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ABSTRACT

The Fisher information is a fundamental concept for characterizing the sensitivity
of parameters in neural networks. However, leveraging the full observed Fisher
information is too expensive for large models, so most methods rely on simple
diagonal approximations. While efficient, this approach ignores parameter cor-
relations, often resulting in reduced performance on downstream tasks. In this
work, we mitigate these limitations and propose Generalized Fisher-Weighted SVD
(GFWSVD) — a fully deterministic post-training LLM compression technique that
accounts for both diagonal and off-diagonal elements of the Fisher information
matrix, providing a more accurate reflection of parameter importance. To make
the method tractable, we introduce a scalable adaptation of the Kronecker-factored
approximation algorithm for the observed Fisher information. We demonstrate the
effectiveness of our method on LLM compression, showing improvements over
existing compression baselines.

1 INTRODUCTION

The Fisher Information Matrix (FIM) (Fisher,|1992) is widely employed in neural networks to enhance
the efficiency of models, particularly in the context of training and inference. However, computing
and leveraging the full Fisher information is computationally prohibitive for deep networks. To make
the problem tractable, existing methods adopt simplified approximations — most commonly, assuming
that the Fisher matrix is diagonal (Wu et al.| [2024; |[Frankle & Carbin, [2019; [Soen & Sun, 2024)).
While efficient, this assumption discards valuable information about parameter correlations.

One key application of FIM is low-rank compression of large language models (LLMs). However, the
standard low-rank approach — Singular Value Decomposition (SVD) — often leads to suboptimal
performance. To mitigate this, weighted SVD methods aim to align the optimization objective with
the target task (Yuan et al., [2023; [Hsu et al., 2022)). Fisher-Weighted SVD (FWSVD) (Hsu et al.,
2022) uses Fisher information to assign importance to parameters. However, FWSVD utilizes only
the diagonal part of FIM and treats each row as independent, which can lead to poor retention of
task-critical components.

In contrast, we propose a more accurate weighted SVD method: Generalized Fisher-Weighted
SVD (GFWSVD). Our approach leverages a Kronecker factorization of the full FIM to derive two
sensitivity matrices, which are integrated into a generalized SVD framework. To overcome the high
computational cost of factorizing the full Fisher matrix, we introduce a scalable adaptation of the
Kronecker decomposition algorithm. We compare our method with various low-rank compression
approaches for large models — those using Fisher information (Fisher-Weighted SVD), and those
leveraging activation statistics (ASVD (Yuan et al.,2023), SVD-LLM (Wang et al., 2025c)) — and
observe consistent improvements in downstream task performance.

To summarize, our main contributions are as follows:
* We introduce Generalized Fisher-Weighted SVD (GFWSVD), a new weighted SVD-based

fully deterministic method for compressing large language models, which leverages the
Kronecker-decomposed Fisher information that encodes both row-wise and column-wise
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parameter correlations. We prove that GFWSVD is a generalization of FWSVD (Hsu et al.|
2022).

* We propose a computationally effective adaptation of the Kronecker decomposition algo-
rithm for the Fisher information matrix (FIM) that captures its full structure without relying
on diagonal or other simplifying approximations.

* We empirically show that our method preserves model performance under compression
while maintaining efficiency, outperforming existing techniques within its class.

2 RELATED WORK

Fisher information is a fundamental tool for measuring parameter importance in neural networks. It
has been used to prevent catastrophic forgetting in continual learning (Kirkpatrick et al., 2017), to
guide local updates in federated learning (Jhunjhunwala et al., 2024)), and more recently to merge fine-
tuned models at the parameter level (Lee et al.,[2025). As computing the full FIM is expensive, many
methods rely on structural assumptions to make it tractable. A widely used strategy is Kronecker-
product factorization, which breaks the FIM into manageable components. KFAC (Grosse & Martens),
2016) introduced this idea for convolutional layers, showing that structured approximations can
preserve key curvature information while cutting costs. Later work (Tang et al.| 2021)) improved
efficiency with faster Kronecker-factored updates, while KPSVD (Koroko et al., [2023) applied
singular-value constraints to enable memory-efficient FIM approximations in large models. We use a
Kronecker-factored FIM approximation for model compression based on the structural approximation
of every separate layer.

Post-training compression based on structural approximation has shown promising results. Such
methods typically rely on a weighted decomposition of a model layer’s weights, incorporating either
loss-aware or activation-aware information. For instance, SparseGPT (Frantar & Alistarhl [2023)
ranks weights using curvature estimates for pruning, FWSVD (Hsu et al.| 2022) applies diagonal
FIM approximations to guide task-aware SVD compression. As we later demonstrate, FWSVD
emerges as a special case of our more general framework, underscoring the flexibility of our approach.
AdaSVD (Li et al., [2025) distributes compression strength across layers via adaptive compensation,
while ASVD (Yuan et al., [2023)), NSVD (Lu et al., 2025), and SVD-LLM variants (Wang et al.,
2025cgb) use activation statistics to refine truncation. Notably, many of these methods assume
independent parameter contributions, which can limit task sensitivity. In contrast, our Kronecker-
factored approximation of the full observed FIM captures both row- and column-wise dependencies
within weight matrices, yielding more accurate importance estimates. There are also approaches
that account for dependencies between layers in the model, rather than just correlations between
parameters within a single layer: (Wang et al.,|2024])) uses a shared set of basis vectors to represent
the weight matrices of different layers, which effectively eliminates cross-layer redundancy.

Other classes of compression methods, such as quantization, also leverage Fisher information in their
setups. For instance, the YAQA (Tseng et al., 2025) quantization method extends QTIP (Tseng et al.}
2024) by incorporating curvature information from the loss landscape.

In more advanced structural approximation pipelines, compression settings are optimized through
training, and structural approximations are combined with additional techniques to enable more
aggressive compression. For example, BLAST (Lee et al.,|2024) relies on a gradient-descent—based
factorization algorithm, while Dobi-SVD (Wang et al.,|2025a)) learns optimal singular values and
then applies quantization.

3 BACKGROUND AND PROBLEM FORMULATION

In this section, we establish the connection between Fisher information over matrix variables drawn
from Matrix-Variate Normal (MVN) distribution and our approach to approximating the Fisher matrix
via a Kronecker product decomposition. We then leverage this decomposition to develop an improved
compression algorithm based on the generalized SVD formulation.
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3.1 LAYER COMPRESSION AND HESSIAN APPROXIMATION

Consider post-training weight compression as a perturbation of a model parameters # € R?. The
perturbation affects the deviation of the model’s loss function £(#) in the proximity of an optimal
point §*. Sensitivity to such perturbation can be naturally captured by the second-order expansion of
the loss determined by the quadratic term involving the Hessian H = H (6*) of the problem:

VL = L(0) — L(67) m%(&—ﬁ*)TH(Q—H*) (1)

Compression optimization thus corresponds to minimizing the deviation V£ with respect to a
compression § = C(#*) while considering the structured curvature encoded in H:

min (6" —C(6%)" H (6"~ C(8)), 2)
where the optimization task is considered over a functional family of compression methods C.

In real-world settings, working directly with H is often intractable due to its size and complex
structure. Hence, solving the task in Eq.[2]also requires finding good enough approximations of H
that ideally capture the most important properties of the Hessian. As we show next, there is a certain
class of approximations that align particularly well with our task.

3.2 MATRIX-VARIATE NORMAL DISTRIBUTION AND FISHER INFORMATION

The MVN distribution (Gupta & Nagar, [2018)) extends the classical multivariate normal distribution
to matrix-valued random variables, providing a structured approach to modeling dependencies within
rows and columns. Formally, a matrix X € R™*™ follows an MVN distribution if its entries exhibit
Gaussian properties with covariance structured across both dimensions. The distribution is defined as

X ~ MN(M, %4, 3), 3)
where M is the mean matrix, and the (non-degenerate) covariance is expressed as a Kronecker
product ¥ ® 33;. Here, 37 captures dependencies between rows, while 35 encodes dependencies
across columns. This structure ensures that each row and column follows a well-defined correlated
Gaussian distribution.

A crucial property of MVN is that its likelihood function inherently incorporates the inverse
Kronecker-factored covariance, leading to an efficient representation of second-order dependencies.
The log-probability density function of X has the form:

log(p(X)) o — 3 (vee (X M) (33 @ 21) vee (X~ M) ) =
= —%tr (Ejl(X—M) =t (X—M)T) “

Maximization of log-likelihood leads to minimization of trace in Eq. 4] which yields the Generalized
Least Squares Matrix Decomposition proble (Allen et al.l|2014):

2
) (%)
F

directly connected to the Generalized Singular Value Decomposition (GSVD) (Golub & Van Loan,
2013). This problem can be straightforwardly solved by means of standard SVD (Abdi, 2006):

X =308V s;] )

where USVT = SVD, (2] 2MX, ?). We note that the result also holds in the case when matrix
square roots are replaced with the corresponding Cholesky factors, which are typically easier to find.

STEX -M)E,?

min
rank(X)<r

Under regular conditions (e.g., smooth differentiability and proper statistical properties), Fisher
Information Zr serves as an expectation of the local curvature (second derivative) of the likelihood
function. Importantly, by taking derivatives of the MVN likelihood function with respect to M, it is
easy to show that the corresponding Hessian directly coincides with Fisher Information at the MLE
solution, ei., Ir = HM) = X5 I 2;1. This formulation provides a natural bridge between
the selection of an optimal compression algorithm C from Eq.[2]and Fisher Information, which we
establish next.

1Following the notation of |Allen et al.|(2014), we define A = A%A%.
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3.3 FISHER-WEIGHTED LINEAR LAYER COMPRESSION

Building on the established connection between MVN distributions and Fisher Information, we are
now ready to formulate the rank-r linear layer compression theorem.

Theorem 1. Let W € R"*™ represent some parameter weights matrix of a single-layer linear
neural network. Suppose that the following conditions hold.

1. The neural network is associated with a loss function corresponding to a Maximum Like-
lihood Estimation (MLE) objective (e.g., cross-entropy loss). This ensures the Hessian at
convergence coincides with the Fisher Information Matrix (FIM).

2. The empirical FIM is approximated by a Kronecker product I ~ A ® B

3. The weights W are drawn from the MVN distribution MN (W*,B~1, A1), where W* is
the optimal weights matrix.

Under these conditions, the best rank-r approximation that minimizes the expected increase in the
loss after low-rank decomposition of W* is given by:

W, =L; W, L., (7
where A = L,Lj and B = LBLE/avre Cholesky factorizations, W = LLW* L, is an auxiliary
matrix, W . is the truncated SVD of W of rank r.

It should be noted that Condition 2 does not generally hold exactly, as neural networks often exhibit

complex, non-Kronecker Hessian structure. Therefore, we treat Condition 2 as an operative Hessian
approximation that enables tractable computation.

Proof. Under the assumption that the loss function originates from MLE, the Hessian coincides with
Fisher Information at the optimal point, ensuring structured sensitivity encoding. Hence, one can
replace Eq. 2] with a surrogate problem

min (6" —C ()" Zr (0" = C(67) ®
for vec(W*) = 6* and vec(W) = C(6*).
Substituting Zr with A ® B and applying Cholesky decomposition to factors A and B yields:
vec(W* = W) T(LaLa " ® LELp ' Jvec(W* — W)
=vec(W* = W) (La ® Lp)(La' ® L' )vec(W* — W)
=vec(Lp ' (W* — W)La) "vec(Lg ' (W* — W)Ly)

e ]

In Section [3.2] we established that the optimal solution to this problem can be obtained via the
standard SVD of the auxiliary matrix W. The final solution is found in two steps: 1) finding an
optimal rank-r solution to the auxiliary problem W =SVD, (LBTW*L A) and 2) recovermg the
optimal solution to the original problem through the inverse transformation W =Lg W L, A ,

which yields the best rank-r minimizer for Eq. @ Consequently, the decomposition WT presents an
optimal compression C for Eq. [8] which in turn yields the minimal error increase in Eq. [T] for the
given task defined by Eq.

Linear layer factorization in this case can be computed with the following expressions:
Al A A Al
W, =S?V/L ' e R™™ W, = Lg' U, S? € R™", (10)
where S, is the diagonal matrix of the r leading singular values of the auxiliary problem.

We prove in Theorem [I]that the optimum of Problem [§]yields an SVD decomposition of the layer,
weighted by the square roots of the empirical Fisher Information’s factor matrices. Consequently, the
procedure for obtaining this analytical optimal decomposition hinges on the efficient computation of
the Fisher Information factorization for the linear layer, as elaborated in Section E}
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Figure 1: Generalization of the Weighted SVD frameworks. For standard SVD, the transformation
matrices are identity matrices. For FWSVD, the left matrix is diagonal but not identity, and the right
matrix is identity. For GFWSVD, both matrices are non-diagonal.

3.4 RELATIONSHIP TO PRIOR WORKS

We show that FWSVD, presented in Hsu et al.| (2022), is a special case of our generalized framework.
The full justification is given in Appendix |A| In FWSVD, the objective minimizes a weighted
reconstruction error using a diagonal matrix D derived from a row-wise sum of the Fisher Information.
We show that this setup corresponds to a diagonal Kronecker-factored approximation of the FIM,
where D arises naturally from minimizing the Kronecker approximation error. The resulting solution
for the low-rank factors Wy, W matches that of FWSVD (up to a constant), which shows that their
method is a special case of our more general framework.

The connection between our generalized approach, the classical SVD and FWSVD is depicted in
Figure[I] Weighted SVD approaches can be interpreted as transforming the decomposed object—here,
the weight matrix—into a new space where the low-rank approximation better aligns with the target
task. In this formulation, the sensitivity matrices serve as transformation matrices that reweight
the importance of different directions. Under this view, vanilla SVD corresponds to using identity
transformations; FWSVD applies a diagonal (but non-identity) transformation on one side while
keeping the other side as identity. In contrast, our method employs full, non-diagonal transformations
on both sides, capturing richer structure in the parameter space.

4 KRONECKER FACTORIZATION ALGORITHM VIA RANK-1 SVD

Theorem [T]and Eq. [I0]state that, to obtain the provably optimal weighted SVD for a given layer, it
suffices to decompose the Hessian into a Kronecker form. However, the Hessian of a linear layer
scales quadratically with the layer dimension, thereby severely constraining its tractability on GPUs;
this constraint is the primary motivation for existing methods to employ diagonal approximations or
to use stochastic, moving-average updates for the factors. In contrast, we propose a computationally
effective analytical adaptation of the Kronecker decomposition algorithm for the FIM that captures
its full structure without the explicit construction of the full matrix.

Suppose that we have a linear layer of a network with a weight matrix W and define G; € R™"*™ as
a weight gradients £(6)|gp=—w on the i-th batch, and g; = vec(G;) € R™™ - its flattening version.
Then, Fisher Information Zr(6) can be defined as an empirical mean over all batches in a dataset D:

|D]
1
Ze(6") =E[99] = 1357 _i9i (11
i=1

Kronecker product approximation is obtained by solving minimization problem:
min |Zr — A® Bl (12)

This minimization problem is equivalent to finding the best rank-1 approximation of a permuted
Fisher matrix Zp = RZIr € R™ an, as established by |Van Loan & Pitsianis|(1993). Specifically,
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the singular vectors associated with the largest singular value of I yield the optimal factors A and
B. We summarize this efficient decomposition procedure in Algorithm

Algorithm 1 Compute Kronecker Factors via Rank-1 SVD

Require: List of gradients {gi}y:)ll, | D| — number of batches
D
I Ip ﬁ Z‘z:‘l gigT

Ip + RIp + 021 Gi © G

(u,0,v") < Leading singular triplet > Truncated SVD
bewu-o > b = vec(B)
a<v >a = vec(A)

B « reshape(b, (m,m))
A <+ reshape(a, (n,n))
return (B, A)

4.1 EFFICIENT RANK-1 COMPUTATION

The primary computational bottleneck of Algorithm 1|arises in performing SVD on the matrix Z.

Standard SVD is computationally intractable for large matrices, so we employ truncated SVD using
the Lanczos method (Lanczos| [1950), which avoids explicit matrix construction and requires only the
ability to multiply the matrix with a vector from the left or right. Even in this setting, aggregating the
full second-moment gradient information across all batch samples is computationally expensive.

We can show (see Appendix [B) that permuted Zr for ¢-th batch can be defined as the Kronecker
product of the corresponding gradient matrices:

~ 1
Tr= =3 GioG. (13)

If we multiply this matrix Ir by a vector z from left, it will yield:
~ 1 [ F 1 |D]
Irz = Z <;GZ ® Gi> z= ﬁ ;Gi ® G; | Z = z, where z = vec(Z),Z € R™"*™.
(14)

Using property of the Kronecker product (K ® L) vec (C) = Vec(KTCL) we reduce the matrix-
vector multiplication to a sequence of matrix multiplications:

R TR

Ipz= 03] > vec(G] ZGy) (15)

i=1

The derivation for right-side multiplication is analogous (see Appendix [C).

These operations allow us to efficiently approximate the Fisher matrix for LLM layers at practical
batch sizes. As stated in Step 1 of Algorithm [I]and Eq. [I3] neither the full Fisher matrix Z nor its
permuted form Zr is ever constructed. Instead, we reduce all computations to operations scaled to
the layer size.

4.2 THEORETICAL TIME COMPLEXITY OF THE PROPOSED RANK-1 COMPUTATION

The time complexity of computing the truncated SVD of the matrix Zp € R™ %" consists of the
matrix-vector multiplications and the orthogonalization and has a cost of O (m2n2). However,
using the structured formulation from Eq.[I5] where left matrix-vector products are implemented via
multiplications with matrices G;-r e Rm*n Z € R™™" and G; € R"*™, the overall complexity is
reduced to O (mn2 + m2n). Applying analogous reasoning to the right matrix-vector products (see
Eq. one can yield the same complexity.
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4.3 EMPIRICAL TIME COMPLEXITY AND APPLICATION TO LLMS

In the context of LLM, accelerated Hessian decomposition Algorithm |1|is practical as long as a
Hessian of a single layer can be decomposed quickly. This is a relevant bottleneck that comes from
the fact that the Hessian size grows quadratically with the layer size and contains more than 10*2
elements. In Table|I} we report the empirical Hessian decomposition times for single linear layer in
different LLMs and prove that this accelerated algorithm is tractable on many transformer models.

For the entire LLLM, layers are processed inde-
pendently and factor computation can be paral- Table 1: Runtime for computing Kronecker factors

lelized, so the runtime scales as: of single linear layer on GPU.
. time per layer X number of layers =~ Model Params Params  Decomp.
Total time = number of workers : in layer  in Hessian time (s)
, BERT 23%x10°  5.5x10'? 43
For example, Llama 2 7B modgl that has 224 lin- Llama 2 7B 45%10°  2.0x10' 183
ear layers, can be compressed in approximately | 1ama 3.1 8B 58x10°  3.4x10%° 249
3.5 hours on 3 A100 GPUs. The VRAM con- Llama 2 13B 70.8x 10° 4.9%10° 313

straints are minimal: the peak footprint occurs
only during gradient accumulation, which we
manage by processing layers sequentially by freezing and unfreezing modules iteratively. That way
we fit within standard VRAM limits.

5 NUMERICAL EXPERIMENTS

To validate our theoretical contributions, we conduct extensive numerical experiments on several
transformer architectures: the encoder-only BERT model (Devlin et al.,|2019) and the recent open-
weights decoder-only LLMs Llama 2 (Touvron et al.,[2023) and Llama 3.1 (Team) [2024)). Our goal is
to demonstrate the practical benefits of GFWSVD in low-rank compression under fine-tuning and
evaluation protocols.

GLUE MMLU

0754 T T ——2 - 0.45 [ === FullModel ~ ~~~~"TTTToTmmmmmmmmTA

—e— ASVD

§ 0.70 >0-43 SVD-LLM
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2o 20.38
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Figure 2: Macro-averaged GLUE performance of Figure 3: Average MMLU performance of Llama
BERT model for different compression ranks. 2 model for different compression rates.

5.1 COMPRESSING THE TRANSFORMER ENCODER

In our experiments, we follow the “fine-tune then compress” pipeline, similar to FWSVD (Hsu et al.,
2022). We begin by fine-tuning a pre-trained checkpoin of the BERT-base model on a specific
downstream GLUE task. Optimal fine-tuning hyperparameters (e.g., learning rate, batch size) are
selected for each task using the Optuna framework (Akiba et al.,[2019). During this stage, we also
collect gradients to construct the FIM Zr and compute its Kronecker decomposition as described in
Section[dl

Using the resulting Cholesky factors Lo and Lg, we uniformly compress the fully connected layers
of BERT by factorizing them into two smaller layers, following the method detailed in Section [3.1]

https://huggingface.co/google—bert/bert-base-uncased
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The chosen layer-wise ranks and the resulting overall compression rate of the model are summarized
in Table 2] We reproduce the ASVD method using the original authors’ code. For FWSVD, we
incorporate the newly constructed FIM into the compression process.

We show average compression results
in Table 2] and Figure 2] extended re-
sults are in Appendix [H in Table [T}
On most of the GLUE tasks and
considered compression ranks, our
proposed GFWSVD approach consis-
tently outperforms both FWSVD and

Table 2: Macro-averaged GLUE performance of BERT for
different compression ranks. Best results for each rank are in

bold. We denote compression ratio as 1 — compressed Model
original Model

Method / Rank 600 500 250 100 50 10 1
Compression ratio 1% 8% 23% 33% 34% 39% 40%

SVD, with particularly strong gains SVD 0.77 0.76 0.65 0.47 0.41 0.42 0.37
at lower ranks. While ASVD exhibits ASVD 0.75 0.71 0.51 0.46 0.45 0.36 0.36
FWSVD 0.74 0.74 0.68 0.56 0.46 0.43 0.38

relatively poor performance on sev-
eral tasks (QQP, QNLI), lt OCC&SiOH- GFWSVD (Olll‘S) 0.77 0.77 0.75 0.66 0.59 0.53 0.51

ally surpasses GFWSVD — notably on SST2 under aggressive compression.

5.2 COMPRESSING THE TRANSFORMER DECODER

We evaluate our approach on the decoder-only models Llama 2 7BE] and Llama 3.1 SBﬂ Since
GFWSVD is purely analytical — containing no stochastic steps — we benchmark it against several
competitive baselines of the same class of methods: diagonal FI-based low-rank approximation
method FWSVD (Hsu et al., 2022), two activation-based methods — ASVD (Yuan et al., 2023
and SVD-LLM (Wang et al) [2025¢)), and per-layer relation-aware Basis Sharing (Wang et al.
2024])). Notably, ASVD and SVD-LLM both rely on activation-based weighting to gauge parameter
importance, while Basis Sharing relies on correlations across layers in the entire model. In contrast,
FWSVD and our GFWSVD rely solely on gradient information, treating each layer as independent.

We measure perplexity on WikiText 2 (Merity et al., 2017) and PTB (Marcus et al.,|1993)) datasets,
5-shot reasoning performance on the MMLU benchmark (Hendrycks et al.| 2021)) and 0-shot per-
formance on OpenBookQA (Banerjee & Baral, [2020), WinoGrande (Sakaguchi et al.||2021)), Hel-
laSwag (Zellers et al., [2019), PIQA (Bisk et al.} 2020), ARC-E and ARC-C (Clark et al., 2018]).
Following prior works on low-rank approximation of LLMs (Wang et al., [2025c;|Yuan et al., 2023)),
we test several compression setups, removing from 5% to 50% of original parameters.

Table 3: Performance of the Llama 3.1 8B Instruct compressed by various methods under compression
ratios from 20% to 50% on WikiText-2, PTB, and six common sense reasoning datasets. Lower

is better for perplexity (), higher is better for accuracy (7). We denote compression ratio as
1 — compressed Model

original Model
METHOD |WikiText| PTB/ |C. Ratio| ARC-C! ARC-E! HellaSwag! PIQA| WinoG.| OpenBook| AVG
Full model \ 7.20 11.50\ 100% \().52 +0.01 0.81 £ 001 0.59 +0.01 0.79 +£0.01 0.73 £0.01 0.35+0.02 0.63
FWSVD 354 864 0.21 £0.01 0.38 £0.01 0.20 £0.01 0.60 £0.01 0.52 +£0.01 0.17 £0.02 0.35
ASVD 145 1672 20% 0.21 £0.01 0.33 £0.01 0.27 £0.01 0.61 +£0.01 0.54 +0.01 0.15+002 0.35
Basis Sharing 18.54  90.05 © 10.34 £001 0.68 001 0.42 001 0.70 £0.01 0.65+001 0.35=002 0.52
GFWSVD (Ours)| 2257 4240 0.35 £0.01 0.68 £0.01 0.45+001 0.75+0.01 0.63 £0.01 033 +002 0.53
FWSVD 4372 6824 0.21 +£0.01 0.30 £0.01 0.26 £0.01 0.57 £0.01 0.51 +£0.01 0.14 +0.02 0.33
ASVD 1456 4232 30% 0.22 £0.01 0.30 £0.01 0.25+0.01 0.58 £0.01 0.52 +£0.01 0.16 +0.02 0.34
Basis Sharing 32 286 © 10.29 001 0.52 £001 0.43 £001 0.63 001 0.60 £ 001 0.31£002 0.46
GFWSVD (Ours) 35 58 0.33 £0.01 0.61 £0.01 0.42 +0.01 0.71 £0.01 0.58 £0.01 0.23 +0.02 0.48
FWSVD 11072 15376 0.21 £0.01 0.27 £0.01 0.26 £0.01 0.54 +0.01 0.48 +0.01 0.16 +0.02 0.32
ASVD 2992 13193 40% 0.23 £0.01 0.27 £0.01 0.26 £0.01 0.55 +0.01 0.49 +0.01 0.15+002 0.33
Basis Sharing 78 1083 © 10.24 £0.01 0.39 001 0.33 £001 0.56 +0.01 0.56 001 0.28 002 0.39
GFWSVD (Ours) 69 101 0.25 +0.01 0.41+£001 0.32 +0.01 0.61 =0.01 0.55+0.01 0.22+0.02 0.39
FWSVD 18992 23088 0.20 +0.01 0.27 £0.01 0.26 +0.01 0.50 +£0.01 0.51 +0.01 0.15+0.02 0.31
ASVD 4039 46189 50% 0.22 £0.01 0.26 £0.01 0.26 £0.01 0.50 +£0.01 0.48 +0.01 0.13 +0.02 0.31
Basis Sharing 203 3506 © 1023 £0.01 0.30 £0.01 0.29 001 0.52 £0.01 0.53 001 0.26 +002 0.35
GFWSVD (Ours) 176 501 0.24 +0.01 0.31 £001 0.28 +£0.01 0.55 £0.01 0.54 £0.01 022 +0.02 0.36

*https://huggingface.
*nttps://huggingface.

co/meta-llama/Llama—-2-7b—-chat-hf
co/meta-Llama/Llama-3.1-8B-Instruct
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Following standard practice in post-training LLM compression methods (Wang et al.l 2025¢} | Yuan
et al.| 2023)), we use a randomly sampled set of sentences as calibration data to generate gradients for
further obtaining the factor matrices. For calibration data, we choose the FineWeb dataset (Penedo
et al} 2024) due to its high quality and diversity, and collect gradients on a random subsample
of size 1024. These gradients are then used to obtain Lo and Ly, as well as the data needed for
FWSVD. As in LLMs, uniform layer compression can disproportionately degrade performance
by over-compressing critical layers and under-utilizing redundancy in less sensitive ones, so it is
essential for each method to use a compression configuration that accounts for layer sensitivity. For
both ASVD and SVD-LLM, we used the corresponding code released by the authors and re-ran the
necessary compression pipelines for our checkpoint with all hyperparameters set to default values.
For our approach, we adopted the method of per-layer importance scores as described in the ASVD
work.

Table 4: Performance of the LLaMA 2 7B Chat compressed by various methods under compression
ratios from 20% to 50% on WikiText-2 and six common sense reasoning datasets. Lower is better for
perplexity (), higher is better for accuracy (7).

METHOD |WikiText | |C. Ratio| ARC-C! ARC-E! HellaSwag’ PIQA WinoG.| OpenBook'|AVG
Full model | 694 | 100% |0.44 =001 0.73 £001 0.58 £0.01 0.76 +0.01 0.67 £001 0.33 £0.02 | 0.59
FWSVD 66.18 0.24 +0.01 0.48 +£0.01 0.38 +£0.01 0.64 +0.01 0.58 £0.01 0.18 £0.02 | 0.42
ASVD 18.33 0.27 £0.01 0.51 £0.01 0.39 £0.01 0.68 £0.01 0.61 £0.01 0.22 +0.02 | 0.45
SVD-LLM 12.10 20% 10.29 +0.01 0.66 +0.01 0.40 +0.01 0.66 +0.01 0.61 £0.01 0.23 +0.02 | 0.48
Basis Sharing 11.1 0.31 £0.01 0.65 +£0.01 0.42+0.01 0.68 +0.01 0.61 +0.01 0.27 +£0.02 | 0.49
GFWSVD (Ours)| 111 | [0.33 001 0.62+001 0.47 £001 0.74 £001 0.61+0.01 0.25+0.02 | 0.50
FWSVD 2572 0.24 +0.01 0.32 +£0.01 0.27 001 0.58 +£0.01 0.51 +£0.01 0.17 +0.02 | 0.35
ASVD 97.68 0.21 £0.01 0.31 £0.01 0.29 £0.01 0.63 +£0.01 0.54 +0.01 0.15+0.02 | 0.36
SVD-LLM 18.29 30% 10.25 +0.01 0.52 +0.01 0.34 +0.01 0.62 +0.01 0.55+£001 0.22 +0.02 | 0.42
Basis Sharing 15.40 0.27 +0.01 0.58 +0.01 0.38 £0.01 0.63 +0.01 0.58 +0.01 0.26 +0.02 | 0.45
GFWSVD (Ours)| 13.92 | |0.28 £0.01 0.56 001 0.40 £0.01 0.63 £0.01 0.58 +:0.01 0.20 +0.02 | 0.44
FWSVD 9286 0.23 +£0.01 0.26 +£0.01 0.25 +0.01 0.48 +£0.01 0.45 +0.01 0.16 £0.02 | 0.31
ASVD 2992 0.22 4£0.01 0.26 +£0.01 0.26 +£0.01 0.49 +0.01 0.49 £0.01 0.16 +£0.02 | 0.31
SVD-LLM 25.16 40% 10.26 £0.01 0.45 £0.01 0.30 +£0.01 0.55 +0.01 0.54 £0.01 0.19 +0.02 | 0.38
Basis Sharing 17.26 0.21 +£0.01 0.46 £0.01 0.32+0.01 0.58 +0.01 0.55+0.01 0.19+£0.02 | 0.39
GFWSVD (Ours)| 16.70 | [0.27 £0.01 0.48 £0.01 0.33 £001 0.64 =001 0.57 £0.01 0.17 002 | 0.41
FWSVD 36578 0.22 £0.01 0.25 £0.01 0.25 £0.01 0.52 £0.01 0.50 £0.01 0.17 £0.02 | 0.32
ASVD 16896 0.21 £0.01 0.25 +0.01 0.26 £0.01 0.53 +£0.01 0.49 +0.01 0.16 £0.02 | 0.32
SVD-LLM 56.72 50% 10.21 £0.01 0.33 +0.01 0.26 +0.01 0.54 +0.01 0.50 £0.01 0.12 +0.02 | 0.33
Basis Sharing 35.12 0.20 £ 0.01 0.36 £0.01 0.30 £0.01 0.55+0.01 0.50 001 0.15=+0.02 | 0.34
GFWSVD (Ours)| 37.80 | [0.22 £001 0.28 £0.01 0.26 £0.01 0.55£001 0.51+0.01 0.15+002 | 0.33

Tables [5.2) and [ show that on LLaMA-2 7B and LLaMA-3 8B, and for compression levels up
to 50%, GFWSVD substantially outperforms methods that decompose layers independently, both
diagonal FWSVD and activation-aware ASVD. If we compare GFWSVD, which relies on parameter
correlations within a layer, with Basis Sharing, which captures correlations across layers, GFWSVD
outperforms Basis Sharing on LLaMA-3 8B at all compression levels and surpasses it on LLaMA-2
7B at 20% and 40% compression. This difference likely stems from stronger inter-layer correlations in
the instruction-tuned LLaMA-3 8B model. We also observe that GFWSVD and Basis Sharing behave
differently across tasks while maintaining consistent trends across compression ratios. For example,
on PIQA, GFWSVD often surpasses Basis Sharing by nearly 10%, whereas on OpenBookQA the
opposite pattern emerges. This suggests that different types of structural dependencies within the
model—parameter-level versus inter-layer relationships—benefit different categories of tasks.

More fine-grained compression results at 5-20% and MMLU evaluation are provided in Appendix D]
and Figure [3] There, we show that as the compression ratio decreases, the relative importance
of diagonal Fisher information grows, and GFWSVD increasingly outperforms both FWSVD and
ASVD.

Throughput and FLOP results for compressed models are provided in Appendix
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5.3 METHOD POSITIONING AND APPLICABILITY

GFWSVD is essentially a standard SVD reweighted on full second-order model loss information
which made them (by Theorem [I)) provably optimal for the given LLM. We compute the factors for
optimal reweighting analytically via a single decomposition of the Hessian, which makes FWSVD
training-free and keeps its computational path close to standard SVD. As noted in the Section [2}
several SVD-based pipelines optimize decomposition parameters during training and thereby achieve
stronger compression. By design, GFWSVD can be seamlessly integrated into any such pipeline as
a drop-in replacement for standard SVD, since its factors are computed once before training. For
example, post-training compression pipeline Dobi-SVD fine-tune singular values of decomposition.
We replaced standard SVD with GFWSVD in the Dobi-SVD pipeline and trained the LLaMA 2 7B
model for 20 epochs using the hyperparameters provided in the official Dobi-SVD implementatiorﬂ
with remapping enabled. We evaluated resulting models on ARC-C, ARC-E, PIQA and HellaSwag.
The results are reported in Table 5] Dobi-GFWSVD method maintains competitive downstream
performance at 20% compression and shows only a moderate degradation (~ 10% drop in HellaSwag
accuracy) at a stronger 40% compression ratio, outperforming the original Dobi-SVD baseline in
all cases. Dobi-GFWSVD exhibits only a 3% perplexity increase at 20% compression and remains
competitive even at 40%.

For comparison with non—structural- Table 5: Performance of the LLaMA-2 7B Chat model com-
approximation approaches, we also pressed with the Dobi-SVD and Dobi-GFWSVD pipelines at
include YAQA (Tseng et al 2025) 20% and 40% compression. YAQA is a second-order quanti-
in baselines. YAQA is a quantiza- zation method.

tion method that, like our GFWSVD, MgerHoD | C. Ratio | Wiki-2| PTB||ARC-E| ARC-C! PIQAT HSwag
leverages second-order loss informa-  Full model | 0% | 694 2575| 0.73 044 078 057
tion. As expected, quantization deliv-  Dobi-SVD 775 2611 071 040 076 055
dl | Dobi-GFWSVD (Ours)| 20% | 7.56 2595| 072 042 077 055

ers stronger accuracy and less perpelx-  yaqa (guant.) 699 - | 073 044 078 056
ity at these compression ratios. Dobi-SVD 1056 4170| 058 032 069 032
. . . Dobi-GFWSVD (Ours)| 40% | 10.29 38.56| 0.60 033  0.69  0.32

It is also important to emphasize the  YAQA (quant.) 814 - | 066 041 077 053

trade-off between performance and

training efficiency. GFWSVD is fully analytical and requires only 3.5 hours on 3 GPUs (including 45
calibration steps and factorization), whereas Dobi-SVD and Dobi-GFWSVD fine-tuning take roughly
20 hours on 8 GPUs.

6 CONCLUSION AND FUTURE WORK

We introduced Generalized Fisher-Weighted SVD (GFWSVD), a low-rank second-order com-
pression method that leverages the full Fisher Information Matrix through a scalable Kronecker
decomposition. Unlike previous approaches, GFWSVD captures parameter correlations and yields
a factorization provably optimal within its class (Theorem [I)). Our results on both encoder-only
(BERT on GLUE) and decoder-only (LLaMA family on reasoning datasets) show that GFWSVD
consistently outperforms diagonal Fisher- and activation-based SVD approaches, particularly at
higher compression rates. As for the Basis Sharing method, which employs cross-layer correlation
information, our approach outperforms it on LLaMA-3 8B and partially outperforms it on LLaMA-2
7B.

Crucially, the method is entirely analytical and does not require stochastic optimization or iterative
retraining, making it lightweight and reproducible. The tractable algorithm for computing full
Kronecker factors makes this work an important step toward practical, curvature-aware post-training
compression of large language models.

GFWSVD highlights the critical role of accurate FIM computation in compression. While our
approach performs well empirically, its reliance on a rank-1 Kronecker approximation of the Fisher
matrix may oversimplify important structure. Future work could explore higher-rank Kronecker series
to capture richer information, and extend the method to model cross-layer dependencies, potentially
improving performance by leveraging transitive correlations across the network.

*https://github.com/wangginsil/Dobi-SVD
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ETHICS STATEMENT

This work focuses on methods for improving the efficiency and practicality of post-training low-
rank compression of large language models using second-order information. Our research does not
involve human subjects, personally identifiable information, or other sensitive data. All experiments
are carried out on publicly available models (BERT, Llama) and widely used benchmarks (GLUE,
MMLU), ensuring transparency and reproducibility. We do not release any new datasets containing
private or proprietary information. The proposed methods are intended to reduce the computational
cost and energy consumption of deploying large models, which we view as a positive contribution
to sustainability. We are not aware of any direct negative societal impacts; however, as with any
model compression technique, improved efficiency may lower the barrier to deploying large models
in contexts where misuse is possible. We therefore encourage responsible use of these methods in
accordance with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility of our results. The full description of the
proposed method, including theoretical assumptions and proofs, is provided in the main text and
Appendix. We conduct all experiments on a 4 NVIDIA A100 GPU with latest CUDA drivers using
Python 3.12. The reference implementation of the Algorithm|[T]as well as all experimental pipelines
are available in an anonymous repositor

®https://anonymous.4open.science/r/FisherKronecker—B4F0
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A APPENDIX: SPECIAL CASE OF DIAGONAL FISHER INFORMATION MATRIX
In this section, we show that FWSVD, presented in (Hsu et al., 2022), is a special case of our
generalized approach.

In the work of (Hsu et al.||2022), authors propose to minimize the following objective:

in [|[DW* - D 2 1
WI?}\I}%H W WoWi 5% (16)

where D is the diagonal matrix /diag (E[GG ']). Specifically, D;; = />_72, E(G ;).

Similarly to[I2] we approximate the Fisher Information with a Kronecker product of identity matrix

I,, and some diagonal matrix D. As described further in Section EI and Appendix |A] under the
permutation R, the problem

min ’IF—Im®]~)H (17)
D F

reduces to minimization of the expression
mdin||]E[G®G] — I, 0L)d-vec(Iy) ||, (18)
where © is a Khatri-Rao product (column-wise Kronecher product) and - is a vector outer product; d

is a vector diagonal of D; E[G ® G/ is a permuted Fisher Information matrix I, defined in Eq
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For simplicity, we will use a shorter notation. Let E = E[G ® G|, Z = I,, ®1,,, v = vec(I,,). Then,
the problem [T8§]is equivalent to
min [|Zd - v' — B, (19)

Applying first-order optimality conditions yields:
(Zod-v",Zd-v" —E)=0
(6d-v",Z"Zd -v" —Z"E) =0
(6d,Z"Zd -v"v—Z "Ev) =0

Since Z'Z =1,,vTv = ||v||§ = ||vec(Im)||§ = m , we have:

1 1 1
d=—(1,01,) E[G® G]vec(I,) = — (I, © I,) "vec(E[GG]) = — diag(E[GG]) (20)
m m m
Thus, diagonal matrix D from Kronecker product approximation problem equals square of matrix
D from the FWSVD formulation |16|up to the constant %

We apply Theoremto find factors Wo, W for the obtained approximation Ip =1, ® D:
—1 ~ . ~ ~ A~
W, =VvD U,\/S,=D10,/S,,W; =4/S, V] (21)

~ ~ ~ = *
where U,.SrVI is r-rank SVD of V DW = DW?™. This is the same solution that minimizes the
problem [I6 from FWSVD paper (Hsu et al.,2022). Consequently, FWSVD approach is a special
case of diagonal Kronecker product approximation of Fisher Information.

B APPENDIX: ADDITIONAL EXPLANATIONS FOR KRONECKER
DECOMPOSITION ADAPTATION

Let’s show that the permuted Zr in the Kronecker decomposition algorithm can be expressed as the
Kronecker product of the corresponding gradient matrices.

We start with the empirical Fisher information matrix defined as Zp = \%I Zl’j‘l g;9; and its
reordered version:
Ir = RIp (22)
Using the identity
vee(gig; ) = 9i ® gi,
we obtain:
1 | D] 1 |D|
vec(Zp) = Dl Zvec(gig;) = Dl Z(Qz ® gi). (23)
i=1 i=1

Let P € R(a0)?x(ab)* pe the unique permutation matrix such that for any matrices A, B € R®*?:

P -vec(A ® B) = (vec(A) ® vec(B)). (24)

In our case P can be defined through the commutation matrix K,,,, and identity matrices I,, and I,,:

P=1,0K., 2L, K, =Km (25)

mn
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Using this , we can write:

P -vec(G; @ G;) = vec(G;) ® vec(Gy). (26)

Therefore, the vectorized Fisher information becomes:

| D] |D|

1 1 ~
ZP vec(G; ® G;) =P - vec Dl Z(Gz ® G;) | =Pvec(Zr). (27)
i=1

vec(Zr)
Dl &
So, Zr- can be defined as o] DI Z‘D‘ (G; ® G;). This fact is used in the accelerated adaptation of the
Kronecker Factorization algorithm.

Now, suppose a Zr and fp are connected with R € R™*"™ (see Eq. :
vec(Zp) = (I®R)-vec(Zp),P=1®R (28)

C APPENDIX: RIGHT VECTOR-MATRIX MULTIPLICATION

We can define right vector-matrix multiplication as follows:
|D]
Tpz=()_ Gi®G;) 2 (29)

i=1

Using property of the Kronecker product (K ® L) vec(C) = vec(K T CL):

ID|
Thz=Y vec(G;ZG, ), where z = vec(Z), Z € R™*™ (30)

=1
D APPENDIX: EXTENDED DECODER EVALUATION ON MMLU

Table[6]and Figure [3|shows that for LLaMA 2 7B GFWSVD consistently outperforms both simple and
strong baselines across all compression rates. In particular, at the most aggressive compression setups
(15-20% of the original parameters), our method matches or exceeds the accuracy of activation-based
methods and shows substantially lower perplexities on both WikiText-2 and PTB.

We also compressed the Llama 3.1 8B model using ours GFWSVD and compared it to the activation-
aware SVD (ASVD) method. Due to its extensive training on 15 trillion tokens, Llama 3.1 has
exceptionally high information density and low parameter redundancy, therefore, it is a significantly
more challenging target for compression than Llama 2. In Table [/| we show that Llama 3.1 has a
stronger degradation in quality upon compression than Llama 2. Nevertheless, our method GFWSVD
demonstrated better results across all compression ratios.

E APPENDIX: THROUGHPUT AND FLOPS FOR COMPRESSED MODELS

GFWSVD, ASVD, SVD-LLM compresses weight W € R™*"™ into a pair of low-rank matrices
W; € R"™" and W4y € R"*"™. This reduces the number of FLOPs required during the forward pass
through a linear layer from O(nm) to O(nr + rm) = O(r(n + m)).

We ran inference-time latency measurements on the Llama 2 7B model under different compressions.
The results are shown below (averaged over 100 runs, batch size = 1, sequence length = 1024 tokens,
GPU: A100 80GB).
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Table 6: Performance of the Llama 2 7B Chat compressed by various methods under compression
ratios from 5% to 20% on WikiText-2, PTB, and MMLU. Lower is better for perplexity (), higher is

; i __ compressed model
better for accuracy (). We denote compression ratio as 1 original model

METHOD [WikiText-2| PTB| |C.Ratio]MMLU Avg| Humanities| Other| Social Sciences? STEM

Full model | 694 2575 | 0% | 0460003 043001 055001 0.53+£001 0.36£001
FWSVD (Hsu et al.|[2022) 7.52 45.25 0.40 £0.003 0.36 +0.01 0.45+001 045+001 0.35+001
ASVD (Yuan et al.[|2023) 7.60 26.29 5% 0.41 + 0004 0.37 +001 0.48 +001 0.46+001 0.35+0.01
SVD-LLM (Wang et al.[[2025¢c) 8.80 51.28 O 1 034+0004 031+001 038+001 035+001 0.31+001
GFWSVD (Ours) 7.16 28.55 0.40 £0.003 0.38 +0.01 047 001 044 +001 0.33 001
FWSVD (Hsu et al.|[2022) 11.53 96.62 0.37 £0.004 0.34 +0.01 043 +001 042+001 0.33 001
ASVD (Yuan et al.[[2023) 8.97 40.12 10% 0.37 £0.004 0.33+0.01 042+001 0.40+001 0.33 +0.01
SVD-LLM (Wang et al.||2025c) 9.69 60.82 © 103240004 0.30+001 035+001 0.32+001 0.30 +0.01
GFWSVD (Ours) 8.77 36.44 0.38 £0.002 0.35+001 044 001 042+001 0.33 001
FWSVD (Hsu et al.|[2022) 22.06 411.50 0.31 £0.009 0.29 +0.01 0.34 +001 0.33+001 0.30 +£0.01
ASVD (Yuan et al.[[2023) 1091 83.49 15% 0.32 +£0.003 0.30 +0.01 0.33+001 0.32+001 0.30 +0.01
SVD-LLM (Wang et al.[|2025c)|  10.36 72.58 © 1 030+0004 029+001 034+001 031+001 0.30+001
GFWSVD (Ours) 10.06 42.19 0.36 +0.004 0.33 £001 0.41+001 038 +001 0.32 +0.01
FWSVD (Hsu et al.|[2022) 66.37  1523.00 0.27 £0.004 0.25 +0.01 0.30+001 0.28 £0.01 0.28 +£0.01
ASVD (Yuan et al.[|2023) 27.73 241.57 20% 0.26 +0.004 0.25+0.01 0.27 +001 0.24+001 0.28 +0.01
SVD-LLM (Wang et al.[|2025c)| 11.23 98.91 © 1 029+0004 027+001 032+001 029001 0.29 +0.01
GFWSVD (Ours) 11.13 50.50 0.32 +0.003 0.30 +001 0.35+001 0.34+001 0.30 +0.01

Table 7: Performance of Llama 3.1 8B Instruct compressed by various methods under compression
ratios from 10% to 20% on WikiText-2, PTB, and MMLU. Lower is better for perplexity (), higher
is better for accuracy (7).

METHOD [WikiText-2| PTB/|Compr. MMLU Avg' Humanities? Other| Social Sciences! STEM

Full model | 72  1150] 0% | 0.68£0006 0.64+001 0.73+001 0.78 001  0.60 +0.01
ASVD (Yuan et al.|[2023) 1091 19.33 10% 0.39 £0.004 0.39 +0.01 033 +001 0.35+001 0.35=+001
GFWSVD (Ours) 9.38 19.81 © 1 0.54£0002 0.49 +001 0.62+0.01 0.63+001  0.46 +0.01
ASVD (Yuan et al.|[2023)|  38.02 76.1 15% 0.29 +0.004 0.31 £001 0.32+001 0.31+001 0.31+0.01
GFWSVD (Ours) 16.75  23.67 ©10.50 £0001 0.46 +001 0.56+001 0.57 £001 0.43 +0.01
ASVD (Yuan et al.|[2023) 145 1672 20% 0.24 +£0.003 0.27 +0.01 0.28 £001 0.27 +0.01  0.27 £0.01
GFWSVD (Ours) 22.57 324 © 1043 +£0003 0.39+001 0.49+001 048+001 0.38 +0.01

Table 8: Comparison of theoretical FLOPs for Llama 2 7B Chat under different compression rates.
All values are in trillions (T) of FLOPs.

Model Compression Ratio Full Model FLOPs Compressed FLOPs
10% 53.05T 42.43T
15% 53.05T 39.24T
Llama 2 78 20% 53.05T 37.18T
40% 53.05T 31.83T
50% 53.05T 29.37T

Table 9: Throughput (tokens/s) achieved by the uncompressed Llama 2 7B Chat and its FWSVD-
compressed versions (batch size = 1, sequence length = 1024).

Compression Ratio Tokens/s Relative Speedup
0% (Uncompressed) 1186 1.00x
10% 1269 1.07x
15% 1294 1.09x
20% 1323 1.12x
40% 1510 1.27x
50% 1600 1.34x
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We ran inference-time latency measurements on the Llama 7B model using different compression

ranks. The results are shown in Table[T0(averaged over 100 runs, batch size = 1, sequence length =
1024 tokens, GPU: A100 80GB).

Table 10: Inference latency (in milliseconds) per token for compressed Llama 2 7B Chat model.
Lower is better. Reported values represent forward pass time averaged over 100 runs.

Method | Compression
| 0% (Uncompressed) | 10% | 15% | 20% | 40% | 50%

\ Throughput| (batch_size=64)

GFWSVD (Ours) 4.7 4.5 4.2 4.0 3.3 2.95
SVD-LLM 4.7 4.4 4.2 3.9 - -

\ Throughput| (batch_size=16)
GFWSVD (Ours) 3.2 3.0 2.8 2.6 2.3 2.15
SVD-LLM 3.2 2.9 2.8 2.6 -

19



Under review as a conference paper at ICLR 2026

F APPENDIX: EXTENDED GLUE RESULTS

We report extended compression results on tasks of GLUE benchmark in Table [T1]

Table 11: Performance of BERT model compressed by various methods under compression rates
from 60% to 99% on GLUE benchmark. Higher is better for all tasks (7).

METHOD / DATASET ‘ MRPC STSB QQP MNLI QNLI RTE COLA SST2

Full model ‘ 0.77 0.87 0.90 0.83 0.90 0.56 0.41 0.91
| Compression Ratio 1% (r = 600)

SVD 0.67 0.84 0.90 0.67 0.90 0.56 0.58 0.91

ASVD (Yuan et al.,|2023) 0.72 0.73 0.89 0.83 0.90 0.56 0.41 0.91
FWSVD (Hsu et al., 2022) 0.72 0.87 0.90 0.72 0.90 0.55 0.36 0.91

GFWSVD (Ours) 0.73 0.87 0.90 0.73 0.90 0.56 0.55 0.92
| Compression Ratio 8% (r = 500)

SVD 0.53 0.82 0.89 0.53 0.90 0.54 0.53 0.89

ASVD (Yuan et al .} [2023) 0.71 0.56 0.86 0.81 0.89 0.53 0.44 0.88

FWSVD (Hsu et al., [2022) 0.71 0.87 0.90 0.71 0.89 0.56 0.34 0.91

GFWSVD (Ours) 0.73 0.87 0.90 0.73 0.90 0.56 0.49 0.92
| Compression Ratio 23% (r = 250)

SVD 0.49 0.68 0.81 0.49 0.85 0.50 0.17 0.57

ASVD (Yuan et al.|[2023) 0.69 0.08 0.76 0.50 0.58 0.47 0.11 0.75
FWSVD (Hsu et al., 2022) 0.69 0.86 0.89 0.69 0.89 0.61 0.23 0.80

GFWSVD (Ours) 0.71 086 089 071 089 061 038  0.88
| Compression Ratio 33% (r = 100)
SVD 032 008 064 032 080 051 00l 0.49

ASVD (Yuan et al.,|2023) 0.58 0.07 0.74 0.39 0.50 0.47 0.05 0.82
FWSVD (Hsu et al., 2022) 0.69 0.58 0.87 0.71 0.86 0.55 0.21 0.72

GFWSVD (Ours) 0.71 0.70 0.87 0.71 0.86 0.55 0.21 0.72
| Compression Ratio 36% (r = 50)
SVD 0.32 0.19 0.57 0.32 0.78 0.48 0.02 0.49

ASVD (Yuan et al.,|2023) 0.68 0.03 0.73 0.49 0.76 0.51 0.03 0.80
FWSVD (Hsu et al.} 2022) 0.69 0.65 0.84 0.69 0.72 0.46 0.03 0.77

GFWSVD (Ours) 0.69 0.65 0.84 0.69 0.72 0.46 0.05 0.77
| Compression Ratio 39% (r = 10)

SVD 0.32 0.32 0.67 0.32 0.61 0.51 0.00 0.49

ASVD (Yuan et al.| [2023) 0.61 0.14 0.64 0.40 0.57 0.49 -0.04 0.76

FWSVD (Hsu et al.,|2022) 0.37 0.32 0.79 0.37 0.57 0.49 0.00 0.49

GFWSVD (Ours) 0.53 0.60 0.79 0.53 0.62 0.47 0.05 0.65
| Compression Ratio 40% (r = 1)

SVD 0.32 0.04 0.69 0.31 0.55 0.53 0.00 0.49

ASVD (Yuan et al.||2023) 0.62 0.10 0.64 0.42 0.50 0.49 0.03 0.70
FWSVD (Hsu et al., 2022) 0.32 0.18 0.72 0.32 0.51 0.50 0.00 0.49
GFWSVD (Ours) 0.42 0.70 0.74 0.42 0.65 0.52 0.05 0.49

G APPENDIX: IMPACT OF DIAGONAL AND NON-DIAGONAL ELEMENTS OF
FACTORS

To assess the significance of diagonal elements, we performed the following ablation study. In the
resulting factor matrices we retained either (1) only the off-diagonal elements (Non-diag) or (2) only
the diagonal elements (Diag), and measured perplexity relative to our method and FWSVD. The
results are in Table the Diag variant performs better than FWSVD but worse than GFWSVD.
This is expected, since FWSVD captures importance only along rows (only the left factor matrix has
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a non-identity diagonal, see Fig. [I)), whereas Non-diag GFWSVD captures both row and column
importance. The contribution of off-diagonal elements provides a noticeable improvement compared
to FWSVD.

Table 12: Perplexity (/) at 90% and 85% compression rates for GFWSVD with full, diagonal-only
and non-diagonal factors for LLaMA 2 7B Chat compression.

METHOD / DATASET WikiText 2| PTB| WikiText2 PTB
Compression 10% 10% 15% 15%
FWSVD (Hsu et al.,2022) 11.53 96.62 22.00 411.00
Diag GFWSVD 10.94 45.26 11.06 48.25
Non-diag GFWSVD 8.85 37.25 10.22 43.75
Full GFWSVD (Ours) 8.77 36.44 10.06 42.19

H APPENDIX: LIMITATIONS

Our method decomposes the observed Fisher information matrix Zr into a Kronecker product of two
smaller matrices, Y and X (Eq. . While effective, this assumes exact factorization, which may
not hold in practice and can limit approximation quality and task sensitivity. In LLM experiments,
we also observed cases where the estimated Kronecker factors were singular, requiring regularization
(e.g., Y < Y + adiagY) to ensure positive definiteness and numerical stability. Although this
resolves instability, it introduces additional computational overhead.

We observed that compression effectiveness varies significantly across layers, making preliminary
layer selection necessary to achieve favorable trade-offs. A key limitation of our current approach
is the lack of coordination across layers during compression. For effective multi — layer com-
pression—especially in large-scale models like LL.Ms — it is important to account for cross-layer
dependencies. Future work could focus on modeling these interactions to enable joint compression
strategies.

I APPENDIX: LLM USAGE STATEMENT

We used large language models (LLMs) only as a general-purpose writing assistant for grammar
checking and text polishing. The research ideas, implementation, analysis, and conclusions are
entirely our own.
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