
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERALIZED FISHER-WEIGHTED SVD: SCALABLE
KRONECKER-FACTORED FISHER APPROXIMATION FOR
COMPRESSING LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Fisher information is a fundamental concept for characterizing the sensitivity
of parameters in neural networks. However, leveraging the full observed Fisher
information is too expensive for large models, so most methods rely on simple diag-
onal approximations. While efficient, this approach ignores parameter correlations,
often resulting in reduced performance on downstream tasks. In this work, we miti-
gate these limitations and propose Generalized Fisher-Weighted SVD (GFWSVD)
— a post-training LLM compression technique that accounts for both diagonal and
off-diagonal elements of the Fisher information matrix, providing a more accurate
reflection of parameter importance. To make the method tractable, we introduce
a scalable adaptation of the Kronecker-factored approximation algorithm for the
observed Fisher information. We demonstrate the effectiveness of our method on
LLM compression, showing improvements over existing compression baselines.
For example, at a 20% compression rate on the MMLU benchmark, our method
outperforms FWSVD, which is based on a diagonal approximation of the Fisher
information, by 5%, SVD-LLM by 3%, and ASVD by 6%.

1 INTRODUCTION

The Fisher Information Matrix (FIM) (5) is widely employed in neural networks to enhance the
efficiency of models, particularly in the context of training and inference. However, computing and
leveraging the full Fisher information is computationally prohibitive for deep networks. To make the
problem tractable, existing methods adopt simplified approximations – most commonly, assuming
that the Fisher matrix is diagonal (29; 6; 24). While efficient, this assumption discards valuable
information about parameter correlations.

One key application of FIM is low-rank compression of large language models (LLMs). However, the
standard low-rank approach — Singular Value Decomposition (SVD) — often leads to suboptimal
performance. To mitigate this, weighted SVD methods aim to align the optimization objective with
the target task (30; 12). Fisher-Weighted SVD (FWSVD) (12) uses Fisher information to assign
importance to parameters. However, FWSVD utilizes only the diagonal part of FIM and treats each
row as independent, which can lead to poor retention of task-critical components.

In contrast, we propose a more accurate weighted SVD method: Generalized Fisher-Weighted
SVD (GFWSVD). Our approach leverages a Kronecker factorization of the full FIM to derive two
sensitivity matrices, which are integrated into a generalized SVD framework. To overcome the high
computational cost of factorizing the full Fisher matrix, we introduce a scalable adaptation of the
Kronecker decomposition algorithm. We compare our method with various low-rank compression
approaches for large models — those using Fisher information (Fisher-Weighted SVD), and those
leveraging activation statistics (ASVD (30), SVD-LLM (28)) — and observe consistent improvements
in downstream task performance.

To summarize, our main contributions are as follows:

• We introduce Generalized Fisher-Weighted SVD (GFWSVD), a new weighted SVD-based
method for compressing large language models, which leverages the Kronecker-decomposed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Fisher information that encodes both row-wise and column-wise parameter correlations. We
prove that GFWSVD is a generalization of FWSVD (12).

• We propose a computationally effective adaptation of the Kronecker decomposition algo-
rithm for the Fisher information matrix (FIM) that captures its full structure without relying
on diagonal or other simplifying approximations.

• We empirically show that our method preserves model performance under compression
while maintaining efficiency, outperforming existing techniques within its class.

2 RELATED WORK

Fisher information is a fundamental tool for estimating parameter importance in neural networks. It
has been used in continual learning to prevent catastrophic forgetting (14), in federated learning to
guide local update strategies (13), and more recently for merging fine-tuned models at the parameter
level (17). Due to the computational complexity of the FIM, many methods introduce structural
assumptions to enable efficient approximations. A prominent approach is Kronecker product fac-
torization, which decomposes FIM into tractable components. KFAC (9) pioneered this idea for
convolutional layers, showing that structural constraints can preserve key curvature information
while reducing cost. Later work (25) improved training efficiency through faster Kronecker-factored
approximations, while KPSVD (15) applied singular value constraints to enable memory-efficient
FIM approximations in large-scale models. These efforts primarily focus on improving optimization
and training. In contrast, our work leverages Kronecker-product FIM approximation for post-training
model compression, aiming to preserve task sensitivity while significantly reducing model size. These
methods commonly assume layer independence, reducing the full-network FIM to a block-diagonal
form and enabling per-layer analysis. We adopt the same assumption in this work, focusing on
improving compression at the single-layer level.

Structural approximations have shown promise in post-training model compression. For instance,
SparseGPT (7) ranks weights using curvature estimates for pruning, while FWSVD (12) applies
diagonal FIM approximations to guide task-aware SVD compression. As we later demonstrate,
FWSVD emerges as a special case of our more general framework, underscoring the flexibility of
our approach. Notably, many of these methods assume independent parameter contributions, which
can limit task sensitivity. In contrast, our Kronecker-factored approximation of the full observed FIM
captures both row- and column-wise dependencies within weight matrices, yielding more accurate
importance estimates. Separately, task-unaware low-rank methods focus on minimizing truncation
error without leveraging global structure. AdaSVD (18) distributes compression strength across
layers via adaptive compensation, while ASVD (30), NSVD (20), and SVD-LLM variants (28; 27)
use activation statistics to refine truncation. These methods modulate projections using layer-specific
signals like activation norms, distributions, or covariances. Although our method is task-aware and
structure-driven, it is potentially compatible with these activation-based refinements. Integrating such
signals, as in KFAC-like schemes, is a promising direction we leave for future work. In this paper,
we focus on a clean evaluation setting to isolate and highlight the core contributions of GFWSVD.

3 BACKGROUND AND PROBLEM FORMULATION

In this section, we establish the connection between Fisher information over matrix variables drawn
from Matrix-Variate Normal (MVN) distribution and our approach to approximating the Fisher matrix
via a Kronecker product decomposition. We then leverage this decomposition to develop an improved
compression algorithm based on the generalized SVD formulation.

3.1 LAYER COMPRESSION AND HESSIAN APPROXIMATION

Consider post-training weight compression as a perturbation of a model parameters θ ∈ Rd. The
perturbation affects the deviation of the model’s loss function L(θ) in the proximity of an optimal
point θ⋆. Sensitivity to such perturbation can be naturally captured by the second-order expansion of
the loss determined by the quadratic term involving the Hessian H = H (θ⋆) of the problem:

∇L = L(θ)− L (θ∗) ≈ 1

2
(θ − θ⋆)

⊤
H (θ − θ⋆) (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Compression optimization thus corresponds to minimizing the deviation ∇L with respect to a
compression θ = C(θ⋆) while considering the structured curvature encoded in H:

min
C

(θ⋆ − C (θ⋆))⊤ H (θ⋆ − C (θ⋆)) , (2)

where the optimization task is considered over a functional family of compression methods C.

In real-world settings, working directly with H is often intractable due to its size and complex
structure. Hence, solving the task in Eq. 2 also requires finding good enough approximations of H
that ideally capture the most important properties of the Hessian. As we show next, there is a certain
class of approximations that align particularly well with our task.

3.2 MATRIX-VARIATE NORMAL DISTRIBUTION AND FISHER INFORMATION

The Matrix-Variate Normal (MVN) distribution (10) extends the classical multivariate normal distri-
bution to matrix-valued random variables, providing a structured approach to modeling dependencies
within rows and columns. Formally, a matrix X ∈ Rn×m follows an MVN distribution if its entries
exhibit Gaussian properties with covariance structured across both dimensions. The distribution is
defined as

X ∼MN (M,Σ1,Σ2), (3)

where M is the mean matrix, and the (non-degenerate) covariance is expressed as a Kronecker
product Σ2 ⊗Σ1. Here, Σ1 captures dependencies between rows, while Σ2 encodes dependencies
across columns. This structure ensures that each row and column follows a well-defined correlated
Gaussian distribution.

A crucial property of MVN is that its likelihood function inherently incorporates the inverse
Kronecker-factored covariance, leading to an efficient representation of second-order dependencies.
The log-probability density function of X has the form:

log(p(X)) ∝ −1

2

(
vec (X−M)

⊤
(Σ2 ⊗Σ1)

−1vec (X−M)
)
=

= −1

2
tr
(
Σ−1

1 (X−M)Σ−1
2 (X−M)

⊤
)

(4)

Maximization of log-likelihood leads to minimization of trace in Eq. 4, which yields the Generalized
Least Squares Matrix Decomposition problem (3):

min
rank(X)≤r

∥∥∥Σ− 1
2

1 (X−M)Σ
− 1

2
2

∥∥∥2
F
, (5)

directly connected to the Generalized Singular Value Decomposition (GSVD) (8). This problem can
be straightforwardly solved by means of standard SVD (1):

X = Σ
1
2
1 ÛŜV̂⊤Σ

1
2
2 (6)

where ÛŜV̂⊤ = SVDr(Σ
− 1

2
1 MΣ

− 1
2

2). We note that the result also holds in the case when matrix
square roots are replaced with the corresponding Cholesky factors, which are typically easier to find.

Under regular conditions (e.g., smooth differentiability and proper statistical properties), Fisher
Information IF serves as an expectation of the local curvature (second derivative) of the likelihood
function. Importantly, by taking derivatives of the MVN likelihood function with respect to M, it is
easy to show that the corresponding Hessian directly coincides with Fisher Information at the MLE
solution, e.i., IF = H(M) = Σ−1

2 ⊗ Σ−1
1 . This formulation provides a natural bridge between

the selection of an optimal compression algorithm C from Eq. 2 and Fisher Information, which we
establish next.

3.3 FISHER-WEIGHTED LINEAR LAYER COMPRESSION

Building on the established connection between MVN distributions and Fisher Information, we are
now ready to formulate the rank-r linear layer compression theorem.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Theorem 1. Let W ∈ Rn×m represent some parameter weights matrix of a single-layer linear
neural network. Suppose that the following conditions hold.

1. The task loss function is derived from an MLE problem.

2. The (non-degenerate) empirical Fisher Information has a Kronecker product structure
IF = A⊗B.

3. The weights W are drawn from the MVN distributionMN (W⋆,B−1,A−1), where W⋆ is
the optimal weights matrix.

Under these conditions, the best rank-r approximation that minimizes the expected increase in the
loss after low-rank decomposition of W⋆ is given by:

Ŵr = L−⊤
B W̃r L

−1
A , (7)

where A = LAL⊤
A and B = LBL

⊤
B are Cholesky factorizations, W̃ = L⊤

BW
⋆ LA is an auxiliary

matrix, W̃r is the truncated SVD of W̃ of rank r.

Proof. Under the assumption that the loss function originates from MLE, the Hessian coincides with
Fisher Information at the optimal point, ensuring structured sensitivity encoding. Hence, one can
replace Eq. 2 with a surrogate problem

min
C

(θ⋆ − C (θ⋆))⊤ IF (θ⋆ − C (θ⋆)) (8)

for vec(W⋆) = θ⋆ and vec(W) = C(θ⋆).
Substituting IF with A⊗B and applying Cholesky decomposition to factors A and B yields:

vec(W⋆ −W)⊤(LALA
⊤ ⊗ LBLB

⊤)vec(W⋆ −W)

= vec(W⋆ −W)⊤(LA ⊗ LB)(LA
⊤ ⊗ LB

⊤)vec(W⋆ −W)

= vec(LB
⊤(W⋆ −W)LA)⊤vec(LB

⊤(W⋆ −W)LA)

=
∥∥∥LB

⊤ (W⋆ −W)LA

∥∥∥2
F

(9)

In Section 3.2, we established that the optimal solution to this problem can be obtained via the
standard SVD of the auxiliary matrix W̃. The final solution is found in two steps: 1) finding an
optimal rank-r solution to the auxiliary problem W̃r = SVDr(LB

⊤W⋆LA), and 2) recovering the
optimal solution to the original problem through the inverse transformation Ŵr = L−⊤

B W̃r L
−1
A ,

which yields the best rank-r minimizer for Eq. 9. Consequently, the decomposition Ŵr presents an
optimal compression C for Eq. 8, which in turn yields the minimal error increase in Eq. 1 for the
given task defined by Eq. 2. ■

Linear layer factorization in this case can be computed with the following expressions:

W1 =

√
ŜrV̂

⊤
r L

−1
A ∈ Rr×m,W2 = L−⊤

B Ûr

√
Ŝr ∈ Rn×r, (10)

where Ŝr is the diagonal matrix of the r leading singular values of the auxiliary problem.

3.4 RELATIONSHIP TO PRIOR WORKS

We show that FWSVD, presented in (12), is a special case of our generalized framework. The full
justification is given in Appendix A. In FWSVD, the objective minimizes a weighted reconstruction
error using a diagonal matrix D derived from a row-wise sum of the Fisher Information. We show
that this setup corresponds to a diagonal Kronecker-factored approximation of the FIM, where D
arises naturally from minimizing the Kronecker approximation error. The resulting solution for the
low-rank factors W2,W1 matches that of FWSVD (up to a constant), which shows that their method
is a special case of our more general framework.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

SVD

FWSVD

Generalized

FWSVD (ours)

Figure 1: Generalization of the Weighted SVD frameworks. For standard SVD, the transformation
matrices are identity matrices. For FWSVD, the left matrix is diagonal but not identity, and the right
matrix is identity. For GFWSVD, both matrices are non-diagonal.

The connection between our generalized approach, the classical SVD and FWSVD is depicted in
Figure 1. Weighted SVD approaches can be interpreted as transforming the decomposed object—here,
the weight matrix—into a new space where the low-rank approximation better aligns with the target
task. In this formulation, the sensitivity matrices serve as transformation matrices that reweight
the importance of different directions. Under this view, vanilla SVD corresponds to using identity
transformations; FWSVD applies a diagonal (but non-identity) transformation on one side while
keeping the other side as identity. In contrast, our method employs full, non-diagonal transformations
on both sides, capturing richer structure in the parameter space.

4 KRONECKER FACTORIZATION ALGORITHM VIA RANK-1 SVD

Suppose that we have a linear layer of a network with a weight matrix W and define Gi ∈ Rn×m as
a weight gradients L(θ)|θ=W on the i-th batch, and gi = vec(Gi) ∈ Rn·m - its flattening version.
Then, Fisher Information IF (θ) can be defined as an empirical mean over all batches in a dataset D:

IF (θ⋆) = E
[
gg⊤

]
=

1

|D|

|D|∑
i=1

gig
⊤
i . (11)

Kronecker product approximation is obtained by solving minimization problem:

min ∥IF −A⊗B∥F (12)

Kronecker product decomposition of IF is computed from a rank-1 approximation of permuted
matrix ĨF = RIF ∈ Rm2×n2

, as it is described in (19). The pseudocode of the method is in
Algorithm 1, the code is available on anonymous repository: link.

Algorithm 1 Compute Kronecker Factors via Rank-1 SVD

Require: List of gradients {gi}|D|
i=1, |D| – number of batches

1: IF ← 1
|D|
∑|D|

i=1 gig
T
i

2: ĨF ← RIF ← 1
|D|
∑|D|

i=1 Gi ⊗Gi

3: (u, σ, v⊤)← Leading singular triplet ▷ Truncated SVD
4: b← u · σ ▷ b = vec(B)
5: a← v ▷ a = vec(A)
6: B← reshape(b, (m,m))
7: A← reshape(a, (n, n))
8: return (B,A)

5

https://anonymous.4open.science/r/FisherKronecker-B4F0

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1 EFFICIENT RANK-1 COMPUTATION

The primary computational bottleneck of Algorithm arises in performing SVD on the matrix ĨF .

Standard SVD is computationally intractable for large matrices, so we employ truncated SVD using
the Lanczos (16) method, which avoids explicit matrix construction and requires only the ability to
multiply the matrix with a vector from the left or right. Even in this setting, aggregating the full
second-moment gradient information across all batch samples is computationally expensive.

We can show (see Appendix B) that permuted IF for i-th batch can be defined as the Kronecker
product of the corresponding gradient matrices:

ĨF =
1

|D|

|D|∑
i=1

Gi ⊗Gi, (13)

then multiplication of this matrix ĨF to a vector z from left will be:

ĨF z =
1

k

(
k∑

i=1

Gi ⊗Gi

)
z =

1

|D|

 |D|∑
i=1

Gi ⊗Gi

Z = z, where z = vec(Z),Z ∈ Rn×n

(14)

Using property of the Kronecker product (K ⊗ L) vec
(
C) = vec(K⊤CL

)
we reduce the matrix-

vector multiplication to a sequence of matrix multiplications:

ĨF z =
1

|D|

|D|∑
i=1

vec(G⊤
i ZGi) (15)

The derivation for right-side multiplication is analogous (see Appendix C). Using these operations,
we can obtain an approximation of the Fisher information for layers of LLMs and batch sizes used in
practice within a reasonable time.

4.2 TIME COMPLEXITY OF THE PROPOSED RANK-1 COMPUTATION

The time complexity of computing the truncated SVD of the matrix J̃ ∈ Rm2×n2

consists of the
matrix-vector multiplications and the orthogonalization and has a cost of O

(
m2n2

)
. However,

using the structured formulation from Eq. 15, where left matrix-vector products are implemented via
multiplications with matrices G⊤

i ∈ Rm×n, Z ∈ Rn×n, and Gi ∈ Rn×m, the overall complexity is
reduced to O

(
mn2 +m2n

)
. Applying analogous reasoning to the right matrix-vector products (see

Eq. 30) one can yield the same complexity.

Table 1: Runtime for computing Kro-
necker factors of single matrices on
GPU.

Layer Params Time (s)

BERT 2.3M 43
LLaMA-2-7B 45M 183
LLaMA-2-13B 70.8M 313

Although the proposed method exhibits cubic complexity
with respect to the dimensions of the linear layer’s weight
matrix, its empirical runtime grows more slowly than that
of the standard matrix-vector product, which scales quar-
tically. In large language models, where m and n are
typically on the order of 103, this reduction yields a prac-
tically significant speedup. Table 1 reports the empirical
decomposition times for ĨF , corresponding for matrices
W in different LLMs.

5 NUMERICAL EXPERIMENTS

To validate our theoretical contributions, we conduct extensive numerical experiments on several
transformer architectures: the encoder-only BERT model (4) and the decoder-only LLM LLaMA
2 (26). Our goal is to demonstrate the practical benefits of GFWSVD in low-rank compression under
fine-tuning and evaluation protocols. We conduct all experiments on a single NVIDIA A100 GPU
with latest CUDA drivers using Python 3.12. The code is available on anonymous repository: link.

6

https://anonymous.4open.science/r/FisherKronecker-B4F0

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
FCN Layer Rank

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

Av
er

ag
e

Pe
rfo

rm
an

ce

GLUE

Full Model
SVD
ASVD
FWSVD
GFWSVD (Ours)

Figure 2: Macro-averaged GLUE performance
of bert-base-uncased model for different
compression ranks.

80 85 90 95
Compression Rate (%)

0.25

0.28

0.30

0.33

0.35

0.38

0.40

0.43

0.45

M
M

LU
 A

vg
 A

cc
ur

ac
y

MMLU
Full Model
ASVD
SVD-LLM
FWSVD
GFWSVD (Ours)

Figure 3: Average MMLU performance of
llama-2-7b-chat model for different com-
pression rates.

5.1 COMPRESSING THE TRANSFORMER ENCODER

In our experiments, we follow the “fine-tune then compress” pipeline, similar to FWSVD (12). We
begin by fine-tuning a pre-trained checkpoint1 of the BERT-base model on a specific downstream
GLUE task. Optimal fine-tuning hyperparameters (e.g., learning rate, batch size) are selected for
each task using the Optuna framework (2). During this stage, we also collect gradients to construct
the FIM IF and compute its Kronecker decomposition as described in Section 4.

Table 2: The correspondence between
rank and entire BERT compression rate.

Rank C.Rate Rank C.Rate

1 ∼ 40% 100 ∼ 33%
5 ∼ 40% 250 ∼ 23%
10 ∼ 39% 500 ∼ 8%
50 ∼ 36% 600 ∼ 1%

Using the resulting Cholesky factors LA and LB, we uni-
formly compress the fully connected layers of BERT by
factorizing them into two smaller layers, following the
method detailed in Section 3.1. The chosen layer-wise
ranks and the resulting overall compression rate of the
model are summarized in Table 2. We reproduce the
ASVD method using the original authors’ code. For
FWSVD, we incorporate the newly constructed FIM into
the compression process.

We show average compression results in Table 3 and Fig-
ure 2, extended results are in Appendix E in Table 8. On
most of the GLUE tasks and considered compression ranks, our proposed GFWSVD approach
consistently outperforms both FWSVD and SVD, with particularly strong gains at lower ranks. While
ASVD exhibits relatively poor performance on several tasks (QQP, QNLI), it occasionally surpasses
GFWSVD — notably on SST2 under aggressive compression.

Table 3: Macro-averaged GLUE performance of the bert-base-uncased for different compres-
sion ranks. Best results for each rank are in bold.

Method / Rank 600 500 250 100 50 10 1

SVD 0.77 0.76 0.65 0.47 0.41 0.42 0.37
ASVD (30) 0.75 0.71 0.51 0.46 0.45 0.36 0.36
FWSVD (12) 0.74 0.74 0.68 0.56 0.46 0.43 0.38
GFWSVD (Ours) 0.77 0.77 0.75 0.66 0.59 0.53 0.51

5.2 COMPRESSING THE TRANSFORMER DECODER

We evaluate our approach on the decoder-only LLama 2 7B model2 against several competitive
baselines: diagonal FI-based low-rank approximation method FWSVD (12), and two activation-
based methods – ASVD (30) and SVD-LLM(28). Notably, ASVD and SVD-LLM both rely on
activation-based weighting to gauge parameter importance, while FWSVD and ours GFWSVD derive
importance scores solely from gradient information.

1https://huggingface.co/google-bert/bert-base-uncased
2https://huggingface.co/unsloth/llama-2-7b-chat

7

https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/unsloth/llama-2-7b-chat

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

We measure perplexity on WikiText 2 (22) and PTB (21) datasets, and 5-shot reasoning performance
on the MMLU benchmark (11). Following prior works on low-rank approximation of LLMs (28; 30),
we test several compression setups, removing from 5% to 20% of original parameters.

Following standard practice in post-training LLM compression methods (28; 30), we use a randomly
sampled set of sentences as calibration data to generate gradients for further obtaining the factor
matrices. For calibration data, we choose the FineWeb dataset (23) due to its high quality and
diversity, and collect gradients on a random subsample of size 1024. These gradients are then used to
obtain LA and LB, as well as the data needed for FWSVD. As in LLMs, uniform layer compression
can disproportionately degrade performance by over-compressing critical layers and under-utilizing
redundancy in less sensitive ones, so it is essential for each method to use a compression configuration
that accounts for layer sensitivity. For both ASVD and SVD-LLM, we used the corresponding code
released by the authors and re-ran the necessary compression pipelines for our checkpoint with
all hyperparameters set to default values. For our approach, we adopted the method of per-layer
importance scores as described in the ASVD work.

Table 4: Performance of the unsloth/llama-2-7b-chat compressed by various methods
under compression ratios from 5% to 20% on WikiText-2, PTB, and MMLU. Lower is better for
perplexity (↓), higher is better for accuracy (↑).
METHOD WikiText-2↓ PTB↓ Compr. MMLU Avg↑Humanities↑ Other↑ Social Sciences↑ STEM↑
Full model 6.94 25.75 100% 0.46 ± 0.003 0.43 ± 0.01 0.55 ± 0.01 0.53 ± 0.01 0.36 ± 0.01

FWSVD (12) 7.52 45.25

95%

0.40 ± 0.003 0.36 ± 0.01 0.45 ± 0.01 0.45 ± 0.01 0.35 ± 0.01
ASVD (30) 7.60 26.29 0.41 ± 0.004 0.37 ± 0.01 0.48 ± 0.01 0.46 ± 0.01 0.35 ± 0.01
SVD-LLM (28) 8.80 51.28 0.34 ± 0.004 0.31 ± 0.01 0.38 ± 0.01 0.35 ± 0.01 0.31 ± 0.01
GFWSVD (Ours) 7.16 28.55 0.40 ± 0.003 0.38 ± 0.01 0.47 ± 0.01 0.44 ± 0.01 0.33 ± 0.01

FWSVD (12) 11.53 96.62

90%

0.37 ± 0.004 0.34 ± 0.01 0.43 ± 0.01 0.42 ± 0.01 0.33 ± 0.01
ASVD (30) 8.97 40.12 0.37 ± 0.004 0.33 ± 0.01 0.42 ± 0.01 0.40 ± 0.01 0.33 ± 0.01
SVD-LLM (28) 9.69 60.82 0.32 ± 0.004 0.30 ± 0.01 0.35 ± 0.01 0.32 ± 0.01 0.30 ± 0.01
GFWSVD (Ours) 8.77 36.44 0.38 ± 0.002 0.35 ± 0.01 0.44 ± 0.01 0.42 ± 0.01 0.33 ± 0.01

FWSVD (12) 22.06 411.50

85%

0.31 ± 0.009 0.29 ± 0.01 0.34 ± 0.01 0.33 ± 0.01 0.30 ± 0.01
ASVD (30) 10.91 83.49 0.32 ± 0.003 0.30 ± 0.01 0.33 ± 0.01 0.32 ± 0.01 0.30 ± 0.01
SVD-LLM (28) 10.36 72.58 0.30 ± 0.004 0.29 ± 0.01 0.34 ± 0.01 0.31 ± 0.01 0.30 ± 0.01
GFWSVD (Ours) 10.06 42.19 0.36 ± 0.004 0.33 ± 0.01 0.41 ± 0.01 0.38 ± 0.01 0.32 ± 0.01

FWSVD (12) 66.37 1523.00

80%

0.27 ± 0.004 0.25 ± 0.01 0.30 ± 0.01 0.28 ± 0.01 0.28 ± 0.01
ASVD (30) 27.73 241.57 0.26 ± 0.004 0.25 ± 0.01 0.27 ± 0.01 0.24 ± 0.01 0.28 ± 0.01
SVD-LLM (28) 11.23 98.91 0.29 ± 0.004 0.27 ± 0.01 0.32 ± 0.01 0.29 ± 0.01 0.29 ± 0.01
GFWSVD (Ours) 11.13 50.50 0.32 ± 0.003 0.30 ± 0.01 0.35 ± 0.01 0.34 ± 0.01 0.30 ± 0.01

Table 4 and Figure 3 shows that GFWSVD consistently outperforms both simple and strong baselines
across all compression rates. In particular, at the most aggressive settings (15–20% of the original
parameters), our method matches or exceeds the accuracy of activation-based methods and shows
substantially lower perplexities on both WikiText-2 and PTB.

For the entire LLM, layers are processed independently and factor computation can be parallelized,
so the runtime scales as:

Total time =
time per layer× number of layers

number of workers
.

For example, LLaMA-2-7B has 224 linear layers; with 4 GPUs, computing all Kronecker factors
takes approximately 3.5 hours. Memory constraints arise only during the calibration phase, when
gradients for selected layers must fit in memory. However, this is not a fundamental limitation: layers
can be calibrated sequentially by freezing and unfreezing them one at a time.

Throughput and FLOP results for compressed LLaMA models are provided in Appendix D.

In the scope of this work, we focused on a simple, analytically motivated form of post-training
compression, which was necessary to isolate the contribution of the non-diagonal elements of the
assumed parameter distribution in the layer weight matrices. As with classical SVD, the procedure
enables straightforward integration with complementary techniques that increase expressivity (e.g.,
post-training quantization or stochastic optimization of compression parameters). In such cases,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GFWSVD can serve as a convenient initialization point on the loss surface for subsequent post-
training compression techniques.

5.3 IMPACT OF DIAGONAL AND NON-DIAGONAL ELEMENTS OF FACTORS

To assess the significance of the diagonal elements, we performed the following ablation study. In the
resulting factor matrices we retained either (1) only the off-diagonal elements (Non-diag) or (2) only
the diagonal elements (Diag), and measured perplexity relative to our method and FWSVD. The Diag
variant performs better than FWSVD but worse than GFWSVD. This is expected, since FWSVD
captures importance only along rows (only the left factor matrix has a non-identity diagonal, see
Fig. 1), whereas Non-diag GFWSVD captures both row and column importance. The contribution of
off-diagonal elements provides a noticeable improvement compared to FWSVD.

Method Wiki (10%) PTP (10%) Wiki (15%) PTP (15%)

FWSVD 11.53 96.62 22.00 411.00
Diag GFWSVD 10.94 45.26 11.06 48.25
Non-diag GFWSVD 8.85 37.25 10.22 43.75
Full GFWSVD 8.77 36.44 10.06 42.19

Table 5: Perplexity at 10% and 15% compression.

6 CONCLUSION AND FUTURE WORK

We introduced Generalized Fisher-Weighted SVD (GFWSVD), a low-rank second-order com-
pression method that leverages the full Fisher Information Matrix through a scalable Kronecker
decomposition. Unlike previous approaches, GFWSVD captures parameter correlations and yields
a factorization provably optimal within its class (Theorem 1). Our results on both encoder-only
(BERT on GLUE) and decoder-only (LLaMA-2 on MMLU) models show that GFWSVD consistently
outperforms diagonal Fisher- and activation-based SVD approaches, particularly at low ranks.

Crucially, the method is entirely analytical and does not require stochastic optimization or iterative
retraining, making it lightweight and reproducible. The tractable algorithm for computing full
Kronecker factors makes this work an important step toward practical, curvature-aware post-training
compression of large language models.

GFWSVD highlights the critical role of accurate FIM computation in compression. While our
approach performs well empirically, its reliance on a rank-1 Kronecker approximation of the Fisher
matrix may oversimplify important structure. Future work could explore higher-rank Kronecker series
to capture richer information, and extend the method to model cross-layer dependencies, potentially
improving performance by leveraging transitive correlations across the network.

7 LIMITATIONS

Our method decomposes the observed Fisher information matrix IF into a Kronecker product of two
smaller matrices, Y and X (Eq. 12). While effective, this assumes exact factorization, which may
not hold in practice and can limit approximation quality and task sensitivity. In LLM experiments,
we also observed cases where the estimated Kronecker factors were singular, requiring regularization
(e.g., Y ← Y + α diagY) to ensure positive definiteness and numerical stability. Although this
resolves instability, it introduces additional computational overhead.

We observed that compression effectiveness varies significantly across layers, making preliminary
layer selection necessary to achieve favorable trade-offs. A key limitation of our current approach
is the lack of coordination across layers during compression. For effective multi – layer com-
pression—especially in large-scale models like LLMs – it is important to account for cross-layer
dependencies. Future work could focus on modeling these interactions to enable joint compression
strategies.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on methods for improving the efficiency and practicality of post-training low-rank
compression of large language models using second-order information. Our research does not involve
human subjects, personally identifiable information, or other sensitive data. All experiments are
carried out on publicly available models (BERT, LLaMA) and widely used benchmarks (GLUE,
MMLU), ensuring transparency and reproducibility. We do not release any new datasets containing
private or proprietary information. The proposed methods are intended to reduce the computational
cost and energy consumption of deploying large models, which we view as a positive contribution
to sustainability. We are not aware of any direct negative societal impacts; however, as with any
model compression technique, improved efficiency may lower the barrier to deploying large models
in contexts where misuse is possible. We therefore encourage responsible use of these methods in
accordance with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility of our results. The full description of the
proposed method, including theoretical assumptions and proofs, is provided in the main text and
Appendix. All implementation details of Algorithm 1 as well as experimental pipelines are available
in an anonymous repository: link.

10

https://anonymous.4open.science/r/FisherKronecker-B4F0

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

[1] Hervé Abdi. Singular value decomposition (svd) and generalized singular value decomposition.
Encyclopedia of measurement and statistics, 907(912):44, 2007.

[2] Takuya Akiba, Shotaro Sano, Takeru Yanase, Toshihiko Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2623–2631.
ACM, 2019.

[3] Genevera I Allen, Logan Grosenick, and Jonathan Taylor. A generalized least-square matrix
decomposition. Journal of the American Statistical Association, 109(505):145–159, 2014.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguistics, 2019.

[5] R. A. Fisher. On the Mathematical Foundations of Theoretical Statistics, pages 11–44. Springer
New York, New York, NY, 1992.

[6] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[7] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 10323–10337. PMLR, 2023.

[8] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[9] Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for con-
volution layers. In International Conference on Machine Learning, pages 573–582. PMLR,
2016.

[10] Arjun K Gupta and Daya K Nagar. Matrix variate distributions. Chapman and Hall/CRC, 2018.

[11] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021.

[12] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language
model compression with weighted low-rank factorization, 2022.

[13] Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Fedfisher: Leveraging fisher infor-
mation for one-shot federated learning. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li,
editors, International Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau
de Congressos, Valencia, Spain, volume 238 of Proceedings of Machine Learning Research,
pages 1612–1620. PMLR, 2024.

[14] James Kirkpatrick, Razvan Pascanu, et al. Overcoming catastrophic forgetting in neural
networks. In Proceedings of the National Academy of Sciences, volume 114, pages 3521–3526,
2017.

[15] Abdoulaye Koroko, Ani Anciaux-Sedrakian, Ibtihel Ben Gharbia, Valérie Garès, Mounir
Haddou, and Quang Huy Tran. Efficient approximations of the fisher matrix in neural networks
using kronecker product singular value decomposition. ESAIM: Proceedings and Surveys,
73:218–237, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[16] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. Journal of Research of the National Bureau of Standards,
45:255–282, 1950.

[17] Sanwoo Lee, Jiahao Liu, Qifan Wang, Jingang Wang, Xunliang Cai, and Yunfang Wu. Dynamic
fisher-weighted model merging via Bayesian optimization. In Luis Chiruzzo, Alan Ritter, and
Lu Wang, editors, Proceedings of the 2025 Conference of the Nations of the Americas Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume
1: Long Papers), pages 4923–4935, Albuquerque, New Mexico, April 2025. Association for
Computational Linguistics.

[18] Zhiteng Li, Mingyuan Xia, Jingyuan Zhang, Zheng Hui, Linghe Kong, Yulun Zhang, and
Xiaokang Yang. Adasvd: Adaptive singular value decomposition for large language models.
arXiv e-prints, pages arXiv–2502, 2025.

[19] Charles Van Loan and Nikos Pitsianis. Approximation with kronecker products. 1992.

[20] Jun Lu, Tianyi Xu, Bill Ding, David Li, and Yu Kang. Large language model compression via
the nested activation-aware decomposition. arXiv preprint arXiv:2503.17101, 2025.

[21] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large
annotated corpus of english: The penn treebank. Comput. Linguistics, 19(2):313–330, 1993.

[22] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[23] Guilherme Penedo, Hynek Kydlícek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell,
Colin A. Raffel, Leandro von Werra, and Thomas Wolf. The fineweb datasets: Decanting the
web for the finest text data at scale. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances in Neural
Information Processing Systems 38: Annual Conference on Neural Information Processing
Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

[24] Alexander Soen and Ke Sun. Trade-offs of diagonal fisher information matrix estimators. In
Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M.
Tomczak, and Cheng Zhang, editors, Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024, 2024.

[25] Zedong Tang, Fenlong Jiang, Maoguo Gong, Hao Li, Yue Wu, Fan Yu, Zidong Wang, and Min
Wang. Skfac: Training neural networks with faster kronecker-factored approximate curvature.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 13479–13487, 2021.

[26] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models. CoRR, abs/2307.09288, 2023.

[27] Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. Svd-llm v2: Optimizing sin-
gular value truncation for large language model compression. arXiv preprint arXiv:2503.12340,
2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[28] Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware singular
value decomposition for large language model compression. In International Conference on
Learning Representations (ICLR), 2025.

[29] Xiaodong Wu, Wenyi Yu, Chao Zhang, and Philip C. Woodland. An improved empirical fisher
approximation for natural gradient descent. In Amir Globersons, Lester Mackey, Danielle
Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, Advances
in Neural Information Processing Systems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024,
2024.

[30] Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
activation-aware singular value decomposition for compressing large language models. CoRR,
abs/2312.05821, 2023.

A APPENDIX A: SPECIAL CASE OF DIAGONAL FISHER INFORMATION MATRIX

In this section, we show that FWSVD, presented in (12), is a special case of our generalized approach.

In the work of (12), authors propose to minimize the following objective:

min
W1,W2

∥DW⋆ −DW2W1∥2F (16)

where D is the diagonal matrix
√

diag (E[GG⊤]). Specifically, Di,i =
√∑m

j=1 E(Gi,j)2.

Similarly to 12, we approximate the Fisher Information with a Kronecker product of identity matrix
Im and some diagonal matrix D̃. As described further in Section 4 and Appendix A, under the
permutationR, the problem

min
D

∥∥∥IF − Im ⊗ D̃
∥∥∥
F

(17)

reduces to minimization of the expression

min
d

∥∥E[G⊗G]− (In ⊙ In)d · vec(Im)⊤
∥∥
F

(18)

where ⊙ is a Khatri-Rao product (column-wise Kronecher product) and · is a vector outer product; d
is a vector diagonal of D̃; E[G⊗G] is a permuted Fisher Information matrix ĨF, defined in Eq 13.

For simplicity, we will use a shorter notation. Let E = E[G⊗G], Z = In⊙ In, v = vec(Im). Then,
the problem 18 is equivalent to

min
d

∥∥Zd · v⊤ −E
∥∥
F

(19)

Applying first-order optimality conditions yields:

⟨Zδd · v⊤,Zd · v⊤ −E⟩ = 0

⟨δd · v⊤,Z⊤Zd · v⊤ − Z⊤E⟩ = 0

⟨δd,Z⊤Zd · v⊤v − Z⊤Ev⟩ = 0

Since Z⊤Z = In, v⊤v = ∥v∥22 = ∥vec(Im)∥22 = m , we have:

d =
1

m
(In ⊙ In)

⊤E[G⊗G]vec(Im) =
1

m
(In ⊙ In)

⊤vec(E[GG⊤]) =
1

m
diag(E[GG⊤]) (20)

Thus, diagonal matrix D̃ from Kronecker product approximation problem 17 equals square of matrix
D from the FWSVD formulation 16 up to the constant 1

m .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We apply Theorem 1 to find factors W2, W1 for the obtained approximation IF = Im ⊗ D̃:

W2 =
√
D̃

−1

Ûr

√
Ŝr = D−1Ûr

√
Ŝr,W1 =

√
ŜrV̂

⊤
r (21)

where ÛrŜrV̂
⊤
r is r-rank SVD of

√
D̃W

⋆

= DW⋆. This is the same solution that minimizes the
problem 16 from FWSVD paper (12). Consequently, FWSVD approach is a special case of diagonal
Kronecker product approximation of Fisher Information.

B APPENDIX B: ADDITIONAL EXPLANATIONS FOR KRONECKER
DECOMPOSITION ADAPTATION

Let’s show that the permuted IF in the Kronecker decomposition algorithm can be expressed as the
Kronecker product of the corresponding gradient matrices.

We start with the empirical Fisher information matrix defined as IF = 1
|D|
∑|D|

i=1 gig
⊤
i and its

reordered version:

ĨF = RIF (22)

Using the identity
vec(gig

⊤
i) = gi ⊗ gi,

we obtain:

vec(IF) =
1

|D|

|D|∑
i=1

vec(gig
⊤
i) =

1

|D|

|D|∑
i=1

(gi ⊗ gi). (23)

Let P ∈ R(ab)2×(ab)2 be the unique permutation matrix such that for any matrices A,B ∈ Ra×b:

P · vec(A⊗B) = (vec(A)⊗ vec(B)). (24)

In our case P can be defined through the commutation matrix Kmn and identity matrices In and Im:

P := In ⊗Kmn ⊗ Im, K⊤
mn = Knm (25)

Using this , we can write:

P · vec(Gi ⊗Gi) = vec(Gi)⊗ vec(Gi). (26)

Therefore, the vectorized Fisher information becomes:

vec(IF) =
1

|D|

|D|∑
i=1

P · vec(Gi ⊗Gi) = P · vec

 1

|D|

|D|∑
i=1

(Gi ⊗Gi)

 = P vec(ĨF). (27)

So, ĨF can be defined as 1
|D|
∑|D|

i=1(Gi ⊗Gi). This fact is used in the accelerated adaptation of the
Kronecker Factorization algorithm.

Now, suppose a IF and ĨF are connected withR ∈ Rn×n (see Eq. 22):

vec(ĨF) = (I ⊗R) · vec(IF),P = I ⊗R (28)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C APPENDIX C: RIGHT VECTOR-MATRIX MULTIPLICATION

We can define right vector-matrix multiplication as follows:

I⊤F z = (

|D|∑
i=1

Gi ⊗Gi)
⊤z (29)

Using property of the Kronecker product (K⊗ L) vec(C) = vec(K⊤CL):

I⊤F z =

|D|∑
i=1

vec(GiZG
⊤
i), where z = vec(Z),Z ∈ Rm×m (30)

D APPENDIX E: THROUGHPUT AND FLOPS FOR COMPRESSED MODELS

GFWSVD, ASVD, SVD-LLM compresses weight W ∈ Rn×m into a pair of low-rank matrices
W1 ∈ Rn×r and W2 ∈ Rr×m. This reduces the number of FLOPs required during the forward pass
through a linear layer from O(nm) to O(nr + rm) = O(r(n+m)).

Model (C Rate) Full Model FLOPs Compressed FLOPs
LLaMA-2-7B-chat (10%) 53.05T 42.43T
LLaMA-2-7B-chat (15%) 53.05T 39.24T
LLaMA-2-7B-chat (20%) 53.05T 37.18T

Table 6: Comparison of theoretical FLOPs for LLaMA-2-7B-chat under different compression rates.
All values are in trillions (T) of FLOPs.

We ran inference-time latency measurements on the LLaMA-2-7B-chat model under different
compressions. The results are shown below (averaged over 100 runs, batch size = 1, sequence length
= 1024 tokens, GPU: A100 80GB).

Table 7: Throughput (tokens/s) achieved by original LLaMA-7B-chat and its FWSVD-compressed
versions (batch size = 1, sequence length = 1024).

Compression Ratio Tokens/s Relative Speedup
0% (Uncompressed) 1186 1.00×
10% 1269 1.07×
15% 1294 1.09×
20% 1323 1.12×

E APPENDIX D: EXTENDED GLUE RESULTS

We report extended compression results on tasks of GLUE benchmark in Table 8.

F APPENDIX F: LLM USAGE STATEMENT

We used large language models (LLMs) only as a general-purpose writing assistant for grammar
checking and text polishing. The research ideas, implementation, analysis, and conclusions are
entirely our own.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 8: Performance of bert-base-uncased compressed by various methods under compres-
sion rates from 60% to 99% on GLUE benchmark. Lower is better for COLA (↓), higher is better for
all other tasks (↑).

METHOD / DATASET MRPC↑ STSB↑ QQP↑ MNLI↑ QNLI↑ RTE↑ COLA↓ SST2↑
Full model 0.77 0.87 0.90 0.83 0.90 0.56 0.41 0.91

Compression Rate 99% (r = 600)

SVD 0.67 0.84 0.90 0.67 0.90 0.56 0.58 0.91
ASVD (30) 0.72 0.73 0.89 0.83 0.90 0.56 0.41 0.91
FWSVD (12) 0.72 0.87 0.90 0.72 0.90 0.55 0.36 0.91
GFWSVD (Ours) 0.73 0.87 0.90 0.73 0.90 0.56 0.55 0.92

Compression Rate 92% (r = 500)

SVD 0.53 0.82 0.89 0.53 0.90 0.54 0.53 0.89
ASVD (30) 0.71 0.56 0.86 0.81 0.89 0.53 0.44 0.88
FWSVD (12) 0.71 0.87 0.90 0.71 0.89 0.56 0.34 0.91
GFWSVD (Ours) 0.73 0.87 0.90 0.73 0.90 0.56 0.49 0.92

Compression Rate 77% (r = 250)

SVD 0.49 0.68 0.81 0.49 0.85 0.50 0.17 0.57
ASVD (30) 0.69 0.08 0.76 0.50 0.58 0.47 0.11 0.75
FWSVD (12) 0.69 0.86 0.89 0.69 0.89 0.61 0.23 0.80
GFWSVD (Ours) 0.71 0.86 0.89 0.71 0.89 0.61 0.38 0.88

Compression Rate 67% (r = 100)

SVD 0.32 0.08 0.64 0.32 0.80 0.51 0.01 0.49
ASVD (30) 0.58 0.07 0.74 0.39 0.50 0.47 0.05 0.82
FWSVD (12) 0.69 0.58 0.87 0.71 0.86 0.55 0.21 0.72
GFWSVD (Ours) 0.71 0.70 0.87 0.71 0.86 0.55 0.21 0.72

Compression Rate 64% (r = 50)

SVD 0.32 0.19 0.57 0.32 0.78 0.48 0.02 0.49
ASVD (30) 0.68 0.03 0.73 0.49 0.76 0.51 0.03 0.80
FWSVD (12) 0.69 0.65 0.84 0.69 0.72 0.46 0.03 0.77
GFWSVD (Ours) 0.69 0.65 0.84 0.69 0.72 0.46 0.05 0.77

Compression Rate 61% (r = 10)

SVD 0.32 0.32 0.67 0.32 0.61 0.51 0.00 0.49
ASVD (30) 0.61 0.14 0.64 0.40 0.57 0.49 -0.04 0.76
FWSVD (12) 0.37 0.32 0.79 0.37 0.57 0.49 0.00 0.49
GFWSVD (Ours) 0.53 0.60 0.79 0.53 0.62 0.47 0.05 0.65

Compression Rate 60% (r = 1)

SVD 0.32 0.04 0.69 0.31 0.55 0.53 0.00 0.49
ASVD (30) 0.62 0.10 0.64 0.42 0.50 0.49 0.03 0.70
FWSVD (12) 0.32 0.18 0.72 0.32 0.51 0.50 0.00 0.49
GFWSVD (Ours) 0.42 0.70 0.74 0.42 0.65 0.52 0.05 0.49

16

	Introduction
	Related Work
	Background and Problem Formulation
	Layer Compression and Hessian Approximation
	Matrix-Variate Normal Distribution and Fisher Information
	Fisher-Weighted Linear Layer Compression
	Relationship to Prior Works

	Kronecker Factorization Algorithm via Rank-1 SVD
	Efficient Rank-1 Computation
	Time Complexity of the proposed Rank-1 Computation

	Numerical Experiments
	Compressing the Transformer Encoder
	Compressing the Transformer Decoder
	Impact of Diagonal and Non-diagonal Elements of Factors

	Conclusion and Future Work
	Limitations
	Appendix A: Special case of diagonal Fisher Information Matrix
	Appendix B: Additional explanations for Kronecker decomposition adaptation
	Appendix C: Right vector-matrix multiplication
	Appendix E: Throughput and FLOPs for compressed models
	Appendix D: Extended GLUE results
	Appendix F: LLM Usage Statement

