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ABSTRACT

The Fisher information is a fundamental concept for characterizing the sensitivity
of parameters in neural networks. However, leveraging the full observed Fisher
information is too expensive for large models, so most methods rely on simple diag-
onal approximations. While efficient, this approach ignores parameter correlations,
often resulting in reduced performance on downstream tasks. In this work, we miti-
gate these limitations and propose Generalized Fisher-Weighted SVD (GFWSVD)
— a post-training LLM compression technique that accounts for both diagonal and
off-diagonal elements of the Fisher information matrix, providing a more accurate
reflection of parameter importance. To make the method tractable, we introduce
a scalable adaptation of the Kronecker-factored approximation algorithm for the
observed Fisher information. We demonstrate the effectiveness of our method on
LLM compression, showing improvements over existing compression baselines.
For example, at a 20% compression rate on the MMLU benchmark, our method
outperforms FWSVD, which is based on a diagonal approximation of the Fisher
information, by 5%, SVD-LLM by 3%, and ASVD by 6%.

1 INTRODUCTION

The Fisher Information Matrix (FIM) (5) is widely employed in neural networks to enhance the
efficiency of models, particularly in the context of training and inference. However, computing and
leveraging the full Fisher information is computationally prohibitive for deep networks. To make the
problem tractable, existing methods adopt simplified approximations – most commonly, assuming
that the Fisher matrix is diagonal (29; 6; 24). While efficient, this assumption discards valuable
information about parameter correlations.

One key application of FIM is low-rank compression of large language models (LLMs). However, the
standard low-rank approach — Singular Value Decomposition (SVD) — often leads to suboptimal
performance. To mitigate this, weighted SVD methods aim to align the optimization objective with
the target task (30; 12). Fisher-Weighted SVD (FWSVD) (12) uses Fisher information to assign
importance to parameters. However, FWSVD utilizes only the diagonal part of FIM and treats each
row as independent, which can lead to poor retention of task-critical components.

In contrast, we propose a more accurate weighted SVD method: Generalized Fisher-Weighted
SVD (GFWSVD). Our approach leverages a Kronecker factorization of the full FIM to derive two
sensitivity matrices, which are integrated into a generalized SVD framework. To overcome the high
computational cost of factorizing the full Fisher matrix, we introduce a scalable adaptation of the
Kronecker decomposition algorithm. We compare our method with various low-rank compression
approaches for large models — those using Fisher information (Fisher-Weighted SVD), and those
leveraging activation statistics (ASVD (30), SVD-LLM (28)) — and observe consistent improvements
in downstream task performance.

To summarize, our main contributions are as follows:

• We introduce Generalized Fisher-Weighted SVD (GFWSVD), a new weighted SVD-based
method for compressing large language models, which leverages the Kronecker-decomposed
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Fisher information that encodes both row-wise and column-wise parameter correlations. We
prove that GFWSVD is a generalization of FWSVD (12).

• We propose a computationally effective adaptation of the Kronecker decomposition algo-
rithm for the Fisher information matrix (FIM) that captures its full structure without relying
on diagonal or other simplifying approximations.

• We empirically show that our method preserves model performance under compression
while maintaining efficiency, outperforming existing techniques within its class.

2 RELATED WORK

Fisher information is a fundamental tool for estimating parameter importance in neural networks. It
has been used in continual learning to prevent catastrophic forgetting (14), in federated learning to
guide local update strategies (13), and more recently for merging fine-tuned models at the parameter
level (17). Due to the computational complexity of the FIM, many methods introduce structural
assumptions to enable efficient approximations. A prominent approach is Kronecker product fac-
torization, which decomposes FIM into tractable components. KFAC (9) pioneered this idea for
convolutional layers, showing that structural constraints can preserve key curvature information
while reducing cost. Later work (25) improved training efficiency through faster Kronecker-factored
approximations, while KPSVD (15) applied singular value constraints to enable memory-efficient
FIM approximations in large-scale models. These efforts primarily focus on improving optimization
and training. In contrast, our work leverages Kronecker-product FIM approximation for post-training
model compression, aiming to preserve task sensitivity while significantly reducing model size. These
methods commonly assume layer independence, reducing the full-network FIM to a block-diagonal
form and enabling per-layer analysis. We adopt the same assumption in this work, focusing on
improving compression at the single-layer level.

Structural approximations have shown promise in post-training model compression. For instance,
SparseGPT (7) ranks weights using curvature estimates for pruning, while FWSVD (12) applies
diagonal FIM approximations to guide task-aware SVD compression. As we later demonstrate,
FWSVD emerges as a special case of our more general framework, underscoring the flexibility of
our approach. Notably, many of these methods assume independent parameter contributions, which
can limit task sensitivity. In contrast, our Kronecker-factored approximation of the full observed FIM
captures both row- and column-wise dependencies within weight matrices, yielding more accurate
importance estimates. Separately, task-unaware low-rank methods focus on minimizing truncation
error without leveraging global structure. AdaSVD (18) distributes compression strength across
layers via adaptive compensation, while ASVD (30), NSVD (20), and SVD-LLM variants (28; 27)
use activation statistics to refine truncation. These methods modulate projections using layer-specific
signals like activation norms, distributions, or covariances. Although our method is task-aware and
structure-driven, it is potentially compatible with these activation-based refinements. Integrating such
signals, as in KFAC-like schemes, is a promising direction we leave for future work. In this paper,
we focus on a clean evaluation setting to isolate and highlight the core contributions of GFWSVD.

3 BACKGROUND AND PROBLEM FORMULATION

In this section, we establish the connection between Fisher information over matrix variables drawn
from Matrix-Variate Normal (MVN) distribution and our approach to approximating the Fisher matrix
via a Kronecker product decomposition. We then leverage this decomposition to develop an improved
compression algorithm based on the generalized SVD formulation.

3.1 LAYER COMPRESSION AND HESSIAN APPROXIMATION

Consider post-training weight compression as a perturbation of a model parameters θ ∈ Rd. The
perturbation affects the deviation of the model’s loss function L(θ) in the proximity of an optimal
point θ⋆. Sensitivity to such perturbation can be naturally captured by the second-order expansion of
the loss determined by the quadratic term involving the Hessian H = H (θ⋆) of the problem:

∇L = L(θ)− L (θ∗) ≈ 1

2
(θ − θ⋆)

⊤
H (θ − θ⋆) (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Compression optimization thus corresponds to minimizing the deviation ∇L with respect to a
compression θ = C(θ⋆) while considering the structured curvature encoded in H:

min
C

(θ⋆ − C (θ⋆))⊤ H (θ⋆ − C (θ⋆)) , (2)

where the optimization task is considered over a functional family of compression methods C.

In real-world settings, working directly with H is often intractable due to its size and complex
structure. Hence, solving the task in Eq. 2 also requires finding good enough approximations of H
that ideally capture the most important properties of the Hessian. As we show next, there is a certain
class of approximations that align particularly well with our task.

3.2 MATRIX-VARIATE NORMAL DISTRIBUTION AND FISHER INFORMATION

The Matrix-Variate Normal (MVN) distribution (10) extends the classical multivariate normal distri-
bution to matrix-valued random variables, providing a structured approach to modeling dependencies
within rows and columns. Formally, a matrix X ∈ Rn×m follows an MVN distribution if its entries
exhibit Gaussian properties with covariance structured across both dimensions. The distribution is
defined as

X ∼MN (M,Σ1,Σ2), (3)

where M is the mean matrix, and the (non-degenerate) covariance is expressed as a Kronecker
product Σ2 ⊗Σ1. Here, Σ1 captures dependencies between rows, while Σ2 encodes dependencies
across columns. This structure ensures that each row and column follows a well-defined correlated
Gaussian distribution.

A crucial property of MVN is that its likelihood function inherently incorporates the inverse
Kronecker-factored covariance, leading to an efficient representation of second-order dependencies.
The log-probability density function of X has the form:

log(p(X)) ∝ −1

2

(
vec (X−M)

⊤
(Σ2 ⊗Σ1)

−1vec (X−M)
)
=

= −1

2
tr
(
Σ−1

1 (X−M)Σ−1
2 (X−M)

⊤
)

(4)

Maximization of log-likelihood leads to minimization of trace in Eq. 4, which yields the Generalized
Least Squares Matrix Decomposition problem (3):

min
rank(X)≤r

∥∥∥Σ− 1
2

1 (X−M)Σ
− 1

2
2

∥∥∥2
F
, (5)

directly connected to the Generalized Singular Value Decomposition (GSVD) (8). This problem can
be straightforwardly solved by means of standard SVD (1):

X = Σ
1
2
1 ÛŜV̂⊤Σ

1
2
2 (6)

where ÛŜV̂⊤ = SVDr(Σ
− 1

2
1 MΣ

− 1
2

2 ). We note that the result also holds in the case when matrix
square roots are replaced with the corresponding Cholesky factors, which are typically easier to find.

Under regular conditions (e.g., smooth differentiability and proper statistical properties), Fisher
Information IF serves as an expectation of the local curvature (second derivative) of the likelihood
function. Importantly, by taking derivatives of the MVN likelihood function with respect to M, it is
easy to show that the corresponding Hessian directly coincides with Fisher Information at the MLE
solution, e.i., IF = H(M) = Σ−1

2 ⊗ Σ−1
1 . This formulation provides a natural bridge between

the selection of an optimal compression algorithm C from Eq. 2 and Fisher Information, which we
establish next.

3.3 FISHER-WEIGHTED LINEAR LAYER COMPRESSION

Building on the established connection between MVN distributions and Fisher Information, we are
now ready to formulate the rank-r linear layer compression theorem.

3
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Theorem 1. Let W ∈ Rn×m represent some parameter weights matrix of a single-layer linear
neural network. Suppose that the following conditions hold.

1. The task loss function is derived from an MLE problem.

2. The (non-degenerate) empirical Fisher Information has a Kronecker product structure
IF = A⊗B.

3. The weights W are drawn from the MVN distributionMN (W⋆,B−1,A−1), where W⋆ is
the optimal weights matrix.

Under these conditions, the best rank-r approximation that minimizes the expected increase in the
loss after low-rank decomposition of W⋆ is given by:

Ŵr = L−⊤
B W̃r L

−1
A , (7)

where A = LAL⊤
A and B = LBL

⊤
B are Cholesky factorizations, W̃ = L⊤

BW
⋆ LA is an auxiliary

matrix, W̃r is the truncated SVD of W̃ of rank r.

Proof. Under the assumption that the loss function originates from MLE, the Hessian coincides with
Fisher Information at the optimal point, ensuring structured sensitivity encoding. Hence, one can
replace Eq. 2 with a surrogate problem

min
C

(θ⋆ − C (θ⋆))⊤ IF (θ⋆ − C (θ⋆)) (8)

for vec(W⋆) = θ⋆ and vec(W) = C(θ⋆).
Substituting IF with A⊗B and applying Cholesky decomposition to factors A and B yields:

vec(W⋆ −W)⊤(LALA
⊤ ⊗ LBLB

⊤)vec(W⋆ −W)

= vec(W⋆ −W)⊤(LA ⊗ LB)(LA
⊤ ⊗ LB

⊤)vec(W⋆ −W)

= vec(LB
⊤(W⋆ −W)LA)⊤vec(LB

⊤(W⋆ −W)LA)

=
∥∥∥LB

⊤ (W⋆ −W)LA

∥∥∥2
F

(9)

In Section 3.2, we established that the optimal solution to this problem can be obtained via the
standard SVD of the auxiliary matrix W̃. The final solution is found in two steps: 1) finding an
optimal rank-r solution to the auxiliary problem W̃r = SVDr(LB

⊤W⋆LA), and 2) recovering the
optimal solution to the original problem through the inverse transformation Ŵr = L−⊤

B W̃r L
−1
A ,

which yields the best rank-r minimizer for Eq. 9. Consequently, the decomposition Ŵr presents an
optimal compression C for Eq. 8, which in turn yields the minimal error increase in Eq. 1 for the
given task defined by Eq. 2. ■

Linear layer factorization in this case can be computed with the following expressions:

W1 =

√
ŜrV̂

⊤
r L

−1
A ∈ Rr×m,W2 = L−⊤

B Ûr

√
Ŝr ∈ Rn×r, (10)

where Ŝr is the diagonal matrix of the r leading singular values of the auxiliary problem.

3.4 RELATIONSHIP TO PRIOR WORKS

We show that FWSVD, presented in (12), is a special case of our generalized framework. The full
justification is given in Appendix A. In FWSVD, the objective minimizes a weighted reconstruction
error using a diagonal matrix D derived from a row-wise sum of the Fisher Information. We show
that this setup corresponds to a diagonal Kronecker-factored approximation of the FIM, where D
arises naturally from minimizing the Kronecker approximation error. The resulting solution for the
low-rank factors W2,W1 matches that of FWSVD (up to a constant), which shows that their method
is a special case of our more general framework.

4
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SVD

FWSVD

Generalized 


FWSVD (ours)

Figure 1: Generalization of the Weighted SVD frameworks. For standard SVD, the transformation
matrices are identity matrices. For FWSVD, the left matrix is diagonal but not identity, and the right
matrix is identity. For GFWSVD, both matrices are non-diagonal.

The connection between our generalized approach, the classical SVD and FWSVD is depicted in
Figure 1. Weighted SVD approaches can be interpreted as transforming the decomposed object—here,
the weight matrix—into a new space where the low-rank approximation better aligns with the target
task. In this formulation, the sensitivity matrices serve as transformation matrices that reweight
the importance of different directions. Under this view, vanilla SVD corresponds to using identity
transformations; FWSVD applies a diagonal (but non-identity) transformation on one side while
keeping the other side as identity. In contrast, our method employs full, non-diagonal transformations
on both sides, capturing richer structure in the parameter space.

4 KRONECKER FACTORIZATION ALGORITHM VIA RANK-1 SVD

Suppose that we have a linear layer of a network with a weight matrix W and define Gi ∈ Rn×m as
a weight gradients L(θ)|θ=W on the i-th batch, and gi = vec(Gi) ∈ Rn·m - its flattening version.
Then, Fisher Information IF (θ) can be defined as an empirical mean over all batches in a dataset D:

IF (θ⋆) = E
[
gg⊤

]
=

1

|D|

|D|∑
i=1

gig
⊤
i . (11)

Kronecker product approximation is obtained by solving minimization problem:

min ∥IF −A⊗B∥F (12)

Kronecker product decomposition of IF is computed from a rank-1 approximation of permuted
matrix ĨF = RIF ∈ Rm2×n2

, as it is described in (19). The pseudocode of the method is in
Algorithm 1, the code is available on anonymous repository: link.

Algorithm 1 Compute Kronecker Factors via Rank-1 SVD

Require: List of gradients {gi}|D|
i=1, |D| – number of batches

1: IF ← 1
|D|
∑|D|

i=1 gig
T
i

2: ĨF ← RIF ← 1
|D|
∑|D|

i=1 Gi ⊗Gi

3: (u, σ, v⊤)← Leading singular triplet ▷ Truncated SVD
4: b← u · σ ▷ b = vec(B)
5: a← v ▷ a = vec(A)
6: B← reshape(b, (m,m))
7: A← reshape(a, (n, n))
8: return (B,A)

5
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4.1 EFFICIENT RANK-1 COMPUTATION

The primary computational bottleneck of Algorithm arises in performing SVD on the matrix ĨF .

Standard SVD is computationally intractable for large matrices, so we employ truncated SVD using
the Lanczos (16) method, which avoids explicit matrix construction and requires only the ability to
multiply the matrix with a vector from the left or right. Even in this setting, aggregating the full
second-moment gradient information across all batch samples is computationally expensive.

We can show (see Appendix B) that permuted IF for i-th batch can be defined as the Kronecker
product of the corresponding gradient matrices:

ĨF =
1

|D|

|D|∑
i=1

Gi ⊗Gi, (13)

then multiplication of this matrix ĨF to a vector z from left will be:

ĨF z =
1

k

(
k∑

i=1

Gi ⊗Gi

)
z =

1

|D|

 |D|∑
i=1

Gi ⊗Gi

Z = z, where z = vec(Z),Z ∈ Rn×n

(14)

Using property of the Kronecker product (K ⊗ L) vec
(
C) = vec(K⊤CL

)
we reduce the matrix-

vector multiplication to a sequence of matrix multiplications:

ĨF z =
1

|D|

|D|∑
i=1

vec(G⊤
i ZGi) (15)

The derivation for right-side multiplication is analogous (see Appendix C). Using these operations,
we can obtain an approximation of the Fisher information for layers of LLMs and batch sizes used in
practice within a reasonable time.

4.2 TIME COMPLEXITY OF THE PROPOSED RANK-1 COMPUTATION

The time complexity of computing the truncated SVD of the matrix J̃ ∈ Rm2×n2

consists of the
matrix-vector multiplications and the orthogonalization and has a cost of O

(
m2n2

)
. However,

using the structured formulation from Eq. 15, where left matrix-vector products are implemented via
multiplications with matrices G⊤

i ∈ Rm×n, Z ∈ Rn×n, and Gi ∈ Rn×m, the overall complexity is
reduced to O

(
mn2 +m2n

)
. Applying analogous reasoning to the right matrix-vector products (see

Eq. 30) one can yield the same complexity.

Table 1: Runtime for computing Kro-
necker factors of single matrices on
GPU.

Layer Params Time (s)

BERT 2.3M 43
LLaMA-2-7B 45M 183
LLaMA-2-13B 70.8M 313

Although the proposed method exhibits cubic complexity
with respect to the dimensions of the linear layer’s weight
matrix, its empirical runtime grows more slowly than that
of the standard matrix-vector product, which scales quar-
tically. In large language models, where m and n are
typically on the order of 103, this reduction yields a prac-
tically significant speedup. Table 1 reports the empirical
decomposition times for ĨF , corresponding for matrices
W in different LLMs.

5 NUMERICAL EXPERIMENTS

To validate our theoretical contributions, we conduct extensive numerical experiments on several
transformer architectures: the encoder-only BERT model (4) and the decoder-only LLM LLaMA
2 (26). Our goal is to demonstrate the practical benefits of GFWSVD in low-rank compression under
fine-tuning and evaluation protocols. We conduct all experiments on a single NVIDIA A100 GPU
with latest CUDA drivers using Python 3.12. The code is available on anonymous repository: link.
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Figure 2: Macro-averaged GLUE performance
of bert-base-uncased model for different
compression ranks.
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Figure 3: Average MMLU performance of
llama-2-7b-chat model for different com-
pression rates.

5.1 COMPRESSING THE TRANSFORMER ENCODER

In our experiments, we follow the “fine-tune then compress” pipeline, similar to FWSVD (12). We
begin by fine-tuning a pre-trained checkpoint1 of the BERT-base model on a specific downstream
GLUE task. Optimal fine-tuning hyperparameters (e.g., learning rate, batch size) are selected for
each task using the Optuna framework (2). During this stage, we also collect gradients to construct
the FIM IF and compute its Kronecker decomposition as described in Section 4.

Table 2: The correspondence between
rank and entire BERT compression rate.

Rank C.Rate Rank C.Rate

1 ∼ 40% 100 ∼ 33%
5 ∼ 40% 250 ∼ 23%
10 ∼ 39% 500 ∼ 8%
50 ∼ 36% 600 ∼ 1%

Using the resulting Cholesky factors LA and LB, we uni-
formly compress the fully connected layers of BERT by
factorizing them into two smaller layers, following the
method detailed in Section 3.1. The chosen layer-wise
ranks and the resulting overall compression rate of the
model are summarized in Table 2. We reproduce the
ASVD method using the original authors’ code. For
FWSVD, we incorporate the newly constructed FIM into
the compression process.

We show average compression results in Table 3 and Fig-
ure 2, extended results are in Appendix E in Table 8. On
most of the GLUE tasks and considered compression ranks, our proposed GFWSVD approach
consistently outperforms both FWSVD and SVD, with particularly strong gains at lower ranks. While
ASVD exhibits relatively poor performance on several tasks (QQP, QNLI), it occasionally surpasses
GFWSVD — notably on SST2 under aggressive compression.

Table 3: Macro-averaged GLUE performance of the bert-base-uncased for different compres-
sion ranks. Best results for each rank are in bold.

Method / Rank 600 500 250 100 50 10 1

SVD 0.77 0.76 0.65 0.47 0.41 0.42 0.37
ASVD (30) 0.75 0.71 0.51 0.46 0.45 0.36 0.36
FWSVD (12) 0.74 0.74 0.68 0.56 0.46 0.43 0.38
GFWSVD (Ours) 0.77 0.77 0.75 0.66 0.59 0.53 0.51

5.2 COMPRESSING THE TRANSFORMER DECODER

We evaluate our approach on the decoder-only LLama 2 7B model2 against several competitive
baselines: diagonal FI-based low-rank approximation method FWSVD (12), and two activation-
based methods – ASVD (30) and SVD-LLM(28). Notably, ASVD and SVD-LLM both rely on
activation-based weighting to gauge parameter importance, while FWSVD and ours GFWSVD derive
importance scores solely from gradient information.

1https://huggingface.co/google-bert/bert-base-uncased
2https://huggingface.co/unsloth/llama-2-7b-chat
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We measure perplexity on WikiText 2 (22) and PTB (21) datasets, and 5-shot reasoning performance
on the MMLU benchmark (11). Following prior works on low-rank approximation of LLMs (28; 30),
we test several compression setups, removing from 5% to 20% of original parameters.

Following standard practice in post-training LLM compression methods (28; 30), we use a randomly
sampled set of sentences as calibration data to generate gradients for further obtaining the factor
matrices. For calibration data, we choose the FineWeb dataset (23) due to its high quality and
diversity, and collect gradients on a random subsample of size 1024. These gradients are then used to
obtain LA and LB, as well as the data needed for FWSVD. As in LLMs, uniform layer compression
can disproportionately degrade performance by over-compressing critical layers and under-utilizing
redundancy in less sensitive ones, so it is essential for each method to use a compression configuration
that accounts for layer sensitivity. For both ASVD and SVD-LLM, we used the corresponding code
released by the authors and re-ran the necessary compression pipelines for our checkpoint with
all hyperparameters set to default values. For our approach, we adopted the method of per-layer
importance scores as described in the ASVD work.

Table 4: Performance of the unsloth/llama-2-7b-chat compressed by various methods
under compression ratios from 5% to 20% on WikiText-2, PTB, and MMLU. Lower is better for
perplexity (↓), higher is better for accuracy (↑).
METHOD WikiText-2↓ PTB↓ Compr. MMLU Avg↑Humanities↑ Other↑ Social Sciences↑ STEM↑
Full model 6.94 25.75 100% 0.46 ± 0.003 0.43 ± 0.01 0.55 ± 0.01 0.53 ± 0.01 0.36 ± 0.01

FWSVD (12) 7.52 45.25

95%

0.40 ± 0.003 0.36 ± 0.01 0.45 ± 0.01 0.45 ± 0.01 0.35 ± 0.01
ASVD (30) 7.60 26.29 0.41 ± 0.004 0.37 ± 0.01 0.48 ± 0.01 0.46 ± 0.01 0.35 ± 0.01
SVD-LLM (28) 8.80 51.28 0.34 ± 0.004 0.31 ± 0.01 0.38 ± 0.01 0.35 ± 0.01 0.31 ± 0.01
GFWSVD (Ours) 7.16 28.55 0.40 ± 0.003 0.38 ± 0.01 0.47 ± 0.01 0.44 ± 0.01 0.33 ± 0.01

FWSVD (12) 11.53 96.62

90%

0.37 ± 0.004 0.34 ± 0.01 0.43 ± 0.01 0.42 ± 0.01 0.33 ± 0.01
ASVD (30) 8.97 40.12 0.37 ± 0.004 0.33 ± 0.01 0.42 ± 0.01 0.40 ± 0.01 0.33 ± 0.01
SVD-LLM (28) 9.69 60.82 0.32 ± 0.004 0.30 ± 0.01 0.35 ± 0.01 0.32 ± 0.01 0.30 ± 0.01
GFWSVD (Ours) 8.77 36.44 0.38 ± 0.002 0.35 ± 0.01 0.44 ± 0.01 0.42 ± 0.01 0.33 ± 0.01

FWSVD (12) 22.06 411.50

85%

0.31 ± 0.009 0.29 ± 0.01 0.34 ± 0.01 0.33 ± 0.01 0.30 ± 0.01
ASVD (30) 10.91 83.49 0.32 ± 0.003 0.30 ± 0.01 0.33 ± 0.01 0.32 ± 0.01 0.30 ± 0.01
SVD-LLM (28) 10.36 72.58 0.30 ± 0.004 0.29 ± 0.01 0.34 ± 0.01 0.31 ± 0.01 0.30 ± 0.01
GFWSVD (Ours) 10.06 42.19 0.36 ± 0.004 0.33 ± 0.01 0.41 ± 0.01 0.38 ± 0.01 0.32 ± 0.01

FWSVD (12) 66.37 1523.00

80%

0.27 ± 0.004 0.25 ± 0.01 0.30 ± 0.01 0.28 ± 0.01 0.28 ± 0.01
ASVD (30) 27.73 241.57 0.26 ± 0.004 0.25 ± 0.01 0.27 ± 0.01 0.24 ± 0.01 0.28 ± 0.01
SVD-LLM (28) 11.23 98.91 0.29 ± 0.004 0.27 ± 0.01 0.32 ± 0.01 0.29 ± 0.01 0.29 ± 0.01
GFWSVD (Ours) 11.13 50.50 0.32 ± 0.003 0.30 ± 0.01 0.35 ± 0.01 0.34 ± 0.01 0.30 ± 0.01

Table 4 and Figure 3 shows that GFWSVD consistently outperforms both simple and strong baselines
across all compression rates. In particular, at the most aggressive settings (15–20% of the original
parameters), our method matches or exceeds the accuracy of activation-based methods and shows
substantially lower perplexities on both WikiText-2 and PTB.

For the entire LLM, layers are processed independently and factor computation can be parallelized,
so the runtime scales as:

Total time =
time per layer× number of layers

number of workers
.

For example, LLaMA-2-7B has 224 linear layers; with 4 GPUs, computing all Kronecker factors
takes approximately 3.5 hours. Memory constraints arise only during the calibration phase, when
gradients for selected layers must fit in memory. However, this is not a fundamental limitation: layers
can be calibrated sequentially by freezing and unfreezing them one at a time.

Throughput and FLOP results for compressed LLaMA models are provided in Appendix D.

In the scope of this work, we focused on a simple, analytically motivated form of post-training
compression, which was necessary to isolate the contribution of the non-diagonal elements of the
assumed parameter distribution in the layer weight matrices. As with classical SVD, the procedure
enables straightforward integration with complementary techniques that increase expressivity (e.g.,
post-training quantization or stochastic optimization of compression parameters). In such cases,

8
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GFWSVD can serve as a convenient initialization point on the loss surface for subsequent post-
training compression techniques.

5.3 IMPACT OF DIAGONAL AND NON-DIAGONAL ELEMENTS OF FACTORS

To assess the significance of the diagonal elements, we performed the following ablation study. In the
resulting factor matrices we retained either (1) only the off-diagonal elements (Non-diag) or (2) only
the diagonal elements (Diag), and measured perplexity relative to our method and FWSVD. The Diag
variant performs better than FWSVD but worse than GFWSVD. This is expected, since FWSVD
captures importance only along rows (only the left factor matrix has a non-identity diagonal, see
Fig. 1), whereas Non-diag GFWSVD captures both row and column importance. The contribution of
off-diagonal elements provides a noticeable improvement compared to FWSVD.

Method Wiki (10%) PTP (10%) Wiki (15%) PTP (15%)

FWSVD 11.53 96.62 22.00 411.00
Diag GFWSVD 10.94 45.26 11.06 48.25
Non-diag GFWSVD 8.85 37.25 10.22 43.75
Full GFWSVD 8.77 36.44 10.06 42.19

Table 5: Perplexity at 10% and 15% compression.

6 CONCLUSION AND FUTURE WORK

We introduced Generalized Fisher-Weighted SVD (GFWSVD), a low-rank second-order com-
pression method that leverages the full Fisher Information Matrix through a scalable Kronecker
decomposition. Unlike previous approaches, GFWSVD captures parameter correlations and yields
a factorization provably optimal within its class (Theorem 1). Our results on both encoder-only
(BERT on GLUE) and decoder-only (LLaMA-2 on MMLU) models show that GFWSVD consistently
outperforms diagonal Fisher- and activation-based SVD approaches, particularly at low ranks.

Crucially, the method is entirely analytical and does not require stochastic optimization or iterative
retraining, making it lightweight and reproducible. The tractable algorithm for computing full
Kronecker factors makes this work an important step toward practical, curvature-aware post-training
compression of large language models.

GFWSVD highlights the critical role of accurate FIM computation in compression. While our
approach performs well empirically, its reliance on a rank-1 Kronecker approximation of the Fisher
matrix may oversimplify important structure. Future work could explore higher-rank Kronecker series
to capture richer information, and extend the method to model cross-layer dependencies, potentially
improving performance by leveraging transitive correlations across the network.

7 LIMITATIONS

Our method decomposes the observed Fisher information matrix IF into a Kronecker product of two
smaller matrices, Y and X (Eq. 12). While effective, this assumes exact factorization, which may
not hold in practice and can limit approximation quality and task sensitivity. In LLM experiments,
we also observed cases where the estimated Kronecker factors were singular, requiring regularization
(e.g., Y ← Y + α diagY) to ensure positive definiteness and numerical stability. Although this
resolves instability, it introduces additional computational overhead.

We observed that compression effectiveness varies significantly across layers, making preliminary
layer selection necessary to achieve favorable trade-offs. A key limitation of our current approach
is the lack of coordination across layers during compression. For effective multi – layer com-
pression—especially in large-scale models like LLMs – it is important to account for cross-layer
dependencies. Future work could focus on modeling these interactions to enable joint compression
strategies.

9
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ETHICS STATEMENT

This work focuses on methods for improving the efficiency and practicality of post-training low-rank
compression of large language models using second-order information. Our research does not involve
human subjects, personally identifiable information, or other sensitive data. All experiments are
carried out on publicly available models (BERT, LLaMA) and widely used benchmarks (GLUE,
MMLU), ensuring transparency and reproducibility. We do not release any new datasets containing
private or proprietary information. The proposed methods are intended to reduce the computational
cost and energy consumption of deploying large models, which we view as a positive contribution
to sustainability. We are not aware of any direct negative societal impacts; however, as with any
model compression technique, improved efficiency may lower the barrier to deploying large models
in contexts where misuse is possible. We therefore encourage responsible use of these methods in
accordance with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility of our results. The full description of the
proposed method, including theoretical assumptions and proofs, is provided in the main text and
Appendix. All implementation details of Algorithm 1 as well as experimental pipelines are available
in an anonymous repository: link.
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A APPENDIX A: SPECIAL CASE OF DIAGONAL FISHER INFORMATION MATRIX

In this section, we show that FWSVD, presented in (12), is a special case of our generalized approach.

In the work of (12), authors propose to minimize the following objective:

min
W1,W2

∥DW⋆ −DW2W1∥2F (16)

where D is the diagonal matrix
√

diag (E[GG⊤]). Specifically, Di,i =
√∑m

j=1 E(Gi,j)2.

Similarly to 12, we approximate the Fisher Information with a Kronecker product of identity matrix
Im and some diagonal matrix D̃. As described further in Section 4 and Appendix A, under the
permutationR, the problem

min
D

∥∥∥IF − Im ⊗ D̃
∥∥∥
F

(17)

reduces to minimization of the expression

min
d

∥∥E[G⊗G]− (In ⊙ In)d · vec(Im)⊤
∥∥
F

(18)

where ⊙ is a Khatri-Rao product (column-wise Kronecher product) and · is a vector outer product; d
is a vector diagonal of D̃; E[G⊗G] is a permuted Fisher Information matrix ĨF, defined in Eq 13.

For simplicity, we will use a shorter notation. Let E = E[G⊗G], Z = In⊙ In, v = vec(Im). Then,
the problem 18 is equivalent to

min
d

∥∥Zd · v⊤ −E
∥∥
F

(19)

Applying first-order optimality conditions yields:

⟨Zδd · v⊤,Zd · v⊤ −E⟩ = 0

⟨δd · v⊤,Z⊤Zd · v⊤ − Z⊤E⟩ = 0

⟨δd,Z⊤Zd · v⊤v − Z⊤Ev⟩ = 0

Since Z⊤Z = In, v⊤v = ∥v∥22 = ∥vec(Im)∥22 = m , we have:

d =
1

m
(In ⊙ In)

⊤E[G⊗G]vec(Im) =
1

m
(In ⊙ In)

⊤vec(E[GG⊤]) =
1

m
diag(E[GG⊤]) (20)

Thus, diagonal matrix D̃ from Kronecker product approximation problem 17 equals square of matrix
D from the FWSVD formulation 16 up to the constant 1

m .
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We apply Theorem 1 to find factors W2, W1 for the obtained approximation IF = Im ⊗ D̃:

W2 =
√
D̃

−1

Ûr

√
Ŝr = D−1Ûr

√
Ŝr,W1 =

√
ŜrV̂

⊤
r (21)

where ÛrŜrV̂
⊤
r is r-rank SVD of

√
D̃W

⋆

= DW⋆. This is the same solution that minimizes the
problem 16 from FWSVD paper (12). Consequently, FWSVD approach is a special case of diagonal
Kronecker product approximation of Fisher Information.

B APPENDIX B: ADDITIONAL EXPLANATIONS FOR KRONECKER
DECOMPOSITION ADAPTATION

Let’s show that the permuted IF in the Kronecker decomposition algorithm can be expressed as the
Kronecker product of the corresponding gradient matrices.

We start with the empirical Fisher information matrix defined as IF = 1
|D|
∑|D|

i=1 gig
⊤
i and its

reordered version:

ĨF = RIF (22)

Using the identity
vec(gig

⊤
i ) = gi ⊗ gi,

we obtain:

vec(IF ) =
1

|D|

|D|∑
i=1

vec(gig
⊤
i ) =

1

|D|

|D|∑
i=1

(gi ⊗ gi). (23)

Let P ∈ R(ab)2×(ab)2 be the unique permutation matrix such that for any matrices A,B ∈ Ra×b:

P · vec(A⊗B) = (vec(A)⊗ vec(B)). (24)

In our case P can be defined through the commutation matrix Kmn and identity matrices In and Im:

P := In ⊗Kmn ⊗ Im, K⊤
mn = Knm (25)

Using this , we can write:

P · vec(Gi ⊗Gi) = vec(Gi)⊗ vec(Gi). (26)

Therefore, the vectorized Fisher information becomes:

vec(IF ) =
1

|D|

|D|∑
i=1

P · vec(Gi ⊗Gi) = P · vec

 1

|D|

|D|∑
i=1

(Gi ⊗Gi)

 = P vec(ĨF ). (27)

So, ĨF can be defined as 1
|D|
∑|D|

i=1(Gi ⊗Gi). This fact is used in the accelerated adaptation of the
Kronecker Factorization algorithm.

Now, suppose a IF and ĨF are connected withR ∈ Rn×n (see Eq. 22):

vec(ĨF ) = (I ⊗R) · vec(IF ),P = I ⊗R (28)
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C APPENDIX C: RIGHT VECTOR-MATRIX MULTIPLICATION

We can define right vector-matrix multiplication as follows:

I⊤F z = (

|D|∑
i=1

Gi ⊗Gi)
⊤z (29)

Using property of the Kronecker product (K⊗ L) vec(C) = vec(K⊤CL):

I⊤F z =

|D|∑
i=1

vec(GiZG
⊤
i ), where z = vec(Z),Z ∈ Rm×m (30)

D APPENDIX E: THROUGHPUT AND FLOPS FOR COMPRESSED MODELS

GFWSVD, ASVD, SVD-LLM compresses weight W ∈ Rn×m into a pair of low-rank matrices
W1 ∈ Rn×r and W2 ∈ Rr×m. This reduces the number of FLOPs required during the forward pass
through a linear layer from O(nm) to O(nr + rm) = O(r(n+m)).

Model (C Rate) Full Model FLOPs Compressed FLOPs
LLaMA-2-7B-chat (10%) 53.05T 42.43T
LLaMA-2-7B-chat (15%) 53.05T 39.24T
LLaMA-2-7B-chat (20%) 53.05T 37.18T

Table 6: Comparison of theoretical FLOPs for LLaMA-2-7B-chat under different compression rates.
All values are in trillions (T) of FLOPs.

We ran inference-time latency measurements on the LLaMA-2-7B-chat model under different
compressions. The results are shown below (averaged over 100 runs, batch size = 1, sequence length
= 1024 tokens, GPU: A100 80GB).

Table 7: Throughput (tokens/s) achieved by original LLaMA-7B-chat and its FWSVD-compressed
versions (batch size = 1, sequence length = 1024).

Compression Ratio Tokens/s Relative Speedup
0% (Uncompressed) 1186 1.00×
10% 1269 1.07×
15% 1294 1.09×
20% 1323 1.12×

E APPENDIX D: EXTENDED GLUE RESULTS

We report extended compression results on tasks of GLUE benchmark in Table 8.

F APPENDIX F: LLM USAGE STATEMENT

We used large language models (LLMs) only as a general-purpose writing assistant for grammar
checking and text polishing. The research ideas, implementation, analysis, and conclusions are
entirely our own.
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Table 8: Performance of bert-base-uncased compressed by various methods under compres-
sion rates from 60% to 99% on GLUE benchmark. Lower is better for COLA (↓), higher is better for
all other tasks (↑).

METHOD / DATASET MRPC↑ STSB↑ QQP↑ MNLI↑ QNLI↑ RTE↑ COLA↓ SST2↑
Full model 0.77 0.87 0.90 0.83 0.90 0.56 0.41 0.91

Compression Rate 99% (r = 600)

SVD 0.67 0.84 0.90 0.67 0.90 0.56 0.58 0.91
ASVD (30) 0.72 0.73 0.89 0.83 0.90 0.56 0.41 0.91
FWSVD (12) 0.72 0.87 0.90 0.72 0.90 0.55 0.36 0.91
GFWSVD (Ours) 0.73 0.87 0.90 0.73 0.90 0.56 0.55 0.92

Compression Rate 92% (r = 500)

SVD 0.53 0.82 0.89 0.53 0.90 0.54 0.53 0.89
ASVD (30) 0.71 0.56 0.86 0.81 0.89 0.53 0.44 0.88
FWSVD (12) 0.71 0.87 0.90 0.71 0.89 0.56 0.34 0.91
GFWSVD (Ours) 0.73 0.87 0.90 0.73 0.90 0.56 0.49 0.92

Compression Rate 77% (r = 250)

SVD 0.49 0.68 0.81 0.49 0.85 0.50 0.17 0.57
ASVD (30) 0.69 0.08 0.76 0.50 0.58 0.47 0.11 0.75
FWSVD (12) 0.69 0.86 0.89 0.69 0.89 0.61 0.23 0.80
GFWSVD (Ours) 0.71 0.86 0.89 0.71 0.89 0.61 0.38 0.88

Compression Rate 67% (r = 100)

SVD 0.32 0.08 0.64 0.32 0.80 0.51 0.01 0.49
ASVD (30) 0.58 0.07 0.74 0.39 0.50 0.47 0.05 0.82
FWSVD (12) 0.69 0.58 0.87 0.71 0.86 0.55 0.21 0.72
GFWSVD (Ours) 0.71 0.70 0.87 0.71 0.86 0.55 0.21 0.72

Compression Rate 64% (r = 50)

SVD 0.32 0.19 0.57 0.32 0.78 0.48 0.02 0.49
ASVD (30) 0.68 0.03 0.73 0.49 0.76 0.51 0.03 0.80
FWSVD (12) 0.69 0.65 0.84 0.69 0.72 0.46 0.03 0.77
GFWSVD (Ours) 0.69 0.65 0.84 0.69 0.72 0.46 0.05 0.77

Compression Rate 61% (r = 10)

SVD 0.32 0.32 0.67 0.32 0.61 0.51 0.00 0.49
ASVD (30) 0.61 0.14 0.64 0.40 0.57 0.49 -0.04 0.76
FWSVD (12) 0.37 0.32 0.79 0.37 0.57 0.49 0.00 0.49
GFWSVD (Ours) 0.53 0.60 0.79 0.53 0.62 0.47 0.05 0.65

Compression Rate 60% (r = 1)

SVD 0.32 0.04 0.69 0.31 0.55 0.53 0.00 0.49
ASVD (30) 0.62 0.10 0.64 0.42 0.50 0.49 0.03 0.70
FWSVD (12) 0.32 0.18 0.72 0.32 0.51 0.50 0.00 0.49
GFWSVD (Ours) 0.42 0.70 0.74 0.42 0.65 0.52 0.05 0.49
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