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ABSTRACT

In large language model (LLM) serving, reusing the key-value (KV) cache of
prompts across requests is a key technique for reducing time-to-first-token (TTFT)
and lowering serving costs. Cache-affinity scheduling, which co-locates requests
with the same prompt prefix to maximize KV cache reuse, often conflicts with
load-balancing scheduling, which aims to distribute requests evenly across com-
pute instances. Existing schedulers struggle to reconcile this trade-off, as they op-
erate within a single mapping space, typically applying cache-affinity routing to a
subset of requests and load-balanced routing to the rest, without a unified solution
to achieve both goals. To overcome this limitation, we propose DualMap, a dual-
mapping scheduling strategy for distributed LLM serving that simultaneously en-
ables cache affinity and load balancing. The key idea of DualMap is to map each
request to two candidate instances using two independent hash functions based on
the request prompt, and then intelligently select the better candidate based on cur-
rent system states. This design increases the likelihood that requests with shared
prefixes are co-located, while evenly dispersing distinct prefixes across the cluster
via “the power of two choices”. To make DualMap robust under dynamic and
skewed real-world workloads, we incorporate three techniques: 1) SLO-aware re-
quest routing, which prioritizes cache affinity but switches to load-aware schedul-
ing when TTFT exceeds the SLO, enhancing load balance without sacrificing
cache reuse; 2) hotspot-aware rebalancing, which dynamically migrates requests
from overloaded to underloaded instances, mitigating hotspots and rebalancing the
system; 3) lightweight dual-hash-ring scaling, which leverages a dual-hash-ring
mapping to support fast and low-overhead instance scaling without costly global
remapping. Experiments on real-world workloads show that DualMap improves
effective request capacity by up to 2.25× under the same TTFT SLO constraints,
compared with the state-of-the-art work.

1 INTRODUCTION

Recently, large language models (LLMs) have exhibited strong performance in scenarios such as
multi-turn conversations and agent-based applications (Sha, 2025; Gao et al., 2024; Hao et al., 2023).
A common characteristic of these scenarios is the repeated use of prompt prefixes. For example, in
conversational sessions, requests share the dialogue history, while agent tool usage typically includes
repeated instruction prompts.

To reduce redundant prompt computation, modern LLM serving systems widely adopt context
caching—also referred to as prompt caching or prefix caching—which stores the historical key-
value (KV) cache of prompts (Gao et al., 2024; Qin et al., 2025; Dyn, 2025; 202, 2025; Zheng
et al., 2024a). This allows subsequent requests to directly reuse the stored KV cache, eliminating
the need for repeated prefill computation. This technique significantly improves GPU utilization
and reduces inference latency, especially the time-to-first-token (TTFT)—the latency from request
arrival to the first token—which is critical to user experience. Ensuring TTFT stays within a service
level objective (SLO), is essential in practice. Under such constraints, system efficiency is com-
monly measured by effective request capacity, defined as the proportion of served requests that meet
the target SLO (Qin et al., 2025).
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In production environments, LLMs are deployed in distributed serving clusters, where request
scheduling plays a crucial role in reducing inference latency and cost (Qin et al., 2025; Dyn, 2025;
Srivatsa et al., 2024; Cao et al., 2025). Effective scheduling must ensure both cache affinity, which
routes requests to compute nodes that store the KV cache of their prompt prefixes to maximize cache
reuse and minimize TTFT, and load balancing, which distributes requests evenly across nodes to
avoid hotspots and improve resource utilization.

However, achieving cache affinity and load balancing often conflict with each other. Specifically,
a cache-affinity strategy maps requests with identical prompt prefixes to the same instance using a
prompt-aware function. While this approach maximizes KV cache reuse, it does not guarantee load
balancing. This is because prompt popularity in real-world workloads is typically skewed (Wang
et al., 2025b), causing nodes responsible for hot prefixes to become overloaded, while those handling
cold prefixes remain underutilized. In contrast, load-balancing strategies such as the Least Loaded
strategy map requests to the instance with the lowest load, without considering KV cache hits. While
this approach achieves even load distribution, it scatters requests with shared prefixes across different
instances. This reduces the KV cache hit rate and increases recomputation overhead.

The fundamental trade-off between cache affinity and load balancing arises because both cache-
affinity and load-balancing strategies are implemented within a single mapping space. Cache-
affinity strategies rely on a prompt-aware mapping function that prioritizes routing requests to nodes
with relevant KV caches, while load-balancing strategies use a load-aware mapping function to
evenly distribute requests across nodes. Prior work, such as Mooncake (Qin et al., 2025), Pre-
ble (Srivatsa et al., 2024), and Dynamo (Dyn, 2025), attempts to balance cache affinity and load
balancing, but fails to achieve both simultaneously. This is because they remain constrained by a
single mapping space, typically applying prompt-aware routing to a subset of requests and load-
aware routing to the rest.

To break the trade-off between cache affinity and load balancing, we propose DualMap, a dual-
mapping scheduling strategy for distributed LLM serving that enables both objectives simultane-
ously. DualMap draws inspiration from the power of two choices (PoTC) principle (Mitzenmacher,
2002), which demonstrates that selecting the less loaded option among two randomly chosen can-
didates can significantly improve the system load balancing. Specifically, DualMap employs two
independent hash functions, f1 and f2, to map each request to two candidate compute nodes, and
dispatches the request to the more suitable node based on the current system state. The random-
ness of the two hash functions ensures requests are distributed evenly across the cluster. To enable
cache affinity, DualMap uses a request’s partial prefix as the input key to the two hash functions.
This increases the likelihood that requests with shared prefixes are consistently mapped to the same
node, where their KV caches can be stored and reused locally. In this way, DualMap simultaneously
promotes cache affinity and load balancing.

However, implementing this design in real-world serving systems introduces three challenges:

1) How to select the optimal one from two candidate instances to maximize system effective re-
quest capacity? Selecting between two candidate instances also involves a trade-off between cache
affinity and load balancing. 2) Skewed prefix popularity leads to hotspot instances. The PoTC prin-
ciple achieves load balancing under the assumption that requests are randomly distributed across
all instances. In practice, this assumption is often violated due to skewed prompt popularity. For
example, frequently invoked tools can cause a large number of requests with identical prefixes to
concentrate on a small subset of instances (Wang et al., 2025b)(detailed in §A.2.2). This leads to
load imbalance and high TTFT tail latency. 3) Static hash mappings limit system elasticity. Static
hash mappings tightly bind request prefixes to specific instances. Scaling operations (e.g., adding
or removing instances) disrupt these mappings, degrade cache hit rates, increase recomputation, and
introduce service jitter, ultimately compromising elasticity.

To tackle these challenges, DualMap incorporates three key techniques. First, to select the optimal
instance from two candidates for maximizing system effective request capacity, DualMap introduces
an SLO-aware routing strategy, which prioritizes prompt-aware scheduling to achieve cache affinity
and minimize recomputation overhead, but dynamically shifts to load-aware scheduling only when
expected TTFT exceeds the predefined SLO, ensuring stable performance under fluctuating load.

Second, to resolve hotspots caused by skewed prefix popularity, DualMap introduces a hotspot-
aware rebalancing strategy. It selectively migrates requests from overloaded instances to their
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Figure 1: Pareto trade-off between cache hit rate and load balance ratio (coefficient of variation,
CV) across different scheduling strategies on the Conversation and Tool&Agent datasets. A lower
CV indicates more even load distribution across instances.

backup instances, i.e., the alternative instance from the initial dual mapping. DualMap prioritizes
migrating the requests whose backup instance is underutilized and exhibits high cache reuse, en-
abling effective load redistribution without significantly compromising cache affinity.

Third, to support efficient elasticity, DualMap adopts a dual-hash-ring scaling strategy. Request-to-
instance assignments depend solely on the relative positions in the hash rings, ensuring that scaling
operations (e.g., instance addition or removal) affect only a small portion of the mappings. This
design avoids expensive global remapping and enables fast adaptation to dynamic workloads.

We implement DualMap in a distributed LLM serving system with the vLLM engine (Kwon et al.,
2023). Experimental results on real-world workloads demonstrate that DualMap improves effective
request capacity by 2.25× compared to state-of-the-art scheduling approaches.

2 BACKGROUND AND MOTIVATION

2.1 LLM INFERENCE AND CONTEXT CACHING

Transformer-based LLM inference first processes the input prompt in parallel to produce the initial
output and KV caches, which are then used for autoregressive decoding (Pope et al., 2023; Kwon
et al., 2023; Zheng et al., 2024a). The KV caches are often stored and reused across requests, a
technique known as context caching, prompt caching, or prefix caching (Gao et al., 2024; Srivatsa
et al., 2024; Qin et al., 2025; Dyn, 2025). KV caches for a shared prefix (x1, . . . , xk) are identical
and can be reused across requests, avoiding redundant prefill computation. Prefix sharing, where
multiple requests share a common prefix, frequently arises in practical scenarios such as multi-
turn conversations and tool-agent interactions (Sha, 2025; Qin et al., 2025). Reusing KV caches
for these shared prefixes instead of recomputing them can significantly reduce prefill latency and
improve inference efficiency (Gao et al., 2024; Srivatsa et al., 2024; Qin et al., 2025; Dyn, 2025)

2.2 SCHEDULING IN DISTRIBUTED LLM SERVING

Ideally, an efficient scheduler should achieve both high cache efficiency and balanced load. How-
ever, these goals are inherently conflicting.

Conflicts between Cache Affinity and Load Balancing. To systematically examine the impact of
cache affinity and load balancing on system, we evaluate Cache Affinity and Least Loaded strategies
on the Conversation (Qin et al., 2025) and Tool&Agent (Qin et al., 2025) datasets using an 8-instance
cluster serving the Qwen2.5-7B model (Team, 2024). Detailed experimental settings are provided in
§4. As shown in Figures 1a and 1b, the Cache Affinity strategy achieves a cache hit rate 1.21× higher
than that of Least Loaded on the Conversation dataset. On the Tool&Agent dataset, Cache Affinity
approaches the theoretical upper bound, while Least Loaded falls close to the lower bound. This
is because Cache Affinity dispatches requests with shared prefixes to the same instance, preserving
cache locality and maximizing KV cache reuse. In contrast, Least Loaded considers only the current
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load of each instance (e.g., pending tokens for prefill), ignoring whether the required KV cache is
already present. As a result, it scatters requests and significantly reduces cache hit rates.

To evaluate how well each strategy balances load, we measure the coefficient of variation (CV), a
standard metric that quantifies the degree of load imbalance across instances:

CV =

√
1
n

∑n
i=1(xi − µ)2

µ
(1)

Here, xi denotes the number of pending prefill tokens on instance i, µ = 1
n

∑n
i=1 xi represents the

average number of pending prefill tokens across all n instances in the cluster. A lower CV indicates
better balance, with a CV of zero meaning perfectly even load. As shown in Figures 1a and 1b,
Least Loaded achieves near-zero CV, indicating highly uniform load distribution. In contrast, Cache
Affinity results in significant load imbalance. This is because when a particular prefix becomes highly
popular, all associated requests are directed to a single instance, causing queue buildup, elevated tail
TTFT, and underutilization of the remaining instances.

Co-locating requests improves cache reuse, while spreading them evenly improves load balance and
resource utilization. Within a unified scheduling space, optimizing for one typically comes at the
cost of the other.

Existing Trade-off Approaches. Recent approaches (Srivatsa et al., 2024; Dyn, 2025; Qin et al.,
2025) strive to balance cache affinity and load balancing through unified scheduling mechanisms.
However, they fundamentally fall short of achieving both objectives simultaneously, as improve-
ments in one often come at the expense of the other. Specifically, Preble enables prompt-aware
scheduling when a request’s prefix hit rate exceeds 50%, but switches to load-aware scheduling
otherwise. Similarly, Dynamo and Mooncake adopt prompt-aware scheduling under cluster load
imbalance, and switch to load-aware scheduling when the load is balanced, detailed in §B

In the evaluation, we compare only with Mooncake’s request scheduling strategy, simplify Moon-
cake to Min TTFT, and exclude Dynamo since its cost-based design is similar to that of Mooncake.
As shown in Figures 1a and 1b, The Min TTFT and Preble achieve cache hit rates and load balancing
ratios between those of Cache Affinity and Least Loaded, indicating that they cannot simultaneously
achieve both cache affinity and load balancing, because they apply a prompt-aware mapping to a
subset of requests and a load-aware mapping to the rest.

2.3 MOTIVATION

As stated in §1, to overcome the limitation that a single mapping space cannot simultaneously guar-
antee both cache affinity and load balancing, we propose a dual-mapping scheduling approach for
distributed LLM serving, inspired by the PoTC principle.

Cache Affinity Guarantee. For m requests with the same prompt prefix p, DualMap consistently
maps them to the same candidate instance set {I1, I2}, guaranteeing a cache hit rate of max(0, 1−
2/m). In contrast, the Cache Affinity strategy achieves a cache hit rate of max(0, 1− 1/m). When
m is large, DualMap approaches the cache hit rate of Cache Affinity.

Load Balancing Guarantee. DualMap adopts the PoTC strategy (Mitzenmacher, 2002), a clas-
sic scheduling paradigm widely used for its strong theoretical guarantees on load balancing in
large-scale systems. For m incoming requests distributed across n instances, PoTC ensures that
the maximum load remains tightly concentrated around the mean. When each request is mapped
to d candidate instances chosen uniformly at random, the maximum load satisfies the following
bound (Mitzenmacher, 2002):

max
i

L(Ii) ≤
m

n
+

log logn

log d
+O(1), (2)

where L(Ii) denotes the number of requests assigned to instance Ii, and m
n is the ideal average

load per instance. The second term, log logn
log d , captures the deviation from the average load caused by

randomness.
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Single-choice (d = 1). The above bound degenerates to a much weaker guarantee:

max
i

L(Ii) =
m

n
+Θ

(√
m logn

n

)
, (3)

indicating a significantly larger deviation from the mean, which grows with both m and n.

Two-choices (d = 2). The deviation term becomes log log n, which is exponentially smaller than
that under d = 1. In particular, for d = 2, PoTC yields:

max
i

L(Ii) ≤
m

n
+ log logn+O(1), (4)

leading to exponentially better load balancing than single-choice. Consequently, DualMap deliber-
ately chooses d = 2, providing significantly tighter bounds on load imbalance, especially in large-
scale deployments.

Why Two Choices Instead of More. Intuitively, using more choices should lead to better load
balancing. However, according to Eq. 2, although increasing the number of choices d reduces the
deviation term log logn

log d , the improvement quickly exhibits diminishing returns. For instance, the
reduction from d = 2 to d = 3 or d = 4 is marginal (detailed in §A.9). In contrast, increasing
d expands the candidate instance set for each request, dispersing requests with the same prefix
across more instances and thereby weakening KV cache locality. A global strategy that “collects
information from all instances and selects the best one” is effectively equivalent to using d = n
choices. Yet Eq. 2 shows that this yields negligible improvement over d = 2 in terms of maximum
load, while severely degrading KV cache reuse: prefix-sharing requests may be scattered across the
entire cluster, increasing prefill computation and ultimately worsening TTFT. Therefore, DualMap
deliberately adopts d = 2, achieving strong load balancing while preserving KV cache locality.

3 THE DUALMAP DESIGN

3.1 OVERVIEW

To break the trade-off between cache affinity and load balancing, we propose DualMap, a dual-
mapping scheduling strategy for distributed LLM serving that enables both objectives simulta-
neously. Figure 2 illustrates the system architecture of DualMap, comprising two main compo-
nents: the global scheduler and the inference cluster. Each inference instance hosts an LLM and is
equipped with a given-size host DRAM used for context caching, enabling KV cache reuse across
requests to reduce redundant computation and improve serving efficiency. The global scheduler han-
dles incoming requests from external users or client applications and dispatches each request to an
appropriate inference instance based on DualMap. Upon receiving a request, DualMap employs the
following three techniques to achieve both cache affinity and load balancing: 1) SLO-aware Request
Routing(§3.2) selects the most suitable instance among two candidates to maximize system SLO
compliance; 2) Hotspot-Aware Rebalancing(§3.3) rebalances hotspot instances to achieve load bal-
ance under skewed workloads; 3) Lightweight Dual-hash-ring Scaling(§3.4) enables rapid scaling
and resizing of the cluster.

3.2 SLO-AWARE REQUEST ROUTING

To balance cache reuse and load distribution, the DualMap global scheduler maps each request to
two candidate instances using two independent hash functions over the request’s prompt prefix. This
process must answer two key questions:

1) How long prefix is appropriate for the hash key? Ideally, the hash key should consist of the
shared prefix so that requests with shared context are mapped to the same instance, enabling KV
cache reuse. In practice, however, the global scheduler does not know the shared prefix length
beforehand, and different requests may have varying shared prefix lengths.

Two issues arise: (1) if the hash key is too long, it may exceed the actual shared prefix, causing
requests to be mapped to different instances and reducing cache reuse; (2) if the hash key is too
short, different request sets may collide, concentrating load on a few instances and causing severe
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Figure 2: The system overview of DualMap.

imbalance. Real-world request patterns are also highly skewed, with some prefixes appearing dis-
proportionately and forming hotspot instances.

To address this, we propose an adaptive hash prefix length mechanism that dynamically determines
the prefix length for each request. The global scheduler maintains a request prefix hotness tree,
where each node records prefix information. The hash prefix corresponds to the full path from root
to leaf. When a leaf prefix becomes hot, child nodes are added to extend the hash prefix, distributing
hot requests across more instances; when a parent prefix becomes cold, its child nodes are removed
to shorten the prefix, aggregating normal requests to the same instance and improving cache reuse.
Prefix hotness is tracked via the traffic ratio ρ of each prefix in real time using a sliding window.Here,
ρ is defined as the fraction of total requests within the window that share the same prefix. A prefix
is hot if ρ > 2

n , where n is the number of inference instances, reflecting the dual-mapping strategy’s
upper bound. If a hot prefix’s traffic drops significantly between windows (e.g., ρ > 2

n to ρ < 1
n ),

its hotness is updated and child nodes removed to shorten the prefix.

In experiments, the distribution of hash key prefix lengths for the Conversation and Tool&Agent
datasets is detailed in §A.2.1.

2) Select which intance between the two candidates? Selecting between the two candidates in-
volves a critical trade-off between cache affinity and load balancing, which directly impacts the
request’s TTFT. A more detailed analysis is provided in the §A.2.1

Baseline Strategies. A naive least-loaded strategy selects the instance with the lower load, disre-
garding cache availability. In contrast, a pure cache-affinity strategy always routes a request to the
instance with the highest expected cache reuse. While this minimizes recomputation, it can lead to
severe load imbalance. To minimize the risk of TTFT SLO violations, the Min TTFT policy esti-
mates TTFT for each candidate instance and selects the one with the lower value. For a request r
and candidate instance i, we define: Tq(r, i) as estimated queuing delay of Request r on Instance i,
capturing system load, Tc(r, i) as expected computation time for Request r on Instance i, depending
on whether cache reuse occurs. Thus, the estimated total TTFT is TTFT (r, i) = Tq(r, i)+Tc(r, i).
However, as new requests arrive, this strategy may oscillate between cache-aware and load-aware de-
cisions, leading to frequent cache misses under load fluctuation, increasing recomputation overhead
and worsening overall TTFT. Fundamentally, Min TTFT’s pursuit of optimal latency per request
inadvertently degrades cache reuse and destabilizes load balance over time.

SLO-Aware Strategy. To address these issues, DualMap adopts a SLO-aware routing strategy
that explicitly incorporates TTFT constraints. The key idea is to maintain cache affinity whenever
possible, and only trade it off when load imbalance threatens to breach SLO constraints. DualMap
prioritizes cache affinity and initially selects the instance with the highest cache reuse. Requests are
routed to this instance until its load causes the expected TTFT to exceed the SLO. At that point,
DualMap switches to a load-aware strategy and selects the less loaded instance to avoid long queues
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and reduce TTFT tail latency. Furthermore, if both instances have equal prefix hit rates, DualMap
always chooses the less-loaded one, further enhancing load balance without sacrificing reuse. Unlike
Min TTFT, DualMap does not seek per-request optimal TTFT. Instead, it preserves cache reuse
whenever load conditions permit, switching to load balancing only when necessary. This reduces
the frequency of recomputation and stabilizes cache hit rates.

To quantify system load, DualMap uses the number of pending prefill tokens on each instance, as
prefill computation latency scales with token count. Given a predefined TTFT SLO, we compute
the maximum number of pending prefill tokens that a GPU can process within the SLO, referred to
as the ttft slo threshold. This threshold is used as the switching criterion to a load-aware strategy in
our implementation, ensuring that routing decisions remain aligned with service-level constraints.

DualMap is designed so that every request has two distinct candidate instances. If the two hash
functions f1 and f2 initially map a request to the same instance, we deterministically adjust the
second candidate as

instance id2 = (instance id1 + 1) mod num instances. (5)

This ensures that each request always has two distinct candidate instances.

3.3 HOTSPOT-AWARE REQUEST REBALANCING

As discussed in Challenge 2 (§1), for the skewed nature of real-world request patterns, some in-
stances may become overloaded over time—resulting in long queues and elevated tail TTFT, while
others remain underutilized.

To solve this problem, we introduce hotspot-aware request rebalancing, selectively migrating pend-
ing requests from overloaded instances to less-loaded ones. This rebalancing strategy is inspired by
Cuckoo hashing (Pagh & Rodler, 2001), where each key has two possible slots and can be relocated
if its primary slot is full. In this setting, a DualMap instances play the role of slots, and requests
act as keys. When an instance becomes overloaded (i.e., has a long queue of pending requests),
some requests are redirected to their alternative candidate instance, preserving the mapping consis-
tency of DualMap. Unlike traditional Cuckoo hashing, which may involve recursive evictions, we
adopt a non-recursive, single-round batch migration to minimize overhead. Specifically, we evaluate
multiple queued requests on overloaded instances and migrate those whose alternative instance is
underloaded and yields a net TTFT benefit.

Request migration directly impacts TTFT. A straightforward approach is to migrate requests near
the tail of the queue, as they experience long queuing delays. However, if their alternative instance is
also congested, such migration may worsen overall latency. Another heuristic is to migrate requests
with low cache affinity to reduce potential cache hit loss, but this too can backfire if the target
instance has even less relevant cached data. To balance these trade-offs, we estimate the potential
TTFT gain for each request by jointly considering queuing delays and computation costs on both
the source and target instances. We define the migration benefit for a Request r currently queued at
the overloaded Instance i with the alternative Instance j as:

B(i→j)
r = TTFTr,i − TTFTr,j = (Tq(r, i) + Tc(r, i))− (Tq(r, j) + Tc(r, j)) (6)

Only requests with a sufficiently positive B(i→j)
r are considered for migration. Requests are pri-

oritized by descending benefit and migrated until all requests in the overloaded instance’s queue
are expected to meet the TTFT SLO. The alternative instance j is precisely the second candidate
from the dual mapping. We do not search over all instances; instead, we preserve the prefix-bound
candidate pair {I1, I2} and migrate requests only within this pair. This approach maintains cache
affinity while keeping scheduling complexity under control. Overall, this hotspot-aware migration
mechanism effectively alleviates overloaded instances while preserving cache affinity. Details are in
§A.2.2.

3.4 LIGHTWEIGHT DUAL-HASH-RING SCALING

LLM inference workloads often experience pronounced temporal variation in request volume. To
achieve low queuing latency and high resource utilization, the system must support dynamic and
responsive elastic scaling. However, static hash-based mapping poses significant challenges: scaling

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Cache Affinity Least Loaded Min TTFT Preble DualMap

Req rate (req/s)
1 2 3 4 5

0

50

100

SL
O

 a
tta

in
m

en
t (

%
)

+8
0%

+40%

(a) Conversation with
Qwen2.5-7B

Req rate (req/s)
1 2 3 4

0

50

100

SL
O

 a
tta

in
m

en
t (

%
)

+1
25

%

+48%

(b) Tool&Agent with
Qwen2.5-7B

Req rate (req/s)
1 2 3 4

0

50

100

SL
O

 a
tta

in
m

en
t (

%
)

+4
0.

6%

+14.3%

(c) Conversation with
Qwen2.5-14B

Req rate (req/s)
1 2 3 4

0

50

100

SL
O

 a
tta

in
m

en
t (

%
)

+5
5%

+16.7%

(d) Tool&Agent with
Qwen2.5-14B

Figure 3: Effective request capacity and goodput of different scheduling strategies.

operations such as adding or removing instances trigger global remapping, which severely disrupts
cache affinity.

To enable elastic scaling with minimal disruption, we adopt a dual-mapping hash ring that combines
dual mapping with consistent hashing (Karger et al., 1997) to achieve lightweight elasticity. The
hash ring spans a logical space [0,M), with each instance assigned an anchor point based on a
unique identifier (e.g., IP and port). Each request hashes its prefix using two independent hash
functions to generate two anchor points and selects the nearest clockwise instance as a candidate.
The scheduler chooses between these two candidates based on the SLO-aware request routing (§3.2).
Because request-to-instance mappings are determined by relative positions on the ring, changes to
cluster membership affect only localized regions. This design ensures that most requests retain their
original mapping paths during scaling operations. As a result, cache loss is significantly reduced
and elastic scaling is achieved with minimal disruption.

4 PERFORMANCE EVALUATION

4.1 EXPERIMENTAL SETUP

Testbed. We implement DualMap as an independent global scheduling layer for distributed LLM
serving systems. In our experiments, we deploy DualMap on top of vLLM (Kwon et al., 2023).
All experiments are conducted on a distributed LLM serving cluster. Each node in the cluster is
equipped with 8 Ascend NPUs (910B4: 32 GB HBM or 910B3: 64 GB HBM), and 1.5 TB DRAM.

Metrics. We evaluate the following: Effective Request Capacity (Qin et al., 2025), the percentage of
requests with TTFT below a 5s SLO, reflecting system ability to handle latency-sensitive requests
(Table 1); Goodput, the peak request rate sustained under required SLO (e.g., 90%), correlating
with lower per-request cost (Zhong et al., 2024); P50 and P90 TTFT, measuring overall schedul-
ing/inference efficiency and tail latency in the prefill stage; End-to-End Latency (E2E), total time
from request arrival to final token generation, reported as P50 and P90; and Cache Hit Rate and
Load Balance Ratio, assessing scheduling efficiency (§A.3.2). Elasticity evaluation is in §A.3.3.

Baselines and Workloads. We compare DualMap with four scheduling strategies: Cache Affinity,
Least Loaded, Min TTFT (Qin et al., 2025), and Preble (Srivatsa et al., 2024). We use two real-world
trace datasets from Mooncake (Qin et al., 2025): Conversation and Tool&Agent, detailed in §A.3.1.
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Figure 4: TTFT and E2E Latency of different scheduling strategies.

Model Deployment. We evaluate Qwen2.5 7B and 14B models (Team, 2024) using default
float16 precision. Each instance is assigned a dedicated NPU (910B4 for 7B, 910B3 for 14B).
Context caching is configured to store up to 1 million tokens for the 7B model and 0.5 million tokens
for the 14B model, covering 30% and 15% of total request tokens, respectively.

4.2 END-TO-END PERFORMANCE

We evaluate the end-to-end performance of various scheduling strategies under two real-world work-
loads, using the Qwen2.5 7B and 14B models with 8 instances on different request rates (QPS).

Effective Request Capacity and Goodput. As shown in Figures 3b and 3d, on the Tool&Agent
dataset, the presence of a large number of skewed prefixes makes the Cache Affinity strategy per-
form poorly. Even under low QPS, its SLO attainment rate is significantly lower than that of other
strategies due to severe load imbalance, which leads to excessive queuing delays and frequent viola-
tions of the TTFT SLO. Preble and Min TTFT achieve suboptimal performance: their load-balancing
capabilities mitigate the cluster imbalance caused by skewed loads, but at the cost of reduced cache
hit rates. In contrast, DualMap, which simultaneously achieves cache affinity and load balancing,
consistently outperforms other approaches. Its Effective Request Capacity increases by up to 125%
(Figure 3b), while goodput improves by 16.7%-48% compared to the best baseline.

As shown in Figures 3a and 3c, on the conversation dataset, without skewed prefixes, DualMap still
demonstrates significant advantages over other strategies. Its Effective Request Capacity increases
by 40.6%–80%, and its goodput improves by 14.3%–40% compared to the best baseline.

TTFT and E2E Latency. As shown in Figure 4, across all experimental settings, DualMap sig-
nificantly outperforms all baselines in both TTFT and E2E latency. Under high QPS scenarios,
compared to the best baseline, DualMap reduces P50 TTFT by 55.4%–97.4% by achieving cache
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Figure 5: Ablation Results under the Conversation workload using the Qwen2.5-14B model.

affinity, which yields high cache hit rates, effectively reduces redundant computation, and lowers
TTFT; and reduces P90 TTFT by 82.3%–97% by achieving load balancing, which avoids request
accumulation on individual instances and effectively reduces tail queuing time. The E2E latency
closely follows the TTFT trends at both P50 and P90, as optimizations in the prefill stage indi-
rectly impact the overall E2E latency. Comparing different models, DualMap consistently achieves
lower TTFT and E2E latency than baselines on both the 7B and 14B models. Across varying QPS,
DualMap maintains latency close to low-QPS levels even when QPS doubles, demonstrating strong
stability, whereas baseline latencies increase rapidly with higher QPS.

4.3 ABLATION STUDY

To understand the source of DualMap’s performance gains, we conduct an ablation study by in-
crementally enabling the techniques described in §3 under the Conversation workload using the
Qwen2.5-14B model. We compare five configurations: 1) DualMap-cache-affinity, uses cache-
affinity between two candidates during DualMap initial routing (§3.2). 2) DualMap-least-loaded,
uses least-loaded selection; 3) DualMap-min-ttft, uses min-TTFT selection. 4) DualMap-no-
rebalance, includes SLO-aware request routing but disables the hotspot-aware rebalancing; 5)
DualMap, includes both techniques introduced in §3.2 and §3.3.

As shown in Figure 5, DualMap-cache-affinity shows the highest P50 (Figure 5a) and P90 (Fig-
ure 5b) TTFT, as maximizing cache reuse (Figure 5c) causes severe load imbalance (Figure 5d) and
long queuing delays. DualMap-least-loaded alleviates imbalance but suffers from low cache reuse,
while DualMap-min-ttft slightly improves yet still has low cache hit rate due to frequent switching
between cache-aware and load-aware scheduling. Compared with DualMap-min-ttft, DualMap-no-
rebalance performs better, reducing P50 and P90 TTFT by 23.5% and 18.5% through SLO-aware
scheduling. Finally, DualMap achieves the lowest latency, further reducing P90 TTFT by 11.3%
with hotspot-aware rebalancing.

5 CONCLUSION

This paper addresses the conflict between cache affinity and load balancing in distributed LLM
serving. We propose DualMap, a dual-mapping inference scheduler that simultaneously ensures
KV cache reuse and balanced workload distribution. Key techniques include SLO-aware request
routing, hotspot-aware rebalancing and lightweight dual-hash-ring scaling. Experimental results
show that DualMap boosts effective request capacity by up to 2.25× under the same TTFT SLO
constraints, and significantly reduces P90 latency across real-world workloads, compared with the
state-of-the-art work.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The source code, imple-
mentation details necessary to reproduce all experiments are provided in the supplementary material
(zip file). Detailed instructions for running the experiments and reproducing the reported results are
included in the accompanying README file.
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A APPENDIX

A.1 LLM USAGE STATEMENT

In preparing this paper, we used a Large Language Model in polishing the writing. Specifically,
the LLM was employed to improve grammar and readability of the text. No part of the research
ideation, experimental design, data analysis, or results interpretation involved the use of LLMs. The
authors take full responsibility for all content of the paper.

A.2 DESIGN

A.2.1 SLO-AWARE REQUEST ROUTING

To balance cache reuse and load distribution, the DualMap global scheduler maps each request
to two candidate instances using two independent hash functions over the request’s prompt prefix.
Selecting between the two candidates involves a critical trade-off: prioritizing cache affinity reduces
the prefill compute time through KV cache reuse, while prioritizing load balancing reduces queuing
delays. This choice directly impacts the request’s TTFT.

How long prefix is appropriate for the hash key? We analyze the distribution of hash key lengths
on two datasets: Conversation and Tool&Agent, where the length represents the number of blocks
(one block contains 512 tokens) in the prefix.
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Figure 6: Distribution of hash key prefix lengths for the Conversation and Tool&Agent datasets.

As shown in Figure 6a, on the Conversation dataset, 95% of requests have a shared prefix length
of 2 blocks. This is because the prefixes in this dataset are not skewed. Therefore, two blocks (one
system block and one user input block) are sufficient to identify shared-prefix requests, allowing
them to be scheduled to the same instance without being scattered across multiple instances due to
overlong hash keys.

In contrast, on the Tool&Agent dataset(Figure 6b), 45.2% of requests are similar to those in the Con-
versation dataset, with a hash key length of 2 blocks, because these requests are relatively balanced.
However, 14.9% and 37.8% of requests have hash key lengths of 6 and 13 blocks, respectively. This
is due to two abnormally popular prefixes in the Tool&Agent dataset. Our adaptive hash prefix length
mechanism detects these skewed prefixes and extends their hash key lengths, preventing them from
being mapped to the same instance and avoiding severe load imbalance.

Baseline Strategies. A naive least-loaded strategy selects the instance with the lower load, disre-
garding cache availability. As shown in Figure 7, Request 1 is routed to Instance 2 because it has
fewer queued requests, even though Instance 1 already holds the matching KV cache. This results
in a cache miss and longer prefill compute time, which in turn increases GPU occupancy and delays
subsequent requests (e.g., Requests 3, 5, and 7), elevating their TTFT and increasing the risk of
violating SLOs.

In contrast, a pure cache-affinity strategy always routes a request to the instance with the highest
expected cache reuse. While this minimizes recomputation, it can lead to severe load imbalance. For
example, if all matching prefixes are cached on Instance 1 as shown in Figure 7, all corresponding
requests will be routed there, leading to queue buildup and long queuing delays (e.g., Requests 5, 6,
and 7), despite short computation times.

To minimize the risk of TTFT SLO violations, the Min TTFT policy estimates TTFT for each can-
didate instance and selects the one with the lower value. For a request r and candidate instance i,
we define:

• Tq(r, i): estimated queuing delay of Request r on Instance i, capturing system load.
• Tc(r, i): expected computation time for Request r on Instance i, depending on whether

cache reuse occurs.

Thus, the estimated total TTFT is:

TTFT (r, i) = Tq(r, i) + Tc(r, i) (7)

In the example, although Instance 1 has a longer queuing delay (Tq(1, 1) > Tq(1, 2)), it benefits
from cache reuse (Tc(1, 1) ≪ Tc(1, 2)), resulting in lower total TTFT:

TTFT (1, 1) = Tq(1, 1) + Tc(1, 1) < TTFT (1, 2) = Tq(1, 2) + Tc(1, 2) (8)

Therefore, Min TTFT routes Request 1 to Instance 1.

However, as new requests arrive, this strategy may oscillate between cache-aware and load-aware
decisions. For example, when Request 2 arrives, the queue at Instance 1 grows Tq(2, 1) ≫ Tq(2, 2),
causing the scheduler to send the request to Instance 2 despite a cache miss. This load rebalancing
improves fairness at the cost of recomputation. As the queue at Instance 1 shortens, future requests
(e.g., Requests 3, 4, and 5) are again routed there, until the load imbalance grows again. In cases
like Request 6, the scheduler again sacrifices cache affinity for load balancing.
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Figure 7: SLO-aware request routing. Different colors represent different prefixes. Instance 1 has
context caching for all prefixes, while Instance 2 has no context caching.

While adaptive, this switching behavior leads to frequent cache misses under load fluctuation, in-
creasing recomputation overhead and worsening overall TTFT. As observed with Request 7, re-
peated recomputation and queuing can lead to SLO violations. Fundamentally, Min TTFT’s pursuit
of optimal latency per request inadvertently degrades cache reuse and destabilizes load balance over
time.

The SLO-Aware Strategy. To address these issues, DualMap adopts a TTFT-SLO-aware routing
strategy that explicitly incorporates TTFT constraints. The key idea is to maintain cache affinity
whenever possible, and only trade it off when load imbalance threatens to breach SLO constraints.

DualMap prioritizes cache affinity and initially selects the instance with the highest cache reuse.
Requests are routed to this instance until its load causes the expected TTFT to exceed the SLO.
At that point, DualMap switches to a load-aware strategy and selects the less loaded instance to
avoid long queues and reduce TTFT tail latency. As shown in Figure 7, Requests 1–4 are routed to
Instance 1 due to acceptable load difference and high cache reuse. Once the cache-affine instance
becomes overloaded and violates the TTFT SLO, Request 5 is routed to Instance 2 to rebalance the
load, even at the cost of recomputation.

Unlike Min TTFT, DualMap does not seek per-request optimal TTFT. Instead, it preserves cache
reuse whenever load conditions permit, switching to load balancing only when necessary. This
reduces the frequency of recomputation and stabilizes cache hit rates. Furthermore, if both instances
have a matching prefix in their caches (i.e., equal prefix hit rate), DualMap always chooses the less-
loaded one (e.g., Requests 6 and 7), further enhancing load balance without sacrificing reuse.

A.2.2 HOTSPOT-AWARE REQUEST REBALANCING

Instance-hotspots in system. While the PoTC principle provides strong load-balancing guarantees
under uniformly random choices (Mitzenmacher, 2002), real-world request patterns are often highly
skewed. In practice, KV prefix popularity often follows a skewed distribution (Wang et al., 2025b),
making the candidate selection in DualMap non-uniform. For instance, tool-agent scenarios fre-
quently involve a small number of widely used tools, while conversation agents often operate on
trending topics. These skewed access patterns lead to certain prefixes being disproportionately com-
mon, causing some instances to be selected far more frequently than others, even under DualMap.
As a result, persistent hotspots emerge. Empirical results in Figure 8 show that hot instances fre-
quently emerge under DualMap scheduling, particularly in the tool-agent workload. This is at-
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Figure 8: Hot instance phenomenon in real-world datasets. The bright yellow regions indicate
overloaded instances.
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Figure 9: Hotspot-aware request migration.

tributed to the high concentration of requests targeting popular tool prompts, which are repeatedly
hashed to the same candidate instances, resulting in severe queuing and load imbalance.

Instance-hotspots-aware Rebalancing. To achieve timely rebalancing, DualMap initiates batch
migration during the initial routing phase whenever both candidate instances of a request are iden-
tified as overloaded. As illustrated in Figure 9, for each overloaded instance, DualMap estimates
the migration benefit of each queued request using Eq. 6. A request is eligible for migration only if
it satisfies satisfying B(i→j)

r > 0 and TTFTr,j < TTFTSLO, ensuring both TTFT improvement and
SLO compliance. Requests are prioritized by descending benefit and migrated until all requests in
the overloaded instance’s queue are expected to meet the TTFT SLO. This hotspot-aware migration
mechanism effectively relieves overloaded instances while preserving cache affinity.

A.2.3 LIGHTWEIGHT DUAL-HASH-RING SCALING

In DualMap, all instances and request prefixes are placed on a logical ring based on their hash values,
and each hashed prefix selects the nearest clockwise instance as its candidate. Thus, mappings
depend solely on their relative positions on the ring.

Adding an instance introduces a new anchor point on the ring. Only requests whose hashed positions
fall between the previous and the new anchor are remapped; all others retain their original mappings.
Similarly, removing an instance affects only the prefixes that previously mapped to that instance.

We illustrate this with a simple example. Suppose the cluster has four instances A,B,C,D placed
on a logical ring according to their hash values, with the clockwise order A → B → C → D. The
resulting prefix-to-instance mapping is:

(A,B] → B, (B,C] → C, (C,D] → D.

Requests hashed in (A,B] map to B, those in (B,C] to C, and those in (C,D] to D.

Now suppose a new instance E is added, and its hash value places it between B and C, yielding the
updated ring A → B → E → C → D. The mapping becomes:

(A,B] → B, (B,E] → E, (E,C] → C, (C,D] → D.
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Only requests whose hashed positions fall in (B,E] are remapped to the new instance E, while all
other mappings remain unchanged.

A.3 EVALUATION

A.3.1 WORKLOADS

We use two real-world trace datasets from Mooncake (Qin et al., 2025): Conversation and
Tool&Agent. Conversation is derived from multi-turn chatbot interactions. It exhibits approximately
40% prefix caching ratio due to high intra-session prefix reuse. Tool&Agent is characterized by long
and repetitive system prompts, with a prefix cache ratio of 59%. Table 1 summarizes the workload
characteristics. To ensure meaningful cache behavior under limited KV cache capacity, we evaluate
the first 4,000 requests from Conversation and the first 8,000 from Tool&Agent. Arrival timestamps
are preserved and scaled to simulate varying QPS levels.

Due to memory constraints on NPUs, the input length of each request is capped at 20,480 tokens for
the 7B model and 10,240 tokens for the 14B model. To ensure consistent cache behavior, the first
500 requests are used for warm-up and excluded from all reported results.

Table 1: Workload characteristics for Conversation and Tool&Agent traces.

Conversation Tool&Agent

Avg. Input Length 12,035 8,596
Avg. Output Length 343 182
Prefix Caching Ratio 40% 59%
Number Requests 4,000 8,000

A.3.2 CACHE HIT RATE AND LOAD BALANCE RATIO

To understand the source of performance differences across scheduling strategies, we evaluate the
cache hit rate and load balance ratio of four baselines and DualMap under the Conversation and
Tool&Agent workloads using the Qwen2.5-7B model.

Cache Hit Rate. As shown in Figures 10a and 10b, DualMap achieves cache hit rates comparable to
the Cache Affinity strategy under both the Conversation and Tool&Agent workloads, reaching 62.5%
and 96.4% of the theoretical upper bound, respectively. This is attributed to DualMap’s prompt-
based mapping strategy and its cache-aware routing when conditions permit(§3.2). These designs
enable DualMap to preserve strong cache affinity, thereby reducing prefill computation overhead,
shortening the NPU occupation time per request, and decreasing queueing delays for subsequent
requests—ultimately improving the likelihood of meeting TTFT SLOs.

In contrast, the Least Loaded strategy exhibits significantly lower cache hit rates on both workloads,
as it prioritizes load balancing across instances without regard for cache reuse. Min TTFT improves
upon this by incorporating cache-aware routing for a subset of requests, resulting in higher cache
hit rates. Preble performs similarly to Least Loaded due to its conservative policy: it only engages
in cache-aware scheduling when the request’s prefix cache hit rate exceeds 50%, which limits its
overall cache reuse potential.

Load Balance Ratio. As shown in Figures 11a and 11c, DualMap maintains consistently low and
stable system load throughout the entire experiment, significantly outperforming all baselines. This
benefit comes from its dual-mapping design, which achieves high cache affinity and consequently
reduces overall computational load, enabling faster request completion. In addition, upon detecting
overload, DualMap proactively migrates requests from overloaded instances to lighter ones. This
allows DualMap to maintain load balance across all instances, ensuring efficient resource utilization
and reduced queuing delays, as shown in Figures 11b and 11d.

The load across instances is not always perfectly balanced. This is because DualMap prioritizes
cache-aware scheduling among two candidate instances during initial routing, until the number of
queued requests on cache-hitting instances grows too large to meet the TTFT SLO. This approach
ensures that most requests still meet their TTFT SLO while maximizing cache reuse and reducing
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Figure 10: Cache hit rate with Qwen2.5-7B.
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Figure 11: Pending tokens count and load balance ratio across all instances with Qwen2.5-7B.
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Figure 12: Scaling experiments: (a) and (b) scale-up from 4 to 8 instances; (c) and (d) scale-down
from 8 to 4 instances.Stability at 4 instances.

prefill computation. As a result, the number of pending tokens per instance is significantly reduced
for DualMap. In contrast, Cache Affinity exhibits poor load balance, as its design co-locates requests
with shared prefixes onto the same instance, resulting in severe skew, which leads to continuous ac-
cumulation of pending tokens. Least Loaded achieves an almost perfectly uniform load distribution
(CV=0) on both workloads, consistent with its load-aware scheduling policy. However, its pend-
ing token count is much higher than that of DualMap due to insufficient cache reuse. Min TTFT
and Preble show noticeable improvements over pending tokens count and CV by trading off load
balancing and cache affinity.

A.3.3 ELASTICITY EVALUATION

We evaluate DualMap’s elasticity under the Tool&Agent workload using the Qwen2.5-7B model.
SLO attainment (i.e., percentage of requests with TTFT < 5s) is used to assess scaling effectiveness.

Scaling Up. As shown in Figure 12a, with 4 instances under QPS=4, the system quickly becomes
overloaded, causing widespread SLO violations. At 74 seconds, DualMap detects overload and
adds 4 instances (Instance 4–7). SLO attainment promptly rises to 90% as the scheduler routes new
requests to the newly added idle instances (Figure 12b), relieving pressure on hot instances.
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Figure 13: Scalability and scheduler overhead under the Tool&Agent workload using the Qwen2.5-
7B model, with the number of instances varying from 8 to 32.

Scaling Down. Later, under reduced load (QPS=2) and with 8 instances, the system becomes un-
derutilized. At 1809 seconds, DualMap begins gradual downscaling, reducing to 4 instances (Fig-
ure 12c), while maintaining over 90% SLO attainment.

A.4 SCALABILITY AND OVERHEAD

We evaluate the scalability of DualMap and scheduler overhead using the Vidur-based simula-
tor (Agrawal et al., 2024). We simulate a cluster of instances, each with 64 GB DRAM and one NPU
(910B4), serving Qwen2.5-7B on the Tool&Agent workload. The number of instances is scaled from
8 to 32, and the total number of requests is increased proportionally from 8K to 32K.

A.4.1 SCALABILITY ANALYSIS.

As shown in Figure 13a, DualMap achieves near-linear growth in goodput (the maximum sustainable
request rate under the 90% TTFT SLO) (Zhong et al., 2024) and consistently outperforms Cache
Affinity, Least Loaded, Min TTFT, and Preble across all cluster sizes. This demonstrates the strong
scalability of the dual-mapping design. These results indicate that DualMap’s dual-mapping design
scales well: prefix-bound dual hashing preserves cache affinity, while rebalancing always operates
within candidate pairs, keeping the load-balancing behavior stable as the cluster grows.

A.4.2 SCHEDULER OVERHEAD.

DualMap maintains per-instance metadata for DRAM-based KV caches and request queues, up-
dating it as requests are scheduled and executed. KV cache metadata supports estimating reusable
tokens and thus prefill computation cost, while queue metadata provides queueing-delay estimates
for TTFT prediction, enabling both SLO-aware routing and hotspot-aware rebalancing. The primary
overhead of DualMap arises from the metadata footprint and the runtime footprint of key scheduler
operations.

Metadata footprint. Metadata footprint is dominated by KV cache (request queues are typically
short, so their cost is negligible). Following MooncakeAPC-style (202, 2025) designs, each 128-
token block stores a hash value and block ID (8B each), i.e., 16B per block. For Qwen2.5-7B, a
64GB KV cache contains 9,632 blocks, so each instance stores about 146.2 KB of metadata, which
is engineering-wise negligible; a 32-instance cluster stores 4.57MB. For Qwen2.5-14B, the per-
instance and 32-instance metadata costs are 44KB and 1.38MB, respectively, growing linearly with
total KV-cache capacity.

Runtime footprint. DualMap’s runtime footprint primarily comes from three operations (Fig-
ure 13b): KV cache access, SLO-aware request routing(§3.2), and hotspot-aware request rebal-
ancing(§3.3).
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Figure 14: CDF of shared prefix rate for the Conversation and Tool&Agent workload.

(1) KV cache access. For each request, DualMap computes the number of reusable tokens by query-
ing the KV cache to estimate the remaining prefill computation and expected TTFT. Both KV cache
query and save operations take ∼0.2 ms and are independent of cluster size, since each instance’s
KV cache metadata is maintained and accessed independently by the global scheduler.

(2) Routing(§3.2). SLO-aware request routing takes ∼0.6 ms per request, consisting of dual hashing
to obtain candidate instances (∼0.05 ms) and TTFT estimation via KV cache queries. These op-
erations depend only on per-instance metadata, so routing latency does not grow with cluster size.

(3) Rebalancing(§3.3). Hotspot-aware request rebalancing takes 2.2–2.5 ms per invocation. For
each request on an overloaded instance, DualMap computes the current TTFT and the hypothetical
TTFT after migration. Each TTFT evaluation requires two KV cache queries (one on the overloaded
instance and one on its backup), so the total cost scales with the queue length of the overloaded in-
stance, independent of the total number of instances in the cluster. In practice, instance request
queues are typically short, so the overhead of hotspot-aware rebalancing remains bounded and ac-
ceptable.

A.5 SHARED PREFIX RATE CHARACTERIZATION

Prompts are partially shared across requests in real-world workloads (Srivatsa et al., 2024; Gao
et al., 2024). For the workloads used in our study, Conversation and Tool&Agent, we measure
the shared prefix rate, defined as the fraction of a request’s prompt that overlaps with the longest
shared prefix among preceding requests within the same workload, where “length” refers to the
number of tokens. Figure 14a shows that 48% of Conversation requests share at least 50% of
their prompt prefix, reflecting naturally recurring dialogue histories across multiple conversation
turns. Figure 14b shows an even stronger effect: 76% of Tool&Agent requests share at least 50%
of their prefix, largely due to repeated system prompts and consistent tool prompts. These results
confirm the high prevalence of shared prefixes in practical LLM serving environments and highlight
the importance of cache-affinity-aware scheduling to maximize KV cache reuse and reduce prefill
computation.

A.6 INTEGRATION INTO DISAGGREGATED ARCHITECTURES

DualMap is agnostic to the internal micro-architectural design of the serving system and only re-
quires an estimated TTFT for each candidate instance.

Prefill–Decode (PD) Disaggregation. In PD-disaggregated systems, TTFT is dominated by the
prefill phase. DualMap therefore performs routing exclusively on the prefill instances, while decode
instances are attached following the serving framework’s existing mechanism (e.g., vLLM). This
design avoids any invasive changes to the underlying execution pipeline.

Attention–FFN (AF) Disaggregation. AF disaggregation is primarily an optimization for the de-
code stage (Zhu et al., 2025; Wang et al., 2025a). In practice, many systems first apply PD disag-
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gregation and then perform AF disaggregation within the decode nodes. Similar to the PD setting,
DualMap focuses on scheduling the prefill (P) instances, where TTFT is determined by prefill com-
putation and queueing delay. Because AF disaggregation occurs downstream in the decode stage,
it does not affect DualMap’s core routing objective: minimizing TTFT through KV cache affin-
ity and load balancing on the prefill instances. Thus, DualMap naturally remains compatible with
AF-disaggregated architectures without requiring additional modifications.

A.7 CLARIFYING NOVELTY AND CONTRIBUTION

While DualMap adopts hashing primitives similar to classical distributed systems such as Dy-
namo (DeCandia et al., 2007) and Chord (Stoica et al., 2001), it addresses a fundamentally different
challenge specific to distributed LLM serving: reconciling KV cache affinity with load balanc-
ing under strict TTFT SLOs. While both DualMap and these systems use hashing primitives, their
mechanisms diverge significantly:

• Novel Mechanism: Prefix-Bound Dual Candidates. Classical systems map each key to
a single location (e.g., Chord’s successor) or a primary with fixed replicas (e.g., Dynamo).
DualMap introduces a prefix-bound dual-candidate mechanism:

Prefix(p) ⇒ {I1, I2}.
Each request prefix p is deterministically mapped to a pair of candidate instances via two
independent hash functions. This provides exactly two degrees of freedom for load bal-
ancing—following the PoTC principle—while ensuring that all requests sharing the same
prefix are always routed among the same two candidates. This structure is essential for
maintaining KV-cache locality and is not present in traditional systems.

• SLO-Aware Request Routing. Instead of static replica selection, DualMap chooses be-
tween its two candidates using a TTFT estimation function that jointly considers the cache-
reuse benefit and queuing delay, which is entirely absent in traditional systems.

• Hotspot-Aware Request Rebalancing. LLM workloads often display highly skewed re-
quest distributions, resulting in concentrated instance hotspots that may violate SLOs by
consistent hashing alone. DualMap introduces hotspot-aware request rebalancing, which
selectively migrates requests only within their prefix-bound candidate pair. This migra-
tion alleviates overload without scattering prefixes across instances, preserving cache lo-
cality—a property that traditional systems neither require nor are designed to support.

DualMap is not a minor variant of consistent hashing. It is a novel scheduling framework purpose-
built to simultaneously achieve cache affinity and load balancing under the strict SLO requirements
of modern LLM serving workloads.

A.8 DISCUSSION: ROBUSTNESS OF TTFT ESTIMATION UNDER MEMORY CONTENTION

This section provides additional details on the robustness of TTFT estimation in scenarios with NPU
memory contention.

A.8.1 MEMORY-EXHAUSTION-INDUCED DECODE BOTTLENECK

Under the vLLM serving backend, each inference instance prioritizes prefill computations over de-
codes as long as sufficient NPU memory is available. Memory is released only after a request com-
pletes its decode stage. At high request rates, repeated prefills cause “rapid memory consumption
on the NPU, eventually preventing new prefills from being scheduled. Once this occurs, the sched-
uler must switch to decode execution in order to free memory blocks. During this phase, a prefill
request may need to wait for one or more decode tasks to finish, causing a delay whose magnitude
depends on the lengths of the ongoing decodes as well as the current memory pressure. We refer
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to this phenomenon as the memory-exhaustion-induced decode bottleneck. The delay introduced in
this state is denoted as Di for instance i.

A.8.2 IMPACT OF THE DECODE BOTTLENECK ON SLO-AWARE REQUEST ROUTING

SLO-aware request routing uses the original TTFT estimate TTFT (r, i) = Tq(r, i) + Tc(r, i),
where TTFT (r, i) denotes the predicted TTFT for dispatching request r to instance i. When the
decode bottleneck state introduces an additional delay Di, the actual TTFT becomes TTFT actual

r,i =

Di+Tq(r, i)+Tc(r, i). If Di is small, TTFT actual
r,i typically remains below the TTFT-SLO threshold,

causing negligible deviation in SLO attainment. In contrast, when Di becomes large, TTFT actual
r,i

is likely to exceed the TTFT-SLO, causing most requests on the memory-exhausted instance to
violate TTFT SLO. This behavior effectively mirrors an overloaded-instance condition, in which
requests fail to meet their TTFT-SLO. Consequently, we delegate the mitigation of persistent decode
bottleneck states to the hotspot-aware request rebalancing mechanism.

A.8.3 HOTSPOT-AWARE REQUEST REBALANCING UNDER DECODE BOTTLENECKS

In the hotspot-aware request rebalancing mechanism, an instance that remains in a decode-bound
phase for an extended period is treated as overloaded, and requests in its queue that are at risk of
violating the TTFT SLO should be migrated to less-loaded instances, thereby mitigating the issue
of widespread TTFT SLO violations caused by decode bottlenecks. This mechanism relies on two
core components: bottleneck detection and TTFT correction.

Decode Bottleneck Detection. An instance is considered to be in a decode bottleneck state when
it fails to complete any prefill computation for an extended period while its request queue remains
non-empty. To detect this condition, the global scheduler monitors the interval prefill interval =
tcurrent − tlast prefill,where tlast prefill is the timestamp of the last prefill completion. Once this interval
exceeds a threshold T , the instance is flagged as being in the long decode bottleneck state. This
heuristic provides a practical approximation of the decode-induced delay and does not depend on
the decode lengths of individual requests.

The threshold T reflects a trade-off between timely detection of decode bottlenecks and the preser-
vation of cache affinity. A large T delays bottleneck detection, potentially increasing the number of
SLO violations, whereas a small T leads to frequent migrations that may undermine the cache affin-
ity established by SLO-aware request routing. Based on empirical observations in our deployment,
T is set to 3 seconds, which works well in practice.

Corrected TTFT Estimation and Request Migration. For an instance identified as a decode bot-
tleneck hotspot, the TTFT estimate for its queued requests is corrected by adding an approximation
of the decode delay:TTFT corrected

r,i = Destimated +Tq(r, i)+Tc(r, i). Since the true Di cannot be de-
termined accurately, DualMap approximates Destimated using the observed prefill interval. Although
this approximation may not be entirely accurate, the interval grows as the bottleneck state persists,
enabling DualMap to identify requests that are at risk of exceeding the TTFT SLO. When the cor-
rected TTFT of a request exceeds the SLO, the rebalancing mechanism migrates it to a less-loaded
candidate instance, ensuring that the request meets the TTFT SLO. This mechanism effectively con-
verts unpredictable decode bottleneck latency into an overload signal that the global scheduler can
detect through the responses of individual instances executing requests.

Although the decode bottleneck state complicates precise TTFT estimation, the rebalancing mech-
anism ensures robustness by treating such states as overload conditions and migrating requests ac-
cordingly. This design enables DualMap to maintain high SLO attainment even under NPU memory
contention that introduces decode-latency variability.
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Figure 15: Maximum load deviation for different choices across cluster sizes (n = 8–32).

A.9 OPTIMAL CANDIDATE SET SIZE

To determine the optimal candidate set size d, we compute the maximum load deviation according to
PoTC theory. The number of inference instances ranges from n = 8 to n = 32, and the total number
of requests m is set to 8000–32000 such that the average load m

n remains constant. As shown
in Figure 15, increasing d from 1 to 2 produces a sharp reduction in maximum load deviation,
consistent with the well-established near-exponential gain enabled by two-choice load balancing.
When d exceeds 2, the marginal benefit quickly tapers off, indicating that larger candidate sets
contribute little additional improvement in reducing imbalance.

These trends persist across all evaluated cluster sizes. Overall, d = 2 provides an effective balance
for DualMap: it delivers strong inter-instance load balancing while keeping the candidate set small,
thereby preserving high KV cache reuse.

B RELATED WORK

Prefix Sharing between Requests. A common scenario among multiple requests is the sharing
of prompts. For instance, requests within the same session in multi-turn conversations share the
prompt history of previous requests (Sha, 2025; Gao et al., 2024; Zheng et al., 2024b; Yang et al.,
2025; Li et al., 2024a); in tool agents, requests accessing the same tool often have identical tool
usage instructions (Hao et al., 2023). For these shared prompts, using KV cache (Kwon et al., 2023;
Prabhu et al., 2025; Chen et al., 2025; Lee et al., 2024; Wu et al., 2024; Li et al., 2024b; Wu et al.,
2025; Wang et al., 2025b; Sun et al., 2024; Strati et al., 2024; Wang et al., 2024; Ye et al., 2024;
Yao et al., 2025; Agarwal et al., 2025; Shi et al., 2024; Zhang et al., 2025; Chen et al., 2024a;b)
to trade computation for storage, by reusing the prefix’s key-value (KV) tensors across multiple
requests (202, 2025; Zheng et al., 2024a), allows for direct loading of the KV cache corresponding
to these shared prompts without recomputation. This saves valuable GPU computing resources and
significantly reduces inference latency.

Scheduling Work Balancing Cache Affinity and Load Balance. Preble (Srivatsa et al., 2024)
adopts a heuristic strategy: When the prefix hit rate of a request (i.e., the ratio of the number of
tokens matched with shared prefixes in the system to the total number of input tokens) exceeds 50%,
the request is dispatched to the instance with the highest prefix hit rate, thus favoring Cache Affinity.
Conversely, when the prefix hit rate is low, Preble routes requests based on a combination of request
inference cost and current instance load. However, this strategy can lead to behavior similar to the
Least Loaded policy. For example, consider two instances: Instance 1 contains the KV cache for
Request 1, and Instance 2 contains the KV cache for Request 2. If Instance 1 is more loaded when
Request 1 arrives, it will be routed to Instance 2, breaking cache locality. Later, Request 2 may be
routed to Instance 1 for similar reasons.

Dynamo (Dyn, 2025) formulates a scheduling cost function to balance cache reuse against load
balancing, defined as maxi(KVMatchi − Loadi). Here, KVMatchi denotes the prefix hit rate of
request r on instance i, and Loadi represents the current load on instance i. When the load difference
between instances is large, the cost function is dominated by the load term, degenerating into a Least
Loaded policy. Conversely, when the request’s prefix hit rate is high, the KVMatch term dominates,
resulting in behavior similar to Cache Affinity.
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Mooncake (Qin et al., 2025) routes each request to the instance with the lowest estimated TTFT,
which is composed of two factors: the queuing delay (proportional to the instance’s current load)
and the recomputation cost (inversely related to cache reuse). We refer to this policy as Min
TTFT and simplify its cost function as maxi(pending tokens counti − recompute tokens counti).
Where pending tokens counti denotes the number of tokens queued for prefill on instance i, and
recompute tokens counti is the number of input tokens for request r that must be recomputed on
instance i due to lack of KV cache reuse. Similar to Dynamo, when the system is heavily loaded, the
cost is dominated by the queuing term pending tokens counti, degenerating into the Least Loaded
policy; when the system is lightly loaded, the cost is dominated by recomputation, behaving like
Cache Affinity.

However, all these methods operate within a single mapping space and are fundamentally limited
to balancing the trade-off between cache affinity and load balance. In contrast, DualMap proposes
a novel dual-mapping scheduling framework enabling the system to simultaneously achieve both
objectives.
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