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Abstract
In multi-agent reinforcement learning (MARL),
effective exploration is critical, especially in
sparse reward environments. Although introduc-
ing global intrinsic rewards can foster exploration
in such settings, it often complicates credit as-
signment among agents. To address this diffi-
culty, we propose Individual Contributions as in-
trinsic Exploration Scaffolds (ICES), a novel ap-
proach to motivate exploration by assessing each
agent’s contribution from a global view. In partic-
ular, ICES constructs exploration scaffolds with
Bayesian surprise, leveraging global transition
information during centralized training. These
scaffolds, used only in training, help to guide in-
dividual agents towards actions that significantly
impact the global latent state transitions. Addi-
tionally, ICES separates exploration policies from
exploitation policies, enabling the former to uti-
lize privileged global information during training.
Extensive experiments on cooperative benchmark
tasks with sparse rewards, including Google Re-
search Football (GRF) and StarCraft Multi-agent
Challenge (SMAC), demonstrate that ICES ex-
hibits superior exploration capabilities compared
with baselines. The code is publicly available at
https://github.com/LXXXXR/ICES.

1. Introduction
Multi-agent reinforcement learning (MARL) has recently
gained significant interest in the research community, pri-
marily due to its applicability across a diverse range of prac-
tical scenarios. Numerous real-world applications are multi-
agent in nature, ranging from resource allocation (Ying &
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Dayong, 2005) and package logistics (Seuken & Zilber-
stein, 2007) to emergency response operations (Parker et al.,
2016) and robotic control systems (Swamy et al., 2020). The
multi-agent settings introduce unique challenges beyond the
single agent reinforcement learning (RL), such as the need
to address non-stationarity and partial observability (Yuan
et al., 2023a), as well as the complexities involved in credit
assignment (Foerster et al., 2018).

Despite the progress made by state-of-the-art algorithms
like MADDPG (Lowe et al., 2017), QMIX (Rashid et al.,
2020) and MAPPO (Yu et al., 2022), which leverage the cen-
tralized training decentralized execution (CTDE) paradigm,
a significant limitation arises in environments with sparse
rewards. Sparse rewards, common in real-world applica-
tions, present a substantial challenge for policy exploration
as they provide limited guidance during training. Classical
exploration methods, such as ϵ-greedy, struggle in these
environments, primarily due to the exponentially growing
state space and the necessity for coordinated exploration
among agents (Liu et al., 2021). To address sparse rewards
in MARL, recent approaches have focused on augment-
ing extrinsic rewards with global intrinsic rewards. These
intrinsic rewards are typically designed to foster coopera-
tion (Wang et al., 2019) or diversity (Li et al., 2021). While
showing promise, these methods suffer from one obstacle:
the non-stationary nature of intrinsic rewards during train-
ing (Burda et al., 2018) introduces additional complications
in credit assignment. Furthermore, balancing intrinsic and
extrinsic rewards often demands considerable tunning effort,
particularly in the absence of prior knowledge about the
extrinsic reward functions (Yuan et al., 2023b).

To address the aforementioned challenges and improve per-
formance in MARL with sparse rewards, we propose a new
exploration method, named Individual Contribution as In-
trinsic Exploration Scaffolds (ICES). The key idea is to
take advantage of the CTDE paradigm and utilize global
information available during the training to construct in-
trinsic scaffolds that guide multi-agent exploration. These
intrinsic scaffolds are specifically designed to encourage
individual actions that have a significant influence on the
underlying global latent state transitions, thus promoting
cooperative exploration without the need to learn intrinsic
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credit assignment. Furthermore, these scaffolds, akin to
physical scaffolds in construction, will be dismantled after
training to prevent any effect on execution latency.

In particular, we make two key technical contributions.
Firstly, we shift the focus from global intrinsic rewards
to individual contributions as the primary motivation for
agent exploration. This approach effectively circumvents
the complexities involved in credit assignment for global
intrinsic rewards. To encourage agents to perform cooper-
ative exploration, we capitalize on the centralized training
to estimate the Bayesian surprise related to agents’ actions,
quantifying their individual contributions. This is achieved
by employing a conditional variational autoencoder (CVAE)
with two encoders. Secondly, we optimize exploration and
exploitation policies separately with distinct RL algorithms.
In this way, the exploration policies can be granted access to
privileged information, such as global observations, which
helps to alleviate the non-stationarity challenge. Importantly,
these exploration policies serve as temporary scaffolds, and
do not intrude on the decentralized nature of the execution
phase.

We evaluate the proposed ICES on two benchmark envi-
ronments: Google Research Football (GRF) and StarCraft
Multi-agent Challenge (SMAC), under sparse reward set-
tings. The empirical results and comprehensive ablation
studies demonstrate ICES’s superior exploration capabili-
ties, notably in convergence speed and final win rates, when
compared with existing baselines.

2. Background
In this section, we briefly introduce the fully cooperative
multi-agent task considered in this work and provide es-
sential background on CVAEs, which will be utilized for
constructing meaningful individual contribution assessment.
Then, we provide an overview of related works on multi-
agent exploration.

2.1. Problem Setting

Decentralized Partially Observable Markov Decision
Process (Dec-POMDP): We consider a fully cooperative
partially observable multi-agent task modeled as a decen-
tralized partially observable Markov decision process (Dec-
POMDP) (Oliehoek & Amato, 2016). The Dec-POMDP is
defined by a tupleM = ⟨S, U, P,R,Ω, O, n, γ⟩, where n
denotes the number of agents and γ ∈ (0, 1] is the discount
factor that balances the trade-off between immediate and
long-term rewards.

At timestep t, with the global observation s ∈ S, agent i
receives a local observation oi ∈ Ω drawn from the obser-
vation function O(s, i). Subsequently, the agent selects an
action ui ∈ U based on its local policy πi. These individual

actions collectively form a joint action u ∈ Un, leading to
a transition to the next global observation s′ ∼ P (s′|s,u)
and yielding a global reward r = R(s,u). For clarity, we
refer to this global reward as the extrinsic reward rext, dis-
tinguishing it from the agents’ intrinsic motivations. Each
agent keeps a local action-observation history denoted as
hi ∈ (Ω × U). The team objective is to learn the policies
that maximize the expected discounted accumulated reward
Gt =

∑
t γ

trt.

2.2. Conditional Variational Autoencoders (CVAEs)

CVAEs (Sohn et al., 2015) extend variational autoencoders
(VAEs) to model conditional distributions, adept at handling
scenarios where the mapping from input to output is not
one-to-one, but rather one-to-many (Sohn et al., 2015). The
generation process in a CVAE is as follows: given an ob-
servation x, a latent variable z is sampled from the prior
distribution pθ(z|x), and the output y is generated from the
conditional distribution pθ(y|x, z). The objective is to max-
imize the conditional log-likelihood, which is intractable
in practice. Therefore, the variational lower bound is maxi-
mized instead, which is expressed as:

LCVAE(x,y; θ, ϕ) = DKL [qϕ(z|x,y) ∥ pθ(z|x)]
+ Eqϕ(z|x,y) [log p(y|x, z)] ,

(1)

where DKL denotes the Kullback–Leibler (KL) divergence
and qϕ(z|x,y) is an approximation of the true posterior.

2.3. Related Works

Besides adapting exploration techniques from single-agent
RL, considerable research has focused on developing ex-
ploration methods tailored to multi-agent settings. We cate-
gorize these efforts into two broad types: global-level and
agent-level exploration.

Global-level Exploration: Research in this domain aims
to encourage exploration in the global space. For instance,
MAVEN (Mahajan et al., 2019) integrates hierarchical con-
trol by introducing a latent space to guide exploration. Stud-
ies by Liu et al. (2021), Xu et al. (2023b) and Jo et al. (2024)
focus on reducing the exploration space by identifying key
subspaces. MAGIC (Chen et al., 2022) adopts goal-oriented
exploration for multi-stage tasks. Other approaches em-
phasize encouraging desirable collective behaviors, such as
the work by Chitnis et al. (2019) that emphasizes foster-
ing synergistic behaviors among agents, and LAIES (Liu
et al., 2023a), which avoids lazy agents by encouraging dili-
gence. Additionally, methods like EMC (Zheng et al., 2021)
and MASER (Jeon et al., 2022) seek to enhance sample
efficiency by effectively utilizing existing experiences in
replay buffers, either by replaying high-reward sequences
or creating subgoals for cooperative exploration.
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Agent-level Exploration: This category of research incor-
porates specific objectives at the individual agent level. EITI
and EDTI (Wang et al., 2019) focus on maximizing the mu-
tual influence among agents’ state transitions and values.
Li et al. (2021) promotes diverse behaviors among agents
and Xu et al. (2023a) proposes to encourage diverse joint
policy compared to historical ones. SMMAE (Zhang et al.,
2023) fosters individual curiosity, while ADER (Kim &
Sung, 2023) introduces an adaptive entropy-regularization
scheme to allow varied levels of exploration across agents.

While global-level exploration aids in fostering cooperative
behaviors, the integration of global extrinsic and intrinsic
rewards often complicates credit assignment, potentially
hindering algorithm performance. Some methods (Chen
et al., 2022; Liu et al., 2023a) also rely on parsing the global
observation, and thus require specific domain knowledge,
which thereby limits their applicability. In contrast, agent-
level exploration offers a more straightforward approach but
may result in less coordinated actions among agents. Our
method seeks to combine the advantages of both approaches,
assigning specific motivations to individual agents while
leveraging global information to shape these motivations.

Beyond the literature on exploration, we discuss two other
research lines that share similar techniques to those used in
this work:

Intrinsic Rewards for More than Exploration: In addi-
tion to leveraging intrinsic rewards for better exploration,
the concept of intrinsic motivation has been applied to other
aspects of MARL. For example, LIIR (Du et al., 2019) pro-
poses utilizing intrinsic rewards to explicitly assign credits
to different agents, resulting in an algorithm of enhanced
performance. Other works design intrinsic rewards to incor-
porate preferences such as social influences (Jaques et al.,
2019), social diversity (McKee et al., 2020), and align-
ment(Ma et al., 2022; Zhang et al., 2024) into the learned
policies.

Credit Assignment: Credit assignment is a key challenge
in MARL, referring to how to allocate global rewards to
provide accurate feedback for individual agents (Yuan et al.,
2023a). Several value decomposition methods, such as
VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2020),
and QTRAN (Son et al., 2019), have been proposed to im-
plicitly assign credits among agents for discrete actions, and
a later work LICA (Zhou et al., 2020) tackles the same issue
in the continuous action domain. COMA (Foerster et al.,
2018) takes a different approach and uses the counterfac-
tual baseline to explicitly measure each agent’s contribution.
More recently, NA2Q (Liu et al., 2023b) proposes an inter-
pretable credit assignment framework by exploiting general-
ized additive models. Unlike these works that aim to solve
the credit assignment challenge, our work focuses on avoid-
ing extra complexity brought by non-stationary intrinsic

rewards to the original credit assignment problem.

3. Individual Contributions as Intrinsic
Exploration Scaffolds

In this work, we propose a novel approach of leveraging
individual contributions as intrinsic scaffolds to enhance ex-
ploration in MARL. It aims to fully utilize privileged global
information during centralized training while ensuring de-
centralized execution remains unaffected.

The following subsections will address three key questions:
1) Why use individual contributions as intrinsic scaf-
folds? Section 3.1 examines the advantages of focusing on
the contributions of individual agents over collective team
efforts in enhancing exploration strategies within MARL.
2) How to assess individual contributions? Section 3.2
describes how our methods quantify each agent’s impact on
global latent state transitions using Bayesian surprise. 3)
How are these scaffolds utilized effectively? Section 3.3
elaborates on how exploration and exploitation policies are
optimized with distinct objectives and strategies to utilize
these scaffolds effectively, thereby enhancing exploration
without compromising the original training objectives or the
decentralized execution strategy.

3.1. From Global Intrinsic Rewards to Individual
Contributions

Previous methods largely rely on formulating a global in-
trinsic reward, which is then added to extrinsic rewards to
incentivize agents to explore. This strategy presents two
notable drawbacks: Firstly, adding intrinsic rewards to the
existing extrinsic rewards alters the original training objec-
tive. Intrinsic rewards, often learned and thus non-stationary
throughout the training phase (Burda et al., 2018), will intro-
duce additional non-stationarity into the training objective.

Secondly, like global extrinsic rewards, global intrinsic re-
wards require credit assignment among agents, a task that
becomes more challenging with the non-stationary nature
of intrinsic rewards. These complications can be effec-
tively bypassed by directly providing agents with individual
intrinsic motivations. In our method, this is achieved by
utilizing privileged global information available only during
the centralized training phase, thus addressing the issues of
non-stationarity and complex credit assignment.

This is further verified by empirical ablation studies in Sec-
tion 4.3.

3.2. Assessing Individual Contributions to Construct
Intrinsic Scaffolds

Bayesian Surprise to Characterize Individual Contribu-
tions: In this subsection, we assess the individual contri-
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bution, denoted as rit,int, of a specific action uit executed by
agent i. The objective is to evaluate the impact of action uit
on the global latent state transitions.

Figure 1: Dynamics model. The variable z denotes the
latent state. The solid line indicates the individual contri-
butions of agent i’s actions, highlighted by the green arrow,
signifying the primary focus of our measurement. Dashed
lines represent other influences on state uncertainties,
including the actions of other agents (blue arrow), which are
excluded from agent i’s contribution assessment, and the
environment’s inherent stochasticity (red arrows), known
as the noisy TV problem, which we aim to mitigate.

KL Divergence

Figure 2: Modules for Bayesian surprise estimation. The
structure resembles the CVAE structure with separate
encoders and a shared decoder. The KL divergence
between estimated priors is used as intrinsic contribution
measurements.

To achieve this, we first demonstrate the environment dy-
namic model in Figure 1, illustrating how state transition un-
certainties are influenced by several factors. These include
the impact of agent i’s action, represented by a mutual in-
formation term rit,int = I(zt+1;u

i
t|st,u−i

t ); the influence of
other agents’ actions, denoted by I(zt+1;u

−i
t |st, uit); and

the inherent environmental uncertainties, expressed as the
entropy H(st|zt), known as the noisy TV problem (Schmid-
huber, 2010). Our focus is primarily on the individual con-
tribution rit,int, which necessitates a specific measurement
method to effectively distinguish the contribution of agent
i’s action uit and mitigate potential misattributions among

agents and the effects of noisy TV. Consequently, we employ
the Bayesian surprise as the measurement method. Follow-
ing previous works (Itti & Baldi, 2005; Mazzaglia et al.,
2022), we express the contribution rit,int as the mutual infor-
mation between the latent variable zt+1 and the action uit,
which is given as

rit,int = I(zt+1;u
i
t|st,u−i

t )

= DKL
[
p(zt+1|st,ut) ∥ p(zt+1|st,u−i

t )
]
. (2)

This term captures the discrepancy between the actual and
counterfactual latent state distributions from the perspective
of an individual agent i. In later sections, we omit the
subscript t where contextually clear, referring to rit,int

simply as riint.

CVAE to Estimate the Bayesian Surprise: For robust esti-
mation of individual contributions, it is essential to identify
a latent space for zt that is both compact and informative, ca-
pable of reconstructing the original state space. To achieve
this, we resort to CVAE owing to its ability to induce ex-
plicit prior distributions and perform probabilistic inference,
a necessity in environments with inherent stochasticity, such
as GRF (Kurach et al., 2020).

We aim to estimate two specific priors: pψ(zt+1|st,ut)
and pϕ(zt+1|st,u−i

t ). However, learning these two priors
independently will not yield satisfactory results, as shown
later in our ablation studies ( Figure 7). This is due to the
potential misalignment of the latent spaces created by each
independently trained priors, rendering the KL-divergence
measure less effective. Thus, to align the latent spaces,
we use two separate encoders for these estimations while
utilizing a shared decoder for reconstruction.

The CVAE’s architecture, depicted in Figure 2, includes the
following components:

Prior Encoders:

Reconstruction Decoder:
Latent Posteriors:

pψ(zt+1|st,ut),
pϕ(zt+1|st,u−i

t ),

pθ(st+1|zt+1),

qψ(zt+1|st,ut, st+1),

qϕ(zt+1|st,u−i
t , st+1).

Training Objective for Scaffolds: The training objective
of the above modules is to maximize the variational lower
bound of the conditional log-likelihood (Sohn et al., 2015),
formalized as:

J (ψ, ϕ, θ)=−DKL [qψ(zt+1|st,ut, st+1)∥pψ(zt+1|st,ut)]
−DKL

[
qϕ(zt+1|st,u−i

t , st+1) ∥ pϕ(zt+1|st,u−i
t )

]
+ Ez∼qψ [log pθ(st+1|z)] + Ez∼qϕ [log pθ(st+1|z)] .

(3)
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Agent 1 Agent n...
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Mixing Network

Exploit Q-NetworkExplore Policy
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Forward Pass

Back Propagation 

(b) (c)

KL Divergence

(a)

Figure 3: Network architecture of ICES. (a) Intrinsic exploration scaffolds. (b) Agent architecture. (c) Overall architecture.
The red arrows denote the gradient flows guided by the global extrinsic reward rext, and the yellow arrows denote the
gradient flows guided by the individual scaffolds riint. The training objectives for the exploration policy and exploitation
policy are decoupled while both policies are combined for action selection during the training phase.

3.3. Decoupling Exploration and Exploitation Policies to
Utilize Intrinsic Scaffolds

In the ICES framework, we retain the training objective of
learning the target (exploitation) policy π, aiming at maxi-
mizing the cumulative reward Gt =

∑
t γ

trt. Concurrently,
we adjust the behavior policy b = {bi}ni=1 to enhance ex-
ploration. Unlike the classical ϵ-greedy method adopted by
most of the off-policy works, where actions are uniformly
sampled if not following the target policy, ICES agents prior-
itize actions that significantly contribute to state transitions,
as identified by riint. The overall architecture is depicted in
Figure 3, with different gradient flows denoted by red and
yellow arrows for global extrinsic rewards and individual
scaffolds, respectively.

We denote the target policy as π = {πi}ni=1, the exploration
policy as {νi}ni=1 and the behavior policy derived from the
above two policies as b = {bi}ni=1.

Combining the Exploration and Exploitation Policies for
Behavior Policies: As shown in part (b) of Figure 3, action
selection involves both the exploration policy νi and the
exploitation policy πi. The behavior policy bi is determined
as follows:

ui ∼ bi
(
uiexplore, u

i
exploit

)
=

{
uiexplore with probability α
uiexploit with probability 1− α

, (4)

where α is a hyperparameter balancing exploration and ex-

ploitation during training. The exploration and exploitation
actions are given as:

uiexplore ∼ νi(τ i, u, s), (5)

uiexploit = argmax
u

Qi(τ
i, u), (6)

with Qi(τ i, ·) representing the local Q-value function for
exploitation.

Optimization Objectives: The optimization objective for
the exploitation policy, parameterized by ζ, is to minimize
the TD-error loss:

L(ζ) = E(τt,ut,st,rext,st+1)∼D

[(
ytot −Qtot(τt,ut, st; ζ)

)2]
,

(7)

where ytot = rext + γmaxuQtot(τt+1,u, st+1; ζ
−) and

ζ− are the parameters of a target network as in DQN.

The optimization objective for the exploration policy,
parameterized by ξ, is to maximize the average individual
intrinsic scaffolds (not the episodic return objective) and
exploration policy entropy:

Ji(ξ) = Eνi [riint] + βH(·|τ i, s), (8)

where β is a hyperparameter to control the regu-
larization weight for entropy maximization and
H(·|τ i, s) = −Eνi(ξ) ln νi(·|τ i, s; ξ) is the entropy
of policy νi at local-global observation pair (τ i, s).
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This approach ensures that while the training of the exploita-
tion network remains centralized and retained, the explo-
ration network benefits from decentralized training guided
by individual intrinsic scaffolds. This strategy circumvents
the challenges in intrinsic credit assignment. Moreover,
since exploration policies are employed only during train-
ing, they can utilize privileged information, such as the
global observation s, for more informed decision-making.

REINFORCE with Baseline for Exploration Policy
Training: By decoupling the exploration and exploitation,
we can employ distinct RL algorithms to update each policy,
leveraging their respective strengths. For the exploitation
policy update (denoted by the red arrows in Figure 3), we
follow the previous work and use the DQN update with
value decomposition methods like QMIX (Rashid et al.,
2020) or QPLEX (Wang et al., 2020).

For the exploration policy, whose gradient is denoted by the
yellow arrows in Figure 3, we prefer stochastic policies over
deterministic ones for more diverse behaviors. Thus, we
adopt a policy-based reinforcement learning algorithm with
entropy regularization with the objective function given in
Equation (8). To stabilize training, we introduce a value
function V (τ i, s; η) as a baseline. With the policy gradient
theorem (details elaborated in Appendix A.1), we arrive at

∇ξJi(ξ) = Eνi(ξ),(τi,s)∼D
[
A · ∇ξ ln ν(·|τ i, s; ξ)

]
, (9)

where A = riint − V (τ i, s; η)− β is the advantage function
and Vη(τ i, s) is updated by minimizing

L(η) = Eνi(ξ),(τi,s)∼D

[(
riint − V (τ i, s; η)

)2]
. (10)

3.4. Overall ICES Training Algorithm

We summarize the overall training procedure for ICES in
Algorithm 1. In particular, we train a scaffolds network
(updated by Algorithm 3 in Appendix A.2) with param-
eters ψ, ϕ, θ and two policy networks (updated by Algo-
rithm 2 in Appendix A.2), including an exploration network
parametrized by ξ, η and an exploitation network parame-
terized by ζ. We utilize the scaffolds network to provide
guidance for exploration network updates, and we utilize
the exploration network to influence the action selection
processes, consequently influencing the learning process of
exploitation networks. Among the above networks, only the
exploitation network will be used for execution.

4. Experiments
In this section, we evaluate ICES on two multi-agent
benchmark tasks: GRF and SMAC. Experiments in the
GRF domain are averaged over eight random seeds and
experiments in the SMAC domain are averaged over five

Algorithm 1 Training Procedure of ICES

1: Init: Scaffolds parameters ψ, ϕ, θ
2: Init: Exploration networks parameters ξ, η
3: Init: Exploitation networks parameters ζ
4: Init: D = ∅, step = 0, θ− = θ
5: while step < stepmax do
6: t = 0. Reset the environment.
7: for t = 1, 2, ..., episode_limit do
8: for i = 1, 2, ..., n do
9: Select actions uit ∼ bi {▷ Equation (4)}

10: end for
11: (st+1,ot+1, rt,ext) = env.step(ut)
12: D = D ∪ (st,ot,ut, rt,ext, st+1,ot+1)
13: end for
14: if step mod train_interval == 0 then
15: ξ, η, ζ ← TrainPolicies(ψ, ϕ, ξ, η, ζ,D)

{▷ Algorithm 2 }
16: ψ, ϕ, θ ← TrainScaffolds(ψ, ϕ, θ,D)

{▷ Algorithm 3 }
17: end if
18: if step mod target_update_interval == 0 then
19: θ− = θ
20: end if
21: end while
22: Output: Exploitation networks parameters ζ

random seeds. The shaded areas represent 50% confidence
intervals. Detailed descriptions of network architectures
and training hyperparameters are available in Appendix B.
Further experimental results are provided in Appendix C.

4.1. Settings

Benchmarks: In this work, we test ICES and baselines
on widely used benchmarks of GRF and SMAC 1 in sparse
reward settings, with details elaborated in Appendix B.2.

Baselines: We implement our proposed ICES on top of
QMIX (Rashid et al., 2020). For the GRF environment, we
add a curve combining ICES with QPLEX (Wang et al.,
2020) and denote the results as ICES-QPLEX. We com-
pare ICES with six state-of-arts baselines: ADER (Kim
& Sung, 2023), MASER (Jeon et al., 2022), EMC (Zheng
et al., 2021) (built upon QPLEX, denoted as EMC-QPLEX),
CDS (Li et al., 2021), MAVEN (Mahajan et al., 2019) and
QMIX (Rashid et al., 2020). Wherever possible, we utilize
the official implementations of these baselines from their
respective papers; in cases where the implementation is not
available, we closely follow the descriptions provided in the
papers and implement them on top of QMIX.

1We use SC2.4.10 with difficulty of 7. Note that performance
is not always comparable across versions.
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Figure 4: Performance comparison with baselines on GRF and SMAC benchmarks in sparse reward settings.

4.2. Benchmark results on GRF and SMAC

We present the comparative performance of ICES and
various baselines in Figure 4. Overall, ICES demonstrates
superior performance over baselines constructed on
QMIX. When integrated with QPLEX (ICES-QPLEX),
it surpasses baselines built on QPLEX. This showcases
that ICES is able to foster effective exploration in MARL
training, without tampering with the original training
objective (discussed in Section 3.3), thus leading to a fast
convergence and enhanced final performance. Challenges
in GRF, including environmental stochasticity and the need
for agent collaboration, are adeptly addressed by ICES.
In particular, ICES filters out environmental noise using
Bayesian surprise and promotes team coordination by
constructing scaffolds based on global state transitions. (as
discussed in Section 3.2.) It is also worth mentioning that,
among the baselines, EMC-QPLEX also shows notable
exploration capabilities, particularly in the early stages
of training. This suggests that utilizing episodic memory,
as EMC-QPLEX does, could be a beneficial approach to
improve sample efficiency, albeit different from our focus
on generating more informative exploration experiences.

For SMAC tasks, ICES also demonstrates strong perfor-
mance compared with baselines, where most of the baselines
require more training budget to find the winning strategy.
For example, in scenario 2s_vs_1sc, ICES starts to ob-
serve winning episodes while baselines have not after 2M
timesteps. In SMAC, the exploration challenges mainly
arise from the large state space, which ICES addresses by
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Figure 5: Ablations on individual contributions.

computing intrinsic scaffolds within a compact latent space,
rather than the extensive original state space.

4.3. Ablation Studies

We conduct three sets of ablation studies regarding different
aspects of our proposed ICES with one representative task
from each benchmark task.

The first set of ablation studies focuses on individual con-
tributions. We explore two distinct modifications to our
original approach with the results presented in Figure 5:

- ICES w/ global-con: Instead of using the individual con-
tribution as scaffolds for the corresponding agent following
Equation (2), we use the collective contribution of all agents
as a global scaffold. Here, the contribution of all agents is
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Figure 6: Ablations on decoupling exploration and exploita-
tion policies.
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Figure 7: Ablations on other design choices.

estimated by rt,int = I(zt+1;ut|st).
- ICES w/ int+ext: In this variant, individual scaffolds are
directly summed up and used as global intrinsic rewards,
similar to previous methods (Li et al., 2021).

Results in Figure 5 indicate that replacing individual con-
tributions with global contributions hinders effective ex-
ploration. Notably, in the 3_vs_1_with_keeper task,
ICES achieves the final performance of over 60% winning
rate while ICES w/ global-con only archives 40%. This
highlights the misallocation of exploration incentives when
contributions are not individually attributed, particularly in
scenarios where specific agents play pivotal roles (e.g. the
player with the ball in GRF). Moreover, further integrating
the scaffolds into a global intrinsic reward exacerbates per-
formance degradation. This could be attributed to the added
complexity of needing to assign credit among agents of this
new, non-stationary intrinsic reward, complicating the train-
ing process. Thus, this set of ablation studies underscores
the effectiveness of directly assigning individual scaffolds
to agents.

The second set of ablation studies investigates the effect
of decoupling exploration and exploitation policies. We
conducted experiments with two variants with the results
shown in Figure 6:
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Figure 8: Hyperparameter analysis on the
3_vs_1_with_keeper scenario.

- ICES w/o s: This variant, diverging from the approach
specified in Equation (5), excludes the global observation s
from the exploration policy’s inputs.
- ICES w/ int+ext: In this variant, individual scaffolds are
directly summed up and used as global intrinsic rewards,
similar to previous methods (Li et al., 2021).

Figure 6 shows the detrimental impact on exploration ef-
fectiveness when excluding global observation information
from the exploration policies (while maintaining separate
networks for exploration and exploitation). This highlights
the significance of utilizing privileged information in explo-
ration policies. Particularly in scenarios with pronounced
partial observability, such as those encountered in the SMAC
tasks, the lack of global information heavily deteriorates
the exploration, with ICES achieving a final winning rate
of 60% while ICES w/o s only achieving 20%. Further-
more, the performance further degrades when exploration
and exploitation policies are merged into a single network.
This set of ablation studies emphasizes the critical role of
decoupling exploration and exploitation policies.

The last set of ablations are for other design choices in ICES
and the results are given in Figure 7:

- ICES w/o max-ent: This variation eliminates the entropy
regularization by by setting β = 0 in Equation (8).
- ICES w/o CVAEs: Contrary to leveraging KL-divergence
in the latent space as stated in Equation (2), this variant
directly calculates the intrinsic contribution as the Euclidean
distance in the original state space.
- ICES w/ 2 CVAEs: Instead of employing two encoders
and a shared decoder, this variant trains two independent
CVAEs for Bayesian surprise estimation.

Figure 7 indicates that each of these modifications leads to
a decline in performance in terms of final performance or
convergence speed.

4.4. Hyperparameter Analysis

We further investigate the effect of different hyperparam-
eters on the performance of ICES, as shown in Figure 8.
The hyperparameter α controls the tradeoff between the
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Figure 9: Visualization in the counterattack_hard scenario. We visualize some key frames of trained policies, with our
team in yellow. The yellow dashed arrows denote the player movement while the blue arrows denote the ball movement.
On the left bottom corners, we visualize the intrinsic scaffolds of the agent holding the ball, and red bars denote actions
encouraged by intrinsic scaffolds.

exploration policy and exploitation policy, while β deter-
mines the balance between random exploration and directed
exploration. Overall, within a reasonable range, ICES per-
forms competitively across different hyperparameter set-
tings, showcasing its robustness. However, achieving opti-
mal performance requires proper tuning based on the spe-
cific task at hand.

4.5. Visualization

We visualize the final trained policies alongside some intrin-
sic scaffolds of the counterattack_hard scenario in
Figure 9. We observe that on the first few timesteps, player
8, who possesses the ball, moves towards the right, aiming
to approach its teammate palyer 7. At the same time, one
of the highest rewarded actions identified by the intrinsic
scaffolds is short_pass, which is beneficial because player 7
is closer to the goal. Consequently, guided by this intrinsic
scaffold, player 8 executes a pass to player 7. Subsequently,
player 7 receives the pass and makes a shot, resulting in a
goal. Notably, right before the goal, player 7 is encouraged
to shoot or sprint, both of which are good action candidates.
This visualization result showcases how intrinsic scaffolds
serve as a guiding mechanism, directing agents towards
actions that are both exploratory and strategically sound.

5. Conclusions
In this work, we investigate MARL with sparse rewards.
To facilitate cooperative exploration among agents with-
out tampering the training objective, we propose ICES. Its
key idea is to use estimations of individual contributions
to encourage agents to choose actions that have more sig-
nificant impact on the latent state transition during training
time. ICES offers two main benefits: Firstly, with the indi-
vidual contribution estimated by Bayesian surprise, ICES
directly assigns the exploration credits to individual agents.
This approach bypasses the need for credit assignment of
global intrinsic rewards and alleviates the noisy TV problem
brought by stochastic environment transitions. Secondly,
with the distinct algorithms and objectives to optimize ex-
ploration and exploitation policies, ICES retains the original

MARL goal of maximizing extrinsic rewards while enjoying
the benefit of cooperative exploration.

This paper has two main limitations. First, the proposed
ICES requires additional policy networks, which introduce
extra training complexity compared with QMIX or QPLEX.
Reducing such complexity might be worth exploring when
scaling ICES to cases with more agents. Second, this paper
only considers one-step latent state transitions, which may
be insufficient as exploration guidance in more complicated
scenarios. For future work, we aim to incorporate time
abstraction in ICES to further improve its applicability.
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A. ICES Algorithm Details
A.1. ICES Exploration Policy Gradient

Here we detail the deviation to Equation (9). From Equation (8), we have:

Ji(ξ) = Eνi [riint] + βH(·|τ i, s). (11)

Then, we introduce Vη(τ i, s) as a baseline. Since Vη(τ i, s) is independent to νi, we can rewrite the objective as:

Ji(ξ) = Eνi(ξ)
[
riint − Vη(τ i, s)

]
+ βH(·|τ i, s) (12)

= Es,τ i∼d,νi(ξ)
[
Riint(s, a)− Vη(τ i, s)

]
+ βH(·|τ i, s), (13)

where d is the distribution of τ i and s, and Riint(·, ·) is the intrinsic reward function.

Taking the gradient of Ji(ξ) with respect to ξ, we have:

∇ξJi(ξ) = ∇ξEs,τ i∼d,νi(ξ)
[
Riint(s, a)− Vη(τ i, s)

]
+ β∇ξH(·|τ i, s). (14)

Define rsa = E
[
Riint(s, a)− Vη(τ i, s)|s = s, a = a

]
, we can rewrite the gradient as:

∇ξJi(ξ) = ∇ξ
∑
τ i,s

d(τ i, s)
∑
a

νi,ξ(a|s)rsa + β∇ξH(·|τ i, s) (15)

=
∑
τ i,s

d(τ i, s)
∑
a

rsa∇ξνi,ξ(a|τ i, s) + β∇ξH(·|τ i, s) (16)

=
∑
τ i,s

d(τ i, s)
∑
a

rsa · νi,ξ(a|τ i, s)
∇ξνi,ξ(a|τ i, s)
νi,ξ(a|τ i, s)

+ β∇ξH(·|τ i, s) (17)

=
∑
τ i,s

d(τ i, s)
∑
a

νi,ξ(a|τ i, s) · rsa∇ξ ln νi,ξ(a|τ i, s) + β∇ξH(·|τ i, s) (18)

= Es,τ i∼d,νi(ξ)
[(
Riint(s, a)− Vη(τ i, s)

)
· ln νi,ξ(a|τ i, s)

]
+ β∇ξH(·|τ i, s) (19)

= Es,τ i∼d,νi(ξ)
[(
Riint(s, a)− Vη(τ i, s)− β

)
· ln νi,ξ(a|τ i, s)

]
. (20)

A.2. ICES Training Details

We detail the training procedures for the policy networks and the scaffolds network mentioned in Section 3.4 with Algorithm 2
and Algorithm 3, respectively.

Algorithm 2 TrainPolicies: Training Procedure of ICES Policies (Section 3.3)

1: Input: Scaffolds parameters ψ, ϕ, exploration network parameters ξ, η, exploitation networks parameters ζ, replay
buffer D

2: Sample batch ∼ D
3: ζ ← ζ − LearningRate · ∇L(ζ) {▷ Equation (7)}
4: for i = 1, 2, ..., n do
5: Calculate intrinsic scaffolds rit,int = DKL

[
pψ(zt+1|st,ut) ∥ pϕ(zt+1|st,u−i

t )
]

{▷ Equation (2)}
6: end for
7: ξ ← ξ + LearningRate ·

∑n
i ∇Ji(ξ) {▷ Equation (8)}

8: η ← η − LearningRate · ∇L(η) {▷ Equation (10)}
9: Output: Updated parameters ξ, η, ζ

B. Experiment Details
B.1. Environmental Settings

Google Research Football (GRF): We evaluate our proposed method ICES against baselines on three
GRF (Kurach et al., 2020) scenarios, namely academy_3_vs_1_with_keeper, academy_corner and
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Algorithm 3 TrainScaffolds: Training Procedure of ICES Scaffolds (Section 3.2)

1: Input: Scaffolds parameters ψ, ϕ, θ, replay buffer D
2: Sample batch ∼ D
3: ψ ← ψ + LearningRate · ∇Jψ(ψ, ϕ, θ)
4: ϕ← ϕ+ LearningRate · ∇Jϕ(ψ, ϕ, θ)
5: θ ← θ + LearningRate · ∇Jθ(ψ, ϕ, θ)

{▷ Equation (3)}
6: Output: Updated parameters ψ, ϕ, θ

academy_counterattack_hard. The sparse reward settings are used for ICES, baselines, and ablations, where
the rewards are only observed when scoring or losing the game (Li et al., 2021). The details of the reward setting is given in
Table 1. This reward structure calls for high levels of cooperation among agents and is further complicated by the stochastic
nature of opponents’ policies. For GRF tasks (Figures 4(a) to 4(c)), we plot the average scores (with 1 for wining, 0 for a tie
and −1 for losing) of test episodes with respect to the training timesteps.

Table 1: GRF rewards.

Event Reward

Our team scores +100
Opponent team scores -1
Our team or the ball returns to our half-court -1

StarCraft Multi-agent Challenge (SMAC): We further assess our proposed method ICES on five SMAC (Samvelyan
et al., 2019) scenarios with sparse reward settings following the previous works (Jeon et al., 2022; Kim & Sung, 2023).
The rewards are only given upon the death of units (allies or enemies), and details are listed in Table 3. We use four easy
tasks and one hard task for benchmark, including 3m, 8m, 2s3z, 2s_vs_1sc and 5m_vs_6m, as specified in Table 2.
For SMAC tasks (Figures 4(d) to 4(h)), we plot the average win rate of test episodes over training timesteps.

Table 2: SMAC challenges.

Task Ally Units Enemy Units Type

3m 3 Marines 3 Marines homogeneous, symmetric
8m 8 Marines 8 Marines homogeneous, symmetric
2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots heterogeneous, symmetric
2s_vs_1sc 2 Stalkers 1 Spine Crawler homogeneous, asymmetric
5m_vs_6m 5 Marines 6 Marines heterogeneous, asymmetric

B.2. ICES Implementation Details

For both ICES and baselines, parameter sharing among agents is adopted to improve the sample efficiency as well as lower
the model complexity. For ICES specifically, we remove the ϵ-greedy exploration strategy after the epsilon annealing time,
since the exploration policy is already random in its nature.

For GRF, we implement ICES based on the code framework PyMARL (Samvelyan et al., 2019). For SMAC, we implement
ICES based on the code framework PyMARL 2 (Hu et al., 2023). In this environment, before agents conduct any meaningful
exploration, they tend to prolong the episode by escaping instead of attacking the enemies. Previous methods avoid this
behavior by normalizing the intrinsic rewards to be less than or equal to zero (Jeon et al., 2022; Jo et al., 2024), while we
simply add a −0.02 step penalty as intrinsic rewards. For both GRF and SMAC experiments, default hyperparameters from
the code frameworks are used. For ICES-specific hyperparameters, we list them in Table 4. In particular, α anneals gradually
throughout the training process.

13



Individual Contributions as Intrinsic Exploration Scaffolds for Multi-agent Reinforcement Learning

Table 3: SMAC rewards.

Event Reward

All enemies die +200
One enemy dies +10
One ally dies -5

Table 4: ICES hyperparameters.

Hyperparameter Benchmark Scenario Value

Action embedding dimension - - 4
Scaffolds learning rate - - 0.0001
Scaffolds gradient clipping - - 0.1

Exploration agent learning rate GRF - 0.001
SMAC - 0.01

α
GRF

academy_3_vs_1_with_keeper 0.2 - 0.05
academy_corner 0.2 - 0.05
academy_counterattack_hard 0.1 - 0.05

SMAC 5m_vs_6m 0.1 - 0.05
others 0.1 - 0.1

β
GRF

academy_3_vs_1_with_keeper 0.02
academy_corner 0.05
academy_counterattack_hard 0.05

SMAC 5m_vs_6m 0.5
others 0.1

B.3. Infrastructure

Experiments are carried out on NVIDIA GeForce RTX 3080 GPUs.

C. Additional Experimental Results
C.1. ICES on KAZ

Since ICES do not require particular parsing of states, it can be easily generalized to pixel-based MARL tasks. Therefore, we
further test ICES on a pixel-based MARL benchmark task knights_archers_zombies (KAZ) from the pettingzoo
environments (Terry et al., 2021) with the results shown in Figure 10. We can see that in pixel-based MARL tasks, ICES is
also able to improve the performance by promoting cooperative exploration.

Knights Archers Zombies (KAZ) Environment: In this game, we control 4 agents (2 knights and 2 archers) with the goal
to kill all zombies that appear on the screen. Each agent can move and attack to kill zombies. When a knight attacks, it
swings a mace in an arc in front of its current heading direction. When an archer attacks, it fires an arrow in a straight line in
the direction of the archer’s heading. We reward the agents with +1 when a zombie dies.

Inputs Preprocessing: We use the pixel-based local and global obaservation in this environment for ICES and QMIX.
In particular, the global observation is represented by a 720 × 1280 × 3 pixel colored image, while the observation of
each agent is represented as a 512 × 512 × 3 pixel colored image around the agent. As the input space is too large for
RL algorithms to learn efficiently, we adopt some necessary preprocessing to local and global observation to reduce the
dimension of input space.

The preprocessing pipeline for local observation is as follows: Color Reduction (Only take the first color channel and discard
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Figure 10: Performance comparison on KAZ benchmark.

the rest)→ Resize to 64× 64. The preprocessing pipeline for the global observation is as follows: Color Reduction→ Crop
the central 720× 1100 pixels→ Resize to 128× 128.

Network Architecture: We use the code framework PyMARL 2 (Hu et al., 2023) for this experiment. Since the inputs are
images rather than vectors, we add feature encoding blocks in the agent network and the mixing hypernetwork to process
the input images. Details are provided in Table 5 and Table 6, respectively. RNN layers are not used for this experiment to
avoid extensive GPU memory consumption.

Table 5: Observation encoding blocks in agent network.

Layer Operator # Channels

1 Conv 3× 3 & MaxPooling 32
2 Conv 3× 3 & MaxPooling 64
3 Conv 3× 3 & MaxPooling 128
4 Flatten & FC 128

Table 6: Observation encoding blocks in mixing hypernetwork.

Layer Operator # Channels

1 Conv 5× 5 & MaxPooling 32
2 Conv 5× 5 & MaxPooling 64
3 Conv 5× 5 & MaxPooling 128
4 Flatten & FC 128

For ICES, we use the same QMIX network for value functions and the CVAEs with network structure specified in
Table 7 and Table 8. We design the network architecture for CVAE here based on https://github.com/AntixK/
PyTorch-VAE.

Hyperparameters: We use the default hyperparameters in PyMARL 2 except for batch_size = 4 for both QMIX and
ICES. For ICES specific hyperparameters, we list them in Table 9.
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Table 7: CVAE encoder in ICES.

Layer Operator # Channels

1 Conv 5× 5 8
2 Conv 5× 5 16
3 Conv 5× 5 32
4 Conv 3× 3 64
5 Conv 3× 3 128
6 Flatten & FC 128
7 FC ×2 64

Table 8: CVAE decoder in ICES.

Layer Operator # Channels

1 FC ×2 64
2 TransposedConv 5× 5 64
3 TransposedConv 5× 5 32
4 TransposedConv 5× 5 16
5 TransposedConv 5× 5 8
6 TransposedConv 7× 7 2

Table 9: ICES hyperparameters used in KAZ experiment.

Hyperparameter Value

Action embedding dimension 4
Scaffolds learning rate 0.0001
Scaffolds gradient clipping 0.1
Exploration agent learning rate 0.001
α 0.1 - 0.05
β 0.1
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