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ABSTRACT

Optimization with orthogonality constraints frequently arise in various fields such
as machine learning, signal processing and computer vision. Riemannian opti-
mization offers a powerful framework for solving these problems by equipping
the constraint set with a Riemannian manifold structure and performing optimiza-
tion intrinsically on the manifold. This approach typically involves computing
a search direction in the tangent space and updating variables via a retraction
operation. However, as the size of the variables increases, the computational
cost of the retraction can become prohibitively high, limiting the applicability of
Riemannian optimization to large-scale problems. To address this challenge and
enhance scalability, we propose a novel approach that restricts each update on
a random submanifold, thereby significantly reducing the per-iteration complex-
ity. We introduce two sampling strategies for selecting the random submanifolds
and theoretically analyze the convergence of the proposed methods. We provide
convergence results for general nonconvex functions and functions that satisfy
Riemannian Polyak–Łojasiewicz condition as well as for stochastic optimization
settings. Additionally, we demonstrate how our approach can be generalized to
quotient manifolds derived from the orthogonal manifold. Extensive experiments
verify the benefits of the proposed method, showcasing its effectiveness across a
wide variety of problem instances.

1 INTRODUCTION

Figure 1: Illustration of proposed ran-
dom submanifold method on 2-sphere.
Each iteration restricts the update to a 1-
dimensional randomly selected subman-
ifold, i.e., a circle.

In this paper, we consider optimization problems with
orthogonality constraint, i.e.,

min
X∈Rn×p:X⊤X=Ip

F (X) (1)

where the matrix variable X ∈ Rn×p with n ≥ p is col-
umn orthonormal and F : Rn×p → R. Optimization
with orthogonality constraint arises naturally in various
domains of applications because it is crucial for achiev-
ing certain desired properties, such as linear indepen-
dence, numerical stability and geometry preserving. Exam-
ples of applications include principal component analysis
(Hotelling, 1933), independent component analysis (Theis
et al., 2009), multi-view clustering (Khan & Maji, 2021;
Liu et al., 2021; Chen et al., 2022), low-rank matrix com-
pletion (Vandereycken, 2013; Mishra et al., 2014), robust
optimal transport (Lin et al., 2020; Huang et al., 2021),
training of deep neural networks (Helfrich et al., 2018; Li
et al., 2019; Wang et al., 2020), continual learning (Chaudhry et al., 2020) and fine-tuning large
foundation models (Qiu et al., 2023; Liu et al., 2024), among many others.

Riemannian optimization (Absil et al., 2008; Boumal, 2023) provides a powerful framework for
solving (1) by leveraging the geometry of the orthogonality constraint. Indeed, the set of orthogonal
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constraint forms a smooth manifold known as the Stiefel manifold, denoted by St(n, p) := {X ∈
Rn×p : X⊤X = Ip}. By equipping the manifold with a suitable Riemannian metric, optimization
can be performed intrinsically on the manifold. A crucial step in this process is the retraction
operation, which ensures that iterates remain on the manifold after each update. Various retractions
have been proposed for the Stiefel manifold, such as those based on QR factorization (Absil et al.,
2008), polar decomposition (Absil & Malick, 2012), the Cayley transform (Wen & Yin, 2013), and the
matrix exponential (Edelman et al., 1998). All these retractions require non-standard linear algebra
operations with a complexity of at least O(np2) (see Section 2 for details). As a result, the retraction
step becomes the primary bottleneck for Riemannian optimization solvers as n and p increase.

In this work, we propose a novel approach that updates the variable on a random submanifold. In
particular, our contributions are summarized as follows.

• We propose to parameterize the update via the action of orthogonal group on the current iterate.
Based on the parameterization, we update the current iterate in a random submanifold of orthogonal
group via Riemannian gradient descent. This reduces the complexity of non-standard linear algebra
operations from O(np2) to O(r3), where r is the dimension of the submanifold selected.

• We introduce two strategies for the parameterization, through permutation and orthogonal trans-
formation. We derive the convergence results both in expectation and in high probability. We
show the trade-off between the two in terms of efficiency and convergence guarantees. We show
the other computations are reduced from O(np2) to O(nr2) or O(npr) under permutation and
orthogonal sampling respectively. Nevertheless, the orthogonal sampling incurs an extra cost of
O(nr2) for QR decomposition.

• We establish convergence guarantees for a range of settings, including general nonconvex opti-
mization problems, nonconvex functions that satisfy the Riemannian Polyak-Łojasiewicz (PL)
condition, and stochastic settings under both general nonconvex and PL conditions. We show how
our developments can be extended to quotient manifolds derived from the orthogonal manifold,
including Grassmann and flag manifolds.

• We validate the effectiveness of the proposed method through extensive experiments, showcasing
its fast convergence across a variety of problems.

1.1 RELATED WORKS

Recently, Shalit & Chechik (2014); Gutman & Ho-Nguyen (2023); Yuan (2023); Han et al. (2024);
Cheung et al. (2024) extend the idea of coordinate descent to Stiefel manifold by only updating a
few rows/columns while adhering to the orthogonality constraint. Despite the promise in cheap per-
iteration update, they either suffer from poor runtime on modern hardware, such as GPUs by requiring
a significant number of iterations to converge (Shalit & Chechik, 2014; Gutman & Ho-Nguyen, 2023;
Han et al., 2024) or involve a subproblem that may become difficult to solve in general (Yuan, 2023).
It is worth highlighting that Cheung et al. (2024) lift the coordinate updates to the ambient space
and then project back to the manifold. Their algorithms still require non-standard linear algebra
operations that cost O(nr2), where our method scales with O(r3). As we elucidate the differences
to these works in Section 4, our proposed submanifold update includes the coordinate descent as a
special case, yet being more efficient in runtime empirically. Another line of research, including
(Gao et al., 2019; Xiao et al., 2022; Ablin & Peyré, 2022; Ablin et al., 2023) develop infeasible
methods for solving (1), where the updates do not necessarily satisfy the orthogonality constraint. A
recent work (Shustin & Avron, 2024) proposes a randomized sketching method on the generalized
Stiefel manifold with constraint X⊤BX = Ip. However, they assume B = Z⊤Z, with Z ∈ Rd×n

with d ≫ n. The aim is to reduce complexity in constructing B and improve the conditioning of
optimization, which is different to our setting where B = In and the aim is to reduce the complexity
related to retraction.

Apart from orthogonality constraints, Han et al. (2024) derive efficient coordinate updates for other
matrix manifolds, such as Grassmann and positive definite manifolds. Vary et al. (2024) extend the
idea of infeasible update for generalized Stiefel manifold and Darmwal & Rajawat (2023) propose
efficient subspace descent algorithms for positive definite manifold with affine-invariance metric.
Several other studies (Huang et al., 2021; Peng & Vidal, 2023) investigate (block) coordinate descent
on a product of manifolds, where each update targets an individual component manifold. This
however is less relevant to our setting, where we exploit submanifolds on a single manifold.
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2 PRELIMINARIES

We start by introducing basics of Riemannian optimization and geometry of Stiefel manifold. We
refer to (Edelman et al., 1998; Absil et al., 2008; Boumal, 2023) for more detailed exposition. Stiefel
manifold St(n, p) = {X ∈ Rn×p : X⊤X = Ip} is the set of column orthonormal matrices. When
n = p, St(n, p) ≡ O(n), which is called orthogonal manifold, also forming a group. The tangent
space of Stiefel manifold is TXSt(n, p) = {U ∈ Rn×p : X⊤U + U⊤X = 0}. One can choose the
Euclidean metric (restricted to the tangent space) as a Riemannian metric for St(n, p), i.e., for any
X ∈ St(n, p), and U, V ∈ TXSt(n, p), Riemannian metric ⟨U, V ⟩X = ⟨U, V ⟩ where we use ⟨·, ·⟩
to represent the Euclidean inner product. Other metrics such as canonical metric (Edelman et al.,
1998) can also be considered. Orthogonal projection of any W ∈ Rn×p to TXSt(n, p) with respect
to the Euclidean metric is derived as PX(W ) = W − X{X⊤W}S, where we denote {A}S :=
(A+A⊤)/2. For a smooth function F : St(n, p) → R, Riemannian gradient of F at X ∈ St(n, p),
denoted as gradF (X) is a tangent vector that satisfies for any U ∈ TXSt(n, p), ⟨gradF (X), U⟩X =
⟨∇F (X), U⟩, where ∇F (X) denotes the classic Euclidean gradient. The Riemannian gradient on
Stiefel manifold can be computed as gradF (X) = PX(∇F (X)) = ∇F (X)−X{X⊤∇F (X)}S.

Riemannian optimization works by iteratively updating the variable on the manifold following some
descent direction. Throughout the process, a retraction is required to ensure that the iterates stay on the
manifold. Specifically, a retraction, denoted as RetrX : TXSt(n, p) → St(n, p) is a map from tangent
space to the manifold that satisfies RetrX(0) = X and DRetrX(0)[V ] = V for any V ∈ TXSt(n, p),
where D is the differential operator. There exist various retractions on Stiefel manifold, including
(1) QR-based retraction: RetrX(U) = qf(X + U), where qf extracts the Q-factor from the QR
decomposition; (2) Polar retraction: RetrX(U) = (X + U)(Ip + U⊤U)−1/2; (3) Cayley retraction:
RetrX(U) = (In −W )−1(In +W )X where U = WX for some skew-symmetric W ∈ Rn×n; (4)

Exponential retraction: RetrX(U) = [X U ] expm(

[
X⊤U −U⊤U
Ip X⊤U

]
)

[
expm(−X⊤U)

0

]
, where

expm(·) denotes matrix exponential. We highlight that all retractions require linear algebra operations
other than matrix multiplications that costs at least O(np2).

One classic Riemannian solver is the Riemannian gradient descent (Udriste, 2013) that updates the
variable following the negative Riemannian gradient, i.e., Xk+1 = RetrXk

(
−ηkgradF (Xk)

)
, where

ηk > 0 is the stepsize. Apart from Riemannian gradient descent, other more advanced solvers include
Riemannian accelerated gradient methods (Ahn & Sra, 2020; Alimisis et al., 2021), Riemannian
quasi-Newton methods (Huang et al., 2015; 2018) and Riemannian second-order methods (Absil
et al., 2007; Agarwal et al., 2021), just to name a few. All the aforementioned methods utilize the
retraction and thus it becomes critical to reduce its complexity before scaling to large problems.

Notations. We use O(·) and Ω(·) to denote the big-O and big-Omega notation and O(n) to represent
the orthogonal manifold of size n× n. We also use P(n) ⊂ O(n) to mean the set of permutation
matrices. We also let Sn = {v ∈ Rn : v⊤v = 1} be the unit sphere. We use ∼= to represent a
diffeomorphism between two manifolds. We use ⟨·, ·⟩, ∥ · ∥ to denote the Euclidean inner product and
Euclidean norm, and use ⟨·, ·⟩X , ∥ · ∥X to denote Riemannian inner product and norm on TXSt(n, p).
Because we only consider Euclidean metric as the Riemannian metric in this work, we use ∥ · ∥ and
∥ · ∥X interchangeably. We use P (r) to denote the first r rows of a matrix P .

3 RIEMANNIAN RANDOM SUBMANIFOLD DESCENT METHOD

This section introduces the proposed method that reduces the complexity of retraction by restricting
the update to a random submanifold. In particular, at each iteration k, we parameterize the next
iterate as Xk+1 = UkXk for some Uk ∈ O(n) and thus converts the problem to optimization over
Uk ∈ O(n) on the orthogonal manifold. Such a parameterization can be justified by the fact that
the action of the orthogonal group O(n) over St(n, p) is transitive. Hence, at any point Xk, there
exists a matrix U∗

k ∈ O(n) such that X∗ = U∗
kXk, where X∗ is any local minimizer. Further,

we parameterize the orthogonal matrix Uk by a random orthogonal matrix Pk ∈ O(n) and a low-
dimensional orthogonal matrix Y ∈ O(r) where r is the lower dimension that we choose, and we
define

Uk(Y ) = P⊤
k

[
Y 0
0 In−r

]
Pk. (2)
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Algorithm 1 Riemannian random submanifold descent (RSDM)

1: Initialize X0 ∈ St(n, p).
2: for k = 0, ...,K − 1 do
3: Sample Pk ∈ O(n) and let F̃k(Y ) = F (Uk(Y )Xk) where Uk(Y ) is defined in (2).
4: Compute Riemannian gradient gradF̃k(Ir).
5: Update Yk = RetrIr (−η gradF̃k(Ir)).
6: Set Xk+1 = Uk(Yk)Xk.
7: end for

By minimizing F̃k(Y ) := F (Uk(Y )Xk) over Y instead of minimizing Fk(U) := F (UXk) over
U , we update the iterates on a random submanifold defined via (the first r rows of) the random
orthogonal matrix Pk. Rather than minimizing F̃k to global optimality, we minimize the first-order
approximation of the function F̃k around Ir such that the update remains close to Xk. This suggests
we can compute Y by taking a Riemannian gradient update from Ir, i.e.,

Y = RetrIr (−ηk gradF̃k(Ir)) (3)
for some stepsize ηk > 0. We remark that our approach can be viewed as a generalization of the
random subspace gradient descent in the Euclidean space (Kozak et al., 2021) to the Stiefel manifold.
Specifically, the Euclidean random subspace updates the variable as xk+1 = xk + uk(y) where
uk(y) = P⊤

k y for some random matrix Pk that spans the subspace.

To compute the Riemannian gradient gradF̃k(Ir) in (3), let Pk(r) ∈ Rr×n denote the first r rows of
Pk. Using the expression of Riemannian gradient, we can derive

gradF̃k(Ir) =
1

2
(∇F̃k(Ir)−∇F̃k(Ir)

⊤) =
1

2
Pk(r)

(
∇F (Xk)X

⊤
k −Xk∇F (Xk)

⊤
)
Pk(r)

⊤

= Pk(r)gradFk(In)Pk(r)
⊤ (4)

To ensure the updates adequately explore the full space with high probability, we re-sample the
orthogonal matrix Pk ∈ O(n) each iteration. The distribution from which the orthogonal matrix
is sampled will be discussed in detail in the subsequent section. The full algorithm is outlined in
Algorithm 1, where we call the proposed method Riemannian random submanifold descent (RSDM).

4 SAMPLING STRATEGIES AND COMPLEXITIES

In this section, we introduce two sampling strategies and respectively analyze the resulting per-
iteration complexity of Algorithm 1. We propose to sample Pk from two distributions, (1) a uniform
distribution over the set of orthogonal matrices and (2) a uniform distribution over the set of
permutation matrices. The second strategy of sampling from a permutation matrix is considered due
to its sampling and computational efficiency compared to the orthogonal sampling.

The per-iteration complexity of Algorithm 1 is attributed to four parts, i.e., sampling, gradient
computation, gradient descent update and iterate update. For both sampling strategies, the gradient
descent update (Step 5) shares the same complexity. In particular, the gradient update involves the
retraction on O(r), which is on the order of O(r3). Next we respectively discuss the sampling and
computational cost of each sampling strategy. As we show later, the per-iteration cost of orthogonal
sampling strategy is O(npr) while the per-iteration cost of permutation sampling strategy is O(nr2).

Uniform orthogonal. We first analyze the case where Pk is uniformly sampled from O(n). We
consider sampling Pk from the unique translation invariant probability measure (i.e. the Haar
measure) on O(n). Because only r rows of Pk is required, the sampling can be performed using QR
decomposition (with Gram-Schmidt method) on a randomly sampled Gaussian matrix P ∈ Rr×n

(Meckes, 2019). Hence, the cost of sampling is O(nr2). Furthermore, from (4), the computation
of gradF̃k(Ir) =

1
2Pk(r)

(
∇F (Xk)X

⊤
k −Xk∇F (Xk)

⊤)Pk(r)
⊤ requires a complexity of O(npr)

by first computing Pk(r)∇F (Xk) and Pk(r)Xk before multiplication. For the iterate update, the
computation of Uk(Yk)Xk only depends on the first r rows of Pk as Uk(Yk)Xk = Xk+Pk(r)

⊤(Y −
Ir)Pk(r)Xk, which requires O(npr). This suggests the total per-iteration complexity for the uniform
sampling on orthogonal manifold is O(npr).
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Uniform permutation. Sampling from a uniform distribution on permutation matrices corresponds
to sampling a permutation π : [n] → [n], and thus the sampling complexity is negligible compared
to other operations. Because only the first r rows of Pk matters, in practice, sampling r indices
without replacement from [n] is sufficient. In terms of gradient computation, because Pk(r) is a
truncated permutation matrix, Pk(r)∇F (Xk) and Pk(r)Xk corresponds to permuting the rows of
∇F (Xk) and Xk. This largely reduces the cost compared to matrix multiplication. Thus the gradient
computation only requires O(nr2). Lastly, for the iterate update, we highlight matrix multiplication
involving both Pk(r) and Pk(r)

⊤ corresponds to rearranging the rows and thus the cost can be
reduced to O(nr2). Thus the total cost is O(nr2).
Remark 1 (Riemannian coordinate descent is a special case). We show that with the permutation
sampling and r = 2, RSDM is equivalent to the Riemannian coordinate descent on Stiefel manifold
(Shalit & Chechik, 2014; Han et al., 2024; Yuan, 2023). To see this, we first recall that a Givens
rotation Gk,l(θ) ∈ O(n) represents a sparse orthogonal matrix such that its non-zero entries satisfy
(1) [Gk,l(θ)]i,i = 1 for all i ̸= k and i ̸= l; (2) [Gk,l(θ)]i,i = cos θ for all i = k, l; (3) [Gk,l(θ)]k,l =
−[Gk,l(θ)]l,k = − sin θ. Further we know that when r = 2, any Y ∈ O(2) can be parameterized

by an angular parameter θ and is either a rotation matrix R(θ) =

[
cos θ sin θ
− sin θ cos θ

]
or a reflection

matrix F (θ) =

[
cos θ sin θ
sin θ − cos θ

]
. Thus it is easy to verify that Gk,l(θ) = Pk,l

[
R(θ) 0
0 In−2

]
P⊤
k,l,

where Pk,l corresponds to the permutation π such that π(1) = k, π(2) = l. This suggests that the
update of RSDM reduces to Xk+1 = Gk,l(θ)Xk, which is how coordinate descent is implemented in
(Shalit & Chechik, 2014; Han et al., 2024; Yuan, 2023). In Yuan (2023), F (θ) is further considered
as an alternative to the rotation.

5 THEORETICAL GUARANTEES

In this section, we analyze the convergence guarantees for the proposed RSDM under both orthogonal
sampling and permutation sampling. The proofs of all results are included in Appendix sections. We
make use of the following notations throughout the section. Recall we have defined in Section 3 that
Fk(U) = F (UXk) and F̃k(Y ) = F (Uk(Y )Xk) at iteration k. We also introduce generic notations
that FX(U) := F (UX) and F̃X(Y ) = F (U(Y )X) for some sampled P ∈ O(n).
Assumption 1. F (X) has bounded gradient and Hessian in the ambient Euclidean space, i.e.,
∥∇F (X)∥ ≤ C0, ∥∇2F (X)[U ]∥ ≤ C1∥U∥ for any X ∈ St(n, p), U ∈ Rn×p.

Assumption 1 is naturally satisfied given X ∈ St(n, p), which is a compact submanifold of Rn×p.
The next lemma verifies the (Riemannian) smoothness of F̃X(Y ), which is due to Assumption 1.

Lemma 1. Under Assumption 1, for any X ∈ St(n, p), F̃X(Y ) is (C0 + C1)-smooth on O(r).

Further, we show the following lemma that relates the gradient of FX at identity to gradient of F (X).
Lemma 2. For any X ∈ St(n, p), we can show ∥gradFX(In)∥2 ≥ 1

2∥gradF (X)∥2.

Apart from general non-convex functions, we also analyze convergence of RSDM under Riemannian
Polyak-Łojasiewicz (PL) condition. Riemannian PL condition is more general than strongly convex
functions and can be satisfied for some nonconvex functions locally around optimality.
Definition 1 (Riemannian Polyak-Łojasiewicz). For a subset U ⊆ St(n, p), a smooth function
F : U → R satisfies the Riemannian Polyak-Łojasiewicz (PL) condition on U if there exists µ > 0
such that ∀X ∈ U , we have F (X)−minX∈U F (X) ≤ 1

2µ∥gradF (X)∥2.

5.1 MAIN RESULTS

This section derives theoretical guarantees for the proposed method. A summary of the main results
are presented in Table 1. We first give the following proposition that relates the gradient of F̃ to
gradient of F at identity.
Proposition 1. Assume that P is uniformly sampled from P(n) or uniformly sampled from O(n).
Then for any X ∈ St(n, p), we have E∥gradF̃X(Ir)∥2 = r(r−1)

n(n−1)∥gradFX(In)∥2, where the expec-
tation is with respect to the randomness in P .
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Table 1: Summary of the main results under deterministic and stochastic settings, with both orthogonal
(ortho.) and permutation (permu.) sampling. The global and local rates refer to the convergence
under general nonconvex and PL conditions respectively. Size of Stiefel manifold is n× p and k is
the iteration number. Function constants L, µ are ignored.

EXPECTATION HIGH PROBABILITY

GLOBAL LOCAL (PL) GLOBAL LOCAL (PL)

Deterministic
(Theorem 1, 2)

Ortho.
O
(

n2

r2k

)
O
(
exp(− r2

n2 k)
) O( n2

r2k ) O
(
exp(− r2

n2 k)
)

Permu. O( n2

r2k

(
n
r

)
) O

(
exp(− r2

n2

(
n
r

)−1
k)
)

Stochastic
(Theorem 3)

Ortho.
O
(

n2

r2
√
k

)
O
(
exp(− r2

n2 k) +
n2σ2

r2

)
—

Permu.

Remark 2 (Proof techniques of Proposition 1). We obtain the same rate for both the permutation
and orthogonal sampling strategies. Nevertheless, the proof techniques are largely different. In the
permutation case, the proof boils down to counting the number of permutations that satisfy some
criterion and in the orthogonal case, we have to compute, for all set of indices, E[Pik1Pjl1Pik2Pjl2 ]
for i ̸= j. This is achieved by leveraging the rotational invariance of the distribution of P .

Proposition 1 shows that the submanifold gradient is on the order of O(r2n−2) of the full-space
gradient. In contrast, the Euclidean subspace gradient method (Kozak et al., 2021) achieves a scaling
of O(rn−1). This is because our proposed submanifold approach requires applying the projection
matrix Pk twice, whereas the Euclidean subspace method requires only a single Pk.

5.1.1 CONVERGENCE IN EXPECTATION

Theorem 1. When Pk is sampled uniformly from P(n) or O(n), under Assumption 1 and select
η = 1

L with L = C0 + C1, we obtain that for all k ≥ 1,

min
i=0,...,k−1

E[∥gradF (Xi)∥2] ≤
4L

k

n(n− 1)

r(r − 1)
(F (X0)− F ∗)

Suppose further Xk converges to a neighborhood U that contains an (isolated) local minimizer
X∗. Further, F satisfies Riemannian PL condition on U . Let k0 be that Xk0 ∈ U . Then we have
Xk0+k ∈ U , ∀k ≥ 1 and E[F (Xk0+k)− F (X∗)] ≤ exp

(
− µ

2L
r(r−1)
n(n−1)k

)
E[F (Xk0)− F (X∗)].

Theorem 1 shows that the convergence rate for general non-convex functions maintains the same
sublinear convergence, compared with the Riemannian gradient descent (RGD) (Boumal, 2023), albeit
with an additional O(n2r−2) factors. Such a factor can be compensated by the lower per-iteration
complexities of RSDM, which leads to a matching total complexity compared to RGD.
Remark 3 (Comparison of total complexity of RSDM to RGD). In Theorem 1, we show the
convergence is at most O(n2r−2/k) for both sampling strategies. This implies that in order to
reach an ϵ-stationary point in expectation with mini=0,...,k−1 E[∥gradF (Xi)∥2] ≤ ϵ2, we require an
iteration complexity of O(n2r−2ϵ−2), where per-iteration complexity is either O(npr) for orthogonal
sampling or O(nr2) for permutation sampling strategy for permutation sampling, as analyzed in
Section 4. This gives a total complexity of at least O(n3ϵ−2). Compared to Riemannian gradient
descent that uses retraction, where the complexity is O(np2ϵ−2), we can see as long as p = Ω(n),
the total complexity remains the same order. However, when n, p becomes significantly large where
Riemannian gradient descent becomes impractical, only the proposed method can be applied.

5.1.2 CONVERGENCE IN HIGH PROBABILITY

Theorem 1 suggests both permutation and orthogonal sampling guarantee the same convergence rate
in expectation. However, we show in the following theorem that orthogonal sampling achieves much
tighter convergence bound in high probability compared to the permutation sampling.
Theorem 2. Under Assumption 1 and η = 1

L with L = C0 + C1, if we use orthogonal sampling, we
obtain and for all k ≥ 1, with probability at least 1− exp

(
− 1

8 (1− τ(n, r))k
)
,

min
i=0,...,k−1

∥gradF (Xi)∥2 ≤ 16L∆0

k

n(n− 1)

(1− τ(n, r))r(r − 1)

6
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where τ(n, r) = exp
(
− r2(r−1)2

2048n2(n−1)2

)
and we denote ∆0 = F (X0)− F ∗. If we use permutation

sampling, with probability at least 1− exp
(
− 1

8

(
n
r

)−1
k
)
,

min
i=0,...,k−1

∥gradF (Xi)∥2 ≤ 16L∆0

k

n(n− 1)

r(r − 1)

(
n

r

)
Hence, in both cases, we have that almost surely, lim inf

k→∞
∥gradF (Xk)∥2 = 0.

Under the same setting in Theorem 1, suppose Xk0
∈ U . Then for orthogonal sampling, with

probability at least 1−exp(− 1
8 (1−τ(n, r))k), we have F (Xk0+k)−F (X∗) ≤ exp

(
− µ

8L
r(r−1)
n(n−1) (1−

τ(n, r))k
)(
F (Xk) − F (X∗)

)
. For permutation sampling, with probability at least 1 − exp

(
−

1
8

(
n
r

)−1
k
)
, we have F (Xk+1)− F (X∗) ≤ exp

(
− µ

4L
r(r−1)
n(n−1)

(
n
r

)−1
k
)(
F (Xk)− F (X∗)

)
.

Theorem 2 derives a high-probability bound for for both orthogonal and permutation sampling
strategies. For general nonconvex functions, it can be seen that the high-probability bound for
permutation sampling can be much worse than for the orthogonal sampling due to the additional
binomial factor. In addition, compared to orthogonal sampling, permutation sampling requires the
number of iteration to be significantly larger in order for the bound to hold with arbitrary probability.
To see this, we first can bound τ(n, r) ∈ (0, 0.9995) due to r ≤ n. 0.0005 ≤ 1− τ(n, r) ≤ 1 and
thus 1 − τ(n, r) = Θ(1). In order to require the high probability bound to hold with probability
1− δ′ (for arbitrary δ′ ∈ (0, 1), we require k ≥ 4000 log(1/δ′)δ−2 = Ω̃(1) for the orthogonal case
but require k ≥ 2

(
n
r

)
log(1/δ′)δ−2 = Ω̃(

(
n
r

)
), which can be significantly large when n ≫ r.

The trade-off between efficiency and convergence. The worse convergence guarantee of permu-
tation sampling relative to orthogonal sampling in high probability indicates a trade-off between
efficiency and convergence. Specifically for general nonconvex functions, permutation sampling re-
quires only O(nr2) complexity per iteration while suffering from a convergence of O

(
n2r−2

(
n
r

)
/k
)

in high probability. In contrast, orthogonal sampling requires O(npr) complexity per iteration but
converges with a rate of O(n2r−2/k) with high probability. Similar arguments also hold for local
linear convergence under PL condition.

5.2 STOCHASTIC OPTIMIZATION

The proposed algorithm (Algorithm 1) can be adapted to stochastic optimization with orthogonality
constraints, i.e., minX∈Rn×p:X⊤X=Ip{F (X) := Eξ[f(X; ξ)]}. Under stochastic settings, we only
obtain noisy estimates of the gradients by querying ξ. Thus in Algorithm 1, we replace the Riemannian
gradient gradF̃k(Ir) with the stochastic gradient gradf̃k(Ir; ξk), where we denote f̃(Y ; ξ) :=
f(Uk(Y )Xk; ξk) for some randomly sampled ξk at iteration k.

For convergence analysis, apart from Assumption 1, we also require the assumption of stochastic
gradients being unbiased and having bounded variance, which is standard in analyzing stochastic
algorithms (Ghadimi & Lan, 2013).
Assumption 2. The stochastic gradient is unbiased, i.e., Eξ[∇f(X; ξ)] = ∇F (X) and has bounded
variance, i.e., Eξ[∥∇f(X; ξ)−∇F (X)∥2] ≤ σ2, for all X ∈ St(n, p).

Theorem 3. Under Assumption 1 and 2, suppose we choose η = min{L−1,
√
∆0/Lσ

−1K−1/2},
where we denote ∆0 = F (X0)− F ∗. Then we can show

min
i=0,...K−1

E∥gradF (Xk)∥2 ≤ 4n(n− 1)

r(r − 1)

(L∆0

K
+

2σ
√
∆0L√
K

)
Suppose there exist Xk0

, ..., Xk1
∈ U for some k1 > k0, where U is defined in Theorem 1. Then we

have E[F (Xk1
)− F (X∗)] ≤ exp

(
− µ

2L
r(r−1)
n(n−1) (k1 − k0)

)
E[F (Xk0

)− F (X∗)] + σ2

µ
n(n−1)
r(r−1) .

Theorem 3 derives convergence guarantees for stochastic optimization and is comparable to Euclidean
analysis under general nonconvex functions (Ghadimi & Lan, 2013) and under PL conditions
(Garrigos & Gower, 2023). The introduction of additional factor of O(n2r−2) is consistent with the
deterministic setting, analyzed in Section 5.1. Lastly, we remark that although we focus on stochastic
gradient for simplicity, the following analysis can be easily extended to mini-batch gradient descent.
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(b) Procrustes (2000, 2000)
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(c) PCA (2000, 1500)
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(d) PCA (3000, 2500)

Figure 2: Experiments on Procrustes problem and PCA problem under various settings. The
numbers in brackets represent the size of n, p. For the Procrustes problem, we see RSDM converges
competitively against the best baselines due to the simplicity of the problem. For PCA problem, we
see RSDM converges the fastest.

6 GENERALIZATION TO QUOTIENT MANIFOLDS

This section extends the developments of RSDM to general quotient manifolds. Indeed, the Stiefel
manifold can be treated as the quotient space of orthogonal manifold (Edelman et al., 1998). More
precisely, we can write St(n, p) ∼= O(n)/O(n− p), i.e., a point in the Stiefel manifold corresponds

to the equivalence class [Q] =
{
Q

(
Ip 0
0 U

)
: U ∈ O(n − p)

}
. In other words, each point in

St(n, p) is the set of all orthogonal matrices with the same first p columns. Such a viewpoint allows
to generalize the previous developments and analysis to more general quotient manifolds of the form

M ∼= O(n)/K = {K · U : U ∈ O(n)} (5)

where K is a closed subgroup of O(n). An element of M is the equivalence class [Q] = {K ·Q :
K ∈ K}. Quotient manifold of the form (5) includes the famous Grassmann manifold (Edelman et al.,
1998), i.e., Gr(n, p) ∼= O(n)/(O(p)×O(n−p)) as well as the flag manifold (Zhu & Shen, 2024), i.e.,
Flg(n1, · · · , nd;n) ∼= O(n)/(O(n1)×O(n2−n1)×· · ·×O(nd−nd−1)×O(n−nd)). Since the
action of O(n) over M is transitive, we can follow the same approach for St(n, p), and introduce a
function Fk : O(n) 7→ R and F̃k : O(r) 7→ R, where Fk(U) = F (UXk) and F̃k(Y ) = Fk(Uk(Y )),
where Uk(Y ) is defined as in (2). We highlight that Xk ∈ M is a representation of the equivalence
class. For example, in the Grassmann manifold case, Xk is a column orthonormal matrix whose
columns span the subspace. Therefore, Algorithm 1 can be directly applied to the quotient manifolds.
Because Fk and F̃k are only defined on the orthogonal manifold, all our results derived for the
Stiefel manifold still hold for general quotient manifolds. Apart from the orthogonal group, our
developments can also be generalized to other compact matrix groups, such as SO(n)

7 EXPERIMENTS

This section conducts experiments to verify the efficacy of the proposed method. We benchmark our
methods with several baseline: (1) Riemannian gradient descent (RGD) on Stiefel manifold (Absil
et al., 2008; Boumal, 2023); (2) Coordinate descent type of algorithms on Stiefel manifold, namely
RCD (Han et al., 2024) and TSD (Gutman & Ho-Nguyen, 2023); (3) Infeasible and retraction-free
methods, including PCAL (Gao et al., 2019) and Landing (Ablin & Peyré, 2022; Ablin et al., 2023).

For all the experiments, we tune the learning rate in the range of [0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0].
For the infeasible methods, we tune the regularization parameter in the range of [0.1, 0.5, 1.0, 1.5, 2.0].
For the proposed method (RSDM), we consider both permutation sampling and orthogonal sampling
for Pk, which we denote as RSDM-P and RSDM-O respectively. We set the submanifold dimension
accordingly based on the problem dimension and fix for both sampling strategies. By defaults, we
use QR-based retraction for RGD and proposed RSDM. All experiments are implemented in Pytorch
and run on a single RTX4060 GPU.
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7.1 PROCRUSTES PROBLEM

We first consider solving the Procrustes problem as to find an orthogonal matrix that aligns two
matrices, i.e., minX∈St(n,p) f(X) = ∥XA − B∥2 for some matrix A ∈ Rp×p, B ∈ Rn×p. The
optimal solution of this problem is X∗ = UV ⊤ where UΣV ⊤ = BA⊤ is the thin-SVD of the matrix
BA⊤. Hence the optimal solution is computed as f(X∗) = ∥A∥2F + ∥B∥2F − 2tr(Σ).

Setting and results. We explore small-size as well as large-size problem by considering (1) n =
p = 200 and (2) n = p = 2000. For the two settings, we set r = 150 and r = 900 for RSDM
respectively. We generate A,B where each entries follows a random Gaussian distribution. For
this problem, we compute the closed-form solution X∗ by taking SVD of BA⊤ and measure the
optimality gap in terms of optgap(X) = |f(X) − f(X∗)|/|f(X∗)|. We notice that for feasible
methods, like RGD, RCD and proposed RSDM, the problem can be reduced to a linear function as
maxX∈St(n,p)⟨X,BA⊤⟩ while for infeasible methods, the problem remains quadratic. We highlight
that because n = p, RCD and TSD are equivalent.

In Figure 2(a) under the setting n = p = 200, we see RCD performs notably worse compared to
other benchmarks in runtime. This is because, although requiring fewer floating point operations (as
shown in Han et al. (2024)), RCD requires more iterations, which is not GPU-friendly. On the other
hand, we see the proposed RSDM performs competitively compared to RGD. When increasing the
dimensionality to n = p = 2000, we notice RCD requires overly long runtime to progress and thus
we remove from the plots. From Figure 2(b), we verify the superiority of RSDM over RGD.

7.2 PCA PROBLEM

Next, we consider a quadratic problem, originating from principal component analysis (PCA),
as to find the largest eigen-directions of a covariance matrix. This can be formulated as
minX∈St(n,p) F (X) = −tr(X⊤AX), where A ∈ Rn×n. This problem also has analytic solu-
tion given by the top-p eigenvectors of A.

Setting and results. We create A to be a positive definite matrix with a condition number of 1000
and exponentially decaying eigenvalues. Due to the existence of analytic solution, we measure
the optimality gap the same as in Section 7.1. In Figure 2(c) and (d), we consider the setting of
n = 2000, p = 1500 and n = 3000, p = 2500, which represent large-scale scenarios. For the two
settings, we set r = 700, 1000 respectively. We see RSDM achieves the fastest convergence among all
the baselines. Especially around optimality, we see RSDM switches from the sublinear convergence
to linear in contrast to other baselines that maintains the sublinear convergence throughout. This
behavior may be attributed to the random projection, which potentially provides a more favorable
optimization landscape close to optimum (Fuji et al., 2022). In addition, this can also be justified by
the fact that random submanifold descent enables a rapid search for regions where the Riemannian
PL condition or local error bound condition (Liu et al., 2019) holds. A formal theoretical verification
of this claim is left for future work.

To further validate the robustness of RSDM, we conduct additional experiments by varying the low
dimension r, altering the random seed and utilizing different retractions. The results, presented in
Figure 3, demonstrate that the performance of RSDM is largely insensitive to the choice of r (within a
reasonable range) and the randomness throughout the iterations. RSDM also consistently outperforms
RGD across all available retractions.

7.3 QUADRATIC ASSIGNMENT PROBLEM

The quadratic assignment problem (Burkard et al., 1997; Wen & Yin, 2013) aims to minimize a
quadratic function over permutation matrix. In (Wen & Yin, 2013), the problem is re-formulated as an
optimization problem over the Stiefel manifold: minX∈St(n,n) F (X) = tr(A⊤(X⊙X)B(X⊙X)⊤).

Setting and results. We consider the setting of n = 1000 and generate A,B as random normal
matrices. Since no closed-form solution exists for this problem, we first run RGD for sufficient
number of iterations, using the resulting variable as the optimal solution. As shown in Figure 4(a),
RSDM converges the fastest among the baselines, especially near the optimal solution. Moreover, in
this example, orthogonal sampling outperforms the permutation sampling.
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Figure 3: Experiment results on PCA (n = 2000, p = 1500) by (a)
varying low-dimension r and (b) random seed with r = 700. The results
suggest the outperformance of proposed RSDM over RGD is robust to
changes in r as well as random seed.
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Figure 4: Experiment re-
sults on quadratic assign-
ment problem (QUAD)
with n = p = 1000.

7.4 ORTHOGONAL NEURAL NETWORKS
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Figure 5: Test accuracy for training orthogonal
neural network on MNIST dataset and CIFAR10
dataset in five runs.

We consider optimizing a neural network with
orthogonal constraints. We consider a six-layer
feedforward neural network with ReLU activa-
tion for image classification task, i.e.,

min
{Wℓ∈St(dℓ,dℓ+1)}

L(nn(X), y),

where nn(X) = σ(· · ·σ(XWℓ + bℓ) · · · )WL +
bL denotes a L-layer feedforward neural net-
work with bias terms and L(·, ·) denotes the
cross-entropy loss.

Setting and results. We optimizer neural net-
work to classify MNIST (LeCun et al., 1998)
and CIFAR10 (Krizhevsky et al., 2009) images. For preprocessing, the MNIST images are resized
into 32 × 32 for MNIST and CIFAR10 images to 20 × 20 × 3. The images are then normalized
into [−1, 1] and vectorized as input for the neural network with a size of 1024 for MNIST and 1200
for CIFAR10. We constrain the weight of the first four layers to be column orthonormal with a
hidden size of 1024. The output layer weight, with a size of 1024 × 10, remains unconstrained.
For optimization, we employ RGD and RSDM with a batch size of 16. We set learning rate for
unconstrained parameters to be 0.1 and only tune the learning rate for the orthogonal parameters. We
plot the test accuracy in Figure 5 where we compare RGD with RSDM-P with five independent runs.
We observe that RSDM-P demonstrates faster convergence in the early iterations in terms of runtime,
suggesting it is more efficient in rapidly achieving a high level of accuracy.

8 CONCLUSIONS

In this paper, we have introduced a novel randomized submanifold approach for optimization problems
with orthogonality constraints in order to reduce the high complexity associated with the retraction.
We have derived convergence guarantees of the proposed method on a variety of function classes
and empirically demonstrated its superiority in a number of problem instances. We also discuss two
sampling strategies based on orthogonal and permutation matrices, and discuss the trade-off in terms
of computational efficiency versus convergence guarantees.

We believe our developments represent a significant advancement in scalable Riemannian optimization
by offering a simple, yet effective solution for large-scale problems with orthogonality constraints.
In the paper, we only discuss the application of randomized submanifold strategy to Riemannian
gradient descent. Nonetheless, we believe such a strategy can be combined with more advanced
optimization techniques, such as line-search (Boumal & Cartis, 2019), momentum (Li et al., 2020;
Kong et al., 2023), preconditioning (Kasai et al., 2019) and higher-order methods (Huang et al.,
2015; Absil et al., 2007), to further enhance convergence efficiency and robustness with orthogonality
constraints and beyond.
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A ADDITIONAL EXPERIMENT RESULTS

In the main text, we present the convergence results only in terms of runtime. Here we also plot the
convergence with respect to iteration number in Figure 6. We see for Procrustes problem, one of the
simplest optimization problems on Stiefel manifold, both RGD and Landing algorithm yields fastest
convergence in iteration number. We also notice in small-sized problem, RCD converges quickly.
Nonetheless, each iteration of RCD requires to loop through all the n2 indices, resulting in poor
parallelizability. This is reflected in the runtime comparisons presented in the main text. For other
problem instances, including PCA and quadratic assignment, RSDM attains the fastest convergence
not only in runtime (as shown in the main text) but also in terms of iteration count (Figure 6).

Finally, we plot the convergence in iteration for training orthogonal neural networks on MNIST and
CIFAR10. We see that RSDM is not able to beat the RGD in terms of convergence in iteration, due to
the difficulty of the optimization problems.
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(c) PCA (2000, 1500)
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Figure 6: Convergence in terms of iteration on Procrustes problem and PCA problem and quadratic
assignment problem under various settings. We observe that except for the Procrustes problem and
training of orthogonal neural network, RSDM also converges the fastest in terms of iteration number.
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Figure 7: Convergence in loss plot for on image classification.

B PROOFS

B.1 PROOF OF LEMMA 1

We first recall the Hessian of a function G : St(n, p) → R along a any tangent vector V is

HessG(X)[V ] = PX(∇2G(X)[V ]− V {X⊤∇G(X)}S)

where {A}S = (A+A⊤)/2 and PX(ξ) = ξ −X{X⊤ξ}S.
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Proof of Lemma 1. Recall the (Euclidean) gradient and Hessian of F̃X(Y ) is derived as

∇F̃X(Y ) = P (r)∇F
(
U(Y )X

)
X⊤P (r)⊤

∇2F̃X(Y )[V ] = P (r)∇2F
(
U(Y )X

)
[U(V )X]X⊤P (r)⊤

for any V ∈ TY O(r). This leads to the following Riemannian Hessian

HessF̃X(Y )[V ] = PY

(
∇2F̃X(Y )[V ]− V {Y ⊤∇F̃X(Y )}S

)
.

We wish to bound ∥HessF̃X(Y )[V ]∥Y in terms of ∥V ∥Y . First we notice that ∥HessF̃X(Y )[V ]∥Y ≤
∥∇2F̃X(Y )[V ]− V {Y ⊤∇F̃X(Y )}S∥ because for any ξ,

∥PY (ξ)∥2Y =
1

4
∥ξ − Y ξ⊤Y ∥2 =

1

4

(
2∥ξ∥2 − 2⟨ξ, Y ξ⊤Y ⟩

)
=

1

4

(
2∥ξ∥2 − 2vec(ξ)⊤(Y ⊤ ⊗ Y )vec(ξ⊤)

)
≤ 1

4

(
2∥ξ∥2 + 2∥ξ∥2

)
= ∥ξ∥2

where we use the fact that ∥(Y ⊤ ⊗ Y )v∥ = ∥v∥ for any v and Y ∈ O(r).

Then we bound
∥∇2F̃X(Y )[V ]− V {Y ⊤∇F̃X(Y )}S∥ ≤ ∥∇2F̃X(Y )[V ]∥+ ∥V ∥∥{Y ⊤∇F̃ (Y )}S∥

≤ ∥∇2F
(
U(Y )X

)
[U(V )X]∥+ ∥V ∥∥∇F (U(Y )X)∥

≤ C1∥U(V )∥+ C0∥V ∥
= (C0 + C1)∥V ∥

where we use triangle inequality in the first inequality. The second inequality uses ∥P (r)∥ ≤ 1,
∥X∥, ∥Y ∥ ≤ 1. The third inequality is by assumption on ∇2F (X),∇F (X). The last equality is by
definition of U(V ).

B.2 PROOF OF LEMMA 2

Proof of Lemma 2. From the definition that FX(U) = F (UX), we let

A := ∥gradFX(In)∥2 =
1

4
∥∇F (X)X⊤ −X∇F (X)⊤∥2

B := ∥gradF (X)∥2 = ∥∇F (X)−X{X⊤∇F (X)}S∥2

We first notice that

A =
1

4

(
∥∇F (X)X⊤∥2 + ∥X∇F (X)⊤∥2 − 2tr(X∇F (X)⊤X∇F (X)⊤)

)
=

1

2

(
∥∇F (X)∥2 − tr(X∇F (X)⊤X∇F (X)⊤)

)
.

Similarly,

B = ∥∇F (X)∥2 + ∥X{X⊤∇F (X)}S∥2 − 2tr(∇F (X)⊤X{X⊤∇F (X)}S)
= ∥∇F (X)∥2 + ∥X{X⊤∇F (X)}S∥2 − tr(∇F (X)⊤X(X⊤∇F (X) +∇F (X)⊤X)

= ∥∇F (X)∥2 − tr(X∇F (X)⊤X∇F (X)⊤) + C,

where we let C := ∥X{X⊤∇F (X)}S∥2 − tr(∇F (X)⊤XX⊤∇F (X)). Then we have

C =
1

4
∥XX⊤∇F (X)∥2 + 1

4
∥X∇F (X)⊤X∥2 + 1

2
tr(∇F (X)⊤X∇F (X)⊤X)

− tr(∇F (X)⊤XX⊤∇F (X))

=
1

4
tr(∇F (X)⊤XX⊤∇F (X)) +

1

4
tr(X⊤∇F (X)∇F (X)⊤X) +

1

2
tr(∇F (X)⊤X∇F (X)⊤X)

− tr(∇F (X)⊤XX⊤∇F (X))

= −1

2
tr(∇F (X)∇F (X)⊤XX⊤) +

1

2
tr(∇F (X)⊤X∇F (X)⊤X)
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Therefore,

B = ∥∇F (X)∥2 − 1

2
tr(∇F (X)⊤XX⊤∇F (X))− 1

2
tr(∇F (X)⊤X∇F (X)⊤X).

and,

A−B =
1

2
(tr(∇F (X)⊤XX⊤∇F (X))− ∥∇F (X)∥2).

We will now prove that
A−B ≥ −A.

To this end, we consider the quantity ∥F (X)⊤X −X⊤F (X)∥2 ≥ 0. By expanding we obtain

∥F (X)⊤X −X⊤F (X)∥2 = ∥F (X)⊤X∥2 + ∥X⊤F (X)∥2 − 2tr(F (X)⊤XF (X)⊤X)

= 2(∥F (X)⊤X∥2 − tr(XF (X)⊤XF (X)⊤)

= 2(tr(∇F (X)⊤XX⊤∇F (X)− tr(XF (X)⊤XF (X)⊤)) ≥ 0.

This shows
tr(X∇F (X)⊤X∇F (X)⊤) ≤ tr(∇F (X)⊤XX⊤∇F (X)),

which concludes A−B ≥ −A and thus A ≥ B/2.

B.3 PROOF OF PROPOSITION 1

Proof of Proposition 1. We separately prove the results for the strategies of permutation sampling
and orthogonal sampling.

Permutation sampling. Recall that the gradient gradFX(In) on O(n) is given by

gradFX(In) =
1

2
(∇F (X)X⊤ −X∇F (X)⊤).

Hence by (4) and using the fact that P is a permutation matrix, we have

gradF̃X(Ir) = P (r)gradFX(In)P (r)⊤,

where P (r) ∈ Rr×n consist of the first r rows of P . Let us define by Sr
n the set of all truncated

permutation matrix P (r) ∈ Rr×n. To each element P of Sr
n, we can associate a unique "truncated"

permutation π defined by

∀i ≤ r : π(i) is such that P⊤ei = eπ(i).

Notice that π is defined only for the first r integers as the matrix P ∈ Sr
n has only r rows. Using the

fact that gradFX(In) is Skew-symmetric, we have

∥P (r)gradFX(In)P (r)⊤∥2 = 2
∑

1≤i<j≤r

(gradFX(In))
2
(π(i),π(j)) =

∑
1≤i,j≤r

(gradFX(In))
2
(π(i),π(j)).

We can check the number of element in Sr
n is given by

|Sr
n| =

n!

(n− r)!
,

as n! is the number of permutations on {1, · · · , n} and (n− r)! is the number of way to complete
the truncated permutation into a permutation on {1, · · · , n}. Therefore, we deduce that

E∥gradF̃X(Ir)∥2 = 2
(n− r)!

n!

∑
π∈Sr

n

∑
i<j

(gradFX(In))
2
(π(i),π(j)).

Let us now fix 1 ≤ k, l ≤ n. We will now count how many times does the term (gradFX(In))
2
(k,l)

appears in the sum ∑
π∈Sr

n

∑
i<j

(gradFX(In))
2
(π(i),π(j)).
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More formally, let us denote by nk,l ∈ N, the number of time (gradFX(In))
2
(k,l) appears in the

above sum. Then we have that

E∥gradF̃X(Ir)∥2 = 2
(n− r)!

n!

∑
1≤k,l≤n

nk,l(gradFX(In))
2
(k,l).

Let us now compute nk,l. For that it is equivalent to count how the number of elements π ∈ Sr
n,

such that (k, l) ∈ {(π(i), π(j)) | i < j}. This equivalent to choosing an ordered pair (i, j) inside
{1, · · · , r}2 and then count the number of elements π in Sr

n such that (k, l) = (π(i), π(j)). Hence,
we deduce that

nk,l =
r(r − 1)

2

(n− 2)!

(n− r)!
,

as there is exactly (n− 2)! permutation π such that for fixed (i, j), (k, l) = (π(i), π(j)). We deduce
therefore that

E∥gradF̃X(Ir)∥2 = 2
(n− r)!

n!

r(r − 1)

2

(n− 2)!

(n− r)!

∑
1≤k,l≤n

(gradFX(In))
2
(k,l)

=
r(r − 1)

n(n− 1)
∥gradFX(In)∥2,

which completes the proof.

Orthogonal sampling. Recall

gradF̃X(Ir) = P (r)gradF (In)P (r)⊤,

where P (r) ∈ Rr×n consist of the first r rows of P . Let us denote by M := gradFX(In). We have

∥gradF̃X(Ir)∥2 =

r∑
i,j=1

 n∑
k,l=1

PikMklPjl

2

=

r∑
i,j=1

n∑
k1,l1,k2,l2=1

Pik1
Mk1l1Pjl1Pik2

Mk2l2Pjl2

=

r∑
i ̸=j=1

n∑
k1,l1,k2,l2=1

Pik1Pjl1Pik2Pjl2Mk1l1Mk2l2

where the last inequality holds as PMP⊤ is skew symmetric as M is, hence (PMP⊤)ii = 0 for
all i. Hence, to prove the theorem, we must compute, for all set of indices, E[Pik1

Pjl1Pik2
Pjl2 ] for

i ̸= j.

First, let us consider the case where all indices k1, l1, k2, l2 are different. We will prove that in
such case E[Pik1Pjl1Pik2Pjl2 ] = 0. Indeed, notice that since all the four indices are different,
Pik1 , Pjl1 , Pik2 , Pjl2 belongs to four different columns of P . Hence, by multiplying P on the left
by an identity matrix where the 1 are k1 position on the diagonal has been replaced by −1, we can
change Pik1

to −Pik1
and Pik1

Pjl1Pik2
Pjl2 to −Pik1

Pjl1Pik2
Pjl2 . Since the distribution of P is

invariant with such operation, we deduce, by symmetry, that E[Pik1
Pjl1Pik2

Pjl2 ] = 0.

More generally, let us now consider the case where k1, l1, k2, l2 take at least 3 different values.
Then by a similar reasoning, since once column of P must contain at least a single index among
k1, k2, l1, l2 then we can show (by multiplying this column by −1) that Pik1Pjl1Pik2Pjl2 has the
same distribution as −Pik1Pjl1Pik2Pjl2 , proving again that E[Pik1Pjl1Pik2Pjl2 ] = 0. Hence, we
need to consider two cases: k1 = k2, or k1 = l1 (notice that k1 = l2 is the same case as k1 = l1).

First, let us assume that k1 = k2. Then, by the previous point, we must also have that l1 = l2. Now,
let us consider the case k1 = l1. Again, we must have k2 = l2, otherwise we would have at least 3
distinct columns.
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In summary, we have proved, by considering the three cases: k1 = k2, l1 = l2; k1 = l1, k2 = l2 ;
andk1 = l2, k2 = l1, that:

E
[
∥gradF̃X(Ir)∥2

]
=

r∑
i ̸=j=1

 n∑
l,k=1

E[P 2
ikP

2
jl]M

2
kl +

n∑
l,k=1

E[PikPjkPilPjl]MkkMll +

n∑
l,k=1

E[PikPjkPilPjl]MklMlk

 .

Which implies, by anti-symmetry of M (Mlk = −Mkl and Mkk = Mll = 0):

E
[
∥gradF̃X(Ir)∥2

]
=

r∑
i̸=j=1

n∑
l ̸=k=1

(
E[P 2

ikP
2
jl]− E[PikPjkPilPjl]

)
M2

kl. (6)

Let us now compute E[P 2
ikP

2
jl], for k ̸= l. Notice for all i,

∑n
k=1 P

2
ik = 1. Hence, by multiplying

two of this equality (for i and j) and taking the expectation, we get that for all i ̸= j,
n∑

l,k=1

E[P 2
ikP

2
jl] = 1,

which implies that
n∑

l ̸=k=1

E[P 2
ikP

2
jl] = 1−

n∑
k=1

E[P 2
ikP

2
jk].

However, notice that for all k ̸= l, the joint law of Pik, Pjl is the same. Indeed the law of P does not
change by permuting the columns of P , which implies that for all k, l, the law of Pik, Pjl is the same
as the joint law of Pi1, Pj2. Hence we have that from the previous equation that

(n2 − n)E[P 2
i1P

2
j2] = 1− nE[P 2

i1P
2
j1] (7)

Furthermore using that (
n∑

k=1

PikPjk

)2

= 0,

leading to
n∑

k ̸=l=1

PikPjkPilPjl +

n∑
k=1

P 2
ikP

2
jk = 0.

Since, by permuting the rows of P , PikPjkPilPjl has the same law as Pi1Pj1Pi2Pj2, we found that

(n2 − n)E[Pi1Pj1Pi2Pj2] + nE[P 2
i1P

2
j1] = 0. (8)

Notice that (6) leads to

E
[
∥gradF̃X(Ir)∥2

]
=

r∑
i ̸=j=1

n∑
l ̸=k=1

(
E[P 2

i1P
2
j2]− E[Pi1Pj1Pi2Pj2]

)
M2

kl.

Hence

E
[
∥gradF̃X(Ir)∥2

]
= (r2 − r)

(
E[P 2

i1P
2
j2] + E[Pi1Pj1Pi2Pj2]

)
∥gradFX(In)∥2. (9)

Using (7), we found that

E[P 2
i1P

2
j2] =

1− nE[P 2
i1P

2
j1]

n2 − n
,

and using (8), we found that

E[Pi1Pj1Pi2Pj2] = −
nE[P 2

i1P
2
j1]

n2 − n

Hence,

E
[
∥gradF̃X(Ir)∥2

]
=

r2 − r

n2 − n
∥gradFX(In)∥2.

Thus the proof is now complete.
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B.4 PROOF OF THEOREM 2

Here we first prove Theorem 2, which is the high probability convergence guarantees. Towards this
end, we require the following proposition that deduces a concentration inequality on ∥gradF̃X(Ir)∥2.

Proposition 2. When P is sampled uniformly from O(n), we have that

P
(
∥gradF̃X(Ir)∥2 ≥ r(r − 1)

2n(n− 1)
∥gradFX(In)∥2

)
≥ 1− exp

(
− r2(r − 1)2

2048n2(n− 1)2

)
When P is sampled uniformly from P(n) we have that

P
(
∥gradF̃X(Ir)∥2 ≥ r(r − 1)

n(n− 1)
∥gradFX(In)∥2

)
≥
(
n

r

)−1

Proof of Proposition 2. First, let us consider the case where P is sampled uniformly from O(n).
When P is sampled uniformly from O(n), we can see P (r) is sampled uniformly from St(n, r).
Then by Proposition 1,

E∥gradF̃X(Ir)∥2 =
r(r − 1)

n(n− 1)
∥gradFX(In)∥2.

In order to derive a high-probability result, we define the following function h : St(n, r) → R that
h(X) = ∥X⊤MX∥2 where M ∈ Rn is any Skew-symmetric matrix. And it can be verified that
when M = gradFX(In), we can show h(P (r)⊤) = ∥gradF̃X(Ir)∥2.

Let us now compute a Lipschitz constant Lh for the function h. For that, we compute the Riemannian
gradient gradh(X). Le us first compute the Euclidean gradient ∇h(X). We have, by anti-symmetry
of M :

∇h(X) = −4MXX⊤MX.

We therefore deduce the Riemannian gradient:

gradh(X) = −4MXX⊤MX + 4X{X⊤MXX⊤MX}S
= −4MXX⊤MX + 4XX⊤MXX⊤MX

This implies that in order to find the Lipschitz constant Lh, we need to bound ∥MXX⊤MX∥ and
∥XX⊤MXX⊤MX∥. Using that for any matrix A,B, we have that ∥AB∥F ≤ ∥A∥2∥B∥F and that
∥X∥2 ≤ 1 for any X ∈ St(n, r), we can bound the two term above by ∥M∥2F . Hence, we deduce
that we can take Lh = 8∥M∥2 as the Lipschitz constant for h. From (Götze & Sambale, 2023), we
deduce that for any t > 0, we have

P
(
h(X) ≤ r(r − 1)

n(n− 1)
∥M∥2 − t

)
≤ exp

(
− (n− 1)t2

512∥M∥4

)
.

Hence, by taking t = 1
2

r(r−1)
n(n−1)∥M∥2, we deduce that

P
(
h(X) ≤ r(r − 1)

2n(n− 1)
∥M∥2

)
≤ exp

(
− r2(r − 1)2

2048n2(n− 1)2

)
.

This ends the proof for the case where P is sampled uniformly from O(n). Notice that the permutation
case is obvious as each element is sampled with probability

(
n
r

)−1
, and at least one element P should

induce a value h(P (r)⊤) larger than E[h(P (r)⊤)].

Proof of Theorem 2. By Lemma 1, we see F̃X(Y ) is L-smooth with L = C0 + C1. Then we have
for any Y and W ∈ TY O(r, r),

F̃X(RetrY (W )) ≤ F̃X(Y ) + ⟨gradF̃X(Y ),W ⟩+ L

2
∥W∥2.
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Applying this inequality to the update and recalling F̃k(Y ) = F (U(Y )Xk), we have

F (Xk+1) = F̃k(RetrIr (−η gradF̃ (Ir))) ≤ F̃k(Ir)−
(
η − η2L

2

)
∥gradF̃k(Ir)∥2

= F (Xk)−
1

2L
∥gradF̃k(Ir)∥2 (10)

where we note that F̃k(Ir) = F (Xk).

Hence, we deduce from Proposition 2 and Lemma 2, that

F (Xk+1)− F (Xk) ≤ − 1

4L

r(r − 1)

n(n− 1)
∥gradFk(In)∥2 ≤ − 1

8L

r(r − 1)

n(n− 1)
∥gradF (Xk)∥2,

holds with probability at least 1− exp
(
− r2(r−1)2

2048n2(n−1)2

)
:= 1− τ(n, r). Let us denote, for all k, by

Yk ∈ {0, 1} the random variable equal to one if and only if the above inequality holds. We have that
E[Yk] ≥ 1− τ(n, r), furthermore since F (Xk+1) ≤ F (xk), we have that for all k,

∥gradF (Xk)∥2Yk ≤ 8L
n(n− 1)

r(r − 1)
(F (Xk)− F (Xk+1)).

Hence(
min

i=0,...,k−1
∥gradF (Xi)∥2

)
1

k

k−1∑
i=0

Yi ≤
1

k

k−1∑
i=0

∥gradF (Xi)∥2Yi ≤
8L

k

n(n− 1)

r(r − 1)
(F (X0)− F ∗).

We have by a Chernoff bound (see Vershynin (2018)), that for all δ ∈ (0, 1),

P

(
k−1∑
i=0

Yi ≥ (1− δ)(1− τ(n, r))k

)
≥ 1− exp

(
−δ2

2
(1− τ(n, r))k

)
. (11)

Hence, we deduce that with probability at least 1− exp
(
− δ2

2 (1− τ(n, r))k
)

,

min
i=0,...,k−1

∥gradF (Xi)∥2 ≤ 8L

k

n(n− 1)

(1− δ)(1− τ(n, r))r(r − 1)
(F (X0)− F ∗).

Finally, the proof for the permutation case is exactly similar and thus we omit here. This suggests
lim infk→∞ ∥gradF (Xk)∥2 = 0 almost surely.

For the analysis under the Riemannian PL condition, once there exists k0 such that Xk0
∈ U , then by

the convergence almost surely in gradient norm and the fact that X∗ is an isolated local minima, we
conclude that there exists a subsequence Xkj

, for k0 ≤ k1 < k2 < ... converging to X∗. For such a
subsequence, it is clear that F (Xkj

) converges to F (X∗). Furthermore, because F (Xk) converges as
in (10), then F (Xk) must converge to F (X∗) almost surely. By (Rebjock & Boumal, 2024), we also
know that quadratic growth holds (due to PL condition), i.e., F (Xk)−F (X∗) ≥ µ

2 ∥Xk −X∗∥2 (by
X∗ is isolated). Then we have ∥Xk −X∗∥2 → 0 almost surely. Thus, Xk ∈ U for all k ≥ k0.

Next, we derive the convergence rate. If we use orthogonal sampling, we show the following results
by induction:

F (Xk0+k)− F (X∗) ≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)∑k−1
i=0 Yi (

F (Xk0)− F (X∗)
)

where Yi ∈ {0, 1} is the same random variable defined above. It is clear at k = 1, by (10) and by the
same argument as above, we have

F (Xk0+1)− F (X∗) = F (Xk0+1)− F (Xk0) + F (Xk0)− F (X∗)

≤ − 1

8L

r(r − 1)

n(n− 1)
∥gradF (Xk0

)∥2Y0 + F (Xk0
)− F (X∗)

≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)Y0 (
F (Xk0

)− F (X∗)
)
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Now there exists an iteration k′ ≥ 1 such that for all k < k′, we have

F (Xk0+k)− F (X∗) ≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)∑k−1
i=0 Yi (

F (Xk0)− F (X∗)
)
.

Then we verify for k = k′,

F (Xk0+k′)− F (X∗) = F (Xk0+k′)− F (Xk0+k′−1) + F (Xk0+k′−1)− F (X∗)

≤ − 1

8L

r(r − 1)

n(n− 1)
∥gradF (Xk0+k′−1)∥2Yk′−1 + F (Xk0+k′−1)− F (X∗)

≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)Yk′−1 (
F (Xk0+k′−1)− F (X∗)

)
≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)Yk′−1
(
1− µ

4L

r(r − 1)

n(n− 1)

)∑k′−2
i=0 Yi (

F (Xk0)− F (X∗)
)

≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)∑k′−1
i=0 Yi (

F (Xk0
)− F (X∗)

)
where the second last inequality is by induction. This completes the induction. Then using a similar
argument, we have

F (Xk0+k)− F (X∗) ≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)∑k−1
i=0 Yi (

F (Xk0
)− F (X∗)

)
≤
(
1− µ

4L

r(r − 1)

n(n− 1)

)(1−δ)(1−τ(n,r))k (
F (Xk0

)− F (X∗)
)

≤ exp

(
− µ

4L

r(r − 1)

n(n− 1)
(1− δ)(1− τ(n, r))k

)(
F (Xk0)− F (X∗)

)
with probability at least 1− exp

(
− δ2

2 (1− τ(n, r))k
)

by (11). The proof for the permutation case
is the same and thus omitted.

For simplicity, we fix δ = 1/2 such that the results hold with probability at least 1 −
exp (−(1− τ(n, r))k/8) for orthogonal sampling and results hold with probability at least 1 −
exp(−

(
n
r

)−1
k/8) for permutation sampling.

B.5 PROOF OF THEOREM 1

Proof of Theorem 1. By Lemma 1, we see F̃X(Y ) is L-smooth with L = C0 + C1. Then we have
for any Y and W ∈ TY O(r, r),

F̃X(RetrY (W )) ≤ F̃X(Y ) + ⟨gradF̃X(Y ),W ⟩+ L

2
∥W∥2.

Applying this inequality to the update and recalling F̃k(Y ) = F (U(Y )Xk), we have

F (Xk+1) = F̃k(RetrIr (−η gradF̃ (Ir))) ≤ F̃k(Ir)−
(
η − η2L

2

)
∥gradF̃k(Ir)∥2

= F (Xk)−
1

2L
∥gradF̃k(Ir)∥2

where we note that F̃k(Ir) = F (Xk). Taking expectation on both sides with respect to the randomness
in the current iteration, we have

EkF (Xk+1) ≤ F (Xk)−
1

2L
Ek∥gradF̃k(Ir)∥2

= F (Xk)−
1

2L

r(r − 1)

n(n− 1)
∥gradFk(In)∥2
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where recall Fk(U) = F (UXk).

Hence by Lemma 2, we have ∥gradFk(In)∥2 ≥ 1
2∥gradF (Xk)∥2 and taking full expectation,

E[F (Xk+1)− F (Xk)] ≤ − 1

4L

r(r − 1)

n(n− 1)
E[∥gradF (Xk)∥2], (12)

Hence telescoping the inequality from i = 0, ..., k − 1 gives

1

k

k−1∑
i=0

E[∥gradF (Xi)∥2] ≤
4L

k

n(n− 1)

r(r − 1)
(F (X0)− F ∗).

Then we notice that mini=0,...,k−1 E[∥gradF (Xi)∥2] ≤ 1
k

∑k−1
i=0 E[∥gradF (Xi)∥2] finishes the

proof for the non-convex case.

To show the second result on convergence under PL condition, we notice that by Definition 1, and
that minX∈U F (X) = F (X∗). Then once Xk0

∈ U , we can follow the same proof that Xk ∈ U for
all k ≥ k0. Then we have using, (12) and Definition 1 that

E[F (Xk+1)− F (X∗)] = E[F (Xk+1)− F (Xk)] + E[F (Xk)− F (X∗)]

≤ − 1

4L

r(r − 1)

n(n− 1)
E[∥gradF (Xk)∥2] + E[F (Xk)− F (X∗)]

≤ − 2µ

4L

r(r − 1)

n(n− 1)
E[F (Xk)− F (X∗)] + E[F (Xk)− F (X∗)]

≤
(
1− µ

2L

r(r − 1)

n(n− 1)

)
E[F (Xk)− F (X∗)].

Let k0 be a sufficiently large iteration such that Xk0
∈ U . Then, we have E[F (Xk0+k)− F (X∗)] ≤

exp(− µ
2L

r(r−1)
n(n−1)k)E[F (Xk)− F (X∗)], where we use (1− a)k ≤ exp(−ak) for k > 0.

B.6 PROOF OF THEOREM 3

Proof of Theorem 3. From Lemma 1, we know that F is L-smooth, where L = C0 + C1. Then

F (Xk+1) = F̃k(RetrIr (−ηgradf̃k(Ir; ξk)))

≤ F̃k(Ir)− η⟨gradF̃k(Ir), gradf̃k(Ir; ξk)⟩+
η2L

2
∥gradf̃k(Ir; ξk)∥2.

Taking expectation with respect to ξk, we obtain

Eξk [F (Xk+1)] ≤ Eξk [F (Xk)]− η∥gradF̃k(Ir)∥2 +
η2L

2
Eξk∥gradf̃k(Ir; ξk)∥2,

where we notice F̃k(Ir) = F (Xk) and use the unbiasedness assumption. In addition, we can bound

Eξk∥gradf̃k(Ir; ξk)− gradF̃k(Ir)∥2

= Eξk∥Pk(r)
(
gradfk(In; ξk)− gradFk(In)

)
Pk(r)

⊤∥2

≤ 1

4
Eξk∥

(
∇f(Xk; ξk)X

⊤
k −∇F (Xk)X

⊤
k

)
+
(
Xk∇F (Xk)

⊤ −Xk∇f(Xk; ξk)
)
∥2

≤ Eξk∥∇f(Xk; ξk)−∇F (Xk)∥2 ≤ σ2

where we use the definition of f̃k, fk, F̃k, Fk and orthogonality of Pk(r) and Xk. The last inequality
is by bounded variance assumption.

Then we further expand

Eξk∥gradf̃k(Ir; ξk)∥2 = Eξk∥gradF̃k(Ir)∥2 + Eξk∥gradf̃k(Ir; ξk)− gradF̃k(Ir)∥2

≤ ∥gradF̃k(Ir)∥2 + σ2,
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where we use the unbiasedness in the first equality. This gives

Eξk [F (Xk+1)] ≤ Eξk [F (Xk)]−
(
η − η2L

2

)
∥gradF̃k(Ir)∥2 +

η2Lσ2

2
.

Now taking expectation with respect to the randomness in Pk, we can show from Proposition 1 that

Ek[F (Xk+1)] ≤ F (Xk)−
(
η − η2L

2

) r(r − 1)

n(n− 1)
∥gradFk(In)∥2 +

η2Lσ2

2

≤ F (Xk)−
(
η − η2L

2

) r(r − 1)

2n(n− 1)
∥gradF (Xk)∥2 +

η2Lσ2

2
,

where we denote Ek to represent the expectation over randomness in iteration k and the second
inequality is by Lemma 2. Taking full expectation, we obtain

E[F (Xk+1)− F (Xk)] ≤ −
(
η − η2L

2

) r(r − 1)

2n(n− 1)
E∥gradF (Xk)∥2 +

η2Lσ2

2
(13)

Rearranging the terms and summing over k ∈ [K] gives(
η − η2L

2

) r(r − 1)

2n(n− 1)

K−1∑
k=0

E∥gradF (Xk)∥2 ≤ F (X0)− F ∗ +
Kη2Lσ2

2
.

Choosing η = min{L−1, cσ−1K−1/2} for some constant C > 0. Then η − η2L/2 ≥ η/2 and thus
we can show

1

K

K−1∑
k=0

E∥gradF (Xk)∥2 ≤ 1

K

4n(n− 1)

r(r − 1)
max{L, σ

√
K/c}∆0 +

4n(n− 1)

r(r − 1)
ηLσ2

≤ 4n(n− 1)

r(r − 1)

(L∆0

K
+

σ∆0

c
√
K

+
Lσc√
K

)
=

4n(n− 1)

r(r − 1)

(L∆0

K
+

2σ
√
∆0L√
K

)
where we let ∆0 = F (X0)− F ∗ and we choose c =

√
∆0/L to minimize the upper bound. Finally,

noticing mini=0,...K−1 E∥gradF (Xk)∥2 ≤ 1
K

∑K−1
k=0 E∥gradF (Xk)∥2 completes the proof under

nonconvex loss.

To show the second result on convergence under PL condition, suppose Xk ∈ U . For such k, we have
by (13)
E[F (Xk+1)− F (X∗)] = E[F (Xk+1)− F (Xk)] + E[F (Xk)− F (X∗)]

≤ −
(
η − η2L

2

) r(r − 1)

2n(n− 1)
E∥gradF (Xk)∥2 +

η2Lσ2

2
+ E[F (Xk)− F (X∗)]

≤ −
(
η − η2L

2

) r(r − 1)

n(n− 1)
µE[F (Xk)− F (X∗)] +

η2Lσ2

2
+ E[F (Xk)− F (X∗)]

=

(
1− µ(η − η2L/2)

r(r − 1)

n(n− 1)

)
E[F (Xk)− F (X∗)] +

η2Lσ2

2

Given η ≤ L−1, we obtain E[F (Xk+1) − F (X∗)] ≤
(
1 − µ

2L
r(r−1)
n(n−1)

)
E[F (Xk) − F (X∗)] + σ2

2L .
Then for k0, ..., k1 such that Xk0 , ..., Xk1 ∈ U , we have

E[F (Xk1
)− F (X∗)]

≤
(
1− µ

2L

r(r − 1)

n(n− 1)

)k1−k0

E[F (Xk0
)− F (X∗)] +

σ2

2L

k1−k0−1∑
i=0

(
1− µ

2L

r(r − 1)

n(n− 1)

)i

≤
(
1− µ

2L

r(r − 1)

n(n− 1)

)k1−k0

E[F (Xk0
)− F (X∗)] +

σ2

µ

n(n− 1)

r(r − 1)

≤ exp

(
− µ

2L

r(r − 1)

n(n− 1)
(k1 − k0)

)
E[F (Xk0

)− F (X∗)] +
σ2

µ

n(n− 1)

r(r − 1)

where the second inequality is by
∑k−1

i=0 (1− α)i ≤ 1
α .
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C ON THE EXACT CONVERGENCE OF RSDM

In this section, we examine the exact convergence of RSDM. Towards this end, we require RSDM to
be implemented according to Algorithm 2, following a specific sampling strategy. We implement
RSDM with a double loop and for each outer iteration k, we sample {P s

k}
S−1
s=0 such that the following

condition holds:
S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 ≥ Cp∥gradFk(In)∥2 (14)

for some constant Cp > 0. This is a non-degenerate condition over the selection of random matrix
P s
k over certain iterations such that projected gradient does not vanish.

Let us define by Sr
n the set of all truncated permutation matrix P (r) ∈ Rr×n. To each element P of

Sr
n, we can associate a unique "truncated" permutation π defined by

∀i ≤ r : π(i) is such that P⊤ei = eπ(i).

Notice that π is defined only for the first r integers as the matrix P ∈ Sr
n has only r rows.

Proposition 3. Let S = n!
(n−r)! , and assume that the matrices {P s

k}
S−1
s=0 are randomly sampled,

without replacement, from Sr
n (at each iteration s, we pick randomly a matrix from Sr

n that has not
already been chosen) then condition (14) holds with Cp = (n−2)!r(r−1)

(n−r)! .

Proof. The proof follows the same idea with the proof of Proposition 1 in the permutation case.
Indeed let us fix a matrix P s

k (r) in Sr
n, with associated permutation π. Using the fact that gradFk(In)

is skew symmetric, we have

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 = 2
∑

1≤i<j≤r

(gradFk(In))
2
(π(i),π(j)) =

∑
1≤i,j≤r

(gradFk(In))
2
(π(i),π(j)).

Hence, we can write that
S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 =
∑
π∈Sr

n

∑
1≤i,j≤r

(gradFk(In))
2
(π(i),π(j)).

Notice that we obtain the same expression as in the proof of Proposition 1 but without the factor
n!

(n−r)! . Indeed, the summation on s term in the above equation corresponds to what we denoted by

E∥gradF̃k(Ir)∥2 in the proof of the proposition. Hence following the same argument, we have that
S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 =
n!

(n− r)!

r(r − 1)

n(n− 1)
∥gradFk(In)∥2,

that is
S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 =
(n− 2)!r(r − 1)

(n− r)!
∥gradFk(In)∥2.

Next, we analyze the exact convergence if we sample according to condition (14).

Before we derive the results, we recall the notation that F̃ s
k (Y ) := F (Us

k(Y )Xs
k) and F s

k (U) :=
F (UXs

k). We also require the following lemma from Chen et al. (2020) that bounds the retraction on
Stiefel manifold with the Euclidean retraction, i.e., addition.
Lemma 3 (Chen et al. (2020)). For all X ∈ St(n, p) and U ∈ TXSt(n, p), there exists a constant
M > 0 such that ∥RetrX(U)−X∥ ≤ M∥U∥.
Theorem 4. Under Assumption 1, suppose RSDM is implemented as in Algorithm 2. Then let η = 1

L ,
with L = C0 + C1. We can obtain for all k ≥ 1,

min
i=0,...,k−1

∥gradF (Xi)∥2 ≤ 1

k

2L

Cp(1 + C2
1L

−2M2S2)
(F (X0)− F ∗).
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Algorithm 2 RSDM with partial deterministic sampling

1: Initialize X0 ∈ St(n, p).
2: for k = 0, ...,K − 1 do
3: Sample {P s

k}
S−1
s=0 such that condition (14) holds.

4: Set X0
k = Xk.

5: for s = 0, ..., S − 1 do
6: Let F̃ s

k (Y ) = F (Us
k(Y )Xk) where Us

k(Y ) is defined in (2) with random matrix P s
k .

7: Compute Riemannian gradient gradF̃ s
k (Ir).

8: Update Y s
k = RetrIr (−η gradF̃ s

k (Ir)).
9: Set Xs+1

k = Us
k(Y

s
k )X

s
k .

10: end for
11: Set Xk+1 = XS

k .
12: end for

Proof of Theorem 4. Following the analysis of Theorem 1, we have for any k,

F (Xs+1
k ) ≤ F (Xs

k)−
1

2L
∥gradF̃ s

k (Ir)∥2. (15)

Next, recall that gradF s
k (In) = (∇F (Xs

k)−∇F (Xs
k)

⊤)/2. Then we show for any s = 0, ..., S − 1
and any k,

∥gradF s
k (In)− gradFk(In)∥ ≤ ∥∇F (Xs

k)−∇F (Xk)∥ ≤ C1∥Xs
k −Xk∥

≤ C1

s−1∑
i=0

∥Xi+1
k −Xi

k∥

= C1

s−1∑
i=0

∥P i
k(r)(Y

i
k − Ir)P

i
k(r)X

i
k∥

≤ C1

s−1∑
i=0

∥Y i
k − Ir∥

≤ C1ηM

s−1∑
i=0

∥gradF̃ i
k(Ir)∥ (16)

where the first and third inequalities are by triangle inequality and the second inequality is by
Assumption 1 that (Euclidean) Hessian is upper bounded. The fourth inequality is by the orthogonality
of P i

k(r) and Xi
k. The last inequality is by Lemma 3.

Then we can bound for any k, s

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2

≤ 2∥P s
k (r)gradF

s
k (In)P

s
k (r)

⊤∥2 + 2∥P s
k (r)(gradF

s
k (In)− gradFk(In))P

s
k (r)

⊤∥2

≤ 2∥P s
k (r)gradF

s
k (In)P

s
k (r)

⊤∥2 + 2C2
1η

2M2S

s−1∑
i=0

∥gradF̃ i
k(Ir)∥2.

where the second inequality is by (16). Summing over the above inequality yields

S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2 ≤ (2 + 2C2
1η

2M2S2)

S−1∑
s=0

∥P s
k (r)gradF

s
k (In)P

s
k (r)

⊤∥2

= (2 + 2C2
1η

2M2S2)

S−1∑
s=0

∥gradF̃ s
k (Ir)∥2. (17)
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Finally, we sum over the inequality (15) for s = 0, ..., S − 1, which obtains

F (XS
k ) = F (X0

k)−
1

2L

S−1∑
s=0

∥gradF̃ s
k (Ir)∥2

≤ F (X0
k)− (L−1 + C2

1L
−3M2S2)

S−1∑
s=0

∥P s
k (r)gradFk(In)P

s
k (r)

⊤∥2

≤ F (X0
k)− Cp(L

−1 + C2
1L

−3M2S2)∥gradFk(In)∥2

≤ F (X0
k)− Cp(L

−1 + C2
1L

−3M2S2)/2∥gradF (Xk)∥2

where the second inequality is by (17) and η = 1/L. The second inequality is by (14). The last
inequality is by Lemma 2.

Noticing tht XS
k = Xk+1 and X0

k = Xk and telescoping the result, we have

1

k

k−1∑
i=0

∥gradF (Xi)∥2 ≤ 1

k

2L

Cp(1 + C2
1L

−2M2S2)
(F (X0)− F ∗),

which shows the desired result.

D ADDITIONAL NUMERICAL EXPERIMENTS ON DIFFERENT p

In this section, we investigate the performance of proposed RSDM across various settings of
p on the PCA problem. Following Section 7.2, we employ the same procedures in generat-
ing the data and fix dimension n = 2000. We sweep across a range of values of p, i.e.,
p = 100, 300, 500, 800, 1000, 1200, 1500, 1800. For each problem instance, we also run RSDM
with different submanifold size r.

The convergence of RSDM in comparison to RGD is given in Figure 8. We observe that indeed
when p becomes small, the performance gap between RSDM and RGD is decreasing, which is in
accordance with derived total complexities. Nevertheless, we still observe that RSDM is able to
outperform RGD across all the settings, except for the case when p = 100. This validates the benefits
of RSDM even when p becomes smaller. Nonetheless, we admit that when p becomes significantly
small relative to n (as in the case when p = 100), RGD may perform better because the cost of
retraction is much less pronounced. However, this motivates a hybrid design of RSDM such that
when p is relatively small, it effectively behaves similarly to RGD. This is left for future exploration.

An interesting observation is that when p = 300 and p = 500, selecting r = p can still yield
significantly improved convergence especially near optimality. We conjecture this is due to the
randomized submanifold descent leads to better-conditioned loss landscape around optimality, and
thus performs well particularly for ill-conditioned problems. The theoretical analysis of such claim is
left for future works.

E COMPARISON TO RSSM

In this section, we compare our method with RSSM (Cheung et al., 2024), which can be viewed as
projected Euclidean coordinate descent on the Stiefel manifold. In particular, Algorithm 1 of (Cheung
et al., 2024) translates into the following update steps for smooth optimization. For each iteration k,

1. Pick index set C ⊂ [p] with no repetition in C.

2. Compute partial Euclidean gradient and project to tangent space:

gradCF (Xk) = XCskew(X
⊤
C∇CF (Xk)) + (I −XX⊤)∇CF (Xk),

where XC ∈ Rn×|C| is the columns of X corresponding to the index in C and skew(A) =
(A − A⊤)/2 denotes the skew-symmetric operation. ∇CF (X) is the partial Euclidean
gradient with respect to the columns of X in C.
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Figure 8: Experiments on PCA problem with various settings of p. The numbers in brackets
correspond to n, p respectively.

3. Update the columns of Xk in C by projected gradient descent while keeping other columns
the same:

Xk+1
C = ProjSt(n,|C|)(X

k
C − ηgradCF (Xk)),

where ProjSt(n,p)(·) denotes the projection from Euclidean space to Stiefel manifold via
SVD.

Comparison to proposed RSDM. RSSM can be viewed as Euclidean coordinate descent projected
to Stiefel manifold. Let r = |C| < p be the number of columns sampled. The gradient computation
requires O(npr) complexity and iterate update requires O(nr2) for non-standard linear algebra
operation. Thus the per-iteration complexity is costly than our proposed RSDM (with permutation
sampling), which requires O(nr2) for gradient complexity and O(r3) for non-standard linear algebra
operation. Thus, we see RSDM-P requires much per-iteration complexity compared to RSSM. In
addition, apart from the advantages in per-iteration complexity, RSDM also allows easy generalization
to quotient manifolds, such as Grassmann manifold, while this appears challenging for RSSM due to
its operations along the columns.

Numerical comparisons. To further validate the benefits of RSDM to RSSM (Cheung et al.,
2024), we have implemented RSSM with a fixed stepsize and choose C from [p] uniformly without
repetition.1 We have tuned both r = |C| and stepsize η for RSSM to the best performance. We
compare the performance on the PCA problem where we tune r = 700 and η = 0.1 for RSSM.

The results are included in Figure 9. We notice that RSDM (either with orthogonal or permutation
sampling) achieves significantly faster convergence compared to RSSM. This verifies the numerical
benefits of RSDM over RSSM.

F EXTENSION TO MINI-BATCH SETTINGS

In this section, we generalize the analysis of Section 5.2 to mini-batch settings, namely

min
X∈St(n,p)

{
F (X) =

1

N

N∑
i=1

fi(X)
}
, (18)

where fi, i ∈ [N ] represents N component functions.

1It is worth mentioning that Cheung et al. (2024) did not include any numerical experiments nor provide the
code.
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Figure 9: Comparison of proposed RSDM with RSSM (Cheung et al., 2024) on the PCA problem.
We observe RSDM converges significantly faster than RSSM.

We accordingly modify Algorithm 1 by sampling Bk ⊂ [N ] uniformly from [N ] with replacement.
Without loss of generality, we set |Bk| = B for all k. Then we replace the Riemannian mini-batch
gradient as

gradf̃Bk
(Ir) :=

1

B

∑
i∈Bk

gradf̃k
i (Ir),

where we use f̃k
i (Y ) = fi(Uk(Y )Xk) similarly as before. Then we update the iterate with the

mini-batch gradient gradf̃Bk
(Ir). Notice that by the definition, we have F̃k(Y ) = 1

N

∑N
i=1 f̃

k
i (Y ).

Because Bk is sampled uniformly with replacement, we can easily see that EBk
[gradf̃Bk

(Ir)] =

gradF̃k(Ir).

Before we analyze the convergence, we require the following assumption on bounded variance.
Assumption 3. The gradient of each component function has bounded variance, i.e., E∥∇fi(X)−
∇F (X)∥2 ≤ σ2 for any i ∈ [N ] and X ∈ St(n, p).
Theorem 5. Consider mini-batch setting as in (18) and solve with mini-batch gradient descent with
batch size B. Under Assumption 1 and 3, suppose we choose η = min{L−1,

√
B∆0/Lσ

−1K−1/2},
where we denote ∆0 = F (X0)− F ∗. Then we can show

min
i=0,...K−1

E∥gradF (Xk)∥2 ≤ 4n(n− 1)

r(r − 1)

(L∆0

K
+

2σ
√
∆0L√
KB

)
.

Suppose there exist Xk0
, ..., Xk1

∈ U for some k1 > k0, where U is defined in Theorem 1. Then we
have E[F (Xk1

)− F (X∗)] ≤ exp
(
− µ

2L
r(r−1)
n(n−1) (k1 − k0)

)
E[F (Xk0

)− F (X∗)] + σ2

Bµ
n(n−1)
r(r−1) .

Proof of Theorem 5. From Lemma 1, we know that F is L-smooth, where L = C0 + C1. Then

F (Xk+1) = F̃k(RetrIr (−ηgradf̃Bk
(Ir)))

≤ F̃k(Ir)− η⟨gradF̃k(Ir), gradf̃Bk
(Ir)⟩+

η2L

2
∥gradf̃Bk

(Ir)∥2.

Taking expectation with respect to Bk, we obtain

EBk
[F (Xk+1)] ≤ EBk

[F (Xk)]− η∥gradF̃k(Ir)∥2 +
η2L

2
EBk

∥gradf̃Bk
(Ir)∥2,

where we notice F̃k(Ir) = F (Xk) and by the unbiasedness. In addition, we can bound

EBk
∥gradf̃Bk

(Ir)− gradF̃k(Ir)∥2

= EBk
∥Pk(r)

(
gradfBk

(In)− gradFk(In)
)
Pk(r)

⊤∥2

≤ 1

4
EBk

∥
(
∇fBk

(Xk)X
⊤
k −∇F (Xk)X

⊤
k

)
+
(
Xk∇F (Xk)

⊤ −Xk∇fBk
(Xk)

)
∥2

≤ EBk
∥∇fBk

(Xk)−∇F (Xk)∥2

=
1

B2

∑
i∈Bk

E∥∇fi(Xk)−∇F (Xk)∥2 ≤ σ2

B
,
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where the second last inequality is by independence of samples in Bk and the last inequality is by
bounded variance assumption (Assumption 3).

The subsequence analysis follows exactly the same as in Theorem 3, where we replace σ2 with
σ2/B.

G COMPARISON TO OBCD

This section compares proposed RSDM to OBCD (Yuan, 2023). We first remark that Yuan (2023)
is primarily designed for nonsmooth optimization and thus optimality conditions and convergence
analysis are largely different. Here we adapt the algorithm of OBCD to the smooth case.

In this case, because they parameterize Xk+1 = Xk + UB(V − Ir)U
⊤
BXk where UB ∈ Rn×r is a

random truncated permutation matrix, and V ∈ Rr×r, they minimize a quadratic upper bound for
F (Xk + UB(V − Ir)U

⊤
BXk). Suppose F is LF smooth, then the subproblem translates into

min
V ∈St(r,r)

⟨V − Ir, U
⊤
B∇F (Xk)X

⊤
k UB⟩+

LF

2
∥V − Ir∥2 (19)

for some constant LF that depends on the smoothness of F . And thus there exists a global solution
to (19), i.e., V ∗ is the top r eigenvectors of Ir − 1

LF
U⊤
B∇F (Xk)X

⊤
k UB .

This is related but different to our update of Y (according to our notation) when we use permutation
sampling strategy. In particular, we update Y by

Y = RetrIr (−ηgradF̃k(Ir)) = RetrIr
(
− η

2
Pk(r)(∇F (Xk)X

⊤
k −Xk∇F (Xk)

⊤)Pk(r)
⊤).

The key difference is that we have a skew-symmetric operation for ∇F (Xk)X
⊤
k , which renders the

update direction properly defined as Riemannian gradient on O(r). In contrast, OBCD leverages the
Euclidean gradient for the update.

This difference leads to a large deviation in the proof strategy, making the analysis of (Yuan, 2023)
less aligned with common analysis on Riemannian manifolds. This makes their developments more
difficult to generalize to other manifolds of interest and incorporate additional optimization techniques
on manifolds, such as adaptive gradients, acceleration, Newton based methods, etc.

Apart from this main difference, we also summarize other differences of their developments compared
to this work:

• They show convergence to block-k stationary points, which seems to be weaker than our
established convergence to stationary points (as shown in Theorem 5.5 of (Yuan, 2023).

• Their convergence rate in Theorem 6.3 depends on a large binomial coefficient Cr
n while

our convergence has a coefficient n2r−2.
• They only consider UB to be (truncated) permutation while we consider both permutation

and general orthogonal matrix.
• We have shown convergence in stochastic settings and shown extension to other quotient

manifolds, which is not the case for (Yuan, 2023).
• They only show convergence in expectation while we show convergence both in expectation

and with high probability and almost surely.

Finally, we compare the proposed RSDM to OBCD numerically on the PCA problem. We have
solved V from (19) analytically with SVD. We choose r = 700, which is the same as RSDM for
comparability and tune stepsize accordingly. The convergence plots are given in Figure 10 where
we observe that OBCD (Yuan, 2023) converges significantly slower compared to RSDM. This
suggests the critical difference in the update directions (Riemannian gradient for proposed RSDM
and Euclidean gradient for OBCD) has led to significant convergence disparities, thus verifying
superiority of the framework of Riemannian optimization employed by RSDM in this paper.
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Figure 10: Comparison of proposed RSDM with OBCD (Yuan, 2023) on the PCA problem. We
observe RSDM converges significantly faster than OBCD.
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