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Abstract—Imitation learning has enabled robots to perform
complex, long-horizon tasks in challenging dexterous manipula-
tion settings. As new policies are developed, they must be rigor-
ously evaluated and compared against corresponding baselines
through repeated evaluation trials, which is a costly procedure.
This paper proposes a novel statistical framework for rigorously
comparing two policies in the small sample size regime. Prior
work in statistical policy comparison relies on batch testing,
which requires a fixed, pre-determined number of trials and lacks
flexibility in adapting the sample size to the observed evaluation
data. Furthermore, extending the test with additional trials
risks inducing inadvertent p-hacking, undermining statistical
assurances. In contrast, our proposed statistical test is sequential,
allowing researchers to decide whether or not to run more
trials based on intermediate results. This adaptively tailors the
number of trials to the difficulty of the underlying comparison,
saving significant time and effort without sacrificing probabilistic
correctness. Extensive numerical simulation and real-world robot
manipulation experiments show that our test achieves near-
optimal stopping, letting researchers stop evaluation and make a
decision in a near-minimal number of trials while preserving the
probabilistic correctness and statistical power of the comparison.

I. INTRODUCTION

Reliable robot policy evaluation protocols are increasingly
important in imitation learning as models and tasks grow
in complexity, especially in dexterous manipulation where
stochastic and contact-rich interactions introduce inherent ran-
domness in outcomes. A particularly important aspect of eval-
uation is policy comparison, where two policies are repeatedly
deployed in an environment to assess relative performance.

To motivate concretely, consider the scenario presented in
Fig. 1 comparing a new policy π1 to a baseline policy π0 using
a binary success / failure metric. While common in robotics
research [6, 54, 39], this scenario introduces two challenges.
Firstly, real-world evaluations are limited to a small number
of trials (10–60) [33, 18, 14, 37, 25, 4]. Secondly, sequential
evaluation results can fluctuate depending on when the testing
ends. In the Fig. 1 example, the evaluator could observe more
successes for π0 after conducting additional trials, even though
π1 initially appeared superior after the first five.

Recent statistical policy comparison approaches [48, 26]
use conventional batch testing, which requires pre-determining
a fixed trial count number. Such methods prohibit the addi-
tion of new trials when the results of the initial batch are
inconclusive, which otherwise would constitute p-hacking and
invalidate any statistical guarantees [41].

To address these challenges, we propose a novel sequen-
tial testing framework named STEP (Sequential Testing for
Efficient Policy Comparison) for rigorously comparing per-
formance of imitation learning policies1. Unlike batch testing,
STEP allows for variable trial numbers given an experimental
budget which confers two distinct advantages: (1) early stop-
ping when sufficient evidence exists, without sacrificing the
probabilistic correctness of the comparison, and (2) reduced
epistemic risk of overconfident (and potentially incorrect)
conclusions when policies π1 and π0 are closely matched. We
extensively demonstrate these advantages through simulation
and real-world robot manipulation experiments. In simula-
tion, STEP significantly outperforms state-of-the-art (SOTA)
sequential methods, reducing the required number of trials by
up to 32% without sacrificing probabilistic correctness.

II. PRELIMINARIES

We assume a robot policy π1 is trained to complete a task,
and that a binary success-failure metric is used to evaluate
performance. We assume regularity: in evaluation, the initial
state s0 and observation o0 are drawn i.i.d. from the underlying
distribution Ds0,o0 of environments. The randomness over
the draw of environment (and potentially in π1) induces a
Bernoulli distribution with mean p1 (the true success rate)
over observed evaluation rollouts. We denote z1,n = 1 as
success and z1,n = 0 for failure on the nth evaluation trial.
Similarly, for a baseline (comparator) policy π0, outcomes are
z0,n ∼ Ber(p0). We pair the outcomes as Zn = (z0,n, z1,n).
The policy comparison problem can be formalized in the sense
of Neyman-Pearson statistical testing [34]. The null hypothesis
is that the novel policy π1 is no better than the baseline π0,
and the alternative is that the novel policy is indeed better:

Null Hypothesis H0 : p1 ≤ p0 ≡ (p0, p1) ∈ H0

Alt. Hypothesis H1 : p1 > p0 ≡ (p0, p1) ∈ H1.
(1)

We refer the reader to Supplement VIII-A for a review of
the statistical testing nomenclature used in this work.

1Although this paper focuses on imitation learning, STEP is naturally
applicable to evaluating any types of policies based on binary metrics,
including reinforcement learning (RL) policies with sparse 0/1 reward. Please
see the code and project website for more details.

https://github.com/TRI-ML/sequentialized_barnard_tests
https://tri-ml.github.io/step/


Fig. 1: Robot policy comparison problem under binary success/failure metrics. Novel policy π1 is compared against baseline
π0 in a sequence of trials. Within a given evaluation budget, the evaluator seeks a statistically significant comparison in as
few trials as possible. Allowing the evaluator to adaptively and near-optimally tailor the number of trials based on the data
observed so far — without compromising statistical assurances of the comparison — is a central contribution of this work.

III. PROBLEM FORMULATION

We assume that a robot evaluator is tasked with distinguish-
ing two policies via successive evaluations, resulting in the
testing paradigm described in Section II. We also assume that
the evaluator has pre-selected the desired significance level α∗

and a maximum number of trials (for each policy) that they
are willing or able to run: Nmax. Note that valid tests must
cap Type-I (i.e. false-positive) error at the pre-specified level
α∗ ∈ (0, 1); any procedure that fails to do so is inadmissible.
Under this constraint, our goal is to synthesize a decision rule
that maximizes statistical power (i.e. true positive rate) while
minimizing the expected number of evaluation trials.

During the evaluation process the evaluator has access to
the “filtration,” a (possibly compressed) representation of the
results collected thus far – represented by the state xn =
F (Z1, Z2, ..., Zn) – which reduces dimension using the suffi-
cient statistics of scalar Bernoulli distributions [3] (here, the
state is the empirical success count for each policy, augmented
with the time). The evaluator must then sequentially decide
whether to Continue (gather another trial for each policy) or
stop (and either AcceptNull or RejectNull). Given a decision
set U = {AcceptNull,Continue,RejectNull}, this amounts
to finding a state partition ζ = u(x) to optimally balance
minimizing the expected sample size and maintaining high
statistical power at the end of the evaluation process (denoted
by 1−βNmax

), conditioned on the Type-I Error rate constraint:

min
ζ:X 7→U

Eµ(H1)[nstop + cβNmax ]

s.t. max
h0=(p0, p1)∈H0

α(ζ, h0) ≤ α∗

0 ≤ nstop ≤ Nmax w.p. 1.

(2)

IV. METHODOLOGY

The critical challenge is to find efficient decision regions to
solve Eq. (2). For brevity we omit technical details and give
an overview, along with pseudocode in Algorithm 1.

A. Decision Regions
Decision regions (state partitions) are represented as a

sequence of ternary-valued sets:

ζ ≡
{
X Reject Null

n ,XAccept Null
n ,X Continue

n

}Nmax

n=1

. (3)

Intuitively, larger rejection regions stop the evaluation sooner,
but accumulate greater risk of Type-1 Errors. Controlling this
error rate is critical to assure useful implementation.

B. Type-1 Error Control and Power Adaptivity

Suppose that some decision region for steps n−1 has been
obtained with accumulated risk αn−1. Bounding the Type-I
Error for evaluation n by some αn > αn−1 conditioned on
the preceding regions amounts to the following:

max
h∈H0

Ph

(
xn ∈ X Reject Null

n | X Reject Null
n−1

)
≤ αn. (4)

The dependence on the preceding rejection region is made
explicit in Eq. (4), reflecting the internal dynamic structure
under the null hypotheses; as the state represents the empirical
mean, this structure is inherently local. To control Type-
1 Error, it suffices to consider discrete “worst-case” nulls
Ĥ0 = {(p(1), p(1)), · · · , (p(M), p(M))}, where 0 < p(1) <
· · · < p(M) < 1 (see Supplement VIII-E2 for details).

Through discretization, Type-1 Error control becomes a
linear inequality Pnwn ≤ αn1, where wn represents
the probability of rejecting the null in each state xn ∈
Xn = {(0, 0, n), (0, 1, n), · · · (Nmax, Nmax, n)}. Pn is a non-
negative matrix of size (M, |Xn|); each row represents the
probability of reaching each state under h(i) = (p(i), p(i)):

(Pn)ij = Ph(i)

(
xn = xj

n | X
Reject Null
n−1

)
. (5)

Given the previous rejection region, we can compute this prob-
ability by forward-propagating the previous state occupancy
distribution (Pn−1)i according to the state dynamics model.

Having controlled Type-1 Error at level αn, all that remains
is to choose the sequence {αn}Nmax

n=1 . We introduce a non-
negative scalar “risk budget” f(n) for n ∈ {1, · · · , Nmax},
which determines the maximum allowable Type-I Error under
any null hypothesis at each step n. Constraining

∑Nmax
n=0 f(n) =

α∗ globally limits the Type-I error of the procedure by α∗. For
all reported results, the budget is uniform: f(n) = α∗/Nmax.



C. Tractable Optimization

We now to solve a series of optimization problems to
tractably construct the rejection regions, one for each n:

max
∥wn∥∞ ≤ 1

1
Twn

s.t. Ptwn ≤
n∑

k=1

f(k)1

0 ≤ wn ≤ 1,

(6)

This objective encourages the rejection from as many states
as possible, maximizing the size of X Reject Null

n . Furthermore, it
implicitly rejects from states unlikely to occur under any null
hypothesis, which are “cheaper” in terms of accruing risk. The
first constraint ensures that the Type-I error is controlled up to
time n as discussed in Section IV-B, while the second enforces
boundedness of rejection probabilities in [0, 1].

Algorithm 1 STEP Decision-Rule Synthesis

Input: Nmax > 0, risk budget function f(n), type-I error
limit α∗ ∈ (0, 1), number of approximation points M
Initialize: ζ0 = ∅, (P0)ij = 1 if (i, j) = (0, 0) else 0.
for n ∈ {1, ..., Nmax} do

Pn ← Propagate(Pn−1, ζn−1,M) {Eq. (5)}
wn ← Opt(Pn, f) {Eq. (6)}
ζn ← Compress(wn)

end for
return ζ = {ζ1, . . . , ζNmax} {STEP policy}

V. EXPERIMENTS

We conduct extensive simulation and real-world experi-
ments to assess the sample efficiency of STEP in practical
policy comparison settings. We consider the following base-
lines: i) SOTA sequential analysis methods [28, 29] (termed
“Lai”), and ii) the method of Turner and Grünwald [45], which
is specifically tailored to policy comparison problems (termed
“SAVI”). Additionally, we include an Oracle Sequential Prob-
ability Ratio Test (SPRT) [50], infeasible to the evaluator, but
included to give a conservative estimate of the optimality gap
of each method. Additional information about each baseline
is included in Supplement VIII-A and additional experimental
details are presented in Supplement VIII-F.

A. Hardware Evaluation in the Large/Medium-Gap Regime

In this set of experiments, we compare policies with notice-
able performance gaps to show our early-stopping capability.
We consider the CleanUpSpill (Fig. 5b and Fig. 5c) task for
a bimanual Franka Emika Panda robot. We trained single-task
diffusion policies [14] using 150 human demonstrations. In
addition to the RGB images, the policy receives the proprio-
ceptive states as additional observations.

For evaluation, we compare the same imitation learning
policy on two different distributions over initial conditions.
The setting is similar to the one originally presented by Xu
et al. [55], which compares a set of ID initial conditions
against the out-of-distribution (OOD) initial conditions. The

ID set includes 10 initial conditions with a white towel and
a short blue mug whereas the OOD set uses 10 with a
checkered towel with a tall cyan mug (each initial condition
is repeated five times). As shown in Table I (rows 1–3),
the empirical gap of 52 percentage points was detected in
7–14 trials by all methods, though they were tuned (where
applicable) to an Nmax up to thirty to seventy times larger;
this demonstrates the significant reduction in sensitivity (from
an evaluator’s standpoint) arising from setting Nmax versus
choosing a batch size N . Furthermore, STEP’s efficiency only
minimally degrades when Nmax is increased from 200 (row
2) to 500 (row 3). In this setting, any of the three sequential
methods would have prevented the need for nearly 70 of the
100 total rollouts (35 of the 50 batch trials per policy).

We run a similar hardware procedure for the bimanual ma-
nipulation task FoldRedTowel (see Fig. 5a), where two policy
checkpoints are compared on the same distribution of initial
conditions. For brevity, this is deferred to Supplement VIII-F1.

B. Hardware Evaluation in the Small-Gap Regime

In addition, we run a separate hardware evaluation on the
task CarrotOnPlate. This setting compares two distinct and
closely-competing policies to characterize necessary sample
sizes for statistical validity. See Supplement VIII-F2 for more
details. We find that no statistical tests (including the Oracle
SPRT) is able to detect significant difference between the two
policies with Nmax = 100 despite the empirical performance
gap of nine percentage points (Table I, row 4). In fact, further
analysis in Supplement VIII-F3 suggests that we would have
to perform 500 trials (apiece) to reliably reach a decision with
statistical confidence. This sample size is an order of magni-
tude larger than the current norms, reflecting fundamental yet
often overlooked challenges in trustworthy policy comparison.

C. Multi-Task Evaluation in SimplerEnv Simulation

Finally, we consider the problem of multi-task and multi-
policy extensions to this framework, and illustrate via an
example of policy evaluation in simulation (where costs of
evaluation can still be significant). Concretely, Octo-Small (π1)
and Octo-Base (π0) [37] are compared in the SimplerEnv [30]
simulation environment on three tasks: SpoonOnTowel, Egg-
plantInBasket, and StackCube (Table I, rows 5–7). The
empirical success rates we observed are consistent with the
findings of Li et al. [30] (Table V) that Octo-Small is more
performant on these tasks. We seek a multitask comparison:
for p

[τ ]
s denoting the performance of Octo-Small and p

[τ ]
b the

performance of Octo-Base on task τ , we test:

H0 : ∃τ ∈ {1, 2, 3} p[τ ]s ≤ p
[τ ]
b

H1 : ∀τ ∈ {1, 2, 3} p[τ ]s > p
[τ ]
b .

(7)

Many sophisticated methods exist to efficiently run multi-
hypothesis testing (in this case, we are essentially evaluating
three separate hypotheses, one for each task2). We use the stan-

2Note that multi-hypothesis testing can naturally handle the case of multi-
policy comparison as well, where we would reduce the test to a set of pairwise
policy comparisons which are examined simultaneously.



Task Type α∗ Nmax N p̂0 p̂1 SAVI Lai STEP (Ours) SPRT∗∗∗

CleanUpSpill Di
s0,o0

0.05 50 50 0.280 0.800 7 8 8 7
CleanUpSpill Di

s0,o0
0.05 200 50 0.280 0.800 7 13 9 7

CleanUpSpill Di
s0,o0

0.05 500 50 0.280 0.800 7 14 13 7
CarrotOnPlate πi 0.05 100 100 0.680 0.760 – – – –

SpoonOnTowel πi 0.01 500 500 0.084 0.386 33 36 36 26
EggplantInBasket πi 0.01 500 500 0.400 0.564 192 125 131 128
StackCube πi 0.01 500 500 0.000 0.030 329 417 225 135

Multitask πi 0.03 1500 1500 N/A N/A 554 578 392 289

TABLE I: Empirical time-to-correct-decision for subset of hardware (top) and simulation (bottom) policy comparisons (see
Table II for counterfactual results for all experimental settings). The comparison type is described first; πi is comparing two
policies, while Di

s0,o0 compares one policy under possible distribution shift. The utilized Type-I Error α∗ and Nmax describe
the constraints applied a priori by the evaluator (we underline to emphasize the change in Nmax for rows 1-3; observe that the
sensitivity of the stopping times is very small). N ≤ Nmax represents the amount of data available for the statistical analysis
(i.e., the data that was actually collected). We report the terminal empirical success rates (after N trials) of each policy in each
setting under p̂i (this information is not available to any feasible algorithm). Because these are real experiments, we do not
have truth labels. However, in all cases, every method arrived at the same decision, including the Oracle SPRT which has a
priori access to (p̂0, p̂1)N . This decision was Reject Null for all rows except the CarrotOnPlate task, which returned Fail To
Decide. We report the stopping times of all methods on the right of the table for every context; in all cases: lower is better. We
put in bold any feasible method result that is near-optimal within ten trials (absolute) or 25% (relative) of the SPRT Oracle,
which is not implementable by an evaluator. In the Multitask setting, we test p1 > p0 uniformly across the preceding three
tasks. This stopping time is the sum by column of the stopping times for the three tasks. Our method saves the evaluator over
160 trials in uniform certification over these three tasks as compared to either feasible baseline.

dard Bonferroni (union bound) correction [15] to evaluate our
test at α = 0.03 (each task is at α = 0.01), observing the stop-
ping times shown in the table. Notably, each sequential method
saves a substantial number of simulation rollouts on the easiest
comparison (SpoonOnTowel). SAVI begins to struggle when
the tests become more challenging (EggplantInBasket), and
Lai struggles in heavily skewed cases where success rates are
close to zero (StackCube). To summarize: naive multitask
evaluation requires the aggregation of multiple batches of
rollouts, here totaling 500 per task per policy. On the easiest
task, even when tuned to Nmax = 500, the comparison was
answered in fewer than 40 rollouts by all sequential methods,
a savings of over 90%. On the progressively harder cases the
number of required samples increased 5-10 times over the
easiest, but our method (STEP) improved substantially over
each of the other sequential procedures. In total, STEP would
have saved the evaluator an additional 160 rollouts for each
of Octo-small and Octo-base for the multitask comparison
problem as compared to the current SOTA approaches.

VI. REAL-WORLD DEPLOYABILITY AND
GENERALIZATION DISCUSSION

STEP can be deployed as a wrapper for essentially any
evaluation pipeline, conditioned on the use of a binary success
metric (extensions to partial credit will be considered in
future work). With relatively light offline pre-computation to
synthesize (reusable) STEP decision rules (see Footnote 1), the
decision process is nearly instantaneous to evaluate. Further, it

can be used for both hardware and simulation evaluation, even
beyond imitation learning or nominally robotic contexts, as it
builds on general statistical methods which apply to testing for
medical, polling, and quality assurance applications [38, 40]. A
lingering practical consideration is the specification of the risk
budget; we show in this work that a simple choice (uniform)
works quite well, but in general the optimal budget shape
design depends on the belief of the evaluator as to the measure
over plausible null and alternative hypotheses.

VII. CONCLUSION

We present STEP, a novel sequential statistical method to
rigorously compare performance of imitation learning policies
through a series of evaluation trials. STEP provides flexibility
in adapting the number of necessary trials to the underlying
difficulty of the comparison problem. This leads to low sample
complexity in cases where one policy clearly outperforms the
other while avoiding overconfident and potentially incorrect
evaluation decisions when the policies are closely competing.
We show that STEP near-optimally minimizes the expected
number of required trials. Furthermore, STEP matches or
exceeds the performance of state-of-the-art baselines across
a wide swath of practical evaluation scenarios in numerical
and robotic simulation and on numerous physical hardware
demonstrations. These results highlight the practical utility
of STEP as a versatile statistical analysis tool for policy
comparison, contributing to the foundation of robot learning
as an empirical science.
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VIII. SUPPLEMENT

A. Related Work

This section provides an extensive review of the statistics
literature to highlight the significance of our approach.

1) Statistical Testing and Policy Evaluation: The Neyman-
Pearson statistical testing paradigm [34] forms the foundation
of frequentist statistical decision theory. These methods have
been applied in robotics for predictable policy characteriza-
tion3 [48, 1] in the batch regime. The Neyman-Pearson Lemma
[34] and the Karlin-Rubin Theorem [23] give sufficient con-
ditions for maximal power batch tests. Specific methods have
been developed for two-factor comparison-type problems in
the context of 2x2 contingency tables. Of the tests by Fisher
[17], Boschloo [5], and Barnard [2], the last is most relevant
here; however, while it has strong power in the batch setting,
it does give insight into selecting the size of the batch a priori.

2) Sequential Statistical Evaluation Methods: The diffi-
culty in choosing the appropriate batch size motivates the
sequential testing framework set out in Wald [50], which is
adopted in this paper (see Section III). Wald and Wolfowitz
[51] showed that in the simple-vs-simple setting, the sequential
probability ratio test (SPRT)4 minimizes the expected number
of samples among all tests that control Type-I and Type-II
error, extending the Neyman result. The composite regime
is more complicated; minimax results limit the worst-case
expected sample size [24, 31, 16], more generally, the expected
sample size must be minimized under a mixture over the alter-
natives [44, 19]. Lai [28] reconciled this Bayesian interpreta-
tion with the frequentist developments of Chernoff [9, 10, 11].
Optimal Stopping-Based Methods. The direct approach to
synthesizing near-optimal decision regions in the composite-
vs-composite regime relies on developments in the theory of
martingales and optional stopping [53]. Van Moerbeke [46]
reduces the statistical testing problem to optimal stopping
and demonstrates the equivalence of the solution with the
solution to a related Stefan-type free-boundary partial dif-
ferential equation (PDE) [7], building on results in Chernoff
[12]. Unfortunately, the mapping to the PDE parameteriza-
tion is implicit and difficult to specify under composite null
hypotheses, rendering this method less practical. Asymptotic
approximations of the free-boundary problem can be more
profitably used to construct near-optimal tests. Lai [28] solves
for a near-optimal procedure in the univariate composite-vs-
composite setting and [29, 8] extends this to the multivariate
setting. However, while useful for proving optimal rates, the
latter methods suffer in the finite-Nmax regime.
Safe, Anytime-Valid Inference (SAVI) Methods. Utilizing
Ville’s Inequality (a sequential generalization of Markov’s In-
equality) [47], SAVI methods construct a probability ratio test
that enforces Type-I error control uniformly in time [22, 41];
this is tailored to contingency tables in [45]. These methods

3As a simple example, one can accurately predict a priori that for estimating
Ber(p) with p̂ ∈ [0.25, 0.75] and N ≥ 36, a 95% confidence interval for p
will be approximately p̂± 1√

N
.

4This is the form of the SPRT Oracle method.

also suffer in the small-sample regime due to the power-1
nature of the resulting tests [42, 27, 41].

3) Numerical Implementations: The SciPy [49] package
contains many batch procedures; recently, optimal binomial
confidence intervals were constructed [48]. However, numeri-
cal methods for sequential analysis are quite limited and focus
on the simple-null or univariate settings [13, 35, 36, 16].
To our knowledge, this is the first composite-vs-composite
implementation for policy comparison-type problems.

B. Full Details of Real-World Robot Experiments

All of our real-world hardware tasks are visualized in Fig. 5.
In FoldRedTowel, the robot first observes an unfolded red
towel placed in random poses. The task is considered a success
if the robot folds the towel twice and then moves the folded
towel to a corner of the table. In CleanUpSpill, a mug is
initially lying sideways on the table and a coffee spill exists
near the mug. The task is successful if one arm puts the mug
upright while the other arm picks up a white towel and wipes
the spill. In both tasks, a total of four RGB cameras observe the
Franka robot and the objects, where two monocular cameras
are mounted on the table top and a stereo wrist camera on
each of the arms. We trained single-task diffusion policies [14]
on each task, with 300 human demonstrations for FoldRed-
Towel and 150 for CleanUpSpill, respectively. In addition
to the RGB images, the policy receives the proprioceptive
states as additional observations. Following [14], the image
observations are passed to the ResNet-18 [21] encoder before
fed into the U-Net [43] diffusion policy architecture. To = 2
observations are stacked and fed into the policy network to
predict Tp = 16 steps of actions. The actions are re-planned
after Ta = 8 actions are executed.

For the CarrotOnPlate task, an experiment is recorded as
a success if the robot policy succeeds in placing the carrot
on the plate within the max episode count without: i) pushing
the carrot off the counter, ii) colliding with the back wall, iii)
pushing the plate into the sink, and iv) accumulating a total
of 3 cm of negative z commands when the end-effector is in
contact with the table surface. For Octo evaluations, we use
an action-chunking horizon of 2.

In all the experiments, we take the effort to mitigate distribu-
tion shift during trials, such as a change in lighting conditions.
We also randomize the order of trials so that any distribution
shift due to other factors (e.g., hardware degradation over the
course of trials) is equally reflected in all the settings. Where
applicable, we also separate the role of the evaluator from
the demonstrator of the tasks for training. These practices
are adopted from [26] to reduce unintended variability in
environmental conditions during policy evaluation.

C. Additional Numerical Simulation Results

We plot numerical Monto-Carlo validation results for key
properties of sequential procedures – type-1 error control,
statistical power, and stoppping time – for Nmax = 100 and
α∗ = 0.05 in Fig. 2, Fig. 3, and Fig. 4. We include for
this case the power profile for a Barnard Test that is validly



Fig. 2: False positive rate of four feasible methods (Barnard, SAVI, Lai, and Ours (STEP)) and the SPRT (Oracle method)
for 1000 simulated trajectories on each of 45 alternatives (squares in color); Nmax = 100 and α∗ = 0.05. Note that naively
utilizing a batch method in sequence leads to violation of Type-1 Error control (Barnard). Additionally, note that SAVI and
Lai struggle to utilize the full risk budget in finite Nmax (darker blue regions).

Fig. 3: Terminal power of four feasible methods (Barnard, SAVI, Lai, and Ours (STEP)) and the SPRT (Oracle method) for
5000 simulated trajectories on each of 45 alternatives (squares in color); Nmax = 100 and α∗ = 0.05. Because Nmax is small, the
terminal power is generally low for gaps less than 20 percentage points. Moving from left to right: sequentializing Barnard’s
Test is inefficient due to a loss of structure; SAVI methods also suffer when p0 and p1 are closely competing, due to the
method inherently generalizing to arbitrary Nmax. The Lai procedure and our STEP are similar to the SPRT oracle; however,
note that Lai struggles more at the extremes (bottom left and top right). This inefficiency in the skewed regime becomes more
pronounced as N grows and the gaps shrink.

Fig. 4: Cumulative power of all feasible methods (Lai, SAVI, STEP (Ours)) and SPRT Oracle over 5000 trajectories in three
evaluation settings of increasing difficulty; (p0, p1) for each setting title the respective figures. Nmax = 100 and α∗ = 0.05.
The expected time-to-decision is the integral of the area above the cumulative power curve; therefore, curves higher and to the
left are better. (Left) For a gap of 30 percentage points, all methods demonstrate similar stopping times. (Center) For a gap
of 10 percentage points in the low-variance regime (i.e., farther from 0.5), STEP significantly outperforms the Lai and SAVI
procedures. (Right) For a gap of 10 percentage points in the high-variance regime, STEP and Lai are similar but again SAVI
struggles and underperforms the other methods.



sequentialized using Bonferroni’s correction; this rectifies the
Type-1 Error violation in Fig. 2. In so doing, it loses significant
power and fails to meaningfully compete with the SOTA
sequential procedures. In addition to inefficient computational
properties, the Bonferroni-correct Barnard procedure becomes
even weaker for larger Nmax.

A key point of emphasis in the Nmax = 100 regime is the
low power of all tests for gaps of approximately 10 percentage
points and smaller. Notably, no procedure has power over
50% in the hardest regimes (see the orange regions of every
method in Fig. 3). A small amount of this is due to the
sequential procedure; however, a significant amount reflects
fundamental uncertainty (variance in outcomes) present for
small sample sizes in evaluation. The implication of this
is the need for significant increases in evaluation trials in
order to effect meaningful comparisons when the underlying
gap is small. This will be considered further in the context
of the CarrotOnPlate hardware experiments (Section V) in
Supplement VIII-F3 below.

Finally, we note the presence of a small hint to the weakness
of the Lai procedure in skewed settings. Note that in the
bottem left and top right of the Lai panel of Fig. 3, the power
significantly lags STEP and SPRT; in a similar vein, note the
regions of darker blue in the Lai procedure panel of Fig. 2.
These reflect an inherent inefficiency undergirding Lai method,
which directly explain the significant gap on the highly-skewed
StackCube task in Section V.

D. Empirical Results with Regenerated Sequences

To (approximately) evaluate the counterfactual noise in the
data generation process for robotic evaluation, we randomly
generate Bernoulli sequences using (as the true data-generating
parameters) the empirical success rates of each hardware and
simulation task, expanding on the results shown in Table I.
This provides an estimate of the average sample complexity
for each method were the empirical success rates equal to the
true rates ‘in the world’. This “Bernoulli counterfactual” data
is presented in Table II; in that table, all entries present the
empirical mean complexities (with standard deviation) over
400 regenerated sequences per task.

E. Mathematical and Numerical Notes

1) Worst-Case Null Hypotheses: The worst-case null hy-
potheses are computed in this framework as the real number
p ∈ (0, 1) that maximizes the expected log-likelihood ratio.
First, noting the monotonicity properties of the joint distribu-
tion, we claim that the worst-case null hypothesis must lie on
the line p0 = p1 = p ∈ (0, 1). Second, noting the optimal
power properties of the SPRT for simple-vs-simple problems,
we construct the log probability-ratio test maximization as:

argmax
p

Ex∼(p,p)

[
(
p1
p
)x(

1− p1
1− p

)1−x(
p0
p
)x(

1− p0
p

)1−x

]
≡ argmax

p
E
[
x log

p0p1
p2

+ (1− x) log
(1− p0)(1− p1)

(1− p)2

]

Differentiating, the solution is the interpolation in the natural
parameter space of the Bernoulli distribution:

log
p∗

1− p∗
=

log p0

1−p0
+ log p1

1−p1

2

=⇒ η∗ =
η0 + η1

2
;

the reconstruction of p∗ follows directly as

p∗ = (1 + exp η∗)−1.

That is, the worst-case null in the sense of ‘falsely’ maximiz-
ing the probability ratio test under the null is precisely the
interpolation in natural parameter space of (p0, p1). In fact,
the ‘true’ worst-case null is difficult to compute exactly; as we
verify the Type-1 Error control against the additional methods
of linear projection in the nominal parameter space

p∗ =
p0 + p1

2

and as the interpolation under the KL-divergence ‘pseudo-
distance:’

p∗ =
{
p′ ∈ (0, 1) | KL(p0, p′) = KL(p1, p′)

}
.

In practice, assuming continuity corrections are applied to
any case in which p0 or p1 belong to {0, 1}, these methods
generally result in similar estimates of the worst-case null
hypothesis, and form a small region in which the error control
can be verified to greater numerical accuracy.

2) Discretizing the Null Hypotheses: In order to discretize
the null hypotheses safely, it is necessary to ensure coverage
over the set of possible worst-case nulls: {(p, p) : p ∈ [0, 1]}.
First, we establish an interior bound (ϵ, 1−ϵ) to the necessary
values p ∈ (0, 1). Specifically, for a fixed Nmax one can derive
a value of ϵ such that if p ≥ 1− ϵ (or p ≤ ϵ), it holds w.p.
≥ 1 − α∗ that p̂1,n = 1 (resp. 0) for all n ∈ {1, ..., Nmax}.
These extremal nulls pose no risk to the algorithm (because
they cannot violate α∗ Type-I error if we never RejectNull
when p̂1 ≤ p̂0). With this limitation in place we avoid
problems arising from the rapid decay of the variance near 0
and 1 in the distribution set. Now, discretization in the range
(ϵ, 1−ϵ) can be undertaken to approximate all possible worst-
case null hypotheses. In practice, we used approximately 100
points for Nmax up to 500; this is significantly (3x) more than
the default in the Scipy implementation of Barnard’s Test [49].
Note that formally, this discretization can be ensured to be
safe numerically by using Pinsker’s inequality to relate the
total variation distance (which upper bounds, for example, the
event of a false rejection from a null hypothesis) to the KL-
divergence; the implication of the inequality is that the false
rejection rate error due to discretization is upper bounded by
a monotonic function of the maximal KL divergence between
any adjacent points in the discretization; for a sufficiently
dense discretization, the error can be made arbitrarily small.



(a) BimanualFoldRedTowel (b) BimanualCleanUpSpill (ID) (c) BimanualCleanUpSpill (OOD)

(d) PutCarrotOnPlate (no distractors) (e) PutCarrotOnPlate (with distractors)

Fig. 5: Snapshots of robot policy evaluation tasks. (Top) Bimanual manipulation tasks with diffusion policy. Colored dots
represent the camera projection of planned future end-effector positions. In BimanualFoldRedTowel, all the evaluations
are done with in-distribution (ID) initial conditions and we compare two policy checkpoints from a single training run.
In BimanualCleanUpSpill, we evaluate a single policy checkpoint in ID initial conditions with a white towel and out-of-
distribution (OOD) initial conditions with a green towel to measure generalization performance. (Bottom) PutCarrotOnPlate
task on the WidowX platform in a toy kitchen environment. The carrot is initially placed in one of three possible locations
on the stove. The environment can either have no distractors or two distractors. We compare Octo and OpenVLA under the
nominal environment distribution, and compare Octo performance in nominal environment distribution and under distribution
shift. Detailed policy comparison metrics are given in Table I.

(a) Octo-Base and Octo-Small in simulation
EggplantInBasket task

(b) Octo-Base (Env1) and Octo-Base (Env2)
in real-world CarrotOnPlate task

(c) Octo-Base (Env1) and OpenVLA (Env1)
in real-world CarrotOnPlate task

Fig. 6: Running empirical success rates of two policies as the number of trials increases. (a) In the EggplantInBasket task, there
is a consistent gap in performance due to lower statistical uncertainty. This is reflected in Table I (row 8) where STEP terminates
at N = 119. (b and c) On the other hand, in the CarrotOnPlate task, the relative performance consistently fluctuates and even
sometimes flips due to high statistical uncertainty arising from the close competition between two policies. This leads to even
SPRT oracle requiring more than 500 trials to confidently determine the relative performance (Table III).



Task Type α∗ Nmax N p̂0 p̂1 SAVI Lai STEP (Ours) SPRT∗∗∗

FoldRedTowel πi 0.05 50 50 0.560 0.920 21.1 (0.63) 23.7 (0.56) 21.8 (0.47) 14.5 (0.53)
FoldRedTowel πi 0.05 200 50 0.560 0.920 21.1 (0.63) 27.0 (0.57) 24.4 (0.53) 14.5 (0.53)
FoldRedTowel πi 0.05 500 50 0.560 0.920 21.1 (0.63) 32.0 (0.56) 28.0 (0.56) 14.5 (0.53)
CleanUpSpill Di

s0,o0
0.05 50 50 0.280 0.800 13.8 (0.44) 16.9 (0.39) 16.6 (0.31) 11.4 (0.41)

CleanUpSpill Di
s0,o0

0.05 200 50 0.280 0.800 13.8 (0.44) 19.6 (0.43) 18.4 (0.36) 11.4 (0.41)
CleanUpSpill Di

s0,o0
0.05 500 50 0.280 0.800 13.8 (0.44) 23.4 (0.45) 21.0 (0.43) 11.4 (0.41)

CarrotOnPlate Di
s0,o0

0.05 100 100 0.590 0.680 – – – –
CarrotOnPlate πi 0.05 100 100 0.680 0.760 – – – –

SpoonOnTowel πi 0.01 500 500 0.084 0.386 43.3 (1.20) 55.7 (1.13) 48.2 (1.06) 34.5 (1.08)
EggplantInBasket πi 0.01 500 500 0.400 0.564 235.8 (6.5) 200.0 (4.6) 183.3 (4.6) 193.4 (5.3)
StackCube πi 0.01 500 500 0.000 0.030 330.3 (4.7) 386.2 (4.5) 267.7 (4.2) 70.5 (3.0)

Multitask πi 0.03 1500 1500 N/A N/A 609.4 641.9 499.2 298.4

TABLE II: Empirical expected time-to-correct-decision for all hardware (top) and simulation (bottom) policy comparisons.
The contexts, parameters, and annotation are identical to those in Table I. Summary statistics are taken over 400 random
trajectories generated according to a Bernoulli distribution with data-generating (i.e., ‘true’) parameters corresponding to the
observed empirical success rates (p̂0, p̂1). We report the average stopping times of all methods on the right of the table for every
context (standard deviation of the empirical mean in parentheses). In all cases: lower is better. In the Multitask setting, we test
p1 > p0 uniformly across the preceding three tasks. This stopping time is the sum by column of the average stopping times
for the three tasks. Our method saves the evaluator approximately 110 to 140 trials (in expectation) in uniform certification
over these three tasks as compared to either feasible baseline. Note that for any single sequence of evaluations, the standard
deviation for the stopping time on a given task can be approximately computed by multiplying the parenthetical standard
deviation by 20 (the square root of the number of trials (400)). This correction confirms that the observed improvement of
200 evaluation trials saved in multitask simulation in Table I is likely more than is to be expected given the respective task
success rates, but is not at all implausible given the degree of inherent randomness in the data generation process.

3) Technical Setting: The problem formulation in Sec-
tion III was presented informally to avoid needless over-
technical confusion. Slightly more precisely, we assume nec-
essary measurability conditions on the random variables repre-
senting the success or failure of the policy in the environment.
Given the probability space implicit in this assumption, the
concatenation of observations constitutes the natural filtration
on this space; that is, Fn = {n,Z1, Z2, ..., Zn}. In practice,
knowledge of the sufficient statistic for exponential fami-
lies induces us to use the compressed filtration F [comp]

n =
{n,

∑n
i=1 z0,i,

∑n
i=1 z1,i}. Interestingly, using the Neyman-

Pearson lemma, one can show that the two-dimensional state
represents a lossy compression as a three-dimensional state is
needed to construct the optimal exact SPRT.

4) Intuition for Tests: We quickly summarize a few exam-
ples of extremal test procedures that can help provide scaf-
folding for the reader in terms of understanding the tradeoffs
inherent between Type-I Error, Type-II Error, and expected
sample size. First and foremost, safety is always possible in
the Type-I sense: simply never reject the null (i.e., without
looking at any data). Slightly more subtly, safety and small
sample size is always feasible, as described in the footnote
in Section III: decide without looking at any data, but first
generate an independent random number uniformly on [0, 1]
and reject if the number is less than α∗, otherwise fail to reject.
Power and small sample sizes can be obtained accordingly at
the cost of violating Type-I Error (just reject instead of failing
to reject). Power-1 tests finish out the last leg of the triangle –

waiting an arbitrarily long time can allow for simultaneous
control of Type-I and Type-II error (the N-P Lemma only
concludes that in the batch setting – where N is fixed and
finite – there exist instances for which Type-I and Type-II
Error cannot be simultaneously controlled).

F. Additional Discussion for Table I

1) Results for FoldRedTowel: In FoldRedTowel, we com-
pare two policy checkpoints from a single training run. The
baseline policy π0 was trained for 10000 gradient steps with
an AdamW [32] optimizer, and the other policy π1 continued
training for an additional 70000 steps.

For evaluation, five in-distribution (ID) initial conditions
were chosen and repeated 10 times each, constituting 50 total
trials. As shown in Table I (rows 1-3), the empirical gap in
success rates was 36 percentage points (56% to 92% success),
suggesting that π0 was under-trained. Each sequential method
detected a significant difference at level α∗ = 0.05 in 19
– 23 trials. That is, the last 27 – 31 rollouts per policy
are unnecessary for confirming the improvement of π1 over
π0. Additionally, both Lai method and STEP sequential
procedures were each tuned for an Nmax of 50 (row 1), 200
(row 2), and 500 (row 3) rollouts. In the latter two cases,
additional rollouts could have been run up to 200 or 500
per policy if the gap was smaller without compromising the
validity of the decision.



2) Results for CarrotOnPlate: Task Details For this task,
the initial placement of the carrot is uniformly sampled from
three possible locations (left, center, or right) on the counter,
and the plate is placed next to the sink (see Figure 5d), and
the robot gripper is aligned with the carrot at the start of
each trial. In addition, object distractors are sampled uniformly
(without replacement) from the following object categories:
orange, apple, green and blue sponges, brown and yellow
cubes, eggplant, spoon, and towel. The initial locations of
distractors is also sampled uniformly without replacement
from four possibilities: on the stove, left of the stove, above
the stove, or next to the faucet. The distractors are physically
placed according to a uniform (continuous) distribution within
the selected region.

We evaluate STEP on two open-source vision-language-
action (VLA) models: Octo-Base [37], an action-chunking
transformer-based diffusion policy, and OpenVLA [25], an
autoregressive policy leveraging a pretrained large language
model backbone. All experiments were conducted in a toy
kitchen environment from the Bridge Data V2 dataset [52],
which is included in both policies’ training data. We consid-
ered the task of placing a carrot on a plate (see Fig. 5d and
Fig. 5e), which is representative of evaluations investigated
in [37, 25]. All policies were run on the Widow X 250S
following the setup in [52]. See Supplement VIII-F for further
task implementation details.

The environment uncertainty for CarrotOnPlate follows
a categorical distribution with two outcomes: no object dis-
tractors or two object distractors. We utilize the environment
distribution Env1, in which there are no distractors with
probability 0.8, and two distractors otherwise. We sample
100 environment configurations for each of: i) Octo under
distribution Env1, ii) OpenVLA under distribution Env1. We
then compare the performance of each VLA in this distribution
over task realizations. In addition, we gather trials for Octo
under Env2, which has no distractors with probability 0.6, to
sequentially test the effect of the distribution shift Env1 →
Env2.

In the CarrotOnPlate policy comparison (Table I, row
4), p̂0 corresponds to Octo (Env1) and p̂1 corresponds
to OpenVLA (Env1). We observe no significant result
at α = 0.05 despite the empirical gap of 8 percentage
points in favor of OpenVLA. Similarly, Octo has a 59%
empirical success rate in the latter environment distribution,
reflecting a gap of 9 percentage points to its performance
under Env1 (68%). Again, no method returns a significant
result. Importantly, insignificance of these tests does not
mean that the null hypotheses should be accepted [20]; it is
entirely possible that OpenVLA indeed outperforms Octo,
or that the added distractors do affect Octo’s performance.
Instead, the key takeaway is that 100 trials (apiece) is not
enough to reliably distinguish gaps of 10 percentage points,
reflecting a fundamental limit from statistical testing theory.
In Section VIII-F3, we investigate this data insufficiency
to show that, if the ground truth values were equal to the
empirical success rates (68% vs. 76%), then we would require

Nmax = 500 trials to confidently determine p1 > p0. This
number is an order of magnitude larger than the current
norms, reflecting fundamental yet often overlooked challenges
in trustworthy policy comparison.

3) Further Analysis of CarrotOnPlate Experiments: We
explore the results of the CarrotOnPlate hardware results in
more detail. Fig. 6b and Fig. 6c illustrate how the running
empirical success rates change as N grows. Note that the rel-
ative performance consistently fluctuates and even sometimes
flips, which indicates the inherent difficulty of comparison
when the two policies are closely competing. In order to
estimate the minimum number of necessary trials for these
challenging comparisons, we run the SPRT Oracle on mul-
tiple instances of Nmax. Namely, we assume that the true
underlying distribution matches the terminal empirical success
rates (H1 : (p0, p1) = (0.59, 0.68) for Octo (Env2) vs Octo
(Env1) and H1 : (p0, p1) = (0.68, 0.76) for Octo (Env1)
vs OpenVLA (Env1)). We determine the worst-case point
null (corresponding H0 : (p0, p1) = h∗

0 ∈ H0) for each case
and run the SPRT Oracle on the associated simple-vs-simple
test, where it is essentially optimal. We observe the following
empirical power results (Table III), which can be understood
as approximating the probability of rejecting the null (under
the draw of the sequence of i.i.d. data) at each level of Nmax
when the true gap matches the empirical gap observed on 100
trials in hardware.

Case (↓) Nmax (→) 100 200 300 400 500

(0.59, 0.68) SPRT Power (→) 0.324 0.513 0.676 0.762 0.823
(0.68, 0.76) SPRT Power (→) 0.337 0.491 0.643 0.724 0.804

TABLE III: Empirical power of SPRT Oracle on distributions
matching the empirical gaps observed in hardware trials of
CarrotOnPlate. This suggests that at 200 trials per policy,
there is only about a 50% chance of observing a sequence
leading to rejection of the null; even for the oracle, 500 trials
are required before this approximate probability reaches 80%.

As shown Table III, nearly 400 trials are required before
reaching an approximately 75% chance of rejection over
the draw of observed sequences. We emphasize that this is
computed via a method that is optimal with respect to the
expected sample size; as such, the evaluation requirements are
primarily fundamental to the variance of Bernoulli random
variables, and thus represent fundamental uncertainty and
sample complexity for the policy comparison problem.

4) Additional CarrotOnPlate Experiments: A prior iter-
ation of the CarrotOnPlate experiments (not reported in
Section V) involved a hardware implementation error in which
the end-effector rotation commands output by the policies
were not correctly published. As a result, for the purpose of
policy comparison, we label these policies PolicyA (in place
of Octo) and PolicyB (in place of OpenVLA). Note that the
hardware implementation does not invalidate the policy com-
parison procedure itself. The environment distributions Env1



N p̂0 p̂1 SAVI Lai STEP SPRT∗∗∗

200 0.530 0.560 – – – –
150 0.613 0.827 132 64 61 26

TABLE IV: Additional CarrotOnPlate evaluations with
Nmax = 200. Row 1: Comparing PolicyA under Env1 (π1)
with PolicyA under Env2 (π0). Row 2: Comparing PolicyA
under Env1 (π0) with PolicyB under Env1 (π1).

and Env2 are as described in Section V. We set Nmax = 200
as the evaluation budget for the following three settings: i)
PolicyA (under Env1), ii) PolicyB (under Env1), and iii)
PolicyA (under Env2). We compare PolicyA (Env1) with
PolicyB (Env1), and PolicyA (Env1) with PolicyA (Env2).
These results are listed in Table IV. Observe that despite
utilizing the full budget, no procedure yields conclusive results
in the first comparison. However, in the second comparison,
we began running the evaluation procedure on the collected
data after collecting 150 evaluations per policy. Because every
method had decided by that point, these evaluations were
able to terminate early, saving us 50 hardware evaluations per
setting. Had we been running the evaluation the entire time,
we could have saved ourselves an additional 20 evaluations
per setting, as SAVI (the slowest) terminated in just over 130
evaluations.
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