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ABSTRACT

Adaptive gradient methods have shown their ability to adjust the stepsizes on the
fly in a parameter-agnostic manner, and empirically achieve faster convergence for
solving minimization problems. When it comes to nonconvex minimax optimiza-
tion, however, current convergence analyses of gradient descent ascent (GDA)
combined with adaptive stepsizes require careful tuning of hyper-parameters and
the knowledge of problem-dependent parameters. Such a discrepancy arises from
the primal-dual nature of minimax problems and the necessity of delicate time-
scale separation between the primal and dual updates in attaining convergence.
In this work, we propose a single-loop adaptive GDA algorithm called TiAda for
nonconvex minimax optimization that automatically adapts to the time-scale sep-
aration. Our algorithm is fully parameter-agnostic and can achieve near-optimal
complexities simultaneously in deterministic and stochastic settings of nonconvex-
strongly-concave minimax problems. The effectiveness of the proposed method
is further justified numerically for a number of machine learning applications.

1 INTRODUCTION

Adaptive gradient methods, such as AdaGrad (Duchi et al., 2011), Adam (Kingma & Ba, 2015) and
AMSGrad (Reddi et al., 2018), have become the default choice of optimization algorithms in many
machine learning applications owing to their robustness to hyper-parameter selection and fast em-
pirical convergence. These advantages are especially prominent in nonconvex regime with success
in training deep neural networks (DNN). Classic analyses of gradient descent for smooth functions
require the stepsize to be less than 2/l, where l is the smoothness parameter and often unknown for
complicated models like DNN. Many adaptive schemes, usually with diminishing stepsizes based
on cumulative gradient information, can adapt to such parameters and thus reducing the burden of
hyper-parameter tuning (Ward et al., 2020; Xie et al., 2020). Such tuning-free algorithms are called
parameter-agnostic, as they do not require any prior knowledge of problem-specific parameters,
e.g., the smoothness or strong-convexity parameter.

In this work, we aim to bring the benefits of adaptive stepsizes to solving the following problem:

min
x∈Rd1

max
y∈Y

f(x, y) = Eξ∈P [F (x, y; ξ)] , (1)

where P is an unknown distribution from which we can drawn i.i.d. samples, Y ⊂ Rd2 is closed
and convex, and f : Rd1 × Rd2 → R is nonconvex in x. We call x the primal variable and y the
dual variable. This minimax formulation has found vast applications in modern machine learning,
notably generative adversarial networks (Goodfellow et al., 2014; Arjovsky et al., 2017), adversar-
ial learning (Goodfellow et al., 2015; Miller et al., 2020), reinforcement learning (Dai et al., 2017;
Modi et al., 2021), sharpness-aware minimization (Foret et al., 2021), domain-adversarial train-
ing (Ganin et al., 2016), etc. Albeit theoretically underexplored, adaptive methods are widely de-
ployed in these applications in combination with popular minimax optimization algorithms such as
(stochastic) gradient descent ascent (GDA), extragradient (EG) (Korpelevich, 1976), and optimistic
GDA (Popov, 1980; Rakhlin & Sridharan, 2013); see, e.g., (Gulrajani et al., 2017; Daskalakis et al.,
2018; Mishchenko et al., 2020; Reisizadeh et al., 2020), just to list a few.

While it seems natural to directly extend adaptive stepsizes to minimax optimization algorithms, a
recent work by Yang et al. (2022a) pointed out that such schemes may not always converge without
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Figure 1: Comparison between TiAda and vanilla GDA with AdaGrad stepsizes (labeled as Ada-
Grad) on the quadratic function (2) with L = 2 under a poor initial stepsize ratio, i.e., ηx/ηy = 5.
Here, ηxt and ηyt are the effective stepsizes respectively for x and y, and κ is the condition number1.
(a) shows the trajectory of the two algorithms and the background color demonstrates the function
value f(x, y). In (b), while the effective stepsize ratio stays unchanged for AdaGrad, TiAda adapts
to the desired time-scale separation 1/κ, which divides the training process into two stages. In (c),
after entering Stage II, TiAda converges fast, whereas AdaGrad diverges.

knowing problem-dependent parameters. Unlike the case of minimization, convergent analyses of
GDA and EG for nonconvex minimax optimization are subject to time-scale separation (Boţ &
Böhm, 2020; Lin et al., 2020a; Sebbouh et al., 2022; Yang et al., 2022b) — the stepsize ratio of
primal and dual variables needs to be smaller than a problem-dependent threshold — which is re-
cently shown to be necessary even when the objective is strongly concave in y with true gradients (Li
et al., 2022). Moreover, Yang et al. (2022a) showed that GDA with standard adaptive stepsizes, that
chooses the stepsize of each variable based only on the (moving) average of its own past gradients,
fails to adapt to the time-scale separation requirement. Take the following nonconvex-strongly-
concave function as a concrete example:

f(x, y) = −1

2
y2 + Lxy − L2

2
x2, (2)

where L > 0 is a constant. Yang et al. (2022a) proved that directly using adaptive stepsizes like
AdaGrad, Adam and AMSGrad will fail to converge if the ratio of initial stepsizes of x and y
(denoted as ηx and ηy) is large. We illustrate this phenomenon in Figures 1(a) and 1(c), where
AdaGrad diverges. To sum up, adaptive stepsizes designed for minimization, are not time-scale
adaptive for minimax optimization and thus not parameter-agnostic.

To circumvent this time-scale separation bottleneck, Yang et al. (2022a) introduced an adaptive al-
gorithm, NeAda, for problem (1) with nonconvex-strongly-concave objectives. NeAda is a two-loop
algorithm built upon GDmax (Lin et al., 2020a) that after one primal variable update, updates the
dual variable for multiple steps until a stopping criterion is satisfied in the inner loop. Although
the algorithm is agnostic to the smoothness and strong-concavity parameters, there are several lim-
itations that may undermine its performance in large-scale training: (a) In the stochastic setting,
it gradually increases the number of inner loop steps (k steps for the k-th outer loop) to improve
the inner maximization problem accuracy, resulting in a possible waste of inner loop updates if the
maximization problem is already well solved; (b) NeAda needs a large batchsize of order Ω

(
ϵ−2
)

to
achieve the near-optimal convergence rate in theory; (c) It is not fully adaptive to the gradient noise,
since it deploys different strategies for deterministic and stochastic settings.

In this work, we address all of the issues above by proposing TiAda (Time-scale Adaptive Algo-
rithm), a single-loop algorithm with time-scale adaptivity for minimax optimization. Specifically,
one of our major modifications is setting the effective stepsize, i.e., the scale of (stochastic) gradient
used in the updates, of the primal variable to the reciprocal of the maximum between the primal
and dual variables’ second moments, i.e., the sums of their past gradient norms. This ensures the
effective stepsize ratio of x and y being upper bounded by a decreasing sequence, which eventually
reaches the desired time-scale separation. Taking the test function (2) as an example, Figure 1 illus-
trates the time-scale adaptivity of TiAda: In Stage I, the stepsize ratio quickly decreases below the
threshold; in Stage II, the ratio is stabilized and the gradient norm starts to converge fast.

We focus on the minimax optimization (1) that is strongly-concave in y, since other nonconvex
regimes are far less understood even without adaptive stepsizes. Moreover, near stationary point

1Please refer to Section 2 for formal definitions of initial stepsize and effective stepsize. Note that the initial
stepsize ratio, ηx/ηy , does not necessarily equal to the first effective stepsize ratio, ηx

0/η
y
0 .
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may not exist in nonconvex-nonconcave (NC-NC) problems and finding first-order local minimax
point is already PPAD-complete (Daskalakis et al., 2021). We consider a constraint for the dual
variable, which is common in convex optimization with adaptive stepsizes (Levy, 2017; Levy et al.,
2018) and in the minimax optimization with non-adaptive stepsizes (Lin et al., 2020a). In summary,
our contributions are as follows:

• We introduce the first single-loop and fully parameter-agnostic adaptive algorithm, TiAda, for
nonconvex-strongly-concave (NC-SC) minimax optimization. It adapts to the necessary time-
scale separation without large batchsize or any knowledge of problem-dependant parameters or
target accuracy. TiAda finds an ϵ-stationary point with an optimal complexity of O

(
ϵ−2
)

in the
deterministic case, and a near-optimal sample complexity of O

(
ϵ−(4+δ)

)
for any small δ > 0

in the stochastic case. It shaves off the extra logarithmic terms in the complexity of NeAda with
AdaGrad stepsize for both primal and dual variables (Yang et al., 2022a). TiAda is proven to be
noise-adaptive, which is the first of its kind among nonconvex minimax optimization algorithms.

• While TiAda is based on AdaGrad stepsize, we generalize TiAda with other existing adaptive
schemes, and conduct experiments on several tasks. The tasks include 1) test functions by Yang
et al. (2022a) for showing the nonconvergence of GDA with adaptive schemes under poor initial
stepsize ratios, 2) distributional robustness optimization (Sinha et al., 2018) on MNIST dataset
with a NC-SC objective, and 3) training the NC-NC generative adversarial networks on CIFAR-
10 dataset. In all tasks, we show that TiAda converges faster and is more robust compared with
NeAda or GDA with other existing adaptive stepsizes.

1.1 RELATED WORK

Adaptive gradient methods. AdaGrad brings about an adaptive mechanism for gradient-based
optimization algorithm that adjusts its stepsize by keeping the averaged past gradients. The original
AdaGrad was introduced for online convex optimization and maintains coordinate-wise stepsizes. In
nonconvex stochastic optimization, AdaGrad-Norm with one learning rate for all directions is shown
to achieve the same complexity as SGD (Ward et al., 2020; Li & Orabona, 2019), even with the high
probability bound (Kavis et al., 2022; Li & Orabona, 2020). In comparison, RMSProp (Hinton
et al., 2012) and Adam (Kingma & Ba, 2015) use the decaying moving average of past gradients,
but may suffer from divergence (Reddi et al., 2018). Many variants of Adam are proposed, and a
wide family of them, including AMSGrad, are provided with convergence guarantees (Zhou et al.,
2018; Chen et al., 2018; Défossez et al., 2020; Zhang et al., 2022b). One of the distinguishing traits
of adaptive algorithms is that they can achieve order-optimal rates without knowledge about the
problem parameters, such as smoothness and variance of the noise, even in nonconvex optimization
(Ward et al., 2020; Levy et al., 2021; Kavis et al., 2019).

Adaptive minimax optimization algorithms. The adaptive stepsize schemes are naturally ex-
tended to minimax optimization, both in theory and practice, notably in the training of GANs (Good-
fellow, 2016; Gidel et al., 2018). In the convex-concave regime, several adaptive algorithms are
designed based on EG and AdaGrad stepsize, and they inherit the parameter-agnostic characteristic
(Bach & Levy, 2019; Antonakopoulos et al., 2019). In sharp contrast, when the objective function
is nonconvex about one variable, most existing adaptive algorithms require knowledge of the prob-
lem parameters (Huang & Huang, 2021; Huang et al., 2021; Guo et al., 2021). Very recently, it
was proved that a parameter-dependent ratio between two stepsizes is necessary for GDA in NC-SC
minimax problems with non-adaptive stepsize (Li et al., 2022) and most existing adaptive stepsizes
(Yang et al., 2022a). Heusel et al. (2017) shows the two-time-scaled GDA with non-adaptive stepsize
or Adam will converge, but assuming the existence of an asymptotically stable attractor.

Other NC-SC minimax optimization algorithms. In the NC-SC setting, the most popular algo-
rithms are GDA and GDmax, in which one primal variable update is followed by one or multiple
steps of dual variable updates. Both of them can achieve O(ϵ−2) complexity in the deterministic
setting and O(ϵ−4) sample complexity in the stochastic setting (Lin et al., 2020a; Chen et al., 2021;
Nouiehed et al., 2019; Yang et al., 2020), which are not improvable in the dependency on ϵ given the
existing lower complexity bounds (Zhang et al., 2021; Li et al., 2021). Later, several works further
improved the dependency on the condition number with more complicated algorithms in determin-
istic (Yang et al., 2022b; Lin et al., 2020b) and stochastic settings (Zhang et al., 2022a). All of the
algorithms above do not use adaptive stepsizes and rely on knowledge of the problem parameters.
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1.2 NOTATIONS

We denote l as the smoothness parameter, µ as the strong-concavity parameter, whose formal def-
initions will be introduced in Assumptions 3.1 and 3.2, and κ := l/µ as the condition number. We
assume access to stochastic gradient oracle returning [∇xF (x, y; ξ),∇yF (x, y; ξ)]. For the mini-
max problem (1), we denote y∗(x) := argmaxy∈Y f(x, y) as the solution of the inner maximization
problem, Φ(x) := f(x, y∗(x)) as the primal function, and PY(·) as projection operator onto set Y .
For notational simplicity, we will use the name of an existing adaptive algorithm to refer to the sim-
ple combination of GDA and it, i.e., setting the stepsize of GDA to that adaptive scheme separately
for both x and y. For instance “AdaGrad” for minimax problems stands for the algorithm that uses
AdaGrad stepsizes separately for x and y in GDA.

2 METHOD

We formally introduce the TiAda method in Algorithm 1, and the major difference with AdaGrad
lies in line 5. Like AdaGrad, TiAda stores the accumulated squared (stochastic) gradient norm of
the primal and dual variables in vxt and vyt , respectively. We refer to hyper-parameters ηx and ηy as
the initial stepsizes, and the actual stepsizes for updating in line 5 as effective stepsizes which are
denoted by ηxt and ηyt . TiAda adopts effective stepsizes ηxt = ηx/max

{
vxt+1, v

y
t+1

}α
and ηyt =

ηy/
(
vyt+1

)β
, while AdaGrad uses ηx/

(
vxt+1

)1/2
and ηy/

(
vyt+1

)1/2
. In Section 3, our theoretical

analysis suggests to choose α > 1/2 > β. We will also illustrate in the next subsection that the max
structure and different α, β make our algorithm adapt to the desired time-scale separation.

For simplicity of analysis, similar to AdaGrad-Norm (Ward et al., 2020), we use the norms of gradi-
ents for updating the effective stepsizes. A more practical coordinate-wise variant that can be used
for high-dimensional models is presented in Section 4.1.

Algorithm 1 TiAda (Time-scale Adaptive Algorithm)

1: Input: (x0, y0), vx0 > 0, vy0 > 0, ηx > 0, ηy > 0, α > 0, β > 0 and α > β.
2: for t = 0, 1, 2, ... do
3: sample i.i.d. ξxt and ξyt , and let gxt = ∇xF (xt, yt; ξ

x
t ) and gyt = ∇yF (xt, yt; ξ

y
t )

4: vxt+1 = vxt + ∥gxt ∥2 and vyt+1 = vyt + ∥gyt ∥
2

5: xt+1 = xt − ηx

max{vx
t+1,v

y
t+1}α gxt and yt+1 = PY

(
yt +

ηy

(vy
t+1)

β g
y
t

)
6: end for

2.1 THE TIME-SCALE ADAPTIVITY OF TIADA

Current analyses of GDA with non-adaptive stepsizes require the time-scale, ηxt /η
y
t , to be smaller

than a threshold depending on problem constants such as the smoothness and the strong-concavity
parameter (Lin et al., 2020a; Yang et al., 2022b). The intuition is that we should not aggressively up-
date x if the inner maximization problem has not yet been solved accurately, i.e., we have not found
a good approximation of y∗(x). Therefore, the effective stepsize of x should be small compared
with that of y. It is tempting to expect adaptive stepsizes to automatically find a suitable time-scale
separation. However, the quadratic example (2) given by Yang et al. (2022a) shattered the illusion.
In this example, the effective stepsize ratio stays the same along the run of existing adaptive algo-
rithms, including AdaGrad (see Figure 1(b)), Adam and AMSGrad, and they fail to converge if the
initial stepsizes are not carefully chosen (see Yang et al. (2022a) for details). As vxt and vyt only
separately contain the gradients of x and y, the effective stepsizes of two variables in these adaptive
methods depend on their own history, which prevents them from cooperating to adjust the ratio.

Now we explain how TiAda adapts to both the required time-scale separation and small enough
stepsizes. First, the ratio of our modified effective stepsizes is upper bounded by a decreasing
sequence when α > β:

ηxt
ηyt

=
ηx/max

{
vxt+1, v

y
t+1

}α
ηy/

(
vyt+1

)β ≤ ηx/
(
vyt+1

)α
ηy/

(
vyt+1

)β =
ηx

ηy
(
vyt+1

)α−β
, (3)
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as vyt is the sum of previous gradient norms and is increasing. Regardless of the initial stepsize ratio
ηx/ηy , we expect the effective stepsize ratio to eventually drop below the desirable threshold for
convergence. On the other hand, the effective stepsizes for the primal and dual variables are also
upper bounded by decreasing sequences, ηx/

(
vxt+1

)α
and ηy/

(
vyt+1

)β
, respectively. Similar to

AdaGrad, such adaptive stepsizes will reduce to small enough, e.g., O(1/l), to ensure convergence.

Another way to look at the effective stepsize of x is

ηxt =
ηx

max
{
vxt+1, v

y
t+1

}α =

(
vxt+1

)α
max

{
vxt+1, v

y
t+1

}α · ηx(
vxt+1

)α . (4)

If the gradients of y are small (i.e., vyt+1 < vxt+1), meaning the inner maximization problem is well
solved, then the first factor becomes 1 and the effective stepsize of x is just the second factor, similar
to the AdaGrad updates. If the term vyt+1 dominates over vxt+1, the first factor would be smaller than
1, allowing to slow down the update of x and waiting for a better approximation of y∗(x).

To demonstrate the time-scale adaptivity of TiAda, we conducted experiments on the quadratic mini-
max example (2) with L = 2. As shown in Figure 1(b), while the effective stepsize ratio of AdaGrad
stays unchanged for this particular function, TiAda progressively decreases the ratio. According to
Lemma 2.1 of Yang et al. (2022a), 1/κ is the threshold where GDA starts to converge. We label
the time period before reaching this threshold as Stage I, during which as shown in Figure 1(c),
the gradient norm for TiAda increases. However, as soon as it enters Stage II, i.e., when the ratio
drops below 1/κ, TiAda converges fast to the stationary point. In contrast, since the stepsize ratio
of AdaGrad never reaches this threshold, the gradient norm keeps growing.

3 THEORETICAL ANALYSIS OF TIADA

In this section, we study the convergence of TiAda under NC-SC setting with both deterministic and
stochastic gradient oracles. We make the following assumptions to develop our convergence results.

Assumption 3.1 (smoothness). Function f(x, y) is l-smooth (l > 0) in both x and y, that is, for
any x1, x2 ∈ Rd1 and y1, y2 ∈ Y , we have

max{∥∇xf(x1, y1)−∇xf(x2, y2)∥, ∥∇yf(x1, y1)−∇yf(x2, y2)∥} ≤ l (∥x1 − x2∥+ ∥y1 − y2∥) .
Assumption 3.2 (strong-concavity in y). Function f(x, y) is µ-strongly-concave (µ > 0) in y, that
is, for any x ∈ Rd1 and y1, y2 ∈ Y , we have

f(x, y1) ≥ f(x, y2) + ⟨∇yf(x, y1), y1 − y2⟩+
µ

2
∥y1 − y2∥2.

Assumption 3.3 (interior optimal point). For any x ∈ Rd1 , y∗(x) is in the interior of Y .

Remark 3.1. The last assumption ensures ∇yf(x, y
∗(x)) = 0, which is important for AdaGrad-like

stepsizes that use the sum of squared norms of past gradients in the denominator. If the gradient
about y is not 0 at y∗(x), the stepsize will keep decreasing even near the optimal point, leading to
slow convergence. This assumption could be potentially alleviated by using generalized AdaGrad
stepsizes (Bach & Levy, 2019).

We aim to find a near stationary point for the minimax problem (1). Here, (x, y) is defined to be
an ϵ stationary point if ∥∇xf(x, y)∥ ≤ ϵ and ∥∇yf(x, y)∥ ≤ ϵ in the deterministic setting, or
E∥∇xf(x, y)∥2 ≤ ϵ2 and E∥∇yf(x, y)∥2 ≤ ϵ2 in the stochastic setting, where the expectation is
taken over all the randomness in the algorithm. This stationarity notion can be easily translated to
the near-stationarity of the primal function Φ(x) = maxy∈Y(x, y) (Yang et al., 2022b). Under our
analyses, TiAda is able to achieve the optimal O

(
ϵ−2
)

complexity in the deterministic setting and a
near-optimal O

(
ϵ−(4+δ)

)
sample complexity for any small δ > 0 in the stochastic setting.

3.1 DETERMINISTIC SETTING

In this subsection, we assume to have access to the exact gradients of f(·, ·), and therefore we can
replace ∇xF (xt, yt; ξ

x
t ) and ∇yF (xt, yt; ξ

y
t ) by ∇xf(xt, yt) and ∇yf(xt, yt) in Algorithm 1.
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Theorem 3.1 (deterministic setting). Under Assumptions 3.1 to 3.3, Algorithm 1 with deterministic
gradient oracles satisfies that for any 0 < β < α < 1, after T iterations,

1

T

T−1∑
t=0

∥∇xf(xt, yt)∥2 +
1

T

T−1∑
t=0

∥∇yf(xt, yt)∥2 ≤ O
(
1

T

)
.

This theorem implies that for any initial stepsizes, TiAda finds an ϵ-stationary point within O(ϵ−2)
iterations. Such complexity is comparable to that of nonadaptive methods, such as vanilla GDA (Lin
et al., 2020a), and is optimal in the dependency of ϵ (Zhang et al., 2021). Like NeAda (Yang et al.,
2022a), TiAda does not need any prior knowledge about µ and l, but it improves over NeAda by
removing the logarithmic term in the complexity. Notably, we provide a unified analysis for a wide
range of α and β, while most existing literature on AdaGrad-like stepsizes only validates a specific
hyper-parameter, e.g., α = 1/2 in minimization problems (Ward et al., 2020; Kavis et al., 2019).

3.2 STOCHASTIC SETTING

In this subsection, we assume the access to a stochastic gradient oracle, that returns unbiased noisy
gradients, ∇xF (x, y; ξ) and ∇yF (x, y; ξ). Also, we make the following additional assumptions.
Assumption 3.4 (stochastic gradients). For z ∈ {x, y}, we have Eξ [∇zF (x, y, ξ)] = ∇zf(x, y).
In addition, there exists a constant G such that ∥∇zF (x, y, ξ)∥ ≤ G for any x ∈ Rd1 and y ∈ Y .
Assumption 3.5 (bounded primal function value). There exists a constant Φmax ∈ R such that for
any x ∈ Rd1 , Φ(x) is upper bounded by Φmax.
Remark 3.2. The bounded gradients and function value are assumed in many works on adaptive
algorithms (Kavis et al., 2022; Levy et al., 2021). This implies the domain of y is bounded, which
is also assumed in the analyses of AdaGrad (Levy, 2017; Levy et al., 2018). In neural networks
with rectified activations, because of its scale-invariance property (Dinh et al., 2017), imposing
boundedness of y does not affect the expressiveness. Wasserstein GANs (Arjovsky et al., 2017) also
use projections on the critic to restrain the weights on a small cube around the origin.
Assumption 3.6 (second order Lipschitz continuity for y). For any x1, x2 ∈ Rd1 and y1, y2 ∈ Y ,
there exists constant L such that

∥∥∇2
xyf(x1, y1)−∇2

xyf(x2, y2)
∥∥ ≤ L (∥x1 − x2∥+ ∥y1 − y2∥)

and
∥∥∇2

yyf(x1, y1)−∇2
yyf(x2, y2)

∥∥ ≤ L (∥x1 − x2∥+ ∥y1 − y2∥).
Remark 3.3. Chen et al. (2021) also impose this assumption to achieve the optimal O

(
ϵ−4
)

com-
plexity for GDA with non-adaptive stepsizes for solving NC-SC minimax problems. Together with
Assumption 3.3, we can show that y∗(·) is smooth. Nevertheless, without this assumption, Lin et al.
(2020a) only show a worse complexity of O

(
ϵ−5
)

for GDA without large batchsize.
Theorem 3.2 (stochastic setting). Under Assumptions 3.1 to 3.6, Algorithm 1 with stochastic gra-
dient oracles satisfies that for any 0 < β < α < 1, after T iterations,

1

T
E

[
T−1∑
t=0

∥∇xf(xt, yt)∥2 +
T−1∑
t=0

∥∇yf(xt, yt)∥2
]
≤ O

(
Tα−1 + T−α + T β−1 + T−β

)
.

TiAda can achieve the complexity arbitrarily close to the optimal sample complexity, O
(
ϵ−4
)

(Li
et al., 2021), by choosing α and β arbitrarily close to 0.5. Specifically, TiAda achieves a complexity
of O

(
ϵ−(4+δ)

)
for any small δ > 0 if we set α = 0.5 + δ/(8 + 2δ) and β = 0.5 − δ/(8 + 2δ).

Notably, this matches the complexity of NeAda with AdaGrad stepsizes for both variables (Yang
et al., 2022a). NeAda may attain Õ(ϵ−4) complexity with more complicated subroutines for y.

Theorem 3.2 implies that TiAda is fully agnostic to problem parameters, e.g., µ, l and σ. GDA with
non-adaptive stepsizes (Lin et al., 2020a) and vanilla single-loop adaptive methods (Huang & Huang,
2021), such as AdaGrad and AMSGrad, all require knowledge of these parameters. Compared with
the only parameter-agnostic algorithm, NeAda, our algorithm has several advantages. First, TiAda
is a single-loop algorithm, while NeAda (Yang et al., 2022a) needs increasing inner-loop steps and
a huge batchsize of order Ω

(
ϵ−2
)

to achieve its best complexity. Second, our stationary guarantee
is for E∥∇xf(x, y)∥2 ≤ ϵ2, which is stronger than E∥∇xf(x, y)∥ ≤ ϵ guarantee in NeAda. Last
but not least, although NeAda does not need to know the exact value of variance σ in the stochastic
setting when σ > 0, NeAda uses a different stopping criterion for the inner loop in the deterministic
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setting when σ = 0, so it still needs partial information about σ. In comparison, TiAda achieves the
(near) optimal complexity in both settings with the same strategy.

Consistent with the intuition of time-scale adaptivity in Section 2.1, the convergence result can be
derived in two stages. In Stage I, according to the upper bound of the ratio in Equation (3), we
expect the term 1/

(
vyt+1

)α−β
reduces to a constant c, a desirable time-scale separation. This means

that vyt+1 has to grow to nearly (1/c)1/(α−β). In Stage II, when the time-scale separation is satisfied,
TiAda converges at a speed specified in Theorem 3.2. This indicates that the proximity between α
and β affects the speed trade-off between Stage I and II. When α and β are close, we have a faster
overall convergence rate close to the optimality, but suffer from a longer transition phase in Stage
I, albeit by only a constant term. We also present an empirical ablation study on the convergence
behavior with different choices of α and β in Appendix A.2.

Remark 3.4. In TiAda, the update of x requires to know the gradients of y (or vyt+1). However,
in some applications that concern about privacy, one player might not access the information about
the other player (Koller & Pfeffer, 1995; Foster & Young, 2006; He et al., 2016). Therefore, we
also consider a variant of TiAda without taking the maximum of gradient norms, i.e., setting the
effective stepsize of x in Algorithm 1 to ηx/

(
vxt+1

)α
. This variant achieves a sub-optimal com-

plexity of Õ
(
ϵ−6
)
. This result further justifies the importance of coordination between adaptive

stepsizes of two players for achieving faster convergence in minimax optimization. The algorithm
and convergence results are presented in Appendix C.4.

4 EXPERIMENTS

In this section, we first present extensions of TiAda that accommodate other adaptive schemes be-
sides AdaGrad and are more practical in deep models. Then we present empirical results of TiAda
and compare it with (i) simple combinations of GDA and adaptive stepsizes, which are commonly
used in practice, and (ii) NeAda with different adaptive mechanisms (Yang et al., 2022a). Our
experiments include test functions proposed by Yang et al. (2022a), the NC-SC distributional ro-
bustness optimization (Sinha et al., 2018), and training the NC-NC Wasserstein GAN with gradient
penalty (Gulrajani et al., 2017). We believe that this not only validates our theoretical results but
also shows the potential of our algorithm in real-world scenarios. To show the strength of being
parameter-agnostic of TiAda, in all the experiments, we merely select α = 0.6 and β = 0.4 without
further tuning those two hyper-parameters. All experimental details including the neural network
structure and hyper-parameters are described in Appendix A.1.

4.1 EXTENSIONS TO OTHER ADAPTIVE STEPSIZES AND HIGH-DIMENSIONAL MODELS

Although we design TiAda upon AdaGrad-Norm, it is easy and intuitive to apply other adaptive
schemes like Adam and AMSGrad. To do so, for z ∈ {x, y}, we replace the definition of gzt and
vzt+1 in line 3 and 4 of Algorithm 1 to

gzt = βz
t g

z
t−1 + (1− βz

t )∇zF (xt, yt; ξ
z
t ), vzt+1 = ψ

(
v0,
{
∥∇zF (xi, yi; ξ

z
i )∥2

}t

i=0

)
,

where {βz
t } is the momentum parameters and ψ is the second moment function. Some common

stepsizes that fit in this generalized framework can be seen in Table 1 in the appendix. Since Adam is
widely used in many deep learning tasks, we also implement generalized TiAda with Adam stepsizes
in our experiments for real-world applications, and we label it “TiAda-Adam”.

Besides generalizing TiAda to accommodate different stepsize schemes, for high-dimensional mod-
els, we also provide a coordinate-wise version of TiAda. Note that we cannot simply change ev-
erything in Algorithm 1 to be coordinate-wise, because we use the gradients of y in the stepsize of
x and there are no corresponding relationships between the coordinates of x and y. Therefore, in
light of our intuition in Equation (4), we use the global accumulated gradient norms to dynamically
adjust the stepsize of x. Denote the second moment (analogous to vxt+1 in Algorithm 1) for the i-th
coordinate of x at the t-th step as vxt+1,i and globally vxt+1 :=

∑d1

i=1 v
x
t+1,i. We also use similar

notations for y. Then, the update for the i-th parameter, i.e., xi and yi, can be written asx
i
t+1 = xit −

(vx
t+1)

α

max{vx
t+1,v

y
t+1}α · ηx

(vx
t+1,i)

α∇xif(xt, yt)

yit+1 = yit +
ηy

(vy
t+1,i)

β ∇yif(xt, yt).
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Figure 2: Comparison of algorithms on test functions. r = ηx/ηy is the initial stepsize ratio. In the
first row, we use the quadratic function (2) with L = 2 under deterministic gradient oracles. For the
second row, we test the methods on the McCormick function with noisy gradients.

Our results in the following subsections provide strong empirical evidence for the effectiveness
of these TiAda variants, and developing convergence guarantees for them would be an interesting
future work. We believe our proof techniques for TiAda, together with existing convergence results
for coordinate-wise AdaGrad and AMSGrad (Zhou et al., 2018; Chen et al., 2018; Défossez et al.,
2020), can shed light on the theoretical analyses of these variants.

4.2 TEST FUNCTIONS

Firstly, we examine TiAda on the quadratic function (2) that shows the non-convergence of simple
combinations of GDA and adaptive stepsizes (Yang et al., 2022a). Since our TiAda is based on
AdaGrad, we compare it to GDA with AdaGrad stepsize and NeAda-AdaGrad (Yang et al., 2022a).
The results are shown in the first row of Figure 2. When the initial ratio is poor, TiAda and NeAda-
AdaGrad always converge while AdaGrad diverges. NeAda also suffers from slow convergence
when the initial ratio is poor, e.g., 1 and 1/2 after 2000 iterations. In contrast, TiAda automatically
balances the stepsizes and converges fast under all ratios.

For the stochastic case, we follow Yang et al. (2022a) and conduct experiments on the McCormick
function which is more complicated and 2-dimensional: f(x, y) = sin(x1+x2)+(x1−x2)2− 3

2x1+
5
2x2+1+x1y1+x2y2− 1

2 (y
2
1+y

2
2). TiAda consistently outperforms AdaGrad and NeAda-AdaGrad

as demonstrated in the second row of Figure 2 regardless of the initial ratio. In this function, we
also run an ablation study on the effect of our design that uses max-operator in the update of x. We
compare TiAda with and its variant without the max-operator, TiAda without MAX (Algorithm 2
in the appendix) whose effective stepsizes of x are ηx/

(
vxt+1

)α
. According to Figure 2(h), TiAda

converges to smaller gradient norms under all configurations of α and β.

4.3 DISTRIBUTIONAL ROBUSTNESS OPTIMIZATION

In this subsection, we consider the distributional robustness optimization (Sinha et al., 2018). We
target training the model weights, the primal variable x, to be robust to the perturbations in the image
inputs, the dual variable y. The problem can be formulated as:

min
x

max
y=[y1,...,yn]

1

n

n∑
i=1

fi(x, yi)− γ∥yi − vi∥2, (5)

where fi is the loss function of the i-th sample, vi is the i-th input image, and yi is the corresponding
perturbation. There are a total of n samples and γ is a trade-off hyper-parameter between the original
loss and the penalty of the perturbations. If γ is large enough, the problem is NC-SC.

We conduct the experiments on the MNIST dataset (LeCun, 1998). In the left two plots of Figure 3,
we compare TiAda with AdaGrad and NeAda-AdaGrad in terms of convergence. Since it is common
in practice to update y 15 times after each x update (Sinha et al., 2018) for better generalization error,
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Figure 3: Comparison of the algorithms on distributional robustness optimization (5). We use i in
the legend to indicate the number of inner loops. Here we present two sets of stepsize configurations
for the comparisons of AdaGrad-like and Adam-like algorithms. Please refer to Appendix A.3 for
extensive experiments on larger ranges of stepsizes, and it will be shown that TiAda is the best
among all stepsize combinations in our grid.

we implement AdaGrad using both single and 15 iterations of inner loop (update of y). In order to
show that TiAda is more robust to the initial stepsize ratio, we compare two sets of initial stepsize
configurations with two different ratios. In both cases, TiAda outperforms NeAda and AdaGrad,
especially when ηx = ηy = 0.1, the performance gap is large. In the right two plots of Figure 3, the
Adam variants are compared. In this case, we find that TiAda is not only faster, but also more stable
comparing to Adam with one inner loop iteration.

4.4 GENERATIVE ADVERSARIAL NETWORKS
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Figure 4: Inception score on WGAN-GP.

Another successful and popular application of minimax
optimization is generative adversarial networks. In this
task, a discriminator (or critic) is trained to distinguish
whether an image is from the dataset. At the same
time, a generator is mutually trained to synthesize sam-
ples with the same distribution as the training dataset
so as to fool the discriminator. We use WGAN-GP
loss (Gulrajani et al., 2017), which imposes the dis-
criminator to be a 1-Lipschitz function, with CIFAR-10
dataset (Krizhevsky et al., 2009) in our experiments.

Since TiAda is a single-loop algorithm, for fair com-
parisons, we also update the discriminator only once for
each generator update in Adam. In Figure 4, we plot the
inception scores (Salimans et al., 2016) of TiAda-Adam
and Adam under different initial stepsizes. We use the same color for the same initial stepsizes, and
different line styles to distinguish the two methods, i.e., solid lines for TiAda-Adam and dashed
lines for Adam. For all the three initial stepsizes we consider, TiAda-Adam achieves higher in-
ception scores. Also, TiAda-Adam is more robust to initial stepsize selection, as the gap between
different solid lines at the end of training is smaller than the dashed lines.

5 CONCLUSION

In this work, we bring in adaptive stepsizes to nonconvex minimax problems in a parameter-agnostic
manner. We designed the first time-scale adaptive algorithm, TiAda, which progressively adjusts the
effective stepsize ratio and reaches the desired time-scale separation. TiAda is also noise adaptive
and does not require large batchsizes compared with the existing parameter-agnostic algorithm for
nonconvex minimax optimization. Furthermore, TiAda is able to achieve optimal and near-optimal
complexities respectively wtih deterministic and stochastic gradient oracles. We also empirically
showcased the advantages of TiAda over NeAda and GDA with adaptive stepsizes on several tasks,
including simple test functions, as well as NC-SC and NC-NC real-world applications. It remains an
interesting problem to study whether TiAda can escape stationary points that are not local optimum,
like adaptive methods for minimization problems (Staib et al., 2019).
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A SUPPLEMENTARY TO EXPERIMENTS

Table 1: Stepsize schemes fit in generalized TiAda. See also Yang et al. (2022a).

Algorithms first moment parameter βt second moment function ψ
(
v0, {u2i }ti=0

)
AdaGrad (TiAda) βt = 0 v0 +

∑t
i=0 u

2
i

GDA βt = 0 1

Adam 0 < βt < 1 γt+1v0 + (1− γ)
∑t

i=0 γ
t−iu2i

AMSGrad 0 < βt < 1 maxm=0,...,t γ
m+1v0 + (1− γ)

∑m
i=0 γ

m−iu2i

A.1 EXPERIMENTAL DETAILS

In this section, we will summarize the experimental settings and hyper-parameters used. As we men-
tioned, since we try to develop a parameter-agnostic algorithm without tuning the hyper-parameters
much, if not specified, we simply use α = 0.6 and β = 0.4 for all experiments. For fair comparisons,
we used the same hyper-parameters when comparing our TiAda with other algorithms.

Test Functions For Figure 1 and the first row of Figure 2, we conduct experiments on problem (2)
with L = 2. We use initial stepsize ηy = 0.2 and initial point (1, 0.01) for all runs. As for the
McCormick function used in the second row of Figure 2, we chose ηy = 0.01, and the noises added
to the gradients are from zero-mean Gaussian distribution with variance 0.01.

Distributional Robustness Optimization For results shown in Figures 3, 6 and 7, we adapt code
from Lv (2019), and used the same hyper-parameter setting as Sinha et al. (2018); Sebbouh et al.
(2022), i.e., γ = 1.3. The model we used is a three layer convolutional neural network (CNN) with
a final fully-connected layer. For each layer, batch normalization and ELU activation are used. The
width of each layer is (32, 64, 128, 512). The setting is the same as Sinha et al. (2018); Yang et al.
(2022a). We set the batchsize as 128, and for the Adam-like optimizers, including Adam, NeAda-
Adam and TiAda-Adam, we use β1 = 0.9, β2 = 0.999 for the first moment and second moment
parameters.
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Generative Adversarial Networks For this part, we use the code adapted from Green9 (2018).
To produce the results in Figure 4, a four layer CNN and a four layer CNN with transpose convo-
lution layers are used respectively for the discriminator and generator. Following a similar setting
as Daskalakis et al. (2018), we set batchsize as 512, the dimension of latent variable as 50 and the
weight of gradient penalty term as 10−4. For the Adam-like optimizers, we set β1 = 0.5, β2 = 0.9.
To get the inception score, we feed the pre-trained inception network with 8000 synthesized samples.

A.2 ABLATION STUDY ON CONVERGENCE BEHAVIOR WITH DIFFERENT α AND β

We conduct experiments on the quadratic minimax problem (2) with L = 2 to study the effect
of hyper-parameters α and β on the convergence behavior of TiAda. As discussed in Sections 1
and 3.2, we refer to the period before the stepsize ratio reduce to the convergence threshold as
Stage I, and the period after that as Stage II. In order to accentuate the difference between these two
stages, we pick a large initial stepsize ratio ηx/ηy = 20. We compare 4 different pairs of α and β:
α ∈ {0.59, 0.6, 0.61, 0.62} and β = 1−α. From Figure 5, we observed that as soon as TiAda enters
Stage II, the norm of gradients start to drop. Moreover, the closer α and β are to 0.5, the more time
TiAda remains in Stage I, which confirms the intuitions behind our analysis in Section 3.2.
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(a) effective stepsize ratio
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(b) convergence

Figure 5: Illustration of the effect of α and β on the two stages in TiAda’s time-scale adaptation
process. We set β = 1− α. The dashed line on the right plot represents the first iteration when the
effective stepsize ratio is below 1/κ.

A.3 ADDITIONAL EXPERIMENTS ON DISTRIBUTIONAL ROBUSTNESS OPTIMIZATION

We use a grid of stepsize combinations to evaluate TiAda and compare it with NeAda and GDA with
corresponding adaptive stepsizes. For AdaGrad-like algorithms, we use {0.1, 0.05, 0.01, 0.0005}
for both ηx and ηy , and the results are reported in Figure 6. For Adam-like algorithms, we use
{0.001, 0.0005, 0.0001} for ηx and {0.1, 0.05, 0.005, 0.001} for ηy , and the results are shown in
Figure 7. We note that since Adam uses the reciprocal of the moving average of gradient norms, it is
extremely unstable when the gradients are small. Therefore, Adam-like algorithms often experience
instability when they are near stationary points.

B HELPER LEMMAS

Lemma B.1 (Lemma A.2 in Yang et al. (2022a)). Let x1, ..., xT be a sequence of non-negative real
numbers, x1 > 0 and 0 < α < 1. Then we have(

T∑
t=1

xt

)1−α

≤
T∑

t=1

xt(∑t
k=1 xk

)α ≤ 1

1− α

(
T∑

t=1

xt

)1−α

.
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Figure 6: Gradient norms in x of AdaGrad-like algorithms on distributional robustness optimiza-
tion (5). We use i in the legend to indicate the number of inner loops.

When α = 1, we have
T∑

t=1

xt(∑t
k=1 xk

)α ≤ 1 + log

(∑t
t=1 xt
x1

)
.

Lemma B.2 (smoothness of Φ(·) and Lipschitzness of y∗(·). Lemma 4.3 in Lin et al. (2020a)).
Under Assumptions 3.1 and 3.2, we have Φ(·) is (l + κl)-smooth with ∇Φ(x) = ∇xf(x, y

∗(x)),
and y∗(·) is κ-Lipschitz.

Lemma B.3 (smoothness of y∗(·). Lemma 2 in Chen et al. (2021)). Under Assumptions 3.1, 3.2
and 3.6, we have that with L̂ = L+Lκ

µ + l(L+Lκ)
µ2 ,

∥∇y∗(x1)−∇y∗(x2)∥ ≤ L̂∥x1 − x2∥.

C PROOFS

For notational convenience in the proofs, we denote the stochastic gradient as ∇xf̃(xt, yt) and
∇y f̃(xt, yt). Also denote y∗t = y∗(xt), ηt = ηx

max{vx
t+1,v

y
t+1}α , γt = ηy

(vy
t+1)

β , Φ∗ =

minx∈Rd1 Φ(x), and ∆Φ = Φmax − Φ∗. We use 1 as the indicator function.
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Figure 7: Gradient norms in x of Adam-like algorithms on distributional robustness optimization (5).
We use i in the legend to indicate the number of inner loops.

C.1 PROOF OF THEOREM 3.1

We present a formal version of Theorem 3.1.

Theorem C.1 (deterministic setting). Under Assumptions 3.1 to 3.3, Algorithm 1 with deterministic
gradient oracles satisfies that for any 0 < β < α < 1, after T iterations,

T−1∑
t=0

∥∇xf(xt, yt)∥2 ≤ max {5C1, 2C2} ,

where

C1 = vx0 +

(
2∆Φ

ηx

) 1
1−α

+

(
4κle(1−α)(1−log vx

0 )/2

e(1− α) (vx0 )
2α−1

) 2
1−α

12α≥1 +

(
2κl

1− 2α

) 1
α

12α<1

+

(
c1c5
ηx

) 1
1−α

+

(
2c1c4η

xe(1−α)(1−log vx
0 )/2

e(1− α) (vx0 )
2α−β−1

) 2
1−α

12α−β≥1 +

(
c1c4η

x

1− 2α+ β

) 1
α−β

12α−β<1

C2 = vx0 +

[(
2∆Φ + c1c5

ηx (vx0 )
1−2α+β

+
c1c4η

x

1− 2α+ β
+

2κle(1−2α+β)(1−log vx
0 )

e(1− 2α+ β) (vx0 )
2α−112α≥1 +

2κl

(1− 2α) (vx0 )
β
12α<1

)
(

c5

(vx0 )
1−2α+β

+
c4 (η

x)
2

1− 2α+ β

) α
1−β

] 1

1−(1−2α+β)(1+ α
1−β )

12α−β<1

+

[(
2∆Φ + c1c5

ηx (vx0 )
1/4

+
8κle(1−log vx

0 )/4

e (vx0 )
2α−1 +

4c1c4η
xe(1−log vx

0 )/4

e (vx0 )
2α−β−1

)
(

c5

(vx0 )
(1−β)

4α

+
4c4α (ηx)

2
e(1−β)(1−log vx

0 )/(4α)

e(1− β) (vx0 )
2α−β−1

) α
1−β

]2
12α≥1,
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with ∆Φ = Φ(x0)− Φ∗, c1 =
ηxκ2

ηy
(
vyt0
)α−β

, c2 = max

{
4ηyµl

µ+ l
, ηy(µ+ l)

}
,

c3 = 4(µ+ l)

(
1

µ2
+

ηy(
vyt0
)β
)
c
1/β
2 , c4 = (µ+ l)

(
2κ2

(vy0 )
α +

(µ+ l)κ2

ηyµl

)
,

c5 = c3 +
ηyvy0

(vy0 )
β
+
ηyc

1−β
β

2

1− β
.

In addition, denoting the above upper bound for
∑T−1

t=0 ∥∇xf(xt, yt)∥2 as C3, we have

T−1∑
t=0

∥∇yf(xt, yt)∥2 ≤
(
c5 + c4 (η

x)
2

(
1 + logC3 − log vx0

(vx0 )
2α−β−1

12α−β≥1 +
C1−2α+β

3

1− 2α+ β
12α−β<1

)) 1
1−β

.

Proof. Let us start from the smoothness of the primal function Φ(·). By Lemma B.2,

Φ(xt+1)

≤ Φ(xt)− ηt⟨Φ(xt+1),∇xf(xt, yt)⟩+ klη2t ∥∇xf(xt, yt)∥2

= Φ(xt)− ηt∥∇xf(xt, yt)∥2 + ηt⟨∇xf(xt, yt)−∇Φ(xt),∇xf(xt, yt)⟩+ klη2t ∥∇xf(xt, yt)∥2

≤ Φ(xt)− ηt∥∇xf(xt, yt)∥2 +
ηt
2
∥∇xf(xt, yt)∥2 +

ηt
2
∥∇xf(xt, yt)−∇Φ(xt)∥2 + klη2t ∥∇xf(xt, yt)∥2

= Φ(xt)−
ηt
2
∥∇xf(xt, yt)∥2 + klη2t ∥∇xf(xt, yt)∥2 +

ηt
2
∥∇xf(xt, yt)−∇Φ(xt)∥2

= Φ(xt)−
ηt
2
∥∇xf(xt, yt)∥2 + klη2t ∥∇xf(xt, yt)∥2 +

ηx

2max
{
vxt+1, v

y
t+1

}α ∥∇xf(xt, yt)−∇Φ(xt)∥2

≤ Φ(xt)−
ηt
2
∥∇xf(xt, yt)∥2 + klη2t ∥∇xf(xt, yt)∥2 +

ηx

2
(
vyt0
)α−β (

vyt+1

)β ∥∇xf(xt, yt)−∇Φ(xt)∥2

≤ Φ(xt)−
ηt
2
∥∇xf(xt, yt)∥2 + klη2t ∥∇xf(xt, yt)∥2 +

ηxκ2

2
(
vyt0
)α−β (

vyt+1

)β ∥∇yf(xt, yt)∥2

≤ Φ(xt)−
ηt
2
∥∇xf(xt, yt)∥2 + klη2t ∥∇xf(xt, yt)∥2 +

ηxκ2

2ηy
(
vyt0
)α−β

· γt∥∇yf(xt, yt)∥2,

where in the second to last inequality, we used the strong-concavity of f(x, ·):
∥∇xf(xt, yt)−∇Φ(xt)∥ ≤ l∥yt − y∗t ∥ ≤ κ∥∇yf(xt, yt)∥.

Telescoping and rearranging the terms, we have
T−1∑
t=0

ηt∥∇xf(xt, yt)∥2

≤ 2 (Φ(x0)− Φ∗)︸ ︷︷ ︸
∆Φ

+2κl

T−1∑
t=0

η2t ∥∇xf(xt, yt)∥2 +
ηxκ2

ηy
(
vyt0
)α−β︸ ︷︷ ︸

c1

T−1∑
t=0

γt∥∇yf(xt, yt)∥2

= 2∆Φ+

T−1∑
t=0

2κlηx

max
{
vxt+1, v

y
t+1

}2α ∥∇xf(xt, yt)∥2 + c1

T−1∑
t=0

γt∥∇yf(xt, yt)∥2

≤ 2∆Φ +

T−1∑
t=0

2κlηx(
vxt+1

)2α ∥∇xf(xt, yt)∥2 + c1

T−1∑
t=0

γt∥∇yf(xt, yt)∥2

≤ 2∆Φ + 2κlηx

(
1 + log vxT − log vx0

(vx0 )
2α−1 · 12α≥1 +

(vxT )
1−2α

1− 2α
· 12α<1

)
+ c1

T−1∑
t=0

γt∥∇yf(xt, yt)∥2.

(6)
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We proceed to bound
∑T−1

t=0 γt∥∇yf(xt, yt)∥2. Let t0 be the first iteration such that
(
vyt0+1

)β
>

c2 := max
{

4ηyµl
µ+l , η

y(µ+ l)
}

. We have vyt0 ≤ c
1/β
2 , and for t ≥ t0,∥∥yt+1 − y∗t+1

∥∥2
≤ (1 + λt)∥yt+1 − y∗t ∥2 +

(
1 +

1

λt

)∥∥y∗t+1 − y∗t
∥∥2

≤ (1 + λt)

(
∥yt − y∗t ∥2 +

(ηy)
2(

vyt+1

)2β ∥∇yf(xt, yt)∥2 +
2ηy(
vyt+1

)β ⟨yt − y∗t ,∇yf(xt, yt)⟩
)

︸ ︷︷ ︸
(A)

+

(
1 +

1

λt

)∥∥y∗t+1 − y∗t
∥∥2,

where λt > 0 will be determined later. For l-smooth and µ-strongly convex function g(x), according
to Theorem 2.1.12 in Nesterov (2003), we have

⟨∇g(x)−∇g(y), x− y⟩ ≥ µl

µ+ l
∥x− y∥2 + 1

µ+ l
∥∇g(x)−∇g(y)∥2.

Therefore,

Term (A)

≤ (1 + λt)

((
1− 2ηyµl

(µ+ l)
(
vyt+1

)β
)
∥yt − y∗t ∥2 +

(
(ηy)

2(
vyt+1

)2β − 2ηy

(µ+ l)
(
vyt+1

)β
)
∥∇yf(xt, yt)∥2

)
.

Let λt = ηyµl

(µ+l)(vy
t+1)

β−2ηyµl
. Note that λt > 0 after t0. Then

Term (A)

≤
(
1− ηyµl

(µ+ l)
(
vyt+1

)β
)
∥yt − y∗t ∥2 + (1 + λt)

(
(ηy)

2(
vyt+1

)2β − 2ηy

(µ+ l)
(
vyt+1

)β
)
∥∇yf(xt, yt)∥2

≤ ∥yt − y∗t ∥2 + (1 + λt)

(
(ηy)

2(
vyt+1

)2β − 2ηy

(µ+ l)
(
vyt+1

)β
)

︸ ︷︷ ︸
(B)

∥∇yf(xt, yt)∥2.

As 1 + λt ≥ 1 and
(
vyt+1

)β ≥ ηy(µ + l), we have term (B) ≤ − ηy

(µ+l)(vy
t+1)

β . Putting them back,

we can get∥∥yt+1 − y∗t+1

∥∥2
≤ ∥yt − y∗t ∥2 −

ηy

(µ+ l)
(
vyt+1

)β ∥∇yf(xt, yt)∥2 +
(
1 +

1

λt

)∥∥y∗t+1 − y∗t
∥∥2

≤ ∥yt − y∗t ∥2 −
ηy

(µ+ l)
(
vyt+1

)β ∥∇yf(xt, yt)∥2 +
(µ+ l)

(
vyt+1

)β
ηyµl

∥∥y∗t+1 − y∗t
∥∥2

≤ ∥yt − y∗t ∥2 −
ηy

(µ+ l)
(
vyt+1

)β ∥∇yf(xt, yt)∥2 +
(µ+ l)κ2

(
vyt+1

)β
ηyµl

∥xx+1 − xt∥2

= ∥yt − y∗t ∥2 −
ηy

(µ+ l)
(
vyt+1

)β ∥∇yf(xt, yt)∥2 +
(µ+ l)κ2

(
vyt+1

)β
η2t

ηyµl
∥∇xf(xt, yt)∥2.
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Then, by telescoping, we have
T−1∑
t=t0

ηy

(µ+ l)
(
vyt+1

)β ∥∇yf(xt, yt)∥2 ≤
∥∥yt0 − y∗t0

∥∥2 + T−1∑
t=t0

(µ+ l)κ2
(
vyt+1

)β
η2t

ηyµl
∥∇xf(xt, yt)∥2.

(7)

For the first term in the RHS, using Young’s inequality with τ to be determined later, we have∥∥yt0 − y∗t0
∥∥2 ≤ 2

∥∥yt0 − y∗t0−1

∥∥2 + 2
∥∥y∗t0 − y∗t0−1

∥∥2
= 2
∥∥PY (yt0−1 + γt0−1∇yf(xt0−1, yt0−1))− y∗t0−1

∥∥2 + 2
∥∥y∗t0 − y∗t0−1

∥∥2
≤ 2
∥∥yt0−1 + γt0−1∇yf(xt0−1, yt0−1)− y∗t0−1

∥∥2 + 2
∥∥y∗t0 − y∗t0−1

∥∥2
≤ 4

(∥∥yt0−1 − y∗t0−1

∥∥2 + γ2t0−1∥∇yf(xt0−1, yt0−1)∥2
)
+ 2
∥∥y∗t0 − y∗t0−1

∥∥2
≤ 4

(
1

µ2
∥∇yf(xt0−1, yt0−1)∥2 + γ2t0−1∥∇yf(xt0−1, yt0−1)∥2

)
+ 2
∥∥y∗t0 − y∗t0−1

∥∥2
= 4

(
1

µ2
+ γ2t0−1

)
∥∇yf(xt0−1, yt0−1)∥2 + 2

∥∥y∗t0 − y∗t0−1

∥∥2
≤ 4

(
1

µ2
+ γ20

)
vyt0 + 2

∥∥y∗t0 − y∗t0−1

∥∥2
≤ 4

(
1

µ2
+

ηy(
vyt0
)β
)
c
1/β
2 + 2

∥∥y∗t0 − y∗t0−1

∥∥2
≤ 4

(
1

µ2
+

ηy(
vyt0
)β
)
c
1/β
2 + 2κ2∥xt0 − xt0−1∥2

≤ 4

(
1

µ2
+

ηy(
vyt0
)β
)
c
1/β
2 + 2κ2η2t0−1∥∇xf(xt0−1, yt0−1)∥2

≤ 4

(
1

µ2
+

ηy(
vyt0
)β
)
c
1/β
2 +

2κ2
(
vyt+1

)β
(vy0 )

β
η2t0−1∥∇xf(xt0−1, yt0−1)∥2.

Combined with Equation (7), we have
T−1∑
t=t0

ηy(
vyt+1

)β ∥∇yf(xt, yt)∥2

≤ 4(µ+ l)

(
1

µ2
+

ηy(
vyt0
)β
)
c
1/β
2︸ ︷︷ ︸

c3

+(µ+ l)

(
2κ2

(vy0 )
α +

(µ+ l)κ2

ηyµl

)
︸ ︷︷ ︸

c4

T−1∑
t=t0−1

(
vyt+1

)β
η2t ∥∇xf(xt, yt)∥2.

By adding terms from 0 to t0 − 1 and ηyvy
0

(vy
0 )

β from both sides, we have

ηyvy0

(vy0 )
β
+

T−1∑
t=0

ηy(
vyt+1

)β ∥∇yf(xt, yt)∥2

≤ c3 +
ηyvy0

(vy0 )
β
+ c4

T−1∑
t=0

(
vyt+1

)β
η2t ∥∇xf(xt, yt)∥2 +

t0−1∑
t=t=0

ηy(
vyt+1

)β ∥∇yf(xt, yt)∥2

≤ c3 +
ηyvy0

(vy0 )
β
+ c4

T−1∑
t=0

(
vyt+1

)β
η2t ∥∇xf(xt, yt)∥2 +

ηyvy0

(vy0 )
β
+

t0−1∑
t=t=0

ηy(
vyt+1

)β ∥∇yf(xt, yt)∥2

≤ c3 +
ηyvy0

(vy0 )
β
+ c4

T−1∑
t=0

(
vyt+1

)β
η2t ∥∇xf(xt, yt)∥2 +

ηy

1− β
v1−β
t0
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≤ c3 +
ηyvy0

(vy0 )
β
+ c4

T−1∑
t=0

(
vyt+1

)β
η2t ∥∇xf(xt, yt)∥2 +

ηyc
1−β
β

2

1− β

= c3 +
ηyvy0

(vy0 )
β
+
ηyc

1−β
β

2

1− β
+ c4 (η

x)
2
T−1∑
t=0

(
vyt+1

)β
max

{
vxt+1, v

y
t+1

}2α ∥∇xf(xt, yt)∥2

= c3 +
ηyvy0

(vy0 )
β
+
ηyc

1−β
β

2

1− β︸ ︷︷ ︸
c5

+c4 (η
x)

2
T−1∑
t=0

1(
vxt+1

)2α−β
∥∇xf(xt, yt)∥2

≤ c5 + c4 (η
x)

2

(
1 + log vxT − log vx0

(vx0 )
2α−β−1

· 12α−β≥1 +
(vxT )

1−2α+β

1− 2α+ β
· 12α−β<1

)
.

The LHS can be bounded by (vyT )
1−β by Lemma B.1. Then we get two useful inequalities from

above:
∑T−1

t=0 γt∥∇yf(xt, yt)∥2 ≤ c5 + c4 (η
x)

2

(
1+log vx

T−log vx
0

(vx
0 )

2α−β−1 · 12α−β≥1 +
(vx

T )1−2α+β

1−2α+β · 12α−β<1

)
vyT ≤

(
c5 + c4 (η

x)
2

(
1+log vx

T−log vx
0

(vx
0 )

2α−β−1 · 12α−β≥1 +
(vx

T )1−2α+β

1−2α+β · 12α−β<1

)) 1
1−β

.

(8)

Now bring it back to Equation (6), we get

T−1∑
t=0

ηt∥∇xf(xt, yt)∥2

≤ 2∆Φ + 2κlηx

(
1 + log vxT − log vx0

(vx0 )
2α−1 · 12α≥1 +

(vxT )
1−2α

1− 2α
· 12α<1

)

+ c1c5 + c1c4 (η
x)

2

(
1 + log vxT − log vx0

(vx0 )
2α−β−1

· 12α−β≥1 +
(vxT )

1−2α+β

1− 2α+ β
· 12α−β<1

)
.

For the LHS, we have

T−1∑
t=0

ηt∥∇xf(xt, yt)∥2 =

T−1∑
t=0

ηx

max
{
vxt+1, v

y
t+1

}α ∥∇xf(xt, yt)∥2

≥ ηx

max {vxT , vyT }
α

T−1∑
t=0

∥∇xf(xt, yt)∥2

From here, by combining two inequalites above and noting that
∑T−1

t=0 ∥∇xf(xt, yt)∥2 ≤ vxT , we
can already conclude that

∑T−1
t=0 ∥∇xf(xt, yt)∥2 = O(1). Now we will provide an explicit bound.

We consider two cases:

(1) If vyT ≤ vxT , then

T−1∑
t=0

∥∇xf(xt, yt)∥2

≤ 2∆Φ (vxT )
α

ηx
+ 2κl

(
(vxT )

α
(1 + log vxT − log vx0 )

(vx0 )
2α−1 · 12α≥1 +

(vxT )
1−α

1− 2α
· 12α<1

)

+
c1c5 (v

x
T )

α

ηx
+ c1c4η

x

(
(vxT )

α
(1 + log vxT − log vx0 )

(vx0 )
2α−β−1

· 12α−β≥1 +
(vxT )

1−α+β

1− 2α+ β
· 12α−β<1

)
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=
2∆Φ(vxT )

α

ηx
+ 2κl

(
(vxT )

α
(vxT )

1−α
2 (vxT )

α−1
2 (1 + log vxT − log vx0 )

(vx0 )
2α−1 · 12α≥1 +

(vxT )
1−α

1− 2α
· 12α<1

)

+
c1c5 (v

x
T )

α

ηx
+ c1c4η

x

(
(vxT )

α
(vxT )

1−α
2 (vxT )

α−1
2 (1 + log vxT − log vx0 )

(vx0 )
2α−β−1

· 12α−β≥1 +
(vxT )

1−α+β

1− 2α+ β
· 12α−β<1

)

≤ 2∆Φ (vxT )
α

ηx
+ 2κl

(
2e(1−α)(1−log vx

0 )/2 (vxT )
1+α
2

e(1− α) (vx0 )
2α−1 · 12α≥1 +

(vxT )
1−α

1− 2α
· 12α<1

)

+
c1c5 (v

x
T )

α

ηx
+ c1c4η

x

(
2e(1−α)(1−log vx

0 )/2 (vxT )
1+α
2

e(1− α) (vx0 )
2α−β−1

· 12α−β≥1 +
(vxT )

1−α+β

1− 2α+ β
· 12α−β<1

)
,

(9)

where we used x−m(c + log x) ≤ ecm

em for x > 0, m > 0 and c ∈ R in the last inequality. Also, if
0 < αi < 1 and bi are positive constants, and x ≤∑n

i=1 bix
αi , then we get x ≤ n

∑n
i=1 b

1/(1−αi)
i .

Now consider vxT as the x in the previous statement, and note that the LHS of Equation (9) equals to
vxT − vx0 . Then we can get

vxT ≤ 5vx0 + 5

(
2∆Φ

ηx

) 1
1−α

+ 5

(
4κle(1−α)(1−log vx

0 )/2

e(1− α) (vx0 )
2α−1

) 2
1−α

· 12α≥1 + 5

(
2κl

1− 2α

) 1
α

· 12α<1

+ 5

(
c1c5
ηx

) 1
1−α

+ 5

(
2c1c4η

xe(1−α)(1−log vx
0 )/2

e(1− α) (vx0 )
2α−β−1

) 2
1−α

· 12α−β≥1 + 5

(
c1c4η

x

1− 2α+ β

) 1
α−β

· 12α−β<1.

(10)

Note that the RHS is a constant and also an upper bound for
∑T−1

t=0 ∥∇xf(xt, yt)∥2.

(2) If vyT ≤ vxT , then we can use the upper bound for vyT from Equation (8). We now discuss two
cases:

1. 2α < 1 + β. Then we have
T−1∑
t=0

∥∇xf(xt, yt)∥2

≤
(
2∆Φ + c1c5

ηx
+ 2κl

(
1 + log vxT − log vx0

(vx0 )
2α−1 · 12α≥1 +

(vxT )
1−2α

1− 2α
· 12α<1

)
+
c1c4η

x (vxT )
1−2α+β

1− 2α+ β

)
(
c5 +

c4 (η
x)

2
(vxT )

1−2α+β

1− 2α+ β

) α
1−β

≤
(

2∆Φ + c1c5

ηx (vx0 )
1−2α+β

+ 2κl

(
1 + log vxT − log vx0

(vx0 )
2α−1

(vxT )
1−2α+β

· 12α≥1 +
1

(1− 2α) (vx0 )
β
· 12α<1

)
+

c1c4η
x

1− 2α+ β

)
(

c5

(vx0 )
1−2α+β

+
c4 (η

x)
2

1− 2α+ β

) α
1−β

· (vxT )1−2α+β+
(1−2α+β)α

1−β

≤
(

2∆Φ + c1c5

ηx (vx0 )
1−2α+β

+ 2κl

(
e(1−2α+β)(1−log vx

0 )

e(1− 2α+ β) (vx0 )
2α−1 · 12α≥1 +

1

(1− 2α) (vx0 )
β
· 12α<1

)
+

c1c4η
x

1− 2α+ β

)
(

c5

(vx0 )
1−2α+β

+
c4 (η

x)
2

1− 2α+ β

) α
1−β

· (vxT )1−2α+β+
(1−2α+β)α

1−β ,

Note that since α > β, we have

1− 2α+ β +
(1− 2α+ β)α

1− β
≤ (1− α)α

1− β
+ 1− α = 1 +

α(β − α)

1− β
< 1.
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Therefore, with the same reasoning as Equation (10),
T−1∑
t=0

∥∇xf(xt, yt)∥2 ≤ vxT

≤ 2

[(
2∆Φ + c1c5

ηx (vx0 )
1−2α+β

+
c1c4η

x

1− 2α+ β
+

2κle(1−2α+β)(1−log vx
0 )

e(1− 2α+ β) (vx0 )
2α−1 · 12α≥1 +

2κl

(1− 2α) (vx0 )
β
· 12α<1

)
(

c5

(vx0 )
1−2α+β

+
c4 (η

x)
2

1− 2α+ β

) α
1−β

] 1

1−(1−2α+β)(1+ α
1−β )

+ 2vx0 ,

which gives us constant RHS.

2. 2α ≥ 1 + β. Then we have
T−1∑
t=0

∥∇xf(xt, yt)∥2

≤
(
2∆Φ + c1c5

ηx
+

2κl (1 + log vxT − log vx0 )

(vx0 )
2α−1 +

c1c4η
x (1 + log vxT − log vx0 )

(vx0 )
2α−β−1

)
(
c5 +

c4 (η
x)

2
(1 + log vxT − log vx0 )

(vx0 )
2α−β−1

) α
1−β

≤
(
2∆Φ + c1c5

ηx (vx0 )
1/4

+
2κl (1 + log vxT − log vx0 )

(vx0 )
2α−1

(vxT )
1/4

+
c1c4η

x (1 + log vxT − log vx0 )

(vx0 )
2α−β−1

(vxT )
1/4

)
(

c5

(vx0 )
(1−β)

4α

+
c4 (η

x)
2
(1 + log vxT − log vx0 )

(vx0 )
2α−β−1

(vxT )
(1−β)

4α

) α
1−β

· (vxT )1/2

≤
(
2∆Φ + c1c5

ηx (vx0 )
1/4

+
8κle(1−log vx

0 )/4

e (vx0 )
2α−1 +

4c1c4η
xe(1−log vx

0 )/4

e (vx0 )
2α−β−1

)
(

c5

(vx0 )
(1−β)

4α

+
4c4α (ηx)

2
e(1−β)(1−log vx

0 )/(4α)

e(1− β) (vx0 )
2α−β−1

) α
1−β

· (vxT )1/2 ,

which implies
T−1∑
t=0

∥∇xf(xt, yt)∥2 ≤ vxT

≤ 2

[(
2∆Φ + c1c5

ηx (vx0 )
1/4

+
8κle(1−log vx

0 )/4

e (vx0 )
2α−1 +

4c1c4η
xe(1−log vx

0 )/4

e (vx0 )
2α−β−1

)
(

c5

(vx0 )
(1−β)

4α

+
4c4α (ηx)

2
e(1−β)(1−log vx

0 )/(4α)

e(1− β) (vx0 )
2α−β−1

) α
1−β

]2
+ 2vx0 .

Now we also get only a constant on the RHS.

Summarizing all the cases, we finish the proof.

C.2 INTERMEDIATE LEMMAS FOR THEOREM 3.2

Lemma C.1. Under the same setting as Theorem 3.2, if for t = t0 to t1 − 1 and any λt > 0, St,∥∥yt+1 − y∗t+1

∥∥2 ≤ (1 + λt) ∥yt+1 − y∗t ∥2 + St,
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then we have

E

[
t1−1∑
t=t0

(f(xt, y
∗
t )− f(xt, yt))

]
≤ E

[
t1−1∑

t=t0+1

(
1− γtµ

2γt
∥yt − y∗t ∥2 −

1

2γt(1 + λt)

∥∥yt+1 − y∗t+1

∥∥2)]

+ E

[
t1−1∑
t=t0

γt
2

∥∥∥∇y f̃(xt, yt)
∥∥∥2]+ E

[
t1−1∑
t=t0

St

2γt(1 + λt)

]
.

Proof. Letting λt := µηy

2(vy
t+1)

β , we have∥∥yt+1 − y∗t+1

∥∥2
≤ (1 + λt)∥yt+1 − y∗t ∥2 + St

= (1 + λt)
∥∥∥PY

(
yt + γt∇y f̃(xt, yt)

)
− y∗t

∥∥∥2 + St

≤ (1 + λt)
∥∥∥yt + γt∇y f̃(xt, yt)− y∗t

∥∥∥2 + St

= (1 + λt)

(
∥yt − y∗t ∥2 + γ2t

∥∥∥∇y f̃(xt, yt)
∥∥∥2 + 2γt

〈
∇y f̃(xt, yt), yt − y∗t

〉)
+ St

= (1 + λt)

(
∥yt − y∗t ∥2 + γ2t

∥∥∥∇y f̃(xt, yt)
∥∥∥2 + 2γt

〈
∇y f̃(xt, yt), yt − y∗t

〉
+ γtµ∥yt − y∗t ∥2 − γtµ∥yt − y∗t ∥2

)
+ St

By multiplying 1
γt(1+λt)

and rearranging the terms, we can get

2
〈
∇y f̃(xt, yt), y

∗
t − yt

〉
− µ∥yt − y∗t ∥2

≤ 1− γtµ

γt
∥yt − y∗t ∥2 −

1

γt(1 + λt)

∥∥yt+1 − y∗t+1

∥∥2 + γt

∥∥∥∇y f̃(xt, yt)
∥∥∥2 + St

γt(1 + λt)
.

By telescoping from t = t0 to t1 − 1, we have
t1−1∑
t=t0

(〈
∇y f̃(xt, yt), y

∗
t − yt

〉
− µ

2
∥yt − y∗t ∥2

)

≤
t1−1∑

t=t0+1

(
1− γtµ

2γt
∥yt − y∗t ∥2 −

1

2γt(1 + λt)

∥∥yt+1 − y∗t+1

∥∥2)+

t1−1∑
t=t0

γt
2

∥∥∥∇y f̃(xt, yt)
∥∥∥2

+

t1−1∑
t=t0

St

2γt(1 + λt)
.

Now we take the expectation and get

E [LHS] ≥ E

[
t1−1∑
t=t0

Eξyt

[(〈
∇y f̃(xt, yt), y

∗
t − yt

〉
− µ

2
∥yt − y∗t ∥2

)]]

= E

[
t1−1∑
t=t0

(
⟨∇yf(xt, yt), y

∗
t − yt⟩ −

µ

2
∥yt − y∗t ∥2

)]

≥ E

[
t1−1∑
t=t0

(f(xt, y
∗
t )− f(xt, yt))

]
,

where we used strong-concavity in the last inequality.
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Lemma C.2. Under the same setting as Theorem 3.2, if vyt+1 ≤ C for t = 0, ..., t0 − 1, then we
have

E

[
t0−1∑
t=0

(f(xt, y
∗
t )− f(xt, yt))

]

≤ E

[
t0−1∑
t=0

(
1− γtµ

2γt
∥yt − y∗t ∥2 −

1

γt(2 + µγt)

∥∥yt+1 − y∗t+1

∥∥2)]+ E

[
t0−1∑
t=0

γt
2

∥∥∥∇y f̃(xt, yt)
∥∥∥2]

+
κ2
(
µηyCβ + 2C2β

)
(ηx)

2

2µ (ηy)
2 E

[
1 + log vxt0 − log vx0

(vx0 )
2α−1 · 1α≥0.5 +

(
vxt0
)1−2α

1− 2α
· 1α<0.5

]
.

Proof. By Young’s inequality, we have∥∥yt+1 − y∗t+1

∥∥2 ≤ (1 + λt)∥yt+1 − y∗t ∥2 +
(
1 +

1

λt

)∥∥y∗t+1 − y∗t
∥∥2.

Then letting λt = µγt

2 and by Lemma C.1, we have

E

[
t0−1∑
t=0

(f(xt, y
∗
t )− f(xt, yt))

]

≤ E

[
t0−1∑
t=0

(
1− γtµ

2γt
∥yt − y∗t ∥2 −

1

γt(2 + µγt)

∥∥yt+1 − y∗t+1

∥∥2)]

+ E

[
t0−1∑
t=0

γt
2

∥∥∥∇y f̃(xt, yt)
∥∥∥2]+ E

t0−1∑
t=0

(
1 + 2

µγt

)
γt(2 + µγt)

∥∥y∗t+1 − y∗t
∥∥2 .

We now remain to bound the last term:

E

t0−1∑
t=0

(
1 + 2

µγt

)
γt(2 + µγt)

∥∥y∗t+1 − y∗t
∥∥2

≤ E

t0−1∑
t=0

(
1 + 2

µγt

)
2γt

∥∥y∗t+1 − y∗t
∥∥2

= E

[
t0−1∑
t=0

µηy
(
vyt+1

)β
+ 2

(
vyt+1

)2β
2µ (ηy)

2

∥∥y∗t+1 − y∗t
∥∥2]

≤ µηyCβ + 2C2β

2µ (ηy)
2 E

[
t0−1∑
t=0

∥∥y∗t+1 − y∗t
∥∥2] .

By Lemma B.2 we have

t0−1∑
t=0

∥∥y∗t+1 − y∗t
∥∥2 ≤ κ2

t0−1∑
t=0

∥xt+1 − xt∥2

= κ2
t0−1∑
t=0

η2t

∥∥∥∇xf̃(xt, yt)
∥∥∥2

= κ2 (ηx)
2
t0−1∑
t=0

1

max
{
vxt+1, v

y
t+1

}2α ∥∥∥∇xf̃(xt, yt)
∥∥∥2

≤ κ2 (ηx)
2
t0−1∑
t=0

1(
vxt+1

)2α ∥∥∥∇xf̃(xt, yt)
∥∥∥2
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≤ κ2 (ηx)
2

(
vx0

(vx0 )
2α +

t0−1∑
t=0

1(
vxt+1

)2α ∥∥∥∇xf̃(xt, yt)
∥∥∥2)

≤ κ2 (ηx)
2

(
1 + log vxt0 − log vx0

(vx0 )
2α−1 · 1α≥0.5 +

(
vxt0
)1−2α

1− 2α
· 1α<0.5

)
where we applied Lemma B.1 in the last inequality. Bringing back this result, we finish the proof.

Lemma C.3. Under the same setting as Theorem 3.2, if t0 is the first iteration such that vyt0+1 > C,
then we have

E

[
T−1∑
t=t0

(f(xt, y
∗
t )− f(xt, yt))

]

≤ E

[
T−1∑
t=t0

(
1− γtµ

2γt
∥yt − y∗t ∥2 −

1

γt(2 + µγt)

∥∥yt+1 − y∗t+1

∥∥2)]+ E

[
T−1∑
t=t0

γt
2

∥∥∥∇y f̃(xt, yt)
∥∥∥2]

+

(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
(ηx)

2

2(1− α)ηy (vy0 )
α−β

E
[
(vxT )

1−α
]

+
2κ2 (ηx)

2

µ (ηy)
2
C2α−2β

E

[
T−1∑
t=t0

∥∇xf(xt, yt)∥2
]
+

(
1

µ
+

ηy

(vy0 )
β

)
4κηxG2

ηy (vy0 )
αE
[
(vyT )

β
]
.

Proof. By the Lipschitzness of y∗(·) as in Lemma B.2, we have∥∥yt+1 − y∗t+1

∥∥2 = ∥yt+1 − y∗t ∥2 +
∥∥y∗t − y∗t+1

∥∥2 + 2
〈
yt+1 − y∗t , y

∗
t − y∗t+1

〉
≤ ∥yt+1 − y∗t ∥2 + κ2η2t

∥∥∥∇xf̃(xt, yt)
∥∥∥2 + 2

〈
yt+1 − y∗t , y

∗
t − y∗t+1

〉
≤ ∥yt+1 − y∗t ∥2 + κ2η2t

∥∥∥∇xf̃(xt, yt)
∥∥∥2 −2 (yt+1 − y∗t )

⊺ ∇y∗(xt) (xt+1 − xt)︸ ︷︷ ︸
(C)

+ 2 (yt+1 − y∗t )
⊺ (
y∗t − y∗t+1 +∇y∗(xt) (xt+1 − xt)

)︸ ︷︷ ︸
(D)

.

For Term (C), by the Cauchy-Schwarz and Lipschitzness of y∗(·),

− 2 (yt+1 − y∗t )
⊺ ∇y∗(xt) (xt+1 − xt)

= 2ηt (yt+1 − y∗t )
⊺ ∇y∗(xt)∇xf(xt, yt) + 2ηt (yt+1 − y∗t )

⊺ ∇y∗(xt)
(
∇xf̃(xt, yt)−∇xf(xt, yt)

)
≤ 2ηt∥yt+1 − y∗t ∥∥∇y∗(xt)∥∥∇xf(xt, yt)∥+ 2ηt (yt+1 − y∗t )

⊺ ∇y∗(xt)
(
∇xf̃(xt, yt)−∇xf(xt, yt)

)
≤ 2∥yt+1 − y∗t ∥κηt∥∇xf(xt, yt)∥+ 2ηt (yt+1 − y∗t )

⊺ ∇y∗(xt)
(
∇xf̃(xt, yt)−∇xf(xt, yt)

)
≤ λt∥yt+1 − y∗t ∥2 +

κ2η2t
λt

∥∇xf(xt, yt)∥2 + 2ηt (yt+1 − y∗t )
⊺ ∇y∗(xt)

(
∇xf̃(xt, yt)−∇xf(xt, yt)

)
,

where we used Young’s inequality in the last step and λt > 0 will be determined later.

For Term (D), according to Cauchy-Schwarz and the smoothness of y∗(·) as shown in Lemma B.3,

2 (yt+1 − y∗t )
⊺ (
y∗t − y∗t+1 +∇y∗(xt) (xt+1 − xt)

)
≤ 2∥yt+1 − y∗t ∥

∥∥y∗t − y∗t+1 +∇y∗(xt) (xt+1 − xt)
∥∥

≤ 2∥yt+1 − y∗t ∥ ·
L̂

2
∥xt+1 − xt∥2

25



Published as a conference paper at ICLR 2023

= L̂η2t ∥yt+1 − y∗t ∥
∥∥∥∇xf̃(xt, yt)

∥∥∥2
≤ L̂η2t ∥yt+1 − y∗t ∥G ·

∥∥∥∇xf̃(xt, yt)
∥∥∥

≤ τL̂G2η2t
2

∥yt+1 − y∗t ∥2 +
L̂η2t
2τ

∥∥∥∇xf̃(xt, yt)
∥∥∥2,

where in the last step we used Young’s inequality and τ > 0.

Therefore, in total, we have∥∥yt+1 − y∗t+1

∥∥2 ≤
(
1 + λt +

τL̂G2η2t
2

)
∥yt+1 − y∗t ∥2 +

(
κ2 +

L̂

2τ

)
η2t

∥∥∥∇xf̃(xt, yt)
∥∥∥2

+
κ2η2t
λt

∥∇xf(xt, yt)∥2 + 2ηt (yt+1 − y∗t )
⊺ ∇y∗(xt)

(
∇xf̃(xt, yt)−∇xf(xt, yt)

)
.

Note that we can upper bound ηt by

ηt =
ηx

max
{
vxt+1, v

y
t+1

}α ≤ ηx(
vyt+1

)α ≤ ηx

(vy0 )
α ,

and
ηt ≤

ηx(
vyt+1

)α =
ηx(

vyt+1

)α−β (
vyt+1

)β ≤ ηx

(vy0 )
α−β (

vyt+1

)β ,
which, plugged into the previous result, implies

∥∥yt+1 − y∗t+1

∥∥2 ≤
(
1 + λt +

τL̂G2 (ηx)
2

2 (vy0 )
2α−β (

vyt+1

)β
)
∥yt+1 − y∗t ∥2 +

(
κ2 +

L̂

2τ

)
η2t

∥∥∥∇xf̃(xt, yt)
∥∥∥2

+
κ2η2t
λt

∥∇xf(xt, yt)∥2 + 2ηt (yt+1 − y∗t )
⊺ ∇y∗(xt)

(
∇xf̃(xt, yt)−∇xf(xt, yt)

)
.

Now we choose λt = µηy

4(vy
t+1)

β and τ =
µηy(vy

0 )
2α−β

2L̂G2(ηx)2
, and get

∥∥yt+1 − y∗t+1

∥∥2
≤
(
1 +

µηy

2
(
vyt+1

)β
)
∥yt+1 − y∗t ∥2 +

(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
η2t

∥∥∥∇xf̃(xt, yt)
∥∥∥2

+
4κ2

(
vyt+1

)β
η2t

µηy
∥∇xf(xt, yt)∥2 + 2ηt (yt+1 − y∗t )

⊺ ∇y∗(xt)
(
∇xf̃(xt, yt)−∇xf(xt, yt)

)
.

Then Lemma C.1 gives us

E

[
T−1∑
t=t0

(f(xt, y
∗
t )− f(xt, yt))

]

≤ E

[
T−1∑
t=t0

(
1− γtµ

2γt
∥yt − y∗t ∥2 −

1

γt(2 + µγt)

∥∥yt+1 − y∗t+1

∥∥2)]+ E

[
T−1∑
t=t0

γt
2

∥∥∥∇y f̃(xt, yt)
∥∥∥2]

+ E

[
T−1∑
t=t0

1

γt(2 + µγt)

(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
η2t

∥∥∥∇xf̃(xt, yt)
∥∥∥2]︸ ︷︷ ︸

(E)

+ E

[
T−1∑
t=t0

4κ2
(
vyt+1

)β
η2t

γt(2 + µγt)µηy
∥∇xf(xt, yt)∥2

]
︸ ︷︷ ︸

(F)
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+ E

[
T−1∑
t=t0

2ηt
γt(2 + µγt)

(yt+1 − y∗t )
⊺ ∇y∗(xt)

(
∇xf̃(xt, yt)−∇xf(xt, yt)

)]
︸ ︷︷ ︸

(G)

Now we proceed to bound each term.

Term (E)

Term (E) ≤
(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
E

[
T−1∑
t=t0

η2t
2γt

∥∥∥∇xf̃(xt, yt)
∥∥∥2]

=

(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
E

[
T−1∑
t=t0

(ηx)
2 (
vyt+1

)β
2ηy max

{
vxt+1, v

y
t+1

}2α ∥∥∥∇xf̃(xt, yt)
∥∥∥2]

≤
(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
E

[
T−1∑
t=t0

(ηx)
2 (
vyt+1

)β
2ηy

(
vyt+1

)β (
vyt+1

)α−β (
vxt+1

)α ∥∥∥∇xf̃(xt, yt)
∥∥∥2]

≤
(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
E

[
T−1∑
t=t0

(ηx)
2

2ηy (vy0 )
α−β (

vxt+1

)α ∥∥∥∇xf̃(xt, yt)
∥∥∥2]

≤
(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
E

[
(ηx)

2

2ηy (vy0 )
α−β

(
vx0

(vx0 )
α +

T−1∑
t=0

1(
vxt+1

)α ∥∥∥∇xf̃(xt, yt)
∥∥∥2)]

≤
(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
(ηx)

2

2(1− α)ηy (vy0 )
α−β

E
[
(vxT )

1−α
]
,

where we used Lemma B.1 in the last step.

Term (F)

Term (F) ≤ E

[
T−1∑
t=t0

2κ2
(
vyt+1

)β
η2t

γtµηy
∥∇xf(xt, yt)∥2

]

=
2κ2 (ηx)

2

µ (ηy)
2 E

[
T−1∑
t=t0

(
vyt+1

)2β
max

{
vxt+1, v

y
t+1

}2α ∥∇xf(xt, yt)∥2
]

≤ 2κ2 (ηx)
2

µ (ηy)
2 E

[
T−1∑
t=t0

(
vyt+1

)2β(
vyt+1

)2α ∥∇xf(xt, yt)∥2
]

≤ 2κ2 (ηx)
2

µ (ηy)
2 E

[
1(

vyt0+1

)2α−2β

T−1∑
t=t0

∥∇xf(xt, yt)∥2
]

≤ 2κ2 (ηx)
2

µ (ηy)
2
C2α−2β

E

[
T−1∑
t=t0

∥∇xf(xt, yt)∥2
]

Term (G) For simplicity, denotemt :=
2

γt(2+µγt)
(yt+1 − y∗t )

⊺ ∇y∗(xt)
(
∇xf̃(xt, yt)−∇xf(xt, yt)

)
Since y∗(·) is κ-Lipschitz as in Lemma B.2, |mt| can be upper bounded as

|mt| ≤
1

γt
∥yt+1 − y∗t ∥∥∇y∗(xt)∥

(∥∥∥∇xf̃(xt, yt)
∥∥∥+ ∥∇xf(xt, yt)∥

)
≤ κ

γt
∥yt+1 − y∗t ∥

(∥∥∥∇xf̃(xt, yt)
∥∥∥+ ∥∇xf(xt, yt)∥

)
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≤ κ

γt

∥∥∥PY

(
yt + γt∇y f̃(xt, yt)

)
− y∗t

∥∥∥(∥∥∥∇xf̃(xt, yt)
∥∥∥+ ∥∇xf(xt, yt)∥

)
≤ κ

γt

∥∥∥yt + γt∇y f̃(xt, yt)− y∗t

∥∥∥(∥∥∥∇xf̃(xt, yt)
∥∥∥+ ∥∇xf(xt, yt)∥

)
≤ κ

γt

(
∥yt − y∗t ∥+

∥∥∥γt∇y f̃(xt, yt)
∥∥∥)(∥∥∥∇xf̃(xt, yt)

∥∥∥+ ∥∇xf(xt, yt)∥
)

≤ κ

γt

(
1

µ
∥∇yf(xt, yt)∥+

∥∥∥γt∇y f̃(xt, yt)
∥∥∥)(∥∥∥∇xf̃(xt, yt)

∥∥∥+ ∥∇xf(xt, yt)∥
)

≤ 2Gκ

γT−1

(
G

µ
+

ηyG

(vy0 )
β

)
︸ ︷︷ ︸

M

.

Also note that γt and yt+1 does not depend on ξxt , so Eξxt
[mt] = 0. Next, we look at Term (G).

Term (G) = E

[
T−1∑
t=t0

ηtmt

]

= E

[
ηt0mt0 +

T−1∑
t=t0+1

ηt−1mt +

T−1∑
t=t0+1

(ηt − ηt−1)mt

]

≤ E

[
ηx

(vy0 )
αM +

T−1∑
t=t0+1

ηt−1Eξxt
[mt] +

T−1∑
t=t0+1

(ηt−1 − ηt) (−mt)

]

≤ E

[
ηx

(vy0 )
αM +

T−1∑
t=t0+1

(ηt−1 − ηt)M

]

≤ E
[

2ηx

(vy0 )
αM

]
=

(
1

µ
+

ηy

(vy0 )
β

)
4κηxG2

ηy (vy0 )
αE
[
(vyT )

β
]
.

Summarizing all the results, we finish the proof.

Lemma C.4. Under the same setting as Theorem 3.2, we have

E

[
T−1∑
t=0

(
1− γtµ

2γt
∥yt − y∗t ∥2 −

1

γt(2 + µγt)

∥∥yt+1 − y∗t+1

∥∥2)]

≤ (vy0 )
β
G2

2µ2ηy
+

(2βG)
1

1−β+2
G2

4µ
1

1−β+3 (ηy)
1

1−β+2
(vy0 )

2−2β
.

Proof.

E

[
T−1∑
t=0

(
1− γtµ

2γt
∥yt − y∗t ∥2 −

1

γt(2 + µγt)

∥∥yt+1 − y∗t+1

∥∥2)]

≤
(
(vy0 )

β

2ηy
− µ

2

)
∥y0 − y∗0∥2 +

1

2ηy

T−1∑
t=1

((
vyt+1

)β − µηy

2
− (vyt )

β − µ2 (ηy)
2

4 (vyt )
β
+ 2µηy

)
∥yt − y∗t ∥2

≤ (vy0 )
β
G2

2µ2ηy
+

1

2ηy

T−1∑
t=1

((
vyt+1

)β − µηy

2
− (vyt )

β

)
∥yt − y∗t ∥2︸ ︷︷ ︸

(H)

.
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For Term (H),we will bound it using the same strategy as in (Yang et al., 2022a). The general idea
is to show that

(
vyt+1

)β − µηy

2 − (vyt )
β is positive for only a constant number of times. If the term

is positive at iteration t, then we have

0 <
(
vyt+1

)β − (vyt )
β − µηy

2

=

(
vyt +

∥∥∥∇y f̃(xt, yt)
∥∥∥2)β

− (vyt )
β − µηy

2

= (vyt )
β

1 +

∥∥∥∇y f̃(xt, yt)
∥∥∥2

vyt


β

− (vyt )
β − µηy

2

≤ (vyt )
β

1 +
β
∥∥∥∇y f̃(xt, yt)

∥∥∥2
vyt

− (vyt )
β − µηy

2

=
β
∥∥∥∇y f̃(xt, yt)

∥∥∥2
(vyt )

1−β
− µηy

2
, (11)

where in the last inequality we used Bernoulli’s inequality. By rearranging the terms, we have the
two following conditions

∥∥∥∇y f̃(xt, yt)
∥∥∥2 > µηy

2β (vyt )
1−β ≥ µηy

2β (vy0 )
1−β

(vyt )
1−β

< 2β
µηy

∥∥∥∇y f̃(xt, yt)
∥∥∥2 ≤ 2βG

µηy ,

This indicates that at each time the term is positive, the gradient norm must be large enough and the
accumulated gradient norm, i.e., vyt+1, must be small enough. Therefore, we can have at most(

2βG
µηy

) 1
1−β

µηy

2β (vy0 )
1−β

constant number of iterations when the term is positive. When the term is positive, it is also upper
bounded by using the result from Equation (11):

((
vyt+1

)β − µηy

2
− (vyt )

β

)
∥yt − y∗t ∥2 ≤

β
∥∥∥∇y f̃(xt, yt)

∥∥∥2
(vyt )

1−β
∥yt − y∗t ∥2

≤ βG2

(vy0 )
1−β

∥yt − y∗t ∥2

≤ βG2

µ2 (vy0 )
1−β

∥∇yf(xt, yt)∥2

≤ βG4

µ2 (vy0 )
1−β

which is a constant. In total, Term (H) is bounded by

(2βG)
1

1−β+2
G2

2µ
1

1−β+3 (ηy)
1

1−β+1
(vy0 )

2−2β
.

Bringing it back, we get the desired result.
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Lemma C.5. Under the same setting as Theorem 3.2, for any constant C, we have

E

[
T−1∑
t=0

(f(xt, y
∗
t )− f(xt, yt))

]

≤ 2κ2 (ηx)
2

µ (ηy)
2
C2α−2β

E

[
T−1∑
t=0

∥∇xf(xt, yt)∥2
]
+

ηy

2(1− β)
E
[
(vyT )

1−β
]

+

(
1

µ
+

ηy

(vy0 )
β

)
4κηxG2

ηy (vy0 )
αE
[
(vyT )

β
]

+
κ2
(
µηyCβ + 2C2β

)
(ηx)

2

2µ (ηy)
2 E

[
1 + log vxT − log vx0

(vx0 )
2α−1 · 1α≥0.5 +

(vxT )
1−2α

1− 2α
· 1α<0.5

]

+

(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
(ηx)

2

2(1− α)ηy (vy0 )
α−β

E
[
(vxT )

1−α
]

+
(vy0 )

β
G2

2µ2ηy
+

(2βG)
1

1−β+2
G2

4µ
1

1−β+3 (ηy)
1

1−β+2
(vy0 )

2−2β
.

Proof. By Lemma C.2 and Lemma C.3, we have for any constant C,

E

[
T−1∑
t=0

(f(xt, y
∗
t )− f(xt, yt))

]

≤ E

[
T−1∑
t=0

(
1− γtµ

2γt
∥yt − y∗t ∥2 −

1

γt(2 + µγt)

∥∥yt+1 − y∗t+1

∥∥2)]

+ E

[
T−1∑
t=0

γt
2

∥∥∥∇y f̃(xt, yt)
∥∥∥2]+ 2κ2 (ηx)

2

µ (ηy)
2
C2α−2β

E

[
T−1∑
t=0

∥∇xf(xt, yt)∥2
]

+
κ2
(
µηyCβ + 2C2β

)
(ηx)

2

2µ (ηy)
2 E

[
1 + log vxT − log vx0

(vx0 )
2α−1 · 1α≥0.5 +

(vxT )
1−2α

1− 2α
· 1α<0.5

]

+

(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
(ηx)

2

2(1− α)ηy (vy0 )
α−β

E
[
(vxT )

1−α
]

+

(
1

µ
+

ηy

(vy0 )
β

)
4κηxG2

ηy (vy0 )
αE
[
(vyT )

β
]
.

The first term can be bounded by Lemma C.4. For the second term, we have

E

[
T−1∑
t=0

γt
2

∥∥∥∇y f̃(xt, yt)
∥∥∥2] = E

[
T−1∑
t=0

ηy

2
(
vyt+1

)β ∥∥∥∇y f̃(xt, yt)
∥∥∥2]

≤ ηy

2
E

[
vy0

(vy0 )
β
+

T−1∑
t=0

1(
vyt+1

)β ∥∥∥∇y f̃(xt, yt)
∥∥∥2]

≤ ηy

2(1− β)
E
[
(vyT )

1−β
]
,

where the last inequality follows from Lemma B.1. Then the proof is completed.

C.3 PROOF OF THEOREM 3.2

We present a formal version of Theorem 3.2.
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Theorem C.2 (stochastic setting). Under Assumptions 3.1 to 3.6, Algorithm 1 with stochastic gra-
dient oracles satisfies that for any 0 < β < α < 1, after T iterations,

E

[
1

T

T−1∑
t=0

∥∇xf(xt, yt)∥2
]

≤ 4∆ΦG2α

ηxT 1−α
+

(
4lκηx

1− α
+

(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
2lκ (ηx)

2

(1− α)ηy (vy0 )
α−β

)
G2(1−α)

Tα

+
2lκηyG2(1−β)

(1− β)T β
+

(
1

µ
+

ηy

(vy0 )
β

)
16lκ2ηxG2(1+β)

ηy (vy0 )
α
T 1−β

+
2κ4

(
µηyCβ + 2C2β

)
(ηx)

2

(ηy)
2

(
1 + log(G2T )− log vx0

(vx0 )
2α−1

T
· 1α≥0.5 +

G2(1−2α)

(1− 2α)T 2α
· 1α<0.5

)

+
2κ2 (vy0 )

β
G2

µηyT
+

lκ (2βG)
1

1−β+2
G2

µ
1

1−β+3 (ηy)
1

1−β+2
(vy0 )

2−2β
T
,

and

E

[
1

T

T−1∑
t=0

∥∇yf(xt, yt)∥2
]

≤ 4κ3 (ηx)
2

(ηy)
2
C2α−2β

E

[
1

T

T−1∑
t=0

∥∇xf(xt, yt)∥2
]
+
lηyG2−2β

(1− β)T β
+

(
1

µ
+

ηy

(vy0 )
β

)
8lκηxG2+2β

ηy (vy0 )
α
T 1−β

+
κ3
(
µηyCβ + 2C2β

)
(ηx)

2

(ηy)
2

(
1 + log TG2 − log vx0

(vx0 )
2α−1

T
· 1α≥0.5 +

G2−4α

(1− 2α)T 2α
· 1α<0.5

)

+

(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
l (ηx)

2
G2−2α

(1− α)ηy (vy0 )
α−β

Tα
+
κ (vy0 )

β
G2

µηyT
+

2l (2βG)
1

1−β+2
G2

4µ
1

1−β+3 (ηy)
1

1−β+2
(vy0 )

2−2β
T
.

Proof. By smoothness of the primal function, we have

Φ(xt+1)− Φ(xt) ≤ −ηt
〈
∇Φ(xt),∇xf̃(xt, yt)

〉
+ lκη2t

∥∥∥∇xf̃(xt, yt)
∥∥∥2.

By multiplying 1
ηt

on both sides and taking the expectation w.r.t. the noise of current iteration, we
have

E
[
Φ(xt+1)− Φ(xt)

ηt

]
≤ −⟨∇Φ(xt),∇xf(xt, yt)⟩+ lκE

[
ηt

∥∥∥∇xf̃(xt, yt)
∥∥∥2]

= −∥∇xf(xt, yt)∥2 + ⟨∇xf(xt, yt)−∇Φ(xt),∇xf(xt, yt)⟩+ lκE
[
ηt

∥∥∥∇xf̃(xt, yt)
∥∥∥2]

≤ −∥∇xf(xt, yt)∥2 +
1

2
∥∇xf(xt, yt)−∇Φ(xt)∥2 +

1

2
∥∇xf(xt, yt)∥2 + lκE

[
ηt

∥∥∥∇xf̃(xt, yt)
∥∥∥2]

= −1

2
∥∇xf(xt, yt)∥2 +

1

2
∥∇xf(xt, yt)−∇Φ(xt)∥2 + lκE

[
ηt

∥∥∥∇xf̃(xt, yt)
∥∥∥2]

Summing over t = 0 to T − 1, rearranging and taking total expectation, we get

E

[
T−1∑
t=0

∥∇xf(xt, yt)∥2
]
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≤ 2E

[
T−1∑
t=0

Φ(xt)− Φ(xt+1)

ηt

]
︸ ︷︷ ︸

(I)

+2lκE

[
T−1∑
t=0

ηt

∥∥∥∇xf̃(xt, yt)
∥∥∥2]︸ ︷︷ ︸

(J)

+E

[
T−1∑
t=0

∥∇xf(xt, yt)−∇Φ(xt)∥2
]

︸ ︷︷ ︸
(K)

.

(12)

Term (I)

2E

[
T−1∑
t=0

Φ(xt)− Φ(xt+1)

ηt

]
≤ 2E

[
Φ(x0)

η0
− Φ(xT )

ηT−1
+

T−1∑
t=1

Φ(xt)

(
1

ηt
− 1

ηt−1

)]

≤ 2E

[
Φmax

η0
− Φ∗

ηT−1
+

T−1∑
t=1

Φmax

(
1

ηt
− 1

ηt−1

)]

= 2E
[
∆Φ

ηT−1

]
= 2E

[
∆Φ

ηx
max {vxT , vyT }

α

]
.

Term (J)

2lκ

T−1∑
t=0

E
[
ηt

∥∥∥∇xf̃(xt, yt)
∥∥∥2] = 2lκE

[
T−1∑
t=0

ηx

max
{
vxt+1, v

y
t+1

}α ∥∥∥∇xf̃(xt, yt)
∥∥∥2]

≤ 2lκηxE

[
T−1∑
t=0

1(
vxt+1

)α ∥∥∥∇xf̃(xt, yt)
∥∥∥2]

≤ 2lκηxE

[(
vx0

(vx0 )
α +

T−1∑
t=0

1(
vxt+1

)α ∥∥∥∇xf̃(xt, yt)
∥∥∥2)]

≤ 2lκηx

1− α
E
[
(vxT )

1−α
]
.

Term (K) According to the smoothness of f(xt, ·), we have

E

[
T−1∑
t=0

∥∇xf(xt, yt)−∇Φ(xt)∥2
]
≤ l2E

[
T−1∑
t=0

∥yt − y∗t ∥2
]
≤ 2lκE

[
T−1∑
t=0

(f(xt, y
∗
t )− f(xt, yt))

]
,

where the last inequality follows the strong-concavity of y. Now we let

C =

(
8lκ3 (ηx)

2

µ (ηy)
2

) 1
2α−2β

,

and apply Lemma C.5, in total, we have

E

[
T−1∑
t=0

∥∇xf(xt, yt)∥2
]

≤ 1

2
E

[
T−1∑
t=0

∥∇xf(xt, yt)∥2
]
+ 2E

[
∆Φ

ηx
max {vxT , vyT }

α

]
+

2lκηx

1− α
E
[
(vxT )

1−α
]

+
lκηy

1− β
E
[
(vyT )

1−β
]
+

(
1

µ
+

ηy

(vy0 )
β

)
8lκ2ηxG2

ηy (vy0 )
α E

[
(vyT )

β
]

+
κ4
(
µηyCβ + 2C2β

)
(ηx)

2

(ηy)
2 E

[
1 + log vxT − log vx0

(vx0 )
2α−1 · 1α≥0.5 +

(vxT )
1−2α

1− 2α
· 1α<0.5

]

+

(
κ2 +

L̂2G2 (ηx)
2

µηy (vy0 )
2α−β

)
lκ (ηx)

2

(1− α)ηy (vy0 )
α−β

E
[
(vxT )

1−α
]
+
κ2 (vy0 )

β
G2

µηy
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+
lκ (2βG)

1
1−β+2

G2

2µ
1

1−β+3 (ηy)
1

1−β+2
(vy0 )

2−2β
.

It remains to bound (vzT )
m for z ∈ {x, y} and m ≥ 0:

(vzT )
m ≤

(
TG2

)m
.

Bringing it back, we conclude our proof.

C.4 TIADA WITHOUT ACCESSING OPPONENT’S GRADIENTS

The effective stepsize of x requires the knowledge of gradients of y, i.e., vyt+1. At the end of
Section 3, we discussed the situation when such information is not available. Now we formally
introduce the algorithm and present the convergence result.

Algorithm 2 TiAda without MAX

1: Input: (x0, y0), vx0 > 0, vy0 > 0, ηx > 0, ηy > 0, α > 0, β > 0 and α > β.
2: for t = 0, 1, 2, ... do
3: sample i.i.d. ξxt and ξyt , and let gxt = ∇xF (xt, yt; ξ

x
t ) and gyt = ∇yF (xt, yt; ξ

y
t )

4: vxt+1 = vxt + ∥gxt ∥2 and vyt+1 = vyt + ∥gyt ∥
2

5: xt+1 = xt − ηx

(vx
t+1)

α gxt and yt+1 = PY

(
yt +

ηy

(vy
t+1)

β g
y
t

)
6: end for

Theorem C.3 (stochastic). Under Assumptions 3.1, 3.2, 3.4 and 3.5, Algorithm 2 with stochastic
gradient oracles satisfies that for any 0 < β < α < 1, after T iterations,

E

[
1

T

T−1∑
t=0

∥∇xf(xt, yt)∥2
]

≤ 2∆ΦG2α

ηxT 1−α
+

2lκηxG2−2α

(1− α)Tα
+

(
(vy0 )

β
G2

2µ2ηy
+

(2βG)
1

1−β+2
G2

4µ
1

1−β+3 (ηy)
1

1−β+2
(vy0 )

2−2β

)
1

T
+

ηyG2−2β

2(1− β)T β

+

(
(ηx)

2
κ2

2 (vy0 )
β
ηy

+
(ηx)

2
κ2

µ(ηy)2

)((
1 + logG2T − log vx0

)
G4β

(vx0 )
2α−1

T 1−2β
· 1α≥0.5 +

G2−4α+4β

(1− 2α)T 2α−2β
· 1α<0.5

)
,

and

E

[
1

T

T−1∑
t=0

∥∇yf(xt, yt)∥2
]

≤
(
κ (vy0 )

β
G2

µηy
+

2l (2βG)
1

1−β+2
G2

4µ
1

1−β+3 (ηy)
1

1−β+2
(vy0 )

2−2β

)
1

T
+
lηyG2−2β

(1− β)T β

+

(
l (ηx)

2
κ2

(vy0 )
β
ηy

+
2 (ηx)

2
κ3

(ηy)2

)((
1 + logG2T − log vx0

)
G4β

(vx0 )
2α−1

T 1−2β
· 1α≥0.5 +

G2−4α+4β

(1− 2α)T 2α−2β
· 1α<0.5

)
.

Remark C.1. The best rate achievable is Õ
(
ϵ−6
)

by choosing α = 1/2 and β = 1/3.

Proof. Lemmas C.1 and C.4 can be directly used here because they do not have or expand the
effective stepsize of x, i.e., ηt. This is also the case for the beginning part of Appendix C.3, the
proof of Theorem 3.2, up to Equation (12). However, we need to bound Terms (I), (J) and (K) in
Equation (12) differently. According to our assumption on bounded stochastic gradients, we know
that vxT and vyT are both upper bounded by TG2, which we will use throughout the proof.
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Term (I)

2E

[
T−1∑
t=0

Φ(xt)− Φ(xt+1)

ηt

]
≤ 2E

[
Φ(x0)

η0
− Φ(xT )

ηT−1
+

T−1∑
t=1

Φ(xt)

(
1

ηt
− 1

ηt−1

)]

≤ 2E

[
Φmax

η0
− Φ∗

ηT−1
+

T−1∑
t=1

Φmax

(
1

ηt
− 1

ηt−1

)]

= 2E
[
∆Φ

ηT−1

]
= 2E

[
∆Φ

ηx
(vxT )

α

]
≤ 2∆ΦG2αTα

ηx
.

Term (J)

2lκ

T−1∑
t=0

E
[
ηt

∥∥∥∇xf̃(xt, yt)
∥∥∥2] = 2lκηxE

[
T−1∑
t=0

1(
vxt+1

)α ∥∥∥∇xf̃(xt, yt)
∥∥∥2]

≤ 2lκηxE

[(
vx0

(vx0 )
α +

T−1∑
t=0

1(
vxt+1

)α ∥∥∥∇xf̃(xt, yt)
∥∥∥2)]

≤ 2lκηx

1− α
E
[
(vxT )

1−α
]
≤ 2lκηxG2−2αT 1−α

1− α
.

Term (K) According to the smoothness and strong-concavity of f(xt, ·), we have

E

[
T−1∑
t=0

∥∇xf(xt, yt)−∇Φ(xt)∥2
]
≤ l2E

[
T−1∑
t=0

∥yt − y∗t ∥2
]
≤ 2lκE

[
T−1∑
t=0

(f(xt, y
∗
t )− f(xt, yt))

]
.

To bound the RHS, we use Young’s inequality and have∥∥yt+1 − y∗t+1

∥∥2 ≤ (1 + λt)∥yt+1 − y∗t ∥2 +
(
1 +

1

λt

)∥∥y∗t+1 − y∗t
∥∥2.

Then applying Lemma C.1 with λt = µγt

2 gives us

E

[
T−1∑
t=0

(f(xt, y
∗
t )− f(xt, yt))

]

≤ E

[
T−1∑
t=0

(
1− γtµ

2γt
∥yt − y∗t ∥2 −

1

γt(2 + µγt)

∥∥yt+1 − y∗t+1

∥∥2)]

+ E

[
T−1∑
t=0

γt
2

∥∥∥∇y f̃(xt, yt)
∥∥∥2]︸ ︷︷ ︸

(L)

+E

T−1∑
t=0

(
1 + 2

µγt

)
γt(2 + µγt)

∥∥y∗t+1 − y∗t
∥∥2

︸ ︷︷ ︸
(M)

,

where the first term is O (1) according to Lemma C.4. The other two terms can be bounded as
follow.

Term (L)

≤ E

[
ηy

2

(
vy0

(vy0 )
β
+

T−1∑
t=0

1(
vyt+1

)β ∥∥∥∇y f̃(xt, yt)
∥∥∥2)] ≤ E

[
ηy

2(1− β)
(vyT )

1−β

]
≤ ηyG2−2βT 1−β

2(1− β)
.

Term (M)

= E

[
T−1∑
t=0

(
1(

vyt+1

)β +
2

µηy

) (
vyt+1

)2β
2ηy(1 + λt)

∥∥y∗t+1 − y∗t
∥∥2]
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≤
(

1

2 (vy0 )
β
ηy

+
1

µ(ηy)2

)
E

[
T−1∑
t=0

(
vyt+1

)2β ∥∥y∗t+1 − y∗t
∥∥2]

≤
(

1

2 (vy0 )
β
ηy

+
1

µ(ηy)2

)
E

[
(vyT )

2β
T−1∑
t=0

∥∥y∗t+1 − y∗t
∥∥2]

≤
(

κ2

2 (vy0 )
β
ηy

+
κ2

µ(ηy)2

)
E

[
(vyT )

2β
T−1∑
t=0

∥xt+1 − xt∥2
]

=

(
(ηx)

2
κ2

2 (vy0 )
β
ηy

+
(ηx)

2
κ2

µ(ηy)2

)
E

[
(vyT )

2β
T−1∑
t=0

1(
vxt+1

)2α ∥∥∥∇xf̃(xt, yt)
∥∥∥2]

≤
(

(ηx)
2
κ2

2 (vy0 )
β
ηy

+
(ηx)

2
κ2

µ(ηy)2

)
E

[
(vyT )

2β

(
1 + log vxT − log vx0

(vx0 )
2α−1 · 1α≥0.5 +

(vxT )
1−2α

1− 2α
· 1α<0.5

)]

≤
(

(ηx)
2
κ2

2 (vy0 )
β
ηy

+
(ηx)

2
κ2

µ(ηy)2

)((
1 + logG2T − log vx0

)
G4βT 2β

(vx0 )
2α−1 · 1α≥0.5 +

G2−4α+4βT 1−2α+2β

1− 2α
· 1α<0.5

)
,

where we used the the Lipschitzness of y∗(·) in the third inequality.

Summarizing all the terms, we finish the proof.
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