

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERALIZED FISHER-WEIGHTED SVD: SCALABLE KRONECKER-FACTORED FISHER APPROXIMATION FOR COMPRESSING LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

The Fisher information is a fundamental concept for characterizing the sensitivity of parameters in neural networks. However, leveraging the full observed Fisher information is too expensive for large models, so most methods rely on simple diagonal approximations. While efficient, this approach ignores parameter correlations, often resulting in reduced performance on downstream tasks. In this work, we mitigate these limitations and propose Generalized Fisher-Weighted SVD (GFWSVD) — a fully deterministic post-training LLM compression technique that accounts for both diagonal and off-diagonal elements of the Fisher information matrix, providing a more accurate reflection of parameter importance. To make the method tractable, we introduce a scalable adaptation of the Kronecker-factored approximation algorithm for the observed Fisher information. We demonstrate the effectiveness of our method on LLM compression, showing improvements over existing compression baselines.

1 INTRODUCTION

The Fisher Information Matrix (FIM) (Fisher, 1992) is widely employed in neural networks to enhance the efficiency of models, particularly in the context of training and inference. However, computing and leveraging the full Fisher information is computationally prohibitive for deep networks. To make the problem tractable, existing methods adopt simplified approximations – most commonly, assuming that the Fisher matrix is diagonal (Wu et al., 2024; Frankle & Carbin, 2019; Soen & Sun, 2024). While efficient, this assumption discards valuable information about parameter correlations.

One key application of FIM is low-rank compression of large language models (LLMs). However, the standard low-rank approach — Singular Value Decomposition (SVD) — often leads to suboptimal performance. To mitigate this, weighted SVD methods aim to align the optimization objective with the target task (Yuan et al., 2023; Hsu et al., 2022). Fisher-Weighted SVD (FWSVD) (Hsu et al., 2022) uses Fisher information to assign importance to parameters. However, FWSVD utilizes only the diagonal part of FIM and treats each row as independent, which can lead to poor retention of task-critical components.

In contrast, we propose a more accurate weighted SVD method: **Generalized Fisher-Weighted SVD (GFWSVD)**. Our approach leverages a Kronecker factorization of the full FIM to derive two sensitivity matrices, which are integrated into a generalized SVD framework. To overcome the high computational cost of factorizing the full Fisher matrix, we introduce a scalable adaptation of the Kronecker decomposition algorithm. We compare our method with various low-rank compression approaches for large models — those using Fisher information (Fisher-Weighted SVD), and those leveraging activation statistics (ASVD (Yuan et al., 2023), SVD-LLM (Wang et al., 2025c)) — and observe consistent improvements in downstream task performance.

To summarize, our main contributions are as follows:

- We introduce **Generalized Fisher-Weighted SVD (GFWSVD)**, a new weighted SVD-based fully deterministic method for compressing large language models, which leverages the Kronecker-decomposed Fisher information that encodes both row-wise and column-wise

054 parameter correlations. We prove that **GFW SVD** is a generalization of FWSVD (Hsu et al.,
 055 2022).

056

- 057 • We propose a computationally effective adaptation of the Kronecker decomposition algo-
 058 rithm for the Fisher information matrix (FIM) that captures its full structure without relying
 059 on diagonal or other simplifying approximations.
- 060 • We empirically show that our method preserves model performance under compression
 061 while maintaining efficiency, outperforming existing techniques within its class.

062

063

064 2 RELATED WORK

065

066

067 Fisher information is a fundamental tool for measuring parameter importance in neural networks. It
 068 has been used to prevent catastrophic forgetting in continual learning (Kirkpatrick et al., 2017), to
 069 guide local updates in federated learning (Jhunjhunwala et al., 2024), and more recently to merge fine-
 070 tuned models at the parameter level (Lee et al., 2025). As computing the full FIM is expensive, many
 071 methods rely on structural assumptions to make it tractable. A widely used strategy is Kronecker-
 072 product factorization, which breaks the FIM into manageable components. KFAC (Grosse & Martens,
 073 2016) introduced this idea for convolutional layers, showing that structured approximations can
 074 preserve key curvature information while cutting costs. Later work (Tang et al., 2021) improved
 075 efficiency with faster Kronecker-factored updates, while KPSVD (Koroko et al., 2023) applied
 076 singular-value constraints to enable memory-efficient FIM approximations in large models. We use a
 077 Kronecker-factored FIM approximation for model compression based on the structural approximation
 078 of every separate layer.

079

080 Post-training compression based on structural approximation has shown promising results. Such
 081 methods typically rely on a weighted decomposition of a model layer’s weights, incorporating either
 082 loss-aware or activation-aware information. For instance, SparseGPT (Frantar & Alistarh, 2023)
 083 ranks weights using curvature estimates for pruning, FWSVD (Hsu et al., 2022) applies diagonal
 084 FIM approximations to guide task-aware SVD compression. As we later demonstrate, FWSVD
 085 emerges as *a special case of our more general framework*, underscoring the flexibility of our approach.
 086 AdaSVD (Li et al., 2025) distributes compression strength across layers via adaptive compensation,
 087 while ASVD (Yuan et al., 2023), NSVD (Lu et al., 2025), and SVD-LLM variants (Wang et al.,
 088 2025c;b) use activation statistics to refine truncation. Notably, many of these methods assume
 089 independent parameter contributions, which can limit task sensitivity. In contrast, our Kronecker-
 090 factored *approximation of the full observed FIM captures both row- and column-wise dependencies*
 091 *within weight matrices*, yielding more accurate importance estimates. There are also approaches
 092 that account for dependencies between layers in the model, rather than just correlations between
 093 parameters within a single layer: (Wang et al., 2024) uses a shared set of basis vectors to represent
 094 the weight matrices of different layers, which effectively eliminates cross-layer redundancy.

095

096 Other classes of compression methods, such as quantization, also leverage Fisher information in their
 097 setups. For instance, the YAQA (Tseng et al., 2025) quantization method extends QTIP (Tseng et al.,
 098 2024) by incorporating curvature information from the loss landscape.

099

100 In more advanced structural approximation pipelines, compression settings are optimized through
 101 training, and structural approximations are combined with additional techniques to enable more
 102 aggressive compression. For example, BLAST (Lee et al., 2024) relies on a gradient-descent-based
 103 factorization algorithm, while Dobi-SVD (Wang et al., 2025a) learns optimal singular values and
 104 then applies quantization.

105

106 3 BACKGROUND AND PROBLEM FORMULATION

107

108 In this section, we establish the connection between Fisher information over matrix variables drawn
 109 from Matrix-Variate Normal (MVN) distribution and our approach to approximating the Fisher matrix
 110 via a Kronecker product decomposition. We then leverage this decomposition to develop an improved
 111 compression algorithm based on the generalized SVD formulation.

108
109

3.1 LAYER COMPRESSION AND HESSIAN APPROXIMATION

110
111
112
113

Consider post-training weight compression as a perturbation of a model parameters $\theta \in \mathbb{R}^d$. The perturbation affects the deviation of the model's loss function $\mathcal{L}(\theta)$ in the proximity of an optimal point θ^* . Sensitivity to such perturbation can be naturally captured by the second-order expansion of the loss determined by the quadratic term involving the Hessian $H = H(\theta^*)$ of the problem:

114
115

$$\nabla \mathcal{L} = \mathcal{L}(\theta) - \mathcal{L}(\theta^*) \approx \frac{1}{2} (\theta - \theta^*)^\top H (\theta - \theta^*) \quad (1)$$

116
117

Compression optimization thus corresponds to minimizing the deviation $\nabla \mathcal{L}$ with respect to a compression $\theta = \mathcal{C}(\theta^*)$ while considering the structured curvature encoded in H :

118
119

$$\min_{\mathcal{C}} (\theta^* - \mathcal{C}(\theta^*))^\top H (\theta^* - \mathcal{C}(\theta^*)), \quad (2)$$

120

where the optimization task is considered over a functional family of compression methods \mathcal{C} .

121
122
123
124

In real-world settings, working directly with H is often intractable due to its size and complex structure. Hence, solving the task in Eq. 2 also requires finding good enough approximations of H that ideally capture the most important properties of the Hessian. As we show next, there is a certain class of approximations that align particularly well with our task.

125

3.2 MATRIX-VARIATE NORMAL DISTRIBUTION AND FISHER INFORMATION

126
127
128
129
130
131

The MVN distribution (Gupta & Nagar, 2018) extends the classical multivariate normal distribution to matrix-valued random variables, providing a structured approach to modeling dependencies within rows and columns. Formally, a matrix $\mathbf{X} \in \mathbb{R}^{n \times m}$ follows an MVN distribution if its entries exhibit Gaussian properties with covariance structured across both dimensions. The distribution is defined as

$$\mathbf{X} \sim \mathcal{MN}(\mathbf{M}, \Sigma_1, \Sigma_2), \quad (3)$$

132
133
134
135
136

where \mathbf{M} is the mean matrix, and the (non-degenerate) covariance is expressed as a Kronecker product $\Sigma_2 \otimes \Sigma_1$. Here, Σ_1 captures dependencies between rows, while Σ_2 encodes dependencies across columns. This structure ensures that each row and column follows a well-defined correlated Gaussian distribution.

137
138
139

A crucial property of MVN is that its likelihood function inherently incorporates the inverse Kronecker-factored covariance, *leading to an efficient representation of second-order dependencies*. The log-probability density function of \mathbf{X} has the form:

140
141
142
143

$$\begin{aligned} \log(p(\mathbf{X})) &\propto -\frac{1}{2} \left(\text{vec}(\mathbf{X} - \mathbf{M})^\top (\Sigma_2 \otimes \Sigma_1)^{-1} \text{vec}(\mathbf{X} - \mathbf{M}) \right) = \\ &= -\frac{1}{2} \text{tr} \left(\Sigma_1^{-1} (\mathbf{X} - \mathbf{M}) \Sigma_2^{-1} (\mathbf{X} - \mathbf{M})^\top \right) \end{aligned} \quad (4)$$

144
145

Maximization of log-likelihood leads to minimization of trace in Eq. 4, which yields the Generalized Least Squares Matrix Decomposition problem¹ (Allen et al., 2014):

146
147
148

$$\min_{\text{rank}(\mathbf{X}) \leq r} \left\| \Sigma_1^{-\frac{1}{2}} (\mathbf{X} - \mathbf{M}) \Sigma_2^{-\frac{1}{2}} \right\|_F^2, \quad (5)$$

149
150

directly connected to the Generalized Singular Value Decomposition (GSVD) (Golub & Van Loan, 2013). This problem can be straightforwardly solved by means of standard SVD (Abdi, 2006):

151

$$\mathbf{X} = \Sigma_1^{\frac{1}{2}} \hat{\mathbf{U}} \hat{\mathbf{S}} \hat{\mathbf{V}}^\top \Sigma_2^{\frac{1}{2}} \quad (6)$$

152
153
154

where $\hat{\mathbf{U}} \hat{\mathbf{S}} \hat{\mathbf{V}}^\top = \text{SVD}_r(\Sigma_1^{-\frac{1}{2}} \mathbf{M} \Sigma_2^{-\frac{1}{2}})$. We note that the result also holds in the case when matrix square roots are replaced with the corresponding Cholesky factors, which are typically easier to find.

155
156
157
158
159
160
161

Under regular conditions (e.g., smooth differentiability and proper statistical properties), Fisher Information \mathcal{I}_F serves as an expectation of the local curvature (second derivative) of the likelihood function. Importantly, by taking derivatives of the MVN likelihood function with respect to \mathbf{M} , it is easy to show that the corresponding *Hessian directly coincides with Fisher Information at the MLE solution*, e.g., $\mathcal{I}_F = H(\mathbf{M}) = \Sigma_2^{-1} \otimes \Sigma_1^{-1}$. This formulation provides a natural bridge between the selection of an optimal compression algorithm \mathcal{C} from Eq. 2 and Fisher Information, which we establish next.

¹Following the notation of Allen et al. (2014), we define $\mathbf{A} = \mathbf{A}^{\frac{1}{2}} \mathbf{A}^{\frac{1}{2}}$.

162 3.3 FISHER-WEIGHTED LINEAR LAYER COMPRESSION
163164 Building on the established connection between MVN distributions and Fisher Information, we are
165 now ready to formulate the rank- r linear layer compression theorem.166 **Theorem 1.** *Let $\mathbf{W} \in \mathbb{R}^{n \times m}$ represent some parameter weights matrix of a single-layer linear
167 neural network. Suppose that the following conditions hold.*

- 168 1. *The neural network is associated with a loss function corresponding to a Maximum Like-
169 lihood Estimation (MLE) objective (e.g., cross-entropy loss). This ensures the Hessian at
170 convergence coincides with the Fisher Information Matrix (FIM).*
- 172 2. *The empirical FIM is approximated by a Kronecker product $I_F \approx A \otimes B$*
- 173 3. *The weights \mathbf{W} are drawn from the MVN distribution $\mathcal{MN}(\mathbf{W}^*, \mathbf{B}^{-1}, \mathbf{A}^{-1})$, where \mathbf{W}^* is
174 the optimal weights matrix.*

176 *Under these conditions, the best rank- r approximation that minimizes the expected increase in the
177 loss after low-rank decomposition of \mathbf{W}^* is given by:*

178
$$\widehat{\mathbf{W}}_r = \mathbf{L}_B^{-\top} \widetilde{\mathbf{W}}_r \mathbf{L}_A^{-1}, \quad (7)$$

180 where $\mathbf{A} = \mathbf{L}_A \mathbf{L}_A^\top$ and $\mathbf{B} = \mathbf{L}_B \mathbf{L}_B^\top$ are Cholesky factorizations, $\widetilde{\mathbf{W}} = \mathbf{L}_B^\top \mathbf{W}^* \mathbf{L}_A$ is an auxiliary
181 matrix, $\widetilde{\mathbf{W}}_r$ is the truncated SVD of $\widetilde{\mathbf{W}}$ of rank r .182 It should be noted that Condition 2 does not generally hold exactly, as neural networks often exhibit
183 complex, non-Kronecker Hessian structure. Therefore, we treat Condition 2 as an operative Hessian
184 approximation that enables tractable computation.186 *Proof.* Under the assumption that the loss function originates from MLE, the Hessian coincides with
187 Fisher Information at the optimal point, ensuring structured sensitivity encoding. Hence, one can
188 replace Eq. 2 with a surrogate problem

189
$$\min_{\mathcal{C}} (\theta^* - \mathcal{C}(\theta^*))^\top \mathcal{I}_F (\theta^* - \mathcal{C}(\theta^*)) \quad (8)$$

191 for $\text{vec}(\mathbf{W}^*) = \theta^*$ and $\text{vec}(\mathbf{W}) = \mathcal{C}(\theta^*)$.192 Substituting \mathcal{I}_F with $\mathbf{A} \otimes \mathbf{B}$ and applying Cholesky decomposition to factors \mathbf{A} and \mathbf{B} yields:

$$\begin{aligned}
 & \text{vec}(\mathbf{W}^* - \mathbf{W})^\top (\mathbf{L}_A \mathbf{L}_A^\top \otimes \mathbf{L}_B \mathbf{L}_B^\top) \text{vec}(\mathbf{W}^* - \mathbf{W}) \\
 &= \text{vec}(\mathbf{W}^* - \mathbf{W})^\top (\mathbf{L}_A \otimes \mathbf{L}_B) (\mathbf{L}_A^\top \otimes \mathbf{L}_B^\top) \text{vec}(\mathbf{W}^* - \mathbf{W}) \\
 &= \text{vec}(\mathbf{L}_B^\top (\mathbf{W}^* - \mathbf{W}) \mathbf{L}_A)^\top \text{vec}(\mathbf{L}_B^\top (\mathbf{W}^* - \mathbf{W}) \mathbf{L}_A) \\
 &= \left\| \mathbf{L}_B^\top (\mathbf{W}^* - \mathbf{W}) \mathbf{L}_A \right\|_F^2
 \end{aligned} \quad (9)$$

200 In Section 3.2, we established that the optimal solution to this problem can be obtained via the
201 standard SVD of the auxiliary matrix $\widetilde{\mathbf{W}}$. The final solution is found in two steps: 1) finding an
202 optimal rank- r solution to the auxiliary problem $\widetilde{\mathbf{W}}_r = \text{SVD}_r(\mathbf{L}_B^\top \mathbf{W}^* \mathbf{L}_A)$, and 2) recovering the
203 optimal solution to the original problem through the inverse transformation $\widehat{\mathbf{W}}_r = \mathbf{L}_B^{-\top} \widetilde{\mathbf{W}}_r \mathbf{L}_A^{-1}$,
204 which yields the best rank- r minimizer for Eq. 9. Consequently, the decomposition $\widehat{\mathbf{W}}_r$ presents an
205 optimal compression \mathcal{C} for Eq. 8, which in turn yields the minimal error increase in Eq. 1 for the
206 given task defined by Eq. 2. \blacksquare

208 Linear layer factorization in this case can be computed with the following expressions:

210
$$\mathbf{W}_1 = \hat{\mathbf{S}}_r^{\frac{1}{2}} \hat{\mathbf{V}}_r^\top \mathbf{L}_A^{-1} \in \mathbb{R}^{r \times m}, \mathbf{W}_2 = \mathbf{L}_B^{-\top} \hat{\mathbf{U}}_r \hat{\mathbf{S}}_r^{\frac{1}{2}} \in \mathbb{R}^{n \times r}, \quad (10)$$

211 where $\hat{\mathbf{S}}_r$ is the diagonal matrix of the r leading singular values of the auxiliary problem.213 We prove in Theorem 1 that the optimum of Problem 8 yields an SVD decomposition of the layer,
214 weighted by the square roots of the empirical Fisher Information's factor matrices. Consequently, the
215 procedure for obtaining this analytical optimal decomposition hinges on the efficient computation of
the Fisher Information factorization for the linear layer, as elaborated in Section 4.

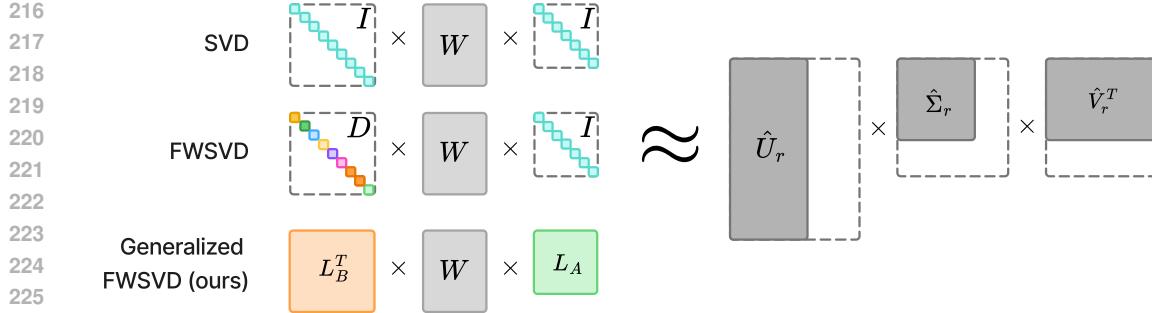


Figure 1: Generalization of the Weighted SVD frameworks. For standard SVD, the transformation matrices are identity matrices. For FWSVD, the left matrix is diagonal but not identity, and the right matrix is identity. For GFWSVD, both matrices are non-diagonal.

3.4 RELATIONSHIP TO PRIOR WORKS

We show that FWSVD, presented in Hsu et al. (2022), is a special case of our generalized framework. The full justification is given in Appendix A. In FWSVD, the objective minimizes a weighted reconstruction error using a diagonal matrix \mathbf{D} derived from a row-wise sum of the Fisher Information. We show that this setup corresponds to a diagonal Kronecker-factored approximation of the FIM, where \mathbf{D} arises naturally from minimizing the Kronecker approximation error. The resulting solution for the low-rank factors $\mathbf{W}_2, \mathbf{W}_1$ matches that of FWSVD (up to a constant), which shows that their method is a special case of our more general framework.

The connection between our generalized approach, the classical SVD and FWSVD is depicted in Figure 1. Weighted SVD approaches can be interpreted as transforming the decomposed object—here, the weight matrix—into a new space where the low-rank approximation better aligns with the target task. In this formulation, the sensitivity matrices serve as transformation matrices that reweight the importance of different directions. Under this view, vanilla SVD corresponds to using identity transformations; FWSVD applies a diagonal (but non-identity) transformation on one side while keeping the other side as identity. In contrast, our method employs full, non-diagonal transformations on both sides, capturing richer structure in the parameter space.

4 KRONECKER FACTORIZATION ALGORITHM VIA RANK-1 SVD

Theorem 1 and Eq. 10 state that, to obtain the provably optimal weighted SVD for a given layer, it suffices to decompose the Hessian into a Kronecker form. However, the Hessian of a linear layer scales quadratically with the layer dimension, thereby severely constraining its tractability on GPUs; this constraint is the primary motivation for existing methods to employ diagonal approximations or to use stochastic, moving-average updates for the factors. In contrast, we propose a computationally effective analytical adaptation of the Kronecker decomposition algorithm for the FIM that captures its full structure without the explicit construction of the full matrix.

Suppose that we have a linear layer of a network with a weight matrix \mathbf{W} and define $\mathbf{G}_i \in \mathbb{R}^{n \times m}$ as a weight gradients $\mathcal{L}(\theta)|_{\theta=\mathbf{W}}$ on the i -th batch, and $g_i = \text{vec}(\mathbf{G}_i) \in \mathbb{R}^{n \cdot m}$ - its flattening version. Then, Fisher Information $\mathcal{I}_F(\theta)$ can be defined as an empirical mean over all batches in a dataset D :

$$\mathcal{I}_F(\theta^*) = \mathbb{E} [gg^\top] = \frac{1}{|D|} \sum_{i=1}^{|D|} g_i g_i^\top. \quad (11)$$

Kronecker product approximation is obtained by solving minimization problem:

$$\min \|\mathcal{I}_F - \mathbf{A} \otimes \mathbf{B}\|_F \quad (12)$$

This minimization problem is equivalent to finding the best rank-1 approximation of a permuted Fisher matrix $\tilde{\mathcal{I}}_F = \mathcal{R}\mathcal{I}_F \in \mathbb{R}^{m^2 \times n^2}$, as established by Van Loan & Pitsianis (1993). Specifically,

270 the singular vectors associated with the largest singular value of $\tilde{\mathcal{I}}_F$ yield the optimal factors \mathbf{A} and
 271 \mathbf{B} . We summarize this efficient decomposition procedure in Algorithm 1.
 272

Algorithm 1 Compute Kronecker Factors via Rank-1 SVD

273 **Require:** List of gradients $\{g_i\}_{i=1}^{|D|}$, $|D|$ – number of batches
 274
 275 1: $\mathcal{I}_F \leftarrow \frac{1}{|D|} \sum_{i=1}^{|D|} g_i g_i^T$
 276 2: $\tilde{\mathcal{I}}_F \leftarrow \mathcal{R}\mathcal{I}_F \leftarrow \frac{1}{|D|} \sum_{i=1}^{|D|} \mathbf{G}_i \otimes \mathbf{G}_i$
 277 3: $(u, \sigma, v^\top) \leftarrow$ Leading singular triplet
 278 4: $b \leftarrow u \cdot \sigma$ ▷ Truncated SVD
 279 5: $a \leftarrow v$ ▷ $b = \text{vec}(\mathbf{B})$
 280 6: $\mathbf{B} \leftarrow \text{reshape}(b, (m, m))$ ▷ $a = \text{vec}(\mathbf{A})$
 281 7: $\mathbf{A} \leftarrow \text{reshape}(a, (n, n))$
 282 8: **return** (\mathbf{B}, \mathbf{A})
 283

284
 285 4.1 EFFICIENT RANK-1 COMPUTATION
 286

287 The primary computational bottleneck of Algorithm 1 arises in performing SVD on the matrix $\tilde{\mathcal{I}}_F$.
 288

289 Standard SVD is computationally intractable for large matrices, so we employ truncated SVD using
 290 the Lanczos method (Lanczos, 1950), which avoids explicit matrix construction and requires only the
 291 ability to multiply the matrix with a vector from the left or right. Even in this setting, aggregating the
 292 full second-moment gradient information across all batch samples is computationally expensive.

293 We can show (see Appendix B) that permuted \mathcal{I}_F for i -th batch can be defined as the Kronecker
 294 product of the corresponding gradient matrices:
 295

$$296 \quad 297 \quad 298 \quad \tilde{\mathcal{I}}_F = \frac{1}{|D|} \sum_{i=1}^{|D|} \mathbf{G}_i \otimes \mathbf{G}_i. \quad (13)$$

299 If we multiply this matrix $\tilde{\mathcal{I}}_F$ by a vector z from left, it will yield:
 300

$$301 \quad 302 \quad 303 \quad \tilde{\mathcal{I}}_F z = \frac{1}{k} \left(\sum_{i=1}^k \mathbf{G}_i \otimes \mathbf{G}_i \right) z = \frac{1}{|D|} \left(\sum_{i=1}^{|D|} \mathbf{G}_i \otimes \mathbf{G}_i \right) \mathbf{Z} = z, \text{ where } z = \text{vec}(\mathbf{Z}), \mathbf{Z} \in \mathbb{R}^{n \times n}. \quad (14)$$

304 Using property of the Kronecker product $(\mathbf{K} \otimes \mathbf{L}) \text{vec}(\mathbf{C}) = \text{vec}(\mathbf{K}^\top \mathbf{C} \mathbf{L})$ we reduce the matrix-
 305 vector multiplication to a sequence of matrix multiplications:
 306

$$307 \quad 308 \quad 309 \quad \tilde{\mathcal{I}}_F z = \frac{1}{|D|} \sum_{i=1}^{|D|} \text{vec}(\mathbf{G}_i^\top \mathbf{Z} \mathbf{G}_i) \quad (15)$$

310 The derivation for right-side multiplication is analogous (see Appendix C).
 311

312 These operations allow us to efficiently approximate the Fisher matrix for LLM layers at practical
 313 batch sizes. As stated in Step 1 of Algorithm 1 and Eq. 13, neither the full Fisher matrix \mathcal{I}_F nor its
 314 permuted form $\tilde{\mathcal{I}}_F$ is ever constructed. Instead, we reduce all computations to operations scaled to
 315 the layer size.
 316

317 4.2 THEORETICAL TIME COMPLEXITY OF THE PROPOSED RANK-1 COMPUTATION
 318

319 The time complexity of computing the truncated SVD of the matrix $\tilde{\mathcal{I}}_F \in \mathbb{R}^{m^2 \times n^2}$ consists of the
 320 matrix-vector multiplications and the orthogonalization and has a cost of $\mathcal{O}(m^2 n^2)$. However,
 321 using the structured formulation from Eq. 15, where left matrix-vector products are implemented via
 322 multiplications with matrices $\mathbf{G}_i^\top \in \mathbb{R}^{m \times n}$, $\mathbf{Z} \in \mathbb{R}^{n \times n}$, and $\mathbf{G}_i \in \mathbb{R}^{n \times m}$, the overall complexity is
 323 reduced to $\mathcal{O}(mn^2 + m^2 n)$. Applying analogous reasoning to the right matrix-vector products (see
 Eq. 30) one can yield the same complexity.

4.3 EMPIRICAL TIME COMPLEXITY AND APPLICATION TO LLMs

In the context of LLM, accelerated Hessian decomposition Algorithm 1 is practical as long as a Hessian of a single layer can be decomposed quickly. This is a relevant bottleneck that comes from the fact that the Hessian size grows quadratically with the layer size and contains more than 10^{12} elements. In Table 1, we report the empirical Hessian decomposition times for single linear layer in different LLMs and prove that this accelerated algorithm is tractable on many transformer models.

For the entire LLM, layers are processed independently and factor computation can be parallelized, so the runtime scales as:

$$\text{Total time} = \frac{\text{time per layer} \times \text{number of layers}}{\text{number of workers}}$$

For example, Llama 2 7B model that has 224 linear layers, can be compressed in approximately 3.5 hours on 3 A100 GPUs. The VRAM constraints are minimal: the peak footprint occurs only during gradient accumulation, which we manage by processing layers sequentially by freezing and unfreezing modules iteratively. That way we fit within standard VRAM limits.

Table 1: Runtime for computing Kronecker factors of single linear layer on GPU.

Model	Params in layer	Params in Hessian	Decomp. time (s)
BERT	2.3×10^6	5.5×10^{12}	43
Llama 2 7B	45×10^6	2.0×10^{15}	183
Llama 3.1 8B	58×10^6	3.4×10^{15}	249
Llama 2 13B	70.8×10^6	4.9×10^{15}	313

5 NUMERICAL EXPERIMENTS

To validate our theoretical contributions, we conduct extensive numerical experiments on several transformer architectures: the encoder-only BERT model (Devlin et al., 2019) and the recent open-weights decoder-only LLMs Llama 2 (Touvron et al., 2023) and Llama 3.1 (Team, 2024). Our goal is to demonstrate the practical benefits of GFWSVD in low-rank compression under fine-tuning and evaluation protocols.

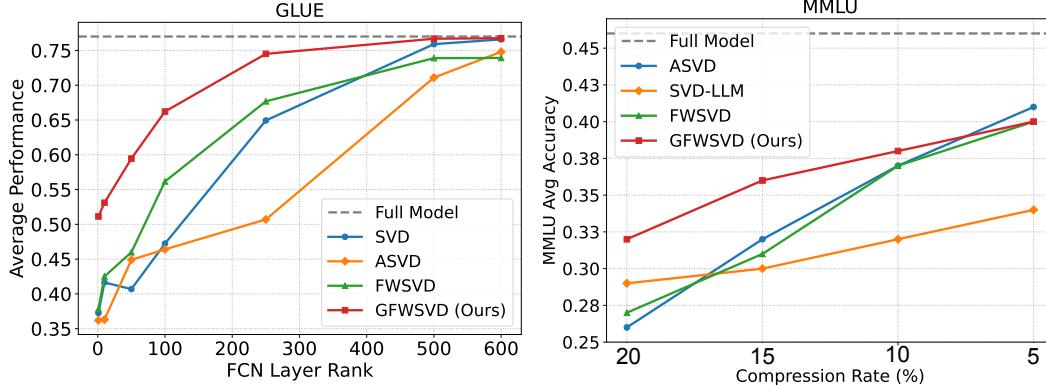


Figure 2: Macro-averaged GLUE performance of BERT model for different compression ranks.

Figure 3: Average MMLU performance of Llama 2 model for different compression rates.

5.1 COMPRESSING THE TRANSFORMER ENCODER

In our experiments, we follow the “fine-tune then compress” pipeline, similar to FWSVD (Hsu et al., 2022). We begin by fine-tuning a pre-trained checkpoint² of the BERT-base model on a specific downstream GLUE task. Optimal fine-tuning hyperparameters (e.g., learning rate, batch size) are selected for each task using the Optuna framework (Akiba et al., 2019). During this stage, we also collect gradients to construct the FIM \mathcal{I}_F and compute its Kronecker decomposition as described in Section 4.

Using the resulting Cholesky factors \mathbf{L}_A and \mathbf{L}_B , we uniformly compress the fully connected layers of BERT by factorizing them into two smaller layers, following the method detailed in Section 3.1.

²<https://huggingface.co/google-bert/bert-base-uncased>

378 The chosen layer-wise ranks and the resulting overall compression rate of the model are summarized
 379 in Table 2. We reproduce the ASVD method using the original authors’ code. For FWSVD, we
 380 incorporate the newly constructed FIM into the compression process.
 381

382 We show average compression results
 383 in Table 2 and Figure 2, extended re-
 384 sults are in Appendix F in Table 11.
 385 On most of the GLUE tasks and
 386 considered compression ranks, our
 387 proposed GFWSVD approach consis-
 388 tently outperforms both FWSVD and
 389 SVD, with particularly strong gains
 390 at lower ranks. While ASVD exhibits
 391 relatively poor performance on sev-
 392 eral tasks (QQP, QNLI), it occa-
 393 sionally surpasses GFWSVD — notably on SST2 under aggressive compression.
 394

5.2 COMPRESSING THE TRANSFORMER DECODER

396 We evaluate our approach on the decoder-only models Llama 2 7B³ and Llama 3.1 8B⁴. Since
 397 GFWSVD is purely analytical – containing no stochastic steps – we benchmark it against several
 398 competitive baselines of the same class of methods: diagonal FI-based low-rank approximation
 399 method FWSVD (Hsu et al., 2022), two activation-based methods – ASVD (Yuan et al., 2023)
 400 and SVD-LLM (Wang et al., 2025c), and per-layer relation-aware Basis Sharing (Wang et al.,
 401 2024). Notably, ASVD and SVD-LLM both rely on activation-based weighting to gauge parameter
 402 importance, while Basis Sharing relies on correlations across layers in the entire model. In contrast,
 403 FWSVD and our GFWSVD rely solely on gradient information, treating each layer as independent.
 404

405 We measure perplexity on WikiText 2 (Merity et al., 2017) and PTB (Marcus et al., 1993) datasets,
 406 5-shot reasoning performance on the MMLU benchmark (Hendrycks et al., 2021) and 0-shot per-
 407 formance on OpenBookQA (Banerjee & Baral, 2020), WinoGrande (Sakaguchi et al., 2021), Hel-
 408 laSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC-E and ARC-C (Clark et al., 2018).
 409 Following prior works on low-rank approximation of LLMs (Wang et al., 2025c; Yuan et al., 2023),
 410 we test several compression setups, removing from 5% to 50% of original parameters.
 411

412 Table 3: Performance of the Llama 3.1 8B Instruct compressed by various methods under compression
 413 ratios from 20% to 50% on WikiText-2, PTB, and six common sense reasoning datasets. Lower
 414 is better for perplexity (\downarrow), higher is better for accuracy (\uparrow). We denote compression ratio as
 $1 - \frac{\text{compressed Model}}{\text{original Model}}$.

METHOD	WikiText \downarrow	PTB \downarrow	C. Ratio	ARC-C \uparrow	ARC-E \uparrow	HellaSwag \uparrow	PIQA \uparrow	WinoG. \uparrow	OpenBook \uparrow	AVG \uparrow
Full model	7.20	11.50	100%	0.52 \pm 0.01	0.81 \pm 0.01	0.59 \pm 0.01	0.79 \pm 0.01	0.73 \pm 0.01	0.35 \pm 0.02	0.63
FWSVD	354	864		0.21 \pm 0.01	0.38 \pm 0.01	0.20 \pm 0.01	0.60 \pm 0.01	0.52 \pm 0.01	0.17 \pm 0.02	0.35
ASVD	145	1672		0.21 \pm 0.01	0.33 \pm 0.01	0.27 \pm 0.01	0.61 \pm 0.01	0.54 \pm 0.01	0.15 \pm 0.02	0.35
Basis Sharing	18.54	90.05	20%	0.34 \pm 0.01	0.68 \pm 0.01	0.42 \pm 0.01	0.70 \pm 0.01	0.65 \pm 0.01	0.35 \pm 0.02	0.52
GFWSVD (Ours)	22.57	42.40		0.35 \pm 0.01	0.68 \pm 0.01	0.45 \pm 0.01	0.75 \pm 0.01	0.63 \pm 0.01	0.33 \pm 0.02	0.53
FWSVD	4372	6824		0.21 \pm 0.01	0.30 \pm 0.01	0.26 \pm 0.01	0.57 \pm 0.01	0.51 \pm 0.01	0.14 \pm 0.02	0.33
ASVD	1456	4232		0.22 \pm 0.01	0.30 \pm 0.01	0.25 \pm 0.01	0.58 \pm 0.01	0.52 \pm 0.01	0.16 \pm 0.02	0.34
Basis Sharing	32	286	30%	0.29 \pm 0.01	0.52 \pm 0.01	0.43 \pm 0.01	0.63 \pm 0.01	0.60 \pm 0.01	0.31 \pm 0.02	0.46
GFWSVD (Ours)	35	58		0.33 \pm 0.01	0.61 \pm 0.01	0.42 \pm 0.01	0.71 \pm 0.01	0.58 \pm 0.01	0.23 \pm 0.02	0.48
FWSVD	11072	15376		0.21 \pm 0.01	0.27 \pm 0.01	0.26 \pm 0.01	0.54 \pm 0.01	0.48 \pm 0.01	0.16 \pm 0.02	0.32
ASVD	2992	13193		0.23 \pm 0.01	0.27 \pm 0.01	0.26 \pm 0.01	0.55 \pm 0.01	0.49 \pm 0.01	0.15 \pm 0.02	0.33
Basis Sharing	78	1083	40%	0.24 \pm 0.01	0.39 \pm 0.01	0.33 \pm 0.01	0.56 \pm 0.01	0.56 \pm 0.01	0.28 \pm 0.02	0.39
GFWSVD (Ours)	69	101		0.25 \pm 0.01	0.41 \pm 0.01	0.32 \pm 0.01	0.61 \pm 0.01	0.55 \pm 0.01	0.22 \pm 0.02	0.39
FWSVD	18992	23088		0.20 \pm 0.01	0.27 \pm 0.01	0.26 \pm 0.01	0.50 \pm 0.01	0.51 \pm 0.01	0.15 \pm 0.02	0.31
ASVD	4039	46189		0.22 \pm 0.01	0.26 \pm 0.01	0.26 \pm 0.01	0.50 \pm 0.01	0.48 \pm 0.01	0.13 \pm 0.02	0.31
Basis Sharing	203	3506	50%	0.23 \pm 0.01	0.30 \pm 0.01	0.29 \pm 0.01	0.52 \pm 0.01	0.53 \pm 0.01	0.26 \pm 0.02	0.35
GFWSVD (Ours)	176	501		0.24 \pm 0.01	0.31 \pm 0.01	0.28 \pm 0.01	0.55 \pm 0.01	0.54 \pm 0.01	0.22 \pm 0.02	0.36

³<https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>

⁴<https://huggingface.co/meta-Llama/Llama-3.1-8B-Instruct>

Following standard practice in post-training LLM compression methods (Wang et al., 2025c; Yuan et al., 2023), we use a randomly sampled set of sentences as calibration data to generate gradients for further obtaining the factor matrices. For calibration data, we choose the FineWeb dataset (Penedo et al., 2024) due to its high quality and diversity, and collect gradients on a random subsample of size 1024. These gradients are then used to obtain \mathbf{L}_A and \mathbf{L}_B , as well as the data needed for FWSVD. As in LLMs, uniform layer compression can disproportionately degrade performance by over-compressing critical layers and under-utilizing redundancy in less sensitive ones, so it is essential for each method to use a compression configuration that accounts for layer sensitivity. For both ASVD and SVD-LLM, we used the corresponding code released by the authors and re-ran the necessary compression pipelines for our checkpoint with all hyperparameters set to default values. For our approach, we adopted the method of per-layer importance scores as described in the ASVD work.

Table 4: Performance of the LLaMA 2 7B Chat compressed by various methods under compression ratios from 20% to 50% on WikiText-2 and six common sense reasoning datasets. Lower is better for perplexity (\downarrow), higher is better for accuracy (\uparrow).

METHOD	WikiText \downarrow	C. Ratio	ARC-C \uparrow	ARC-E \uparrow	HellaSwag \uparrow	PIQA \uparrow	WinoG. \uparrow	OpenBook \uparrow	AVG \uparrow
Full model	6.94	100%	0.44 \pm 0.01	0.73 \pm 0.01	0.58 \pm 0.01	0.76 \pm 0.01	0.67 \pm 0.01	0.33 \pm 0.02	0.59
FWSVD	66.18		0.24 \pm 0.01	0.48 \pm 0.01	0.38 \pm 0.01	0.64 \pm 0.01	0.58 \pm 0.01	0.18 \pm 0.02	0.42
ASVD	18.33		0.27 \pm 0.01	0.51 \pm 0.01	0.39 \pm 0.01	0.68 \pm 0.01	0.61 \pm 0.01	0.22 \pm 0.02	0.45
SVD-LLM	12.10	20%	0.29 \pm 0.01	0.66 \pm 0.01	0.40 \pm 0.01	0.66 \pm 0.01	0.61 \pm 0.01	0.23 \pm 0.02	0.48
Basis Sharing	11.1		0.31 \pm 0.01	0.65 \pm 0.01	0.42 \pm 0.01	0.68 \pm 0.01	0.61 \pm 0.01	0.27 \pm 0.02	0.49
GFWSD (Ours)	11.1		0.33 \pm 0.01	0.62 \pm 0.01	0.47 \pm 0.01	0.74 \pm 0.01	0.61 \pm 0.01	0.25 \pm 0.02	0.50
FWSVD	2572		0.24 \pm 0.01	0.32 \pm 0.01	0.27 \pm 0.01	0.58 \pm 0.01	0.51 \pm 0.01	0.17 \pm 0.02	0.35
ASVD	97.68		0.21 \pm 0.01	0.31 \pm 0.01	0.29 \pm 0.01	0.63 \pm 0.01	0.54 \pm 0.01	0.15 \pm 0.02	0.36
SVD-LLM	18.29	30%	0.25 \pm 0.01	0.52 \pm 0.01	0.34 \pm 0.01	0.62 \pm 0.01	0.55 \pm 0.01	0.22 \pm 0.02	0.42
Basis Sharing	15.40		0.27 \pm 0.01	0.58 \pm 0.01	0.38 \pm 0.01	0.63 \pm 0.01	0.58 \pm 0.01	0.26 \pm 0.02	0.45
GFWSD (Ours)	13.92		0.28 \pm 0.01	0.56 \pm 0.01	0.40 \pm 0.01	0.63 \pm 0.01	0.58 \pm 0.01	0.20 \pm 0.02	0.44
FWSVD	9286		0.23 \pm 0.01	0.26 \pm 0.01	0.25 \pm 0.01	0.48 \pm 0.01	0.45 \pm 0.01	0.16 \pm 0.02	0.31
ASVD	2992		0.22 \pm 0.01	0.26 \pm 0.01	0.26 \pm 0.01	0.49 \pm 0.01	0.49 \pm 0.01	0.16 \pm 0.02	0.31
SVD-LLM	25.16	40%	0.26 \pm 0.01	0.45 \pm 0.01	0.30 \pm 0.01	0.55 \pm 0.01	0.54 \pm 0.01	0.19 \pm 0.02	0.38
Basis Sharing	17.26		0.21 \pm 0.01	0.46 \pm 0.01	0.32 \pm 0.01	0.58 \pm 0.01	0.55 \pm 0.01	0.19 \pm 0.02	0.39
GFWSD (Ours)	16.70		0.27 \pm 0.01	0.48 \pm 0.01	0.33 \pm 0.01	0.64 \pm 0.01	0.57 \pm 0.01	0.17 \pm 0.02	0.41
FWSVD	36578		0.22 \pm 0.01	0.25 \pm 0.01	0.25 \pm 0.01	0.52 \pm 0.01	0.50 \pm 0.01	0.17 \pm 0.02	0.32
ASVD	16896		0.21 \pm 0.01	0.25 \pm 0.01	0.26 \pm 0.01	0.53 \pm 0.01	0.49 \pm 0.01	0.16 \pm 0.02	0.32
SVD-LLM	56.72	50%	0.21 \pm 0.01	0.33 \pm 0.01	0.26 \pm 0.01	0.54 \pm 0.01	0.50 \pm 0.01	0.12 \pm 0.02	0.33
Basis Sharing	35.12		0.20 \pm 0.01	0.36 \pm 0.01	0.30 \pm 0.01	0.55 \pm 0.01	0.50 \pm 0.01	0.15 \pm 0.02	0.34
GFWSD (Ours)	37.80		0.22 \pm 0.01	0.28 \pm 0.01	0.26 \pm 0.01	0.55 \pm 0.01	0.51 \pm 0.01	0.15 \pm 0.02	0.33

Tables 5.2 and 4 show that on LLaMA-2 7B and LLaMA-3 8B, and for compression levels up to 50%, GFWSD substantially outperforms methods that decompose layers independently, both diagonal FWSVD and activation-aware ASVD. If we compare GFWSD, which relies on parameter correlations within a layer, with Basis Sharing, which captures correlations across layers, GFWSD outperforms Basis Sharing on LLaMA-3 8B at all compression levels and surpasses it on LLaMA-2 7B at 20% and 40% compression. This difference likely stems from stronger inter-layer correlations in the instruction-tuned LLaMA-3 8B model. We also observe that GFWSD and Basis Sharing behave differently across tasks while maintaining consistent trends across compression ratios. For example, on PIQA, GFWSD often surpasses Basis Sharing by nearly 10%, whereas on OpenBookQA the opposite pattern emerges. This suggests that different types of structural dependencies within the model—parameter-level versus inter-layer relationships—benefit different categories of tasks.

More fine-grained compression results at 5–20% and MMLU evaluation are provided in Appendix D and Figure 3. There, we show that as the compression ratio decreases, the relative importance of diagonal Fisher information grows, and GFWSD increasingly outperforms both FWSVD and ASVD.

Throughput and FLOP results for compressed models are provided in Appendix E.

486 5.3 METHOD POSITIONING AND APPLICABILITY
487

488 GFWSVD is essentially a standard SVD reweighted on full second-order model loss information
489 which made them (by Theorem 1) provably optimal for the given LLM. We compute the factors for
490 optimal reweighting analytically via a single decomposition of the Hessian, which makes FWSVD
491 training-free and keeps its computational path close to standard SVD. As noted in the Section 2,
492 several SVD-based pipelines optimize decomposition parameters during training and thereby achieve
493 stronger compression. By design, GFWSVD can be seamlessly integrated into any such pipeline as
494 a drop-in replacement for standard SVD, since its factors are computed once before training. For
495 example, post-training compression pipeline Dobi-SVD fine-tune singular values of decomposition.
496 We replaced standard SVD with GFWSVD in the Dobi-SVD pipeline and trained the LLaMA 2 7B
497 model for 20 epochs using the hyperparameters provided in the official Dobi-SVD implementation⁵
498 with remapping enabled. We evaluated resulting models on ARC-C, ARC-E, PIQA and HellaSwag.
499 The results are reported in Table 5. Dobi-GFWSVD method maintains competitive downstream
500 performance at 20% compression and shows only a moderate degradation ($\sim 10\%$ drop in HellaSwag
501 accuracy) at a stronger 40% compression ratio, outperforming the original Dobi-SVD baseline in
502 all cases. Dobi-GFWSVD exhibits only a 3% perplexity increase at 20% compression and remains
503 competitive even at 40%.

504 For comparison with non-structural-
505 approximation approaches, we also
506 include YAQA (Tseng et al., 2025)
507 in baselines. YAQA is a quantiza-
508 tion method that, like our GFWSVD,
509 leverages second-order loss informa-
510 tion. As expected, quantization deliv-
511 ers stronger accuracy and less perplex-
512 ity at these compression ratios.

513 It is also important to emphasize the
514 trade-off between performance and
515 training efficiency. GFWSVD is fully analytical and requires only 3.5 hours on 3 GPUs (including 45
516 calibration steps and factorization), whereas Dobi-SVD and Dobi-GFWSVD fine-tuning take roughly
517 20 hours on 8 GPUs.

518 Table 5: Performance of the LLaMA-2 7B Chat model
519 compressed with the Dobi-SVD and Dobi-GFWSVD pipelines at
520 20% and 40% compression. YAQA is a second-order quanti-
521 zation method.

METHOD	C. Ratio	Wiki-2 \downarrow	PTB \downarrow	ARC-E \uparrow	ARC-C \uparrow	PIQA \uparrow	HSwag \uparrow
Full model	0%	6.94	25.75	0.73	0.44	0.78	0.57
Dobi-SVD		7.75	26.11	0.71	0.40	0.76	0.55
Dobi-GFWSVD (Ours)	20%	7.56	25.95	0.72	0.42	0.77	0.55
YAQA (quant.)		6.99	–	0.73	0.44	0.78	0.56
Dobi-SVD		10.56	41.70	0.58	0.32	0.69	0.32
Dobi-GFWSVD (Ours)	40%	10.29	38.56	0.60	0.33	0.69	0.32
YAQA (quant.)		8.14	–	0.66	0.41	0.77	0.53

522 6 CONCLUSION AND FUTURE WORK
523

524 We introduced **Generalized Fisher-Weighted SVD (GFWSVD)**, a low-rank second-order com-
525 pression method that leverages the full Fisher Information Matrix through a scalable Kronecker
526 decomposition. Unlike previous approaches, GFWSVD captures parameter correlations and yields
527 a factorization *provably optimal* within its class (Theorem 1). Our results on both encoder-only
528 (BERT on GLUE) and decoder-only (LLaMA family on reasoning datasets) show that GFWSVD
529 consistently outperforms diagonal Fisher- and activation-based SVD approaches, particularly at
530 higher compression rates. As for the Basis Sharing method, which employs cross-layer correlation
531 information, our approach outperforms it on LLaMA-3 8B and partially outperforms it on LLaMA-2
532 7B.

533 Crucially, the method is entirely analytical and does *not* require stochastic optimization or iterative
534 retraining, making it lightweight and reproducible. The tractable algorithm for computing full
535 Kronecker factors makes this work an important step toward practical, curvature-aware post-training
536 compression of large language models.

537 GFWSVD highlights the critical role of accurate FIM computation in compression. While our
538 approach performs well empirically, its reliance on a rank-1 Kronecker approximation of the Fisher
539 matrix may oversimplify important structure. Future work could explore higher-rank Kronecker series
540 to capture richer information, and extend the method to model cross-layer dependencies, potentially
541 improving performance by leveraging transitive correlations across the network.

⁵<https://github.com/wangqinsil/Dobi-SVD>

540 ETHICS STATEMENT
541542 This work focuses on methods for improving the efficiency and practicality of post-training low-
543 rank compression of large language models using second-order information. Our research does not
544 involve human subjects, personally identifiable information, or other sensitive data. All experiments
545 are carried out on publicly available models (BERT, Llama) and widely used benchmarks (GLUE,
546 MMLU), ensuring transparency and reproducibility. We do not release any new datasets containing
547 private or proprietary information. The proposed methods are intended to reduce the computational
548 cost and energy consumption of deploying large models, which we view as a positive contribution
549 to sustainability. We are not aware of any direct negative societal impacts; however, as with any
550 model compression technique, improved efficiency may lower the barrier to deploying large models
551 in contexts where misuse is possible. We therefore encourage responsible use of these methods in
552 accordance with the ICLR Code of Ethics.
553554 REPRODUCIBILITY STATEMENT
555556 We have made every effort to ensure reproducibility of our results. The full description of the
557 proposed method, including theoretical assumptions and proofs, is provided in the main text and
558 Appendix. We conduct all experiments on a 4 NVIDIA A100 GPU with latest CUDA drivers using
559 Python 3.12. The reference implementation of the Algorithm 1 as well as all experimental pipelines
560 are available in an anonymous repository⁶.
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

6^{https://anonymous.4open.science/r/FisherKronecker-B4F0}

594 REFERENCES
595596 Hervé Abdi. Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition
597 (GSVD). *Encyclopedia of Measurement and Statistics*., 907(912):44, 2006.598 Takuya Akiba, Shotaro Sano, Takeru Yanase, Toshihiko Ohta, and Masanori Koyama. Optuna:
599 A next-generation hyperparameter optimization framework. In *Proceedings of the 25th ACM*
600 *SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 2623–2631.
601 ACM, 2019.
602603 Genevera I Allen, Logan Grosenick, and Jonathan Taylor. A Generalized Least-Square Matrix
604 Decomposition. *Journal of the American Statistical Association*, 109(505):145–159, 2014.605 Pratyay Banerjee and Chitta Baral. Careful selection of knowledge to solve open book questions. In
606 *Proceedings of ACL*, 2020.607 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
608 commonsense in natural language. In *Proceedings of AAAI*, 2020.609 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
610 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
611 In *Proceedings of NAACL*, 2018.612 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
613 deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
614 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
615 the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
616 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers)*, pp. 4171–
617 4186. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1423. URL
618 <https://doi.org/10.18653/v1/n19-1423>.
619620 R. A. Fisher. *On the Mathematical Foundations of Theoretical Statistics*, pp. 11–44. Springer New
621 York, New York, NY, 1992. ISBN 978-1-4612-0919-5. doi: 10.1007/978-1-4612-0919-5_2. URL
622 https://doi.org/10.1007/978-1-4612-0919-5_2.
623624 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
625 neural networks. In *7th International Conference on Learning Representations, ICLR 2019, New
626 Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=rJ1-b3RcF7>.
627628 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
629 in one-shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
630 Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine Learning, ICML 2023,
631 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of Machine Learning
632 Research*, pp. 10323–10337. PMLR, 2023. URL <https://proceedings.mlr.press/v202/frantar23a.html>.
633634 Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. Johns Hopkins Studies in the
635 Mathematical Sciences. Johns Hopkins University Press, Baltimore, Maryland, 4 edition, February
636 2013.637 Roger B. Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
638 layers. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of the 33rd
639 International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24,
640 2016*, volume 48 of *JMLR Workshop and Conference Proceedings*, pp. 573–582. JMLR.org, 2016.
641 URL <http://proceedings.mlr.press/v48/grosse16.html>.
642643 Arjun K. Gupta and Daya K. Nagar. *Matrix Variate Distributions*. Number 104 in Monographs and
644 Surveys in Pure and Applied Mathematics. Chapman and Hall/CRC, Boca Raton, 1 edition, 2018.
645 doi: 10.1201/9780203749289.

648 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 649 Steinhardt. Measuring massive multitask language understanding. In *9th International Conference
 650 on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net,
 651 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

652 Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
 653 compression with weighted low-rank factorization, 2022. URL <https://openreview.net/forum?id=uPv9Y3gmAI5>.

654 Divyansh Jhunjhunwala, Shiqiang Wang, and Gauri Joshi. Fedfisher: Leveraging fisher information
 655 for one-shot federated learning. In Sanjoy Dasgupta, Stephan Mandt, and Yingzhen Li (eds.), *Inter-
 656 national Conference on Artificial Intelligence and Statistics, 2-4 May 2024, Palau de Congressos,
 657 Valencia, Spain*, volume 238 of *Proceedings of Machine Learning Research*, pp. 1612–1620. PMLR,
 658 2024. URL <https://proceedings.mlr.press/v238/jhunjhunwala24a.html>.

659 James Kirkpatrick, Razvan Pascanu, et al. Overcoming catastrophic forgetting in neural networks. In
 660 *Proceedings of the National Academy of Sciences*, volume 114, pp. 3521–3526, 2017.

661 Abdoulaye Koroko, Ani Anciaux-Sedrakian, Ibtihel Ben Gharbia, Valérie Garès, Mounir Haddou,
 662 and Quang Huy Tran. Efficient approximations of the fisher matrix in neural networks using
 663 kronecker product singular value decomposition. *ESAIM: Proceedings and Surveys*, 73:218–237,
 664 2023.

665 Cornelius Lanczos. An Iteration Method for the Solution of the Eigenvalue Problem of Linear
 666 Differential and Integral Operators. *Journal of Research of the National Bureau of Standards*, 45
 667 (4):255–282, October 1950. ISSN 0160-1741. doi: 10.6028/jres.045.026. Research Paper 2133.

668 Changwoo Lee, Soo Min Kwon, Qing Qu, and Hun-Seok Kim. BLAST: Block-Level Adaptive
 669 Structured Matrices for Efficient Deep Neural Network Inference. In Amir Globersons, Lester
 670 Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
 671 (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference on Neural
 672 Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 673 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/1b2df10d5bc3ca563339c801fa2e14db-Abstract-Conference.html.

674 Sanwoo Lee, Jiahao Liu, Qifan Wang, Jingang Wang, Xunliang Cai, and Yunfang Wu. Dynamic
 675 fisher-weighted model merging via Bayesian optimization. In Luis Chiruzzo, Alan Ritter, and
 676 Lu Wang (eds.), *Proceedings of the 2025 Conference of the Americas Chapter
 677 of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
 678 Long Papers)*, pp. 4923–4935, Albuquerque, New Mexico, April 2025. Association for Computational
 679 Linguistics. ISBN 979-8-89176-189-6. URL <https://aclanthology.org/2025.naacl-long.254/>.

680 Zhiteng Li, Mingyuan Xia, Jingyuan Zhang, Zheng Hui, Linghe Kong, Yulun Zhang, and Xiaokang
 681 Yang. AdaSVD: Adaptive Singular Value Decomposition for Large Language Models. *CoRR*,
 682 abs/2502.01403, 2025. doi: 10.48550/ARXIV.2502.01403. URL <https://doi.org/10.48550/arXiv.2502.01403>.

683 Jun Lu, Tianyi Xu, Bill Ding, David Li, and Yu Kang. Large Language Model Compression via the
 684 Nested Activation-Aware Decomposition. *CoRR*, abs/2503.17101, 2025. doi: 10.48550/ARXIV.
 685 2503.17101. URL <https://doi.org/10.48550/arXiv.2503.17101>.

686 Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a Large Annotated
 687 Corpus of English: The Penn Treebank. *Comput. Linguistics*, 19(2):313–330, 1993.

688 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel Mixture
 689 Models. In *5th International Conference on Learning Representations, ICLR 2017, Toulon,
 690 France, April 24-26, 2017, Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=Byj72udxe>.

691 Guilherme Penedo, Hynek Kydlícek, Loubna Ben Allal, Anton Lozhkov, Margaret Mitchell,
 692 Colin A. Raffel, Leandro von Werra, and Thomas Wolf. The fineweb datasets: Decanting

702 the web for the finest text data at scale. In Amir Globersons, Lester Mackey, Danielle
 703 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances
 704 in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 705 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 706 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/370df50ccfdf8bde18f8f9c2d9151bda-Abstract-Datasets_and_Benchmarks_Track.html.

707 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 708 adversarial winograd schema challenge at scale. In *Proceedings of AAAI*, 2021.

709 Alexander Soen and Ke Sun. Trade-offs of diagonal fisher information matrix estimators. In Amir
 710 Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
 711 Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference
 712 on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, Decem-
 713 ber 10 - 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/0b43289db08ed60edc6451cb2132e203-Abstract-Conference.html.

714 Zedong Tang, Fenlong Jiang, Maoguo Gong, Hao Li, Yue Wu, Fan Yu, Zidong Wang, and Min
 715 Wang. SKFAC: Training Neural Networks With Faster Kronecker-Factored Approximate
 716 Curvature. In *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021,
 717 virtual, June 19-25, 2021*, pp. 13479–13487. Computer Vision Foundation / IEEE, 2021. doi:
 718 10.1109/CVPR46437.2021.01327. URL https://openaccess.thecvf.com/content/CVPR2021/html/Tang_SKFAC_Training_Neural_Networks_With_Faster_Kronecker-Factored_Approximate_Curvature_CVPR_2021_paper.html.

719 Llama Team. The llama 3 herd of models. *CoRR*, abs/2407.21783, 2024. doi: 10.48550/ARXIV.
 720 2407.21783. URL <https://doi.org/10.48550/arXiv.2407.21783>.

721 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 722 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
 723 Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
 724 Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
 725 Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
 726 Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
 727 Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
 728 Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
 729 Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Bin Tang,
 730 Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 731 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
 732 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
 733 *CoRR*, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL <https://doi.org/10.48550/arXiv.2307.09288>.

734 Albert Tseng, Qingyao Sun, David Hou, and Christopher De Sa. QTIP: Quantization with
 735 Trellises and Incoherence Processing. In Amir Globersons, Lester Mackey, Danielle Bel-
 736 grave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances
 737 in Neural Information Processing Systems 38: Annual Conference on Neural Infor-
 738 mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
 739 15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/6de2e84b8da47bb2eb5e2ac96c63d2b0-Abstract-Conference.html.

740 Albert Tseng, Zhaofeng Sun, and Christopher De Sa. Model-Preserving Adaptive Rounding. *CoRR*,
 741 abs/2505.22988, 2025. doi: 10.48550/ARXIV.2505.22988. URL <https://doi.org/10.48550/arXiv.2505.22988>.

742 Charles F. Van Loan and Nikos Pitsianis. Approximation with Kronecker Products. In Marc S.
 743 Moonen, Gene H. Golub, and Bart L.R. De Moor (eds.), *Linear Algebra for Large Scale and
 744 Real-Time Applications*, volume 232 of *NATO ASI Series. Series E: Applied Sciences*, pp. 293–314.
 745 Kluwer Academic Publishers, 1993. Proceedings of the NATO Advanced Study Institute, held in
 746 Leuven, Belgium, August 3–14, 1992.

756 Jingcun Wang, Yu-Guang Chen, Ing-Chao Lin, Bing Li, and Grace Li Zhang. Basis sharing:
 757 Cross-layer parameter sharing for large language model compression, 2024. URL <https://arxiv.org/abs/2410.03765>.
 759

760 Qinsi Wang, Jinghan Ke, Masayoshi Tomizuka, Kurt Keutzer, and Chenfeng Xu. Dobi-SVD:
 761 Differentiable SVD for LLM Compression and Some New Perspectives. In *The Thirteenth*
 762 *International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*.
 763 OpenReview.net, 2025a. URL <https://openreview.net/forum?id=kws76i5XB8>.
 764

764 Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. SVD-LLM V2: Optimizing
 765 Singular Value Truncation for Large Language Model Compression. In Luis Chiruzzo, Alan Ritter,
 766 and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter*
 767 *of the Association for Computational Linguistics: Human Language Technologies, NAACL 2025 -*
 768 *Volume 1: Long Papers, Albuquerque, New Mexico, USA, April 29 - May 4, 2025*, pp. 4287–4296.
 769 Association for Computational Linguistics, 2025b. doi: 10.18653/V1/2025.NAACL-LONG.217.
 770 URL <https://doi.org/10.18653/v1/2025.naacl-long.217>.
 771

771 Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware singular
 772 value decomposition for large language model compression. In *International Conference on*
 773 *Learning Representations (ICLR)*, 2025c. URL <https://openreview.net/forum?id=LNYIUouhdt>.
 774

775 Xiaodong Wu, Wenyi Yu, Chao Zhang, and Philip C. Woodland. An improved empirical fisher
 776 approximation for natural gradient descent. In Amir Globersons, Lester Mackey, Danielle
 777 Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Ad-*
 778 *vances in Neural Information Processing Systems 38: Annual Conference on Neural Infor-*
 779 *mation Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -*
 780 *15, 2024*, 2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/f23098fa0cfcd0e743b134d380eeb9-Abstract-Conference.html.
 781

782 Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
 783 activation-aware singular value decomposition for compressing large language models. *CoRR*,
 784 [abs/2312.05821](https://arxiv.org/abs/2312.05821), 2023. doi: 10.48550/ARXIV.2312.05821. URL <https://doi.org/10.48550/arXiv.2312.05821>.
 785

786 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 787 really finish your sentence? In *Proceedings of ACL*, 2019.
 788

790 A APPENDIX: SPECIAL CASE OF DIAGONAL FISHER INFORMATION MATRIX

792 In this section, we show that FWSVD, presented in (Hsu et al., 2022), is a special case of our
 793 generalized approach.
 794

795 In the work of (Hsu et al., 2022), authors propose to minimize the following objective:

$$796 \min_{\mathbf{W}_1, \mathbf{W}_2} \|\mathbf{D}\mathbf{W}^* - \mathbf{D}\mathbf{W}_2\mathbf{W}_1\|_F^2 \quad (16)$$

797 where \mathbf{D} is the diagonal matrix $\sqrt{\text{diag}(\mathbb{E}[\mathbf{G}\mathbf{G}^\top])}$. Specifically, $\mathbf{D}_{i,i} = \sqrt{\sum_{j=1}^m \mathbb{E}(\mathbf{G}_{i,j})^2}$.
 798

800 Similarly to 12, we approximate the Fisher Information with a Kronecker product of identity matrix
 801 \mathbf{I}_m and some diagonal matrix $\tilde{\mathbf{D}}$. As described further in Section 4 and Appendix A, under the
 802 permutation \mathcal{R} , the problem
 803

$$804 \min_{\mathbf{D}} \|\mathbf{I}_F - \mathbf{I}_m \otimes \tilde{\mathbf{D}}\|_F \quad (17)$$

805 reduces to minimization of the expression

$$806 \min_{\mathbf{d}} \|\mathbb{E}[\mathbf{G} \otimes \mathbf{G}] - (\mathbf{I}_n \odot \mathbf{I}_n)\mathbf{d} \cdot \text{vec}(\mathbf{I}_m)^\top\|_F \quad (18)$$

807 where \odot is a Khatri-Rao product (column-wise Kronecker product) and \cdot is a vector outer product; \mathbf{d}
 808 is a vector diagonal of $\tilde{\mathbf{D}}$; $\mathbb{E}[\mathbf{G} \otimes \mathbf{G}]$ is a permuted Fisher Information matrix $\tilde{\mathbf{I}}_F$, defined in Eq 13.
 809

810 For simplicity, we will use a shorter notation. Let $\mathbf{E} = \mathbb{E}[\mathbf{G} \otimes \mathbf{G}]$, $\mathbf{Z} = \mathbf{I}_n \odot \mathbf{I}_n$, $v = \text{vec}(\mathbf{I}_m)$. Then,
 811 the problem 18 is equivalent to

$$812 \min_{\mathbf{d}} \|\mathbf{Z}\mathbf{d} \cdot v^\top - \mathbf{E}\|_F \quad (19)$$

814 Applying first-order optimality conditions yields:

$$815 \begin{aligned} \langle \mathbf{Z}\delta d \cdot v^\top, \mathbf{Z}\mathbf{d} \cdot v^\top - \mathbf{E} \rangle &= 0 \\ 816 \langle \delta d \cdot v^\top, \mathbf{Z}^\top \mathbf{Z}\mathbf{d} \cdot v^\top - \mathbf{Z}^\top \mathbf{E} \rangle &= 0 \\ 817 \langle \delta d, \mathbf{Z}^\top \mathbf{Z}\mathbf{d} \cdot v^\top - \mathbf{Z}^\top \mathbf{E}v \rangle &= 0 \end{aligned}$$

821 Since $\mathbf{Z}^\top \mathbf{Z} = \mathbf{I}_n$, $v^\top v = \|v\|_2^2 = \|\text{vec}(\mathbf{I}_m)\|_2^2 = m$, we have:

$$824 d = \frac{1}{m} (\mathbf{I}_n \odot \mathbf{I}_n)^\top \mathbb{E}[\mathbf{G} \otimes \mathbf{G}] \text{vec}(\mathbf{I}_m) = \frac{1}{m} (\mathbf{I}_n \odot \mathbf{I}_n)^\top \text{vec}(\mathbb{E}[GG^\top]) = \frac{1}{m} \text{diag}(\mathbb{E}[GG^\top]) \quad (20)$$

827 Thus, diagonal matrix $\tilde{\mathbf{D}}$ from Kronecker product approximation problem 17 equals square of matrix
 828 \mathbf{D} from the FWSVD formulation 16 up to the constant $\frac{1}{m}$.

830 We apply Theorem 1 to find factors $\mathbf{W}_2, \mathbf{W}_1$ for the obtained approximation $\mathbf{I}_F = \mathbf{I}_m \otimes \tilde{\mathbf{D}}$:

$$831 \mathbf{W}_2 = \sqrt{\tilde{\mathbf{D}}^{-1}} \hat{\mathbf{U}}_r \sqrt{\hat{\mathbf{S}}_r} = \mathbf{D}^{-1} \hat{\mathbf{U}}_r \sqrt{\hat{\mathbf{S}}_r}, \mathbf{W}_1 = \sqrt{\hat{\mathbf{S}}_r} \hat{\mathbf{V}}_r^\top \quad (21)$$

834 where $\hat{\mathbf{U}}_r \hat{\mathbf{S}}_r \hat{\mathbf{V}}_r^\top$ is r-rank SVD of $\sqrt{\tilde{\mathbf{D}}}\mathbf{W}^* = \mathbf{D}\mathbf{W}^*$. This is the same solution that minimizes the
 835 problem 16 from FWSVD paper (Hsu et al., 2022). Consequently, FWSVD approach is a special
 836 case of diagonal Kronecker product approximation of Fisher Information.

838 B APPENDIX: ADDITIONAL EXPLANATIONS FOR KRONECKER 839 DECOMPOSITION ADAPTATION

841 Let's show that the permuted \mathcal{I}_F in the Kronecker decomposition algorithm can be expressed as the
 842 Kronecker product of the corresponding gradient matrices.

844 We start with the empirical Fisher information matrix defined as $\mathcal{I}_F = \frac{1}{|D|} \sum_{i=1}^{|D|} g_i g_i^\top$ and its
 845 reordered version:

$$846 \tilde{\mathcal{I}}_F = \mathcal{R}\mathcal{I}_F \quad (22)$$

849 Using the identity

$$850 \text{vec}(\mathbf{g}_i \mathbf{g}_i^\top) = \mathbf{g}_i \otimes \mathbf{g}_i,$$

851 we obtain:

$$853 \text{vec}(\mathcal{I}_F) = \frac{1}{|D|} \sum_{i=1}^{|D|} \text{vec}(\mathbf{g}_i \mathbf{g}_i^\top) = \frac{1}{|D|} \sum_{i=1}^{|D|} (\mathbf{g}_i \otimes \mathbf{g}_i). \quad (23)$$

857 Let $\mathcal{P} \in \mathbb{R}^{(ab)^2 \times (ab)^2}$ be the unique permutation matrix such that for any matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{a \times b}$:

$$859 \mathcal{P} \cdot \text{vec}(\mathbf{A} \otimes \mathbf{B}) = (\text{vec}(\mathbf{A}) \otimes \text{vec}(\mathbf{B})). \quad (24)$$

861 In our case \mathcal{P} can be defined through the commutation matrix \mathbf{K}_{mn} and identity matrices \mathbf{I}_n and \mathbf{I}_m :

$$863 \mathbf{P} := \mathbf{I}_n \otimes \mathbf{K}_{mn} \otimes \mathbf{I}_m, \quad \mathbf{K}_{mn}^\top = \mathbf{K}_{nm} \quad (25)$$

864 Using this , we can write:
 865

$$866 \quad 867 \quad \mathcal{P} \cdot \text{vec}(\mathbf{G}_i \otimes \mathbf{G}_i) = \text{vec}(\mathbf{G}_i) \otimes \text{vec}(\mathbf{G}_i). \quad (26)$$

868 Therefore, the vectorized Fisher information becomes:
 869

$$870 \quad 871 \quad 872 \quad \text{vec}(\mathcal{I}_F) = \frac{1}{|D|} \sum_{i=1}^{|D|} \mathcal{P} \cdot \text{vec}(\mathbf{G}_i \otimes \mathbf{G}_i) = \mathcal{P} \cdot \text{vec} \left(\frac{1}{|D|} \sum_{i=1}^{|D|} (\mathbf{G}_i \otimes \mathbf{G}_i) \right) = \mathcal{P} \text{vec}(\tilde{\mathcal{I}}_F). \quad (27)$$

873 So, $\tilde{\mathcal{I}}_F$ can be defined as $\frac{1}{|D|} \sum_{i=1}^{|D|} (\mathbf{G}_i \otimes \mathbf{G}_i)$. This fact is used in the accelerated adaptation of the
 874 Kronecker Factorization algorithm.
 875

876 Now, suppose a \mathcal{I}_F and $\tilde{\mathcal{I}}_F$ are connected with $\mathcal{R} \in \mathbb{R}^{n \times n}$ (see Eq. 22):
 877

$$878 \quad 879 \quad \text{vec}(\tilde{\mathcal{I}}_F) = (I \otimes \mathcal{R}) \cdot \text{vec}(\mathcal{I}_F), \mathcal{P} = I \otimes \mathcal{R} \quad (28)$$

880 C APPENDIX: RIGHT VECTOR-MATRIX MULTIPLICATION

881 We can define right vector-matrix multiplication as follows:
 882

$$883 \quad 884 \quad 885 \quad \mathcal{I}_F^\top z = \left(\sum_{i=1}^{|D|} \mathbf{G}_i \otimes \mathbf{G}_i \right)^\top z \quad (29)$$

886 Using property of the Kronecker product $(\mathbf{K} \otimes \mathbf{L}) \text{vec}(\mathbf{C}) = \text{vec}(\mathbf{K}^\top \mathbf{C} \mathbf{L})$:
 887

$$888 \quad 889 \quad 890 \quad \mathcal{I}_F^\top z = \sum_{i=1}^{|D|} \text{vec}(\mathbf{G}_i \mathbf{Z} \mathbf{G}_i^\top), \text{ where } z = \text{vec}(\mathbf{Z}), \mathbf{Z} \in \mathbb{R}^{m \times m} \quad (30)$$

891 D APPENDIX: EXTENDED DECODER EVALUATION ON MMLU

892 Table 6 and Figure 3 shows that for LLaMA 2 7B GFWSVD consistently outperforms both simple and
 893 strong baselines across all compression rates. In particular, at the most aggressive compression setups
 894 (15–20% of the original parameters), our method matches or exceeds the accuracy of activation-based
 895 methods and shows substantially lower perplexities on both WikiText-2 and PTB.
 896

897 We also compressed the Llama 3.1 8B model using ours GFWSVD and compared it to the activation-
 898 aware SVD (ASVD) method. Due to its extensive training on 15 trillion tokens, Llama 3.1 has
 899 exceptionally high information density and low parameter redundancy, therefore, it is a significantly
 900 more challenging target for compression than Llama 2. In Table 7 we show that Llama 3.1 has a
 901 stronger degradation in quality upon compression than Llama 2. Nevertheless, our method GFWSVD
 902 demonstrated better results across all compression ratios.
 903

904 E APPENDIX: THROUGHPUT AND FLOPs FOR COMPRESSED MODELS

905 GFWSVD, ASVD, SVD-LLM compresses weight $\mathbf{W} \in \mathbb{R}^{n \times m}$ into a pair of low-rank matrices
 906 $\mathbf{W}_1 \in \mathbb{R}^{n \times r}$ and $\mathbf{W}_2 \in \mathbb{R}^{r \times m}$. This reduces the number of FLOPs required during the forward pass
 907 through a linear layer from $O(nm)$ to $O(nr + rm) = O(r(n + m))$.
 908

909 We ran inference-time latency measurements on the Llama 2 7B model under different compressions.
 910 The results are shown below (averaged over 100 runs, batch size = 1, sequence length = 1024 tokens,
 911 GPU: A100 80GB).
 912

918
919 Table 6: Performance of the Llama 2 7B Chat compressed by various methods under compression
920 ratios from 5% to 20% on WikiText-2, PTB, and MMLU. Lower is better for perplexity (\downarrow), higher is
921 better for accuracy (\uparrow). We denote compression ratio as $1 - \frac{\text{compressed model}}{\text{original model}}$.

METHOD	WikiText-2 \downarrow	PTB \downarrow	C. Ratio	MMLU Avg \uparrow	Humanities \uparrow	Other \uparrow	Social Sciences \uparrow	STEM \uparrow
Full model	6.94	25.75	0%	0.46 \pm 0.003	0.43 \pm 0.01	0.55 \pm 0.01	0.53 \pm 0.01	0.36 \pm 0.01
FWSVD (Hsu et al., 2022)	7.52	45.25		0.40 \pm 0.003	0.36 \pm 0.01	0.45 \pm 0.01	0.45 \pm 0.01	0.35 \pm 0.01
ASVD (Yuan et al., 2023)	7.60	26.29	5%	0.41 \pm 0.004	0.37 \pm 0.01	0.48 \pm 0.01	0.46 \pm 0.01	0.35 \pm 0.01
SVD-LLM (Wang et al., 2025c)	8.80	51.28		0.34 \pm 0.004	0.31 \pm 0.01	0.38 \pm 0.01	0.35 \pm 0.01	0.31 \pm 0.01
GFWSVD (Ours)	7.16	28.55		0.40 \pm 0.003	0.38 \pm 0.01	0.47 \pm 0.01	0.44 \pm 0.01	0.33 \pm 0.01
FWSVD (Hsu et al., 2022)	11.53	96.62		0.37 \pm 0.004	0.34 \pm 0.01	0.43 \pm 0.01	0.42 \pm 0.01	0.33 \pm 0.01
ASVD (Yuan et al., 2023)	8.97	40.12	10%	0.37 \pm 0.004	0.33 \pm 0.01	0.42 \pm 0.01	0.40 \pm 0.01	0.33 \pm 0.01
SVD-LLM (Wang et al., 2025c)	9.69	60.82		0.32 \pm 0.004	0.30 \pm 0.01	0.35 \pm 0.01	0.32 \pm 0.01	0.30 \pm 0.01
GFWSVD (Ours)	8.77	36.44		0.38 \pm 0.002	0.35 \pm 0.01	0.44 \pm 0.01	0.42 \pm 0.01	0.33 \pm 0.01
FWSVD (Hsu et al., 2022)	22.06	411.50		0.31 \pm 0.009	0.29 \pm 0.01	0.34 \pm 0.01	0.33 \pm 0.01	0.30 \pm 0.01
ASVD (Yuan et al., 2023)	10.91	83.49	15%	0.32 \pm 0.003	0.30 \pm 0.01	0.33 \pm 0.01	0.32 \pm 0.01	0.30 \pm 0.01
SVD-LLM (Wang et al., 2025c)	10.36	72.58		0.30 \pm 0.004	0.29 \pm 0.01	0.34 \pm 0.01	0.31 \pm 0.01	0.30 \pm 0.01
GFWSVD (Ours)	10.06	42.19		0.36 \pm 0.004	0.33 \pm 0.01	0.41 \pm 0.01	0.38 \pm 0.01	0.32 \pm 0.01
FWSVD (Hsu et al., 2022)	66.37	1523.00		0.27 \pm 0.004	0.25 \pm 0.01	0.30 \pm 0.01	0.28 \pm 0.01	0.28 \pm 0.01
ASVD (Yuan et al., 2023)	27.73	241.57	20%	0.26 \pm 0.004	0.25 \pm 0.01	0.27 \pm 0.01	0.24 \pm 0.01	0.28 \pm 0.01
SVD-LLM (Wang et al., 2025c)	11.23	98.91		0.29 \pm 0.004	0.27 \pm 0.01	0.32 \pm 0.01	0.29 \pm 0.01	0.29 \pm 0.01
GFWSVD (Ours)	11.13	50.50		0.32 \pm 0.003	0.30 \pm 0.01	0.35 \pm 0.01	0.34 \pm 0.01	0.30 \pm 0.01

937
938 Table 7: Performance of Llama 3.1 8B Instruct compressed by various methods under compression
939 ratios from 10% to 20% on WikiText-2, PTB, and MMLU. Lower is better for perplexity (\downarrow), higher is
940 better for accuracy (\uparrow).

METHOD	WikiText-2 \downarrow	PTB \downarrow	Compr.	MMLU Avg \uparrow	Humanities \uparrow	Other \uparrow	Social Sciences \uparrow	STEM \uparrow
Full model	7.2	11.50	0%	0.68 \pm 0.006	0.64 \pm 0.01	0.73 \pm 0.01	0.78 \pm 0.01	0.60 \pm 0.01
ASVD (Yuan et al., 2023)	10.91	19.33	10%	0.39 \pm 0.004	0.39 \pm 0.01	0.33 \pm 0.01	0.35 \pm 0.01	0.35 \pm 0.01
GFWSVD (Ours)	9.38	19.81		0.54 \pm 0.002	0.49 \pm 0.01	0.62 \pm 0.01	0.63 \pm 0.01	0.46 \pm 0.01
ASVD (Yuan et al., 2023)	38.02	76.1	15%	0.29 \pm 0.004	0.31 \pm 0.01	0.32 \pm 0.01	0.31 \pm 0.01	0.31 \pm 0.01
GFWSVD (Ours)	16.75	23.67		0.50 \pm 0.001	0.46 \pm 0.01	0.56 \pm 0.01	0.57 \pm 0.01	0.43 \pm 0.01
ASVD (Yuan et al., 2023)	145	1672	20%	0.24 \pm 0.003	0.27 \pm 0.01	0.28 \pm 0.01	0.27 \pm 0.01	0.27 \pm 0.01
GFWSVD (Ours)	22.57	32.4		0.43 \pm 0.003	0.39 \pm 0.01	0.49 \pm 0.01	0.48 \pm 0.01	0.38 \pm 0.01

950
951 Table 8: Comparison of theoretical FLOPs for Llama 2 7B Chat under different compression rates.
952 All values are in trillions (T) of FLOPs.

Model	Compression Ratio	Full Model FLOPs	Compressed FLOPs
Llama 2 7B	10%	53.05T	42.43T
	15%	53.05T	39.24T
	20%	53.05T	37.18T
	40%	53.05T	31.83T
	50%	53.05T	29.37T

953
954 Table 9: Throughput (tokens/s) achieved by the uncompressed Llama 2 7B Chat and its FWSVD-
955 compressed versions (batch size = 1, sequence length = 1024).

Compression Ratio	Tokens/s	Relative Speedup
0% (Uncompressed)	1186	1.00 \times
10%	1269	1.07 \times
15%	1294	1.09 \times
20%	1323	1.12 \times
40%	1510	1.27 \times
50%	1600	1.34 \times

972 We ran inference-time latency measurements on the Llama 7B model using different compression
 973 ranks. The results are shown in Table 10(averaged over 100 runs, batch size = 1, sequence length =
 974 1024 tokens, GPU: A100 80GB).

975
 976 Table 10: Inference latency (in milliseconds) per token for compressed Llama 2 7B Chat model.
 977 Lower is better. Reported values represent forward pass time averaged over 100 runs.

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025					
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025					
Compression						
	0% (Uncompressed)	10%	15%	20%	40%	50%
Throughput↓ (batch_size=64)						
GFWSVD (Ours)	4.7	4.5	4.2	4.0	3.3	2.95
SVD-LLM	4.7	4.4	4.2	3.9	–	–
Throughput↓ (batch_size=16)						
GFWSVD (Ours)	3.2	3.0	2.8	2.6	2.3	2.15
SVD-LLM	3.2	2.9	2.8	2.6	–	–

1026 F APPENDIX: EXTENDED GLUE RESULTS

1028 We report extended compression results on tasks of GLUE benchmark in Table 11.

1031 Table 11: Performance of BERT model compressed by various methods under compression rates
 1032 from 60% to 99% on GLUE benchmark. Higher is better for all tasks (\uparrow).

METHOD / DATASET	MRPC \uparrow	STSB \uparrow	QQP \uparrow	MNLI \uparrow	QNLI \uparrow	RTE \uparrow	COLA \downarrow	SST2 \uparrow
Full model	0.77	0.87	0.90	0.83	0.90	0.56	0.41	0.91
Compression Ratio 1% ($r = 600$)								
SVD	0.67	0.84	0.90	0.67	0.90	0.56	0.58	0.91
ASVD (Yuan et al., 2023)	0.72	0.73	0.89	0.83	0.90	0.56	0.41	0.91
FWSVD (Hsu et al., 2022)	0.72	0.87	0.90	0.72	0.90	0.55	0.36	0.91
GFWSVD (Ours)	0.73	0.87	0.90	0.73	0.90	0.56	0.55	0.92
Compression Ratio 8% ($r = 500$)								
SVD	0.53	0.82	0.89	0.53	0.90	0.54	0.53	0.89
ASVD (Yuan et al., 2023)	0.71	0.56	0.86	0.81	0.89	0.53	0.44	0.88
FWSVD (Hsu et al., 2022)	0.71	0.87	0.90	0.71	0.89	0.56	0.34	0.91
GFWSVD (Ours)	0.73	0.87	0.90	0.73	0.90	0.56	0.49	0.92
Compression Ratio 23% ($r = 250$)								
SVD	0.49	0.68	0.81	0.49	0.85	0.50	0.17	0.57
ASVD (Yuan et al., 2023)	0.69	0.08	0.76	0.50	0.58	0.47	0.11	0.75
FWSVD (Hsu et al., 2022)	0.69	0.86	0.89	0.69	0.89	0.61	0.23	0.80
GFWSVD (Ours)	0.71	0.86	0.89	0.71	0.89	0.61	0.38	0.88
Compression Ratio 33% ($r = 100$)								
SVD	0.32	0.08	0.64	0.32	0.80	0.51	0.01	0.49
ASVD (Yuan et al., 2023)	0.58	0.07	0.74	0.39	0.50	0.47	0.05	0.82
FWSVD (Hsu et al., 2022)	0.69	0.58	0.87	0.71	0.86	0.55	0.21	0.72
GFWSVD (Ours)	0.71	0.70	0.87	0.71	0.86	0.55	0.21	0.72
Compression Ratio 36% ($r = 50$)								
SVD	0.32	0.19	0.57	0.32	0.78	0.48	0.02	0.49
ASVD (Yuan et al., 2023)	0.68	0.03	0.73	0.49	0.76	0.51	0.03	0.80
FWSVD (Hsu et al., 2022)	0.69	0.65	0.84	0.69	0.72	0.46	0.03	0.77
GFWSVD (Ours)	0.69	0.65	0.84	0.69	0.72	0.46	0.05	0.77
Compression Ratio 39% ($r = 10$)								
SVD	0.32	0.32	0.67	0.32	0.61	0.51	0.00	0.49
ASVD (Yuan et al., 2023)	0.61	0.14	0.64	0.40	0.57	0.49	-0.04	0.76
FWSVD (Hsu et al., 2022)	0.37	0.32	0.79	0.37	0.57	0.49	0.00	0.49
GFWSVD (Ours)	0.53	0.60	0.79	0.53	0.62	0.47	0.05	0.65
Compression Ratio 40% ($r = 1$)								
SVD	0.32	0.04	0.69	0.31	0.55	0.53	0.00	0.49
ASVD (Yuan et al., 2023)	0.62	0.10	0.64	0.42	0.50	0.49	0.03	0.70
FWSVD (Hsu et al., 2022)	0.32	0.18	0.72	0.32	0.51	0.50	0.00	0.49
GFWSVD (Ours)	0.42	0.70	0.74	0.42	0.65	0.52	0.05	0.49

1073 G APPENDIX: IMPACT OF DIAGONAL AND NON-DIAGONAL ELEMENTS OF 1074 FACTORS

1076 To assess the significance of diagonal elements, we performed the following ablation study. In the
 1077 resulting factor matrices we retained either (1) only the off-diagonal elements (**Non-diag**) or (2) only
 1078 the diagonal elements (**Diag**), and measured perplexity relative to our method and FWSVD. The
 1079 results are in Table 12: the **Diag** variant performs better than FWSVD but worse than GFWSVD.
 This is expected, since FWSVD captures importance only along rows (only the left factor matrix has

1080 a non-identity diagonal, see Fig. 1), whereas Non-diag GFWSVD captures both row and column
 1081 importance. The contribution of off-diagonal elements provides a noticeable improvement compared
 1082 to FWSVD.
 1083

1084 Table 12: Perplexity (\downarrow) at 90% and 85% compression rates for GFWSVD with full, diagonal-only
 1085 and non-diagonal factors for LLaMA 2 7B Chat compression.
 1086

METHOD / DATASET	WikiText 2 \downarrow	PTB \downarrow	WikiText 2 \downarrow	PTB \downarrow
Compression	10%	10%	15%	15%
FWSVD (Hsu et al., 2022)	11.53	96.62	22.00	411.00
Diag GFWSVD	10.94	45.26	11.06	48.25
Non-diag GFWSVD	8.85	37.25	10.22	43.75
Full GFWSVD (Ours)	8.77	36.44	10.06	42.19

H APPENDIX: LIMITATIONS

1097 Our method decomposes the observed Fisher information matrix \mathcal{I}_F into a Kronecker product of two
 1098 smaller matrices, \mathbf{Y} and \mathbf{X} (Eq. 12). While effective, this assumes exact factorization, which may
 1099 not hold in practice and can limit approximation quality and task sensitivity. In LLM experiments,
 1100 we also observed cases where the estimated Kronecker factors were singular, requiring regularization
 1101 (e.g., $\mathbf{Y} \leftarrow \mathbf{Y} + \alpha \text{diag } \mathbf{Y}$) to ensure positive definiteness and numerical stability. Although this
 1102 resolves instability, it introduces additional computational overhead.

1103 We observed that compression effectiveness varies significantly across layers, making preliminary
 1104 layer selection necessary to achieve favorable trade-offs. A key limitation of our current approach
 1105 is the lack of coordination across layers during compression. For effective multi – layer
 1106 compression—especially in large-scale models like LLMs – it is important to account for cross-layer
 1107 dependencies. Future work could focus on modeling these interactions to enable joint compression
 1108 strategies.

I APPENDIX: LLM USAGE STATEMENT

1112 We used large language models (LLMs) only as a general-purpose writing assistant for grammar
 1113 checking and text polishing. The research ideas, implementation, analysis, and conclusions are
 1114 entirely our own.
 1115