmentation depends critically on image content type.
While Gemini 1.5 Pro dominates overall performance, Qwen2.5-VL-7B demonstrates selective gains
when provided with captions and OCR: improvements in Graph (+0.9%), Photo (+0.2%), Formula
(+2.4%), and Text (+3.5%) suggest that textual augmentation aids interpretation of content where
visual elements are tightly coupled with symbolic or linguistic features (e.g., labeled axes, embedded
text, or mathematical notation). Conversely, performance declines for Diagram (—0.1%), Map
(—1.3%), and Table (—6.3%) with augmentation, implying that synthetic captions may introduce
noise or fail to capture structural relationships critical to these categories. Gemini’s robustness across
modalities (< 2% variation in most categories) suggests its stronger native visual understanding
reduces reliance on supplementary text. The results underscore that captioning effectiveness is
context-dependent: text augmentation benefits models most when (1) visual content inherently
contains extractable text (e.g., Photo with signs, Text regions) or (2) symbolic patterns (e.g., formulas,
graphs) require disambiguation. However, for structurally complex or text-sparse images (e.g., Map,
Diagram), captioning may not compensate for deficiencies in spatial or relational reasoning. Full
results, including total accuracy and format error, can be found in Table
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Table 19: Total Accuracy %, Valid Accuracy % and Format Error % (FE) grouped by Image
Type in KALEIDOSCOPE for captioning + OCR experiment.

Qwen2.5-VL-7B Gemini 1.5 Pro

Total Acc.  Valid Acc.  FR Total Acc. Valid Acc. FR
Diagram 37.8 37.9 03 589 59.6 1.2
Figure 34.6 34.8 0.7 49.0 50.0 1.9
Graph 452 452 00 674 68.2 1.2
Map 46.7 46.7 0.0 709 70.9 0.0
Photo 53.9 54.1 05 742 74.3 0.2
Formula 37.0 37.3 0.8 66.7 68.7 2.9
Table 34.5 34.6 02 747 76.1 1.8
Text 79.8 79.8 0.0 83.7 83.7 0.0

D.6.1 CAPTIONING & OCR

We instantiated Gemini 1.5 Pro with the following instructions to generate synthetic captions from
the images in KALEIDOSCOPE. Prompts with image augmentations are shown in Table[T7}

Gemini 1.5 Pro’s prompt for captioning:

x*+Instruction:xx*

You are an expert image captioner. Generate highly detailed, precise,

and academically relevant textual descriptions of images sourced from

exam questions, ensuring all critical visual elements are captured for
accurate problem-solving.

*xGuidelines: **
Exam-Specific Analysis:

— Primary Elements: Identify and describe key components (e.g.,
diagrams, charts, graphs, labels, symbols, annotations) and their
exact attributes (e.g., numerical values, units, directional arrows,
text annotations).

— Secondary Details: Note stylistic features (e.g., "black-and-white
schematic," "color-coded bars in a graph"), spatial relationships
(e.g., "force vectors pointing northwest"), and contextual clues
(e.g., axes labels, legends, scales).

- Textual Elements: Explicitly transcribe all visible text (e.g.,
labels like "Mitochondria," numbers like "5V," titles like "Figure 2:
Velocity vs. Time").

Academic Precision:

— Technical Focus: Prioritize details critical to exam questions (e.g.,
"a right triangle with hypotenuse labeled ¢ = 10 cm," "a bar graph
comparing GDP of 5 countries,with Japan’s bar shaded blue at 4.3

trillion").

- Diagrams/Charts: Specify type (e.g., "pie chart," "circuit diagram")
and components (e.g., "resistor symbol connected to a battery").

— Scientific Relevance: Highlight measurements, units, symbols (e.g.,
"T = 25°C," "a pulley system with frictionless ropes").
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Structure & Clarity:

- Begin with the image’s purpose (e.g., "A biology diagram of a plant
cell") followed by a systematic breakdown (left-to-right, top-to-bottom,
or by functional layers).

- Use neutral, objective language. Avoid assumptions unless implied by
context (e.g.,"a downward arrow labeled 9.8 m/s? likely representing
gravitational acceleration").

*xOutput Format:*xx
- Single paragraph (4-6 sentences).

- Example:

"A physics diagram depicts two blocks on a frictionless inclined plane:
Block A (5 kg) is connected via a rope to Block B (3 kg) over a pulley.
Angle theta = 30°, with vectors labeled F_normal and F_gravity. A scale
beside the plane shows time t = Osto t = 5s. Text at the bottom reads:
‘Calculate tension in the rope.’ The image is monochrome, with dashed
lines indicating motion direction.”

Constraints:

— Avoid Omissions: Ensure no labels, numbers, or symbols are overlooked,
even if small or peripheral.

— Neutral Tone: Exclude subjective interpretations (e.g., "messy

handwriting" or "complex diagram") unless style is exam-relevant (e.g.,
"a hand-drawn sketch with annotations").
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D.7 CROSS-BENCHMARK PERFORMANCE

Table 20| presents a comparison of Kaleidoscope’s overall valid accuracy with MMMU-Pro and
MMMU-Validation on the overlapping subset of models. The results show that Kaleidoscope
occupies a difficulty range comparable to existing high-quality multimodal benchmarks: most
models perform slightly above their MMMU-Pro scores but below their MMMU-Validation scores.
Importantly, the rank ordering of models is not identical across benchmarks. Several models with
similar performance on MMMU diverge noticeably on Kaleidoscope, reflecting the benchmark’s
unique emphasis on culturally grounded, in-language multimodal reasoning. These discrepancies
reinforce that Kaleidoscope is not merely a parallel version of existing datasets, but a complementary
evaluation that probes multilingual and cross-cultural generalization more directly.

Table 20: Cross-benchmark comparison on KALEIDOSCOPE, MMMU-Pro, and MMMU. Results
are reported as overall accuracy (%). KALEIDOSCOPE values use valid accuracy. Asterisks (*)
indicate results provided directly by the original authors.

Model Kaleidoscope (Valid Acc.) MMMU-Pro (Acc.) MMMU Validation (Acc.)
Claude 3.5 Sonnet 63.87 51.5 68.3
Gemini 1.5 Pro 62.95 46.9 65.8
GPT-40 62.10 51.9 69.1
Qwen2.5-VL-72B 53.00 46.2 64.5
Qwen2.5-VL32B ~ ~ 864~ T T T T 7 NA T T T T T T T NA T T
Aya-Vision-32B 39.66 45.11* N/A
Aya-Vision-88 ~ LS 399« T T T T 7 NA T T T
Qwen2.5-VL-7B 39.60 38.3* 58.6*
Qwen2.5-VL-3B 35.63 31.6% 53.1%*
Molmo-7B-D ~ ~ =~~~ 328 T T T T NA T T T T T T T NA T T T
Pangea-7B 34.02 N/A N/A

E DATASET SAMPLES

E.1 CATEGORIES OF VISUAL ELEMENTS

We group the visual elements into eight primary categories in KALEIDOSCOPE in Table 21} If an
image falls into multiple categories, we assign the most representative based on the image’s content.

E.2 SELECTED DATASET SAMPLES

Table [22] presents one sample from each dataset, including the question, the associated image, the
provided answers, and the correct answer highlighted in green.

E.3 DATASET FIELDS

We provide a description of the fields in KALEIDOSCOPE in Table 23]
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Table 21: Types of visual elements or images in the KALEIDOSCOPE benchmark. The correct
answer is highlighted in Bold Green. Some samples are reformatted for better presentation.

Visual Element Category Question Image Question and Answer
P N (Question: Wie verhalt sich die Ver-\
armungszone in der hier dargestellten
: o A

Diagram. Technical or e © o o e o o e Halb.lelterdlode.
schematic drawings illustrating | 4 o o o e 6 o o Oyphi:

A. Sie erweitert sich.
processes, structures, or con- . .

B. Sie verengt sich.
cepts.

C. Sie verandert sich nicht.
D. Sie verschwindet.

& J

[Question: Applicable for D of stem\
7B7_

Options:

A. contains more genes
B. unable to replicate

C. present in the nucleus
D. used as a vector

- J

Figure. Illustrations, draw-
ings, or visual representations of
objects, patterns, or symbols.

[Question: Em uma xicara que jé‘\
contém certa quantidade de agucar,
il despeja-se café. A curva abaixo

representa a fungdo exponencial M(t),
Charts. Tmages showing data 12 que fornece a quantidade de agtcar
lotted on axes. such as line ~ nao dissolvido (em gramas), t minutos
Ig)raphs bar clilarts scatter \\ ap6s o café ser despejado. Pelo gréfico,
plots, pie charts, flowcharts, or- ;()Dod:;e'mos ‘conclmr que.
ganizational charts, and so on. 4 ptions: 4t/T5
A. m(t) = 2(4-t/79)
) : B. m(t) = 2(4-/50)
0 50 100 150 200 C. m(t) = 2(5-t/50)
D. m(t) = 2(6=t/150)

(Question: JlisUTbHICTD  SIKOTO I‘eTbMa.Ha\
MOXHA XapakTepu3yBaTH, CIMPAIOYHCh Ha
NoJaHy Kapry?

Options:

A. B. XMeIbHULBKOTO

B. 1. Buroschkoro

C. II. MHororpinHoro

D. L. CamoitioBrua

& J

Map. Geographical or spatial
representations.

Continued on next page
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Visual Element Category

Question Image

Question and Answer

Photographs. Photographic
images of real-world scenes, ob-
jects, or people.

McDonalds,
L ]

]
lopenk daar giburt e

Wy

N

(Question: Wat kun je zeggen over
het verzorgingsgebied van deze Mec-
Donald’s in Arnhem?

Options:

A. Het verzorgingsgebied beperkt
zich tot de stad Arnhem.

B. Het verzorgingsgebied beperkt zich
tot de provincie Gelderland.

C. Het verzorgingsgebied beperkt zich
tot Nederland.

D. Het verzorgingsgebied beperkt zich
tot de regio Arnhem en omstreken.

(& J

Formula. Mathematical equa-
tions, chemical formulas, math-
ematical diagrams, or related
concepts.

2HI(g) = Ha(g) + L2(9)

/Question: sfafhar 59 sfy & &'@Tq\
¢ gHieRur fi fAued fi Fife, amaEwr
foRi® Kp & 99g gl
Options:

A 1+2K,
1+2K,
2
2K,

1+2K,

2\/Kp

1+2,/K.
S ! Y,

B.
C.
D.

4 Question: A
Glaaae L5 5 A st dsaa O e ook din 4
2 S g shu g a8 8 g,k F U

’T’ $anlily 42135 (5 ) S
Table.  Structured data ar- Options:
ranged in rows and columns. A.0
1 B. 1
C. 2
D. 4
_ J
Question: I E 932 F AB aa:\

Text. Images containing pri-
marily textual information.

ABC f&er@ B (FiH < 8b-° 932 AB=AC|

AC-F a¥99IE (@ @@ @ EF || BC
¥, O

Options:

A. 50%°

B. svo0°

C. sbo°

D. sov°

(& J
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Table 22: Samples from various exams in the KALEIDOSCOPE benchmark. The correct answer is
highlighted in Bold Green. Some samples are reformatted for better presentation.

Language Question Image Question and Answer

( High School Exam )( Physics )

| |

|
C=1pf
Arabic Sy sl Options:
Veff= 200V A. 0.2 A

() B.2A
/ C.0.02 A

D.20 A

Question:
Sg,L.i 211 55\l d LA AV 5l 3

f=2% Hz
m

( High School Exam )( Geology )

~

5 4 Question:
YeS QYL A Luual Al gt

Y.

I Lo o Ty V1 gl il bl I e
Options:

Arabic Yo+

Ve

e |5 1%

Voo

\ =,

( BRTA Driving Test J( Driving )

Question: a3 fo=fb gt 5 _M?
Options:

A. BENA AIZEA GABETR T

B. SI3t5H b6 fNeg4

C. IBIIIEH GG R

D. SYNIa @IGIMIEHA GG Sl

Bengali

( HSC Exam )( Geography J

S LT [ Question: TR T G 'Y AGETIEA TAY AR 1. )
_ ufRsY-oIFoN s eRifEe 27 i, O o & T i, W

frrg vy, | e
Bengali fRea aft w1fd<s?

Options:
A.i8ii

B. i 8 iii
C. ii 8 iii
D.1i, i 8 iii

-

( BCS Exam J( Reasoning )

Question: {6z fora +afb fage we=?
Bengali Options:

A. cft

B. vt

C. vfo

D. &ft

Continued on next page
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Language Question Image Question and Answer

Witen bruingoed 43

Klein chemisch afval 21

Overig 133 ( Dutch Central Exam )( Economics J

Question: Bekijk bovenstaand diagram. Hoeveel ton
klein chemisch afval werd er in Nederland in 2000 ingeza-
meld?

Options:

A. “21.000 ton”

B. “19.500 ton”

C. “23.000 ton”

D. “20.500 ton”

Dutch

( SAT )( Mathematics )

Question: In the equation, p and t are constants. Which
of the following could be the value of p?

English 4x2 -9 = (Px + t) (px —_ t) 2pt2ions:

B.3
C. 4
D.9

( UCEED Exam )( Design )

[Question: Four spheres start revolving clockwise in con-

centric circles from their initial positions as shown below.
Yellow travels at 2m/sec, green at 4m/sec, red at 2m/sec
and blue at 4m/sec. Which of the following statement(s)
is/are TRUE?
: om Options:

English . A. Yellow and green never cross (overtake) each
other
B. Red and blue takes the same time to complete one rev-
olution
C.Yellow takes less time than green to complete one rev-

olution
D. Blue and red will cross each other twice after the first
3 complete revolutions of blue )

G

( HSC Exam )( Biology )
Question: Which type of food digest in lebelled 'S’ men-
. tioned in the figure?

English S Options:

A. Potato

B. Pulse

P C. Oil
D. Ghee

Continued on next page
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Language

Question Image Question and Answer

( GATE )( Engineering )

(Question: Consider the CMOS circuit shown in the ﬁg—\

4V I | ure (substrates are connected to their respective sources).
= The gate width W to gate length L ratios W /L of the
PMOSFET transistors are as shown. Both transistors have the same
=5 gate oxide capacitance per unit area. For the pMOSFET,
English the threshold voltage is —1V and the mobility of holes
Va is 40cm?/V.s. For the nMOSFET, the threshold voltage
is 1V and the mobility of electrons is 300cm?/V.s. The
=1 steady-state output voltage V, is
nMOSFET Options:
A.equal to 0V
- B. more than 2 V
C. less than 2 V
\D. equal to 2V Y,
( Physician Exam )( Language )
0 [Question: Figuur 1A toont de A-weging voor het\
A9 menselijk gehoor. Deze figuur leert ons dat
) N Options:
Flemish ‘g :: A. de mens tonen rond de 1000 Hz het beste hoort.
- B. mensen tonen van 10.000 Hz niet meer kunnen horen.
w C. een toon met dezelfde fysische geluidssterkte altijd even
70 intens wordt gehoord.
" o 1000 1o 100000 D. bij gelijke geluidssterkte, een mens 100 Hz zachter hoort
\dan 50 Hz. )
( Mathematical Kangaroo )( Mathematics )
1 2 3 n Question: On attache ensemble des anneaux comme in-
diqué ci-contre de fagon a former une chaine de 1,7 m de
French % ' ............ longl.leur. Combien d’anneaux sont nécessaires ?
- Options:
A. 30
1L7m B. 42
C.21
D. 85
HEN | HFour
Ty (41) T, (1:9)
' E”% L ” ! ( Amateur Radio Exam ) ( Engineering )
|
|
R R, - 100yH Question: Wie grof} ist die Gate-Source-Spannung, wenn
o9 Rs[]; "y sich der Schleifer von R3 am Anschlag 1 befindet?
German 3300 = Options:
gL A.35V
% * I, > | B.277TV
7 © Tl csrv
2 e = a
2 E g s L gl |5 D. 0,45 V
8 < T T
= ST < <

Continued on next page
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Language Question Image Question and Answer
( Science Olympiad )( Biology )
(Question: ST U TR § 20 e ded IaaR alugR &)
3.30 o1 AT gict UgHT| 5 STedl-sieal (AT giet # g9 Tl 38
3Y-UT FTh-HTth 28 § Fo GHg 1| 59 IR Iqh! it d
NN forg g & uRad= sy git?
Hindi ks Options: .
‘ - i s S R P S E e e e
. sﬁ?ﬁél
et Ffra ARl AR g &, Raw AimaRal Geie
gﬁ;ﬂéaﬁzgamﬁm%ﬁél
|
aﬁ-ﬁwnmﬂﬁm ?ﬂ?ﬁ% e migufar A gt §
sﬁ?ga%m
(N J
(JEE (Main) ) ( Physics )
I 1
U T Questlon = (a), (b), (c) (d) TEa FufRa = & aﬁﬂ\
v m v A T Aeftehsars Raredl & arfSraeruries uTe & :
Options:
@ (b) A .GIYRYT 3[E, SR ErilE, Siek @6, LDR (w1ge f2dde
Hindi . W)
iaw?ﬂﬁm T\ gasﬁmnﬁgmwgm LDR (ese 83z ¥rea), wier
v — C. R 3, LDR (erse R ), S sms, amermor
%ﬂﬁm e RS
© o D. SR srlE, QiR 9d, GIURU S”E, LDR (cse fuse
FoET)
G J
( UP-CET J( Social Sciences )
Question: ﬁaﬁﬁqﬁﬁaﬁu@aﬁﬁl
indi Options:
Hindi e Gﬁﬂg?ﬁﬁﬁ
B. TaiferaR et
C. e ferem
D. 3R fherr
( JEE (Main) J( Mathematics J
?uestion: Ife za ofd & Rramg g i & SIgER, dt &k SRR
o “ k :
Hindi 22— 2544 320y = Options:
/; ( ) k+5 | a1
B. 2
C.3
D. 4

Continued on next p.
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Language Question Image Question and Answer
( SSC CGL Exam )( Reasoning )
80
. Question: R 23 1 ofteitfin 9fg; (¢ ite )  Prsrfer
A & fopaat 221 <t senfiies gfs ofiera sitenfies gig @ aifdes &2
Hindi A Options:
S e B A
0 B. 2
India Pakistan China England  USA C.3
D. 1
o ’
? l.66 33 ( High School Exam )( Geography )
X ) \ 23926 Question: Kiek platumos laipsniy yra tarp Siaurés poliarinio
rato ir Piety atograzos?
Lithuanian Options:
] A. Apie 23°.
2t o A e B. Apie90°.
23°26 C. Apie 100°.
R D. Apie 132°.
- 66° 33’
( PSC Exam )( Reasoning J
Question: fguas & 2,2,3,% ¥ « AAaTE 7 I Rgs g
ST FAATSET Qo SHTehRent ot 7o | Iat gof smeRent
Nepali A 4 <3 W > m BRI FRES a5y Bie TR |
&N 2 3 (@ ® Options:
A. 124
B. 234
C. 245
D. 345
( Olympiad of Informatics J( Math )
[Question: )
3 A Lhee S o L& fols ediopa ol ) Ko b
5 K lass a SokoE 4 (Z’l’i’cﬁ' Iy b (godis e Al S (\f B
Joga oo o Ae o8 Goding iy gloods sl S 2 s el
Persian el VY Sy sbaxA'Cf;; \&

Options:

;fc,;b BYER 0.
Jf&&l.ﬂ:li)}.l 1.B
éfg;ﬁl.w 193 2.C

S lya Sedsgr Olg .D)

Continued on next page
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Language Question Image Question and Answer
( Driving Test ) ( Driving )
(Question: )
T b o Oy
Options:
Persian
(eramdd) grgubg A
(c,.«\,q@;gj!) q):d"_;bs@.B
Sl @ &= .C
N e P )
( High School Exam )( Engineering )
4 Question: A
S oI Sble e K2
Options:
Persian
J;K (-).: uyli A
Sibas & ) B
S oly 0K .C
I,.D
S ool )
( University Entrance Exam J( Physics J
Question:
A BEA S Oy a8 S8 S b L K8 gl (e £
Persian Sl CUB 31 O s K
Options:
C O A. 15
B.1.25
v o $‘ m C 12
D.2
( University Entrance Exam J( Geology )
( Question: _ A
(‘f oddy (70l 5 U LB ST 4 sy S s barS 4 agl
¢l
X Options:
Persian
sl J...f -y gyl A
S 57 - bys s 0B
55 5 ob S — 2y .C
s Sl
w 5| & 3 < «$> -G .
el S dad uls Saf )

Continued on next page
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Language Question Image Question and Answer

( UNESP )( Social Sciences j

Question: Observe as fachadas de duas igrejas. A es-
querda, a Basilica de San Michele, construida no século
XII em Pavia, na Itdlia. A direita, a Catedral de Reims,
erguida a partir do século XIII em Reims, na Franca.
(Georges Duby e Michel Laclotte (orgs.). Histéria artis-
tica da Europa: a Idade Média II, 1998.)

As duas fachadas

Options:

A. diferenciam-se pela pouca ornamentacio de San

Portuguese
Michele, que expressa o estilo romaéanico, e pela
monumentalidade e sofisticagdo de Reims.
B. diferenciam-se pela solidez de San Michele, que sim-
boliza a forga espiritual do catolicismo, e pela caréncia de
detalhes na sede papal em Reims.
C. igualam-se na suntuosidade e no rebuscamento ar-
quiteténico, indicando o poderio econémico da Igreja
catoélica.
D. diferenciam-se pela discricdo de San Michele, que rev-
ela o rigor na conduta dos protestantes, e pela ostentagao
da riqueza catdlica de Reims.
2 J
( FAMERP Entrance Exam )( Physics )
" [Question: Quando um gerador de forca eletromotriz 12 V\
é ligado a um resistor R de resisténcia 5, 82, uma corrente
i elétrica i de intensidade 2,0 A circula pelo circuito.
R
Portuguese oA Ar
g \/ A resisténcia interna desse gerador é igual a
. Options:
A. 0,409.
B. 0,209
C. 0,109.
D. 0, 3092.
G ’ J
F E1
- /@v I 4 B ( Unicamp Entrance Exam J( Language )
-2 | ; .
4 Question: A imagem a seguir apresenta a transcrigao de A
um didlogo em um video publicado no Instagram.
phemans i No didlogo, a principal caracteristica da reformulagdo da
compound fracture. ) fala da médica é a insergao de
Options:
Portuguese A. expressoes que utilizam verbos frasais para recontextu-

alizar o tratamento da paciente.

B. abreviagoes de substantivos, através das quais a médica
amplia as informagoes do caso.

C. girias que utilizam diversas classes de palavras para es-
pecificar melhor o diagnéstico da paciente.

D. vocabulos marcados pela oralidade, através dos
quais a médica atualiza os procedimentos futuros.}

\
Bro, Il spill the tea:

vibes are sus. These
But thanks to test results are not
Duolingo, I leamed || giving. Don't worry,
fluent Gen 2! we finna give your leg X
r_ a high key glow up. 77
\ | No cap! - v
(Adaptado de https:/fwwiw.instagram.com/dharmann. Acesso em 12/04/2024.)

&

Continued on next page
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Language

Question Image

Question and Answer

( ENEM, Brazil )( Mathematics )

~

(Question: Um segmento de reta estd dividido em duas
partes na proporg¢do durea quando o todo estd para uma
das partes na mesma razao em que essa parte estd para a
outra. Essa constante de proporcionalidade é comumente
representada pela letra grega ¢, e seu valor é dado pela
solugdo positiva da equacio ¢? = ¢ + 1.

Assim como a poténcia @2, as poténcias superiores de ¢

Portuguese | ¢ | @ [ o [ ¢ [ o [ ¢ | S
[o+1 [2¢+1]3¢+2|50+3[80+5] podem ser expressas da forma ay + b, em que a e b sdo
inteiros positivos, como apresentado no quadro.
A poténcia ¢7, escrita na forma ap+b (a e b sdo inteiros
positivos), é
Options:
A Tp+2
B. 9% +6
C. 11+ 7
D. 13p+8
¥ J
( Mathematical Kangaroo J( Mathematics )
20 1 : ;
Question: Koimko nponeHara MoBpLikHe TPOyIJa Ha CIHIM j&
OCEHYEeHO?
Serbian Options:
A. 88 %
B. 90 %
C. 85 %
D. 80 %
( Mathematical Kangaroo J( Mathematics )
o Question: Kakux reomerpuyeckux (Uryp HeT Ha pUcyHKe?
Russian ® @ Options:
A. kpyros
D B. Bce at1 urypsl ectb
E C. NmpsIMOYrOJIbHUKOB
D. TpeyroJbHUKOB
( Medicine Exam J( Pulmonology )
fQuestion: Varén de 60 afios, fumador activo, que presenta\
tos y expectoracion diaria de afos de evolucion, ocasionalmente
hemoptoica. En los ltimos meses se aflade disnea progresiva.
Presenta acropaquia y en la auscultacion pulmonar destacan roncus
y sibilantes teleinspiratorios en pulmoén izquierdo. La TC pulmonar
Spanish de alta resolucion se muestra en la imagen adjunta. ;Cual es el

diagnostico mas probable?

Choices:

A. Carcinoma quistico.
B. Enfisema pulmonar.
C. Tuberculosis cavitada.
D. Bronquiectasias.

- /

Continued on next page
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Language Question Image Question and Answer

R1=? ( Undergraduate Exam ) ( Biophysics )
Question: Calcule el valor de la primera resistencia (R1)
Spanish :;52:_ 13 Options:
B A 42 Q
B.6Q
C.12 Q
R4=1Q R3=20 D.24 0
( High School Exam, Colombia )( Biology )
E) [Question: En un laboratorio se estudia el comportamiento del\
® volumen de un gas ideal al variar su temperatura, obteniendo la
2w siguiente grafica: Teniendo en cuenta la informacion de la grafica,
Spanish g 15 si la temperatura aumenta de -153 °C a -33 °C, ;qué pasa con el
2w volumen del gas?
5 Options:
ol A. Disminuye de 30 La25L.
o s ri;ﬁ“f,; = B. Disminuyede 10La5L.
C. AumentadeOLa10L.
\D. Aumenta de 10 L a 20 L. Y,
( Undergraduate Exam )( Chemistry )
I Question: ad)d VoS’ $Iy¥o By, Irerd $R50°3 Jods?
Telugu T Options:
n/ i . A. 304.9
P ' B. 304.4
C. 301.9
D. 303.4
( ZNO Vision J ( Mathematics )
[Question: TlnacTkoBi Ky/nbku pajiyca 6 cM 30epiraiorh y\
BUCYBHIM IIYXJIs L, 110 Ma€ hopMy MPSMOKYTHOT'O Mapasenemninesa
(mMB. pucyHOK). fIKOI0 3 HaBeleHUX MOxe OyTH BUcOTa h wLie€l
Ukrainian LIyXISIKA?
Options:
A.3cm
B.6cm
C. 10 cm
\_ D. 13 cm )
( Driving Test ) ( Driving J
Question: Ilo siKiil TpaeKTOPIl MOXKHA IIPOIOBXKUTH PYX IIPABOPYY
JIETKOBOMY aBTOMOGLI0?
Ukrainian Options:

A. Tinbku o A.
B. Tixbkn no b.
C.TloAib.

D. Tlo 6yap-sikiii.
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Table 23: Structured dataset fields with descriptions used in data collection protocol.

Field Description
language The language in which the question is written (e.g., "en™" for English).
country The country where the exam originated (e.g., "United States").

contributor_country

The contributor’s country of residence (e.g., "Spain™).

file_name

The internal database filename for the original exam document.

source The URL or reference to the original exam document.
license Licensing information of the exam (e.g., "Unknown" if not stated).
level The educational level of the exam (e.g., "University

Entrance").

category_en

The exam subject category in English (e.g., "Chemistry™").

category_source
_lang

The subject category as written in the original language (Language).

original_question
num

The original question number in the source document.

question The text of the question.

options A list of possible answer choices.
For example, VOption A", "Option B", "Option C",
"Option D"].

answer The index of the correct answer (e.g., 3 for the fourth option).

question_image

The extracted diagram, graph, or table associated with the question.

image_information

A label indicating the importance of the question_image for an-
swering the question. Possible values include:

e "useful" - The image provides additional clarification.

* "essential" - The image is necessary to answer the question.

image_type

The category of question_image (e.g., "figure", "graph",
"table")as described in Appendix [E-T}
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