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ABSTRACT

We investigate whether data alignment — the similarity between training and
evaluation data — is a stronger predictor of language model performance than
dataset size. Through controlled experiments, we demonstrate that alignment
coefficients consistently predict downstream performance across three distinct
metrics: Task2Vec embeddings (72 = 0.80-0.96), GZIP compression distance
(r? = 0.90), and sentence embeddings (r? = 0.80). We consider two experi-
mental settings: (1) pre-training on domain-specific corpora (PubMed, USPTO)
and evaluating cross-domain performance, and (2) fine-tuning on autoformaliza-
tion datasets with varying alignment to formal verification tasks. Our results show
strong negative correlations between alignment and perplexity across both set-
tings, with highly aligned small datasets (1.4k tokens) outperforming larger mis-
aligned datasets (4.1k tokens) by 53% in perplexity reduction. These findings
provide quantitative evidence that strategic data selection based on alignment can
be more effective than simply scaling dataset size, offering practical guidance for
efficient model training in specialized domains.

1 INTRODUCTION

Research within the domain of Large Language Models (LLMs) has historically placed an emphasis
on the size of datasets used for pre-training, claiming it is one of the primary determinants of LLM
performance (Chowdhery et al., [2022; Nostalgebraist, [2022; |OpenAll 2023} |Google, 2023b). Em-
pirical evidence demonstrates this trend, as models trained on large datasets exhibit superior perfor-
mance. Notably, GPT-4, with its conjectured 1 petabyte dataset, markedly surpasses GPT-3—which
is trained on a comparatively modest 45 terabytes—in terms of response quality and contextual accu-
racy (OpenAl [2023). However, emerging research indicates that other dimensions, such as dataset
diversity, play a crucial role in the efficacy of LLMs, with high-performing models often arising
from datasets with high diversity coefficients (Lee et al.|[2023).

Current discourse predominantly highlights the scale of a dataset as a pivotal factor in its capacity
to effectively pre-train or fine-tune a model, with emphasis frequently placed on quantitative met-
rics—specifically, the sheer size of the dataset (Lee et al.| 2023)). This investigation, however, seeks
to shift this paradigm to consider qualitative assessments, notably the alignment of datasets with the
specific evaluation tasks. Building upon methodologies established in previous studies for quanti-
fying dataset alignment, our research aims to examine the role of data quality in the pre-training
and fine-tuning process, verifying the hypothesis that increased data alignment could significantly
improve LLM performance. This paradigm challenges the emphasis on dataset size, suggesting an
alternative approach to dataset importance and optimization in the context of LLM training — i.e.,
select the most aligned data to your target task. We explore this via Autoformalization.

Autoformalization is defined as the transformation of concepts in natural language to formalized,
structured language like mathematical proofs or code. The creation of a proficient Autoformaliza-
tion tool would not only drastically reduce the substantial costs associated with manual formalization
efforts but could also serve as a bridge linking the automated theorem verification and computational
algebra with the extensive body of mathematical knowledge predominantly recorded in natural lan-
guage. Moreover, the capacity for Autoformalization underscores a machine’s adeptness at navigat-



Under review as a conference paper at ICLR 2026

ing the subtleties of human language and the precision required by formal linguistic systems (Wu
et al., [2022).

We employ a comprehensive evaluation by comparing the performance of fine-tuned LLMs on quan-
titatively aligned data sets against those calibrated primarily for scale. We engage a broad spectrum
of Autoformalization tasks across different domains and complexities, ensuring the thoroughness
and robustness of our results.

2 METHODS

Our experiment is designed to explore the hypothesis that there exists a negative correlation be-
tween the alignment score of a dataset with a benchmark and the perplexity score (see Appendix
C) of a Large Language Model (LLM) when either pre-trained or fine-tuned on this dataset and
evaluated against said benchmark. The crux of our investigation lies in the assertion that a dataset
closely aligned with the benchmark will facilitate the LLM’s learning process, thereby enhancing its
performance as evidenced by lower perplexity scores.

2.1 CONCEPTUAL FRAMEWORK

The alignment score is a critical metric in our analysis, offering insight into the degree of congru-
ence between a dataset and the chosen benchmark for evaluating downstream performance, such
as Autoformalization. We posit that an LLM trained on a dataset that mirrors the characteristics of
the benchmark will demonstrate superior performance. This performance is quantitatively measured
using the perplexity score. For example, in the fine-tuning setting we measure model perplexity on
the debugl AF benchmark, where lower scores denote higher model accuracy and effectiveness.

2.2 DATASET ALIGNMENT QUANTIFICATION

To quantify dataset alignment, we employ the Task2Vec Alignment Coefficient, which facilitates a
rigorous comparative assessment of dataset similarity (Lee et al.l 2023).

The alignment coefficient between two datasets, D1 and Ds, is calculated as:

align(Dy, Ds) = 1 = Ep,~p, By~0,[d(f(B1), f(B2))] (D

where [E denotes the expectation over batches B; and Bs sampled from datasets Dy and Do, re-

spectively, and d(f(By), f(Bz)) represents the distance between the embeddings of these batches.

Unless otherwise specified, d is defined as cosine distance and is derived through f which is the
Task2Vec batch-embedding computed with a fixed probe network (GPT-2 in our experiments) by
estimating the diagonal Fisher information of the probe’s parameters on B and flattening it to a
vector |Achille et al.| (2019)).

For the purposes of our experimental framework, we consider the alignment of the entire dataset
rather than focusing solely on specific subsets. We assume that the alignment properties of a dataset
subset are reflective of the dataset as a whole. Consequently, our alignment evaluations are predi-
cated on the comprehensive dataset, offering a holistic view of dataset congruence and its impact on
model performance.

3 EXPERIMENTS & RESULTS

3.1 EFFECTS OF DATA ALIGNMENT BETWEEN PRE-TRAINING AND EVALUATION DATA
3.1.1 EXPERIMENTAL SETUP AND MOTIVATION

To evaluate the effect of data alignment between pre-training data and downstream task, we pre-
train 51M parameter GPT-2 models (Radford et al.,2019)) for 1.31B tokens on one of three datasets:
PubMed Abstracts, a dataset of medicine-related abstracts; USPTO Backgrounds, a dataset of patent
application background sections; and a dataset produced by concatenating USPTO and PubMed Abs.
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By controlling for all training hyperparameters aside from the pretraining dataset, we minimize
the effect of confounding variables on the relationship between data alignment and downstream
performance. We proceed to evaluate these pre-trained models on a variety of evaluation datasets,
which vary in terms of their similarity to the three pre-training datasets, both empirically in terms
of the alignment coefficient and qualitatively based on the topic and structure of text within each
dataset. By evaluating language modeling cross-entropy loss for a given pre-trained model on a
given evaluation dataset, we directly test the importance of pre-training data alignment with the
model’s downstream task in order to illustrate the relationship between alignment and downstream
performance.

3.1.2 PRE-TRAINING EXPERIMENT RESULTS

Data Alignment Coefficient vs. Evaluation Cross Entropy Loss
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Figure 1: The data alignment coefficient demonstrates a strong relationship with model perfor-
mance (cross-entropy loss) on various evaluation datasets (r> = 0.8). The data alignment coeffi-
cient is computed between a model’s pre-training dataset (PubMed Abs., USPTO, or PubMed Abs.
+ USPTO) and a single evaluation dataset (represented by a unique color).

Figure[I|demonstrates that there is a moderate—strong relationship between the alignment coefficient
(between pre-train data and evaluation data) and model performance (cross-entropy loss) pooled
across various evaluation datasets (1> = 0.8). As expected, when datasets share similarities in topic
and structure, the alignment coefficient is higher.

These results demonstrate that the alignment between pre-training corpora and evaluation data is a
significant driver of model performance. For instance, when considering the extremes of alignment
and lack thereof, the most aligned train-evaluation data (USPTO train with USPTO validation data)
produces approximately 2.9 lower absolute CE loss compared to the least aligned train-evaluation
data (PubMed Abs. train with Open Subtitles validation data). Furthermore, an important aspect of
model performance with respect to its alignment coefficient is that the relationship between perfor-
mance and alignment demonstrates a strong, predictable downward trend, more rigorously charac-
terizing the relationship between alignment and downstream performance than a qualitative intuition
of superior performance with greater alignment.

3.2 EFFECTS OF DATA ALIGNMENT BETWEEN FINE-TUNING AND EVALUATION DATA
3.2.1 EXPERIMENTAL SETUP AND MOTIVATION

In order to test whether an LLM will be better able to perform AF when fine-tuned on a dataset that
is closely aligned to the AF benchmark, we must fine-tune LLMs on datasets of differing alignment
to the benchmark. This allows us to observe a relationship between alignment and perplexity loss.

We chose to run our experiment on the following datasets specifically to introduce a controlled
range of alignment values in our results. To do so, we selected datasets that represented diversity
in both domain relevance and data structure. While not exhaustive, these datasets represent three
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major regimes in LLM training and evaluation: natural language prose, formal mathematics, and
multi-language code.

1.

AF Dataset (AF): A dataset consisting of informal statements and their formal counterparts
in Isabelle designed for training LLMs to perform Autoformalization. We use its test set as
a benchmark of LLM performance on statement Autoformalization. Thus, we also believe
it will result in the lowest perplexity among the proof datasets when used to train an LLM
for AF (Miranda, [2021)).

. Destructed AF Dataset (AF-split): This dataset is composed of the AF Dataset’s formal

and informal statements but the two are split into different lines so that the LLM trains on
data that does not explicitly indicate a relationship between the two; we expect this to still
obtain a relatively low perplexity score given its high alignment.

. The Stack Smol Python Docstrings dataset (Docstring): A dataset consisting of concise

function headers written in informal language and their implementations in Python; we use
it to assess how well coding datasets can fine-tune for Autoformalization (Bird, 2023a).

. The Stack Dedup Python Docstrings 1.0 percent unified dataset (Docstring 2): A dataset

consisting of function headers written in informal language and their implementations in
Python; given its nature we anticipate it scoring among the lowest of perplexity scores
against the Docstring benchmark (Bird, |2023b).

. C4-EN-10K Dataset (C4): A ten-thousand-entry subset of a database composed of text

pulled from Common Crawl (an internet archive) meant for pre-training for general English
language modeling. Given its entries are all informal statements not related to mathematics,
we predict a high perplexity score in performing AF (Raffel et al.,[2019).

. wikitext-2-raw-v1 Dataset (Wikitext): A subset of the Wikitext dataset; Wikitext is a dataset

composed of text taken from Wikipedia pages that met the score guidelines to qualify as
either a *good’ or "featured’ article; given its nature and lack of relevance to AF, we expect
a high perplexity score (Merity et al., 2016).

. minif2f-lean4 Dataset (LeanDojo4): A subset of the miniF2F dataset which is comprised of

math exercise statements and their formal counterparts in Lean; given that it is in a different
formal language, we expect a mid-range perplexity score (Zheng et al.,|[2021]).

. Proofnet Dataset (Proofnet): This dataset is comprised of statements taken from undergrad-

uate math courses and their formal counterparts in Lean; given their similarities, we expect
LeanDojo4 and Proofnet to score similarly in perplexity (Azerbayev et al.,[2023).

. HumanEvalPack: This dataset consists of a prompt describing a function and implemen-

tations of the function in Python, JavaScript, Java, Go, C++, and Rust as well as buggy
solutions to serve as bad examples. We expect it to obtain a mid-range score against the
Docstring benchmark (Muennighoff et al., [2023)).

For each of these datasets, we needed to separate them into proof datasets and code datasets and
preprocess the data accordingly. Figure 3] visualizes our method.

3.2.2 ADDITIONAL CORRELATION RESULTS

Table 1: All datasets and their corresponding number of tokens.

Dataset Number of Tokens
AF 4092
C4 4096
Wikitext 4186
Proofnet 4032
LeanDojo4 4186
ProofPile 4096
Docstring-Python 4116
Humanevalpack 4004
Docstring-Python-2 3790
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Figure 2: Alignment scores plotted against perplexity suggest a linear negative correlation and mir-
ror our expected findings described in the evaluation design. left plot shows negative correlation of
alignment and test perplexity for autoformalization. right plot shows negative correlation of align-
ment and test perplexity for docstring to code.
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Figure 3: Data preprocessing workflow for separating code and proof datasets.

3.3 ANALYSIS OF RESULTS

Introduction of Data Alignment in LLM Training: A novel approach that integrates data alignment
as a key factor in the training of Large Language Models, leading to improved model performance.

1. Empirical Evidence of Alignment Impact: Through systematic experimentation, the paper
provides empirical evidence that higher alignment between training data and the target
domain leads to a decrease in perplexity scores, indicative of enhanced model accuracy.

2. Analysis Across Multiple Datasets: The study conducts a comprehensive analysis across
a variety of datasets, establishing the consistency of the negative correlation between data
alignment and perplexity across both proof and code datasets.

3. Demonstration of a High r? Correlation Value: Our experiments demonstrate a robust neg-
ative correlation between data alignment and model perplexity, with a high 2 value of 0.96
for proof datasets and 0.83 for code datasets when evaluated on Autoformalization tasks,
and an 2 of 0.8 for a pre-training setting with a variety of training and evaluation datasets,
indicating a strong predictive relationship.

4. Identification of Limitations and Future Research Avenues: The paper discusses the limita-
tions of the current study due to hardware constraints and sets the stage for future research
to explore the comparative impact of dataset size versus alignment.

3.3.1 PROOF DATASET RESULTS

For each dataset we calculated the alignment scores using Task2Vec Alignment Coefficient as de-
picted in Table 2] Our final perplexity scores for each of our models trained can be found in Table
This can be difficult to visualize, so we plotted our results as shown in Figure
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Our results are significant in validating our initial thesis that a highly aligned data is capable of
producing an LLM that performs better than one that was trained on a dataset with lower alignment.

We found that an untuned, standard gpt-2 LLM received a perplexity score of 78.7413. However,
after finetuning it on AF it received the best perplexity score in our results: 41.8261. This further
bolsters our claim as AF-AF also had the greatest alignment (approximately 0.945) and the best
performance as well.

The proofnet dataset did not perform as well as AF fine tuned, with a perplexity score of 67.8906 and
alignment of 0.67. However, this is expected based on our thesis as we see that a drop in alignment
contributes to an increase in perplexity score for the model.

The C4 dataset has a much lower score in alignment (approximately 0.32) compared to AF (approx-
imately 0.95). Judging by this metric alone, we would expect to see a higher perplexity than gpt-2
finetuned by the debugl AF dataset based on our thesis. When fine-tuning gpt-2 on a subset of C4,
this proved to be the case as the perplexity score is 87.4636, about 11% higher than Standard gpt-2
and 110% higher than AF fine tuned.

Furthermore, the dataset with the worst alignment, Wikitext, with a alignment coefficient of approx-
imately 0.27 performed poorly: the perplexity score of 94.9470 is clearly the worst amongst our
datasets. This backs up our initial claim.

Ultimately, there is a clear negative correlation between the alignment coefficient and perplexity, as
depicted in the graphs above: we observe an 72 value of approximately 0.987 in the left-hand plot
in Figure [2] suggesting a strong linear fit. The slope of the fitted linear function is approximately
-74.4, demonstrating that a 0.1 increase in the alignment coefficient correlates with a decrease in
perplexity of approximately 7.4. Importantly, the negativity of the slope demonstrates the negative
correlation between alignment and perplexity.

3.3.2 CODE DATASET RESULTS

For our code dataset, we found again a strong negative correlation between alignment score and
perplexity loss. Immediately we see that perplexity scores are much lower for the code datasets
than the proof datasets. This is probably due to the fact that GPT-2 knows how to generate code
quite well based solely on pre-training, as it has been pre-trained on a large, diverse web-based pre-
training corpus (Radford et al.l|2019). As a result, fine-tuning further on code produces even greater
results. Standard GPT-2 has a baseline perplexity score of 14.8, which is quite good and is indicated
by the dotted gray line in Figure

We see that the baseline Docstring-Docstring has an alignment score close to 1 (0.96) and as a
result has the lowest perplexity score (11.4), performing the best out of all our fine-tuned models.
Moreover, The model that performs the worst also has the lowest alignment of 0.26, Docstring-
Wikitext.

As with the proof datasets, we see a negative correlation between alignment and perplexity, with an
r2 value of 0.85. While this is not as high as 0.987 as we observed in the proof dataset, this is still a
strong correlation and further reinforces our thesis.

3.4 IMPACT OF DATA ALIGNMENT VERSUS DATASET S1ZE ON LLM PERFORMANCE

This experiment provides an illustrative contrast between the impact of data alignment with the
downstream task and that of the size of the dataset used for fine-tuning. We hypothesized that a
smaller, highly aligned dataset would lead to better LLM performance on the downstream task of
Autoformalization, as measured by perplexity loss, compared to a larger but less aligned dataset.

Two datasets were used for fine-tuning a pre-trained GPT-2 model:

1. A small dataset, extracted directly from the debugl AF benchmark, comprising approximately
1.4k tokens. This dataset was expected to have high alignment (close to 1) with the Autoformaliza-
tion task, given its direct sampling from the task’s benchmark.
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2. A larger, mixed dataset designed to have a lower alignment score of 0.54 with the debugl AF
benchmark. The dataset size was significantly larger than the first (approximately 4100 tokens),
intended to test the effect of dataset size versus alignment.

Both models were fine-tuned under identical conditions, barring the training dataset, and evaluated
on the debugl AF benchmark to measure performance through perplexity loss.

The results of the fine-tuning experiment support our hypothesis regarding the importance of data
alignment. The model fine-tuned on the smaller, highly aligned dataset achieved a perplexity loss of
32.42 on the debugl AF benchmark. In contrast, the model fine-tuned with the larger, less aligned
dataset exhibited a higher perplexity loss of 69.06, indicating lower performance on the Autofor-
malization task.

These results highlight the importance of data alignment over dataset size in LLM fine-tuning for
tasks like Autoformalization. A smaller, highly aligned dataset yielded better performance than a
larger, less aligned one. This anecdotally supports our hypothesis that prioritizing data quality and
alignment with the task at hand will result in a higher-performing model than one that is trained on
a dataset selected for sheer quantity. Consequently, we recommend a focused approach to dataset
selection and preparation, prioritizing alignment to improve LLM performance on specific down-
stream tasks. Future experimentation is needed to isolate the impact of scale and alignment on
downstream performance independently and to quantify the relative impact of each.

3.5 METRIC-AGNOSTIC ALIGNMENT-LOSS TREND

Replacing Task2Vec with two alternatives—GZIP-Align (compression distance) and SBERT-Align
(embedding cosine)—keeps the same linear drop: higher alignment — lower loss (Fig. @). On
ProofNet, GZIP reaches > = 0.90 and SBERT 2 = 0.80, close to T2V’s r? = (.88, suggesting that
the alignment—performance link is metric-agnostic. Future experimentation is needed to establish if
this trend holds regardless of the dataset being tested.
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Figure 4: Alignment—loss correlation on the ProofNet dataset persists across metrics: compression-
based (left) and embedding-based (right) scores both show the same negative trend observed with
Task2Vec.
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A APPENDIX

B DETAILED PRE-TRAINING ALIGNMENT EXPERIMENT RESULTS

In Table[d] we detail the specific alignment coefficient values between (pre-)training and evaluation
data with 95% confidence intervals. Once again, we observe that increased alignment coefficients
between train and evaluation data show a strong trend of leading to lower evaluation loss.

C PERPLEXITY CALCULATION

Perplexity serves as a measure of a model’s prediction accuracy, with lower values indicating better
performance. It is calculated using the following formula:

1
PPL(X) = exp {—t > 10gpa(xilx<i)} 2)

where PP L(X) denotes the perplexity of sequence X, ¢ is the total number of tokens in X, z; is the
ith token, z; represents all tokens preceding x;, and log pg ;|2 <;) is the log-likelihood of token
x; given its preceding context as predicted by the model parameters 6.

Table 2: Alignment scores of proof datasets on the AF benchmark.

Datasets Alignment score
AF-AF 0.9452813267707825
AFSplit-AF 0.7397596240043640

AF-Proofnet 0.6674373149871826
AF-Docstring 0.6128289103507996
AF-LeanDojo4 | 0.5514505505561829
AF-C4 0.3249419331550598
AF-Wikitext 0.26609545946121216

Table 3: Perplexity loss for models fine-tuned on proof datasets.

Model Perplexity
Standard GPT-2 78.7413
AF fine-tuned 41.8261
Proofnet fine-tuned 67.8906
LeanDojo4 fine-tuned | 71.8377
C4 fine-tuned 87.4636
Wikitext fine-tuned 94.9470
Docstring fine-tuned 75.4504
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D DATA ALIGNMENT RESULTS

Table 4: The data alignment coefficient appears to capture an intuitive notion of data similarity,
since it finds training data that shares similar semantics and structure as the validation data
as most aligned. In particular, PubMed Abs. (train) and NIH Exporter, which share the semantics
of health-related research and the structure of being research writing, are found to be more aligned
than USPTO (patent application backgrounds). Similarly, USPTO + PubMed Abs. (train) is more
aligned to USPTO (validation) than PubMed Abs. (train), but less aligned to USPTO (validation)
than USPTO (train), as expected. Each cell indicates the alignment coefficient between the given
pre-training dataset (row label) and evaluation dataset (column label).

Pre-training dataset USPTO (validation) PubMed Abs. (validation) OpenWebText2
USPTO 0.7123 £ 0.001717 0.5840 4+ 0.001389 0.5267 + 0.001377
PubMed Abs. 0.5805 + 0.001396 0.6939 £+ 0.001697 0.5268 £ 0.001367
USPTO + PubMed Abs.  0.6687 £ 0.001602 0.6526 4+ 0.001513 0.5332 + 0.001390
Pre-training dataset NIH Exporter Hacker News Open Subtitles
USPTO 0.5879 £ 0.001388  0.5234 £0.001275  0.4917 £ 0.001162
PubMed Abs. 0.6622 £ 0.001569  0.5114 £ 0.001300  0.4817 £ 0.001145
USPTO + PubMed Abs.  0.6331 + 0.001452  0.5215 £0.001272  0.4871 £ 0.001123
Pre-training dataset Wikitext-103 Tiny Stories
USPTO 0.5311 £ 0.001303  0.5107 £ 0.001203
PubMed Abs. 0.5212 + 0.001200 0.4868 £ 0.001167

USPTO + PubMed Abs.  0.5347 £ 0.001290  0.5042 4 0.001169

E EXPERIMENT TO VERIFY THAT EACH SUBSET WILL HAVE A SIMILAR
PERPLEXITY LOSS TO THAT OF THE ENTIRE DATASET

We have examined the perplexity loss of one subset of the dataset on which we have trained on
rather than the perplexity score of the entire dataset. However, we conducted an experiment to show
that these two values are comparable. We have kept the token sizes around 4000 tokens as such:

Table 5: Subsets and their corresponding number of tokens.

Subset Number of tokens
C4 Subset Original 4096
C4 Subset 1 4032
C4 Subset 2 4080
C4 Subset 3 3990

Then, we calculated the perplexity score for each of these subsets exactly as outlined in the Evalua-
tion section. Here are the results:

Table 6: Perplexity scores for C4 fine-tuned model.

C4 subset Perplexity
Original subset 87.4636
Subset 1 84.4889
Subset 2 85.9207
Subset 3 87.4829

Here is the graph of all the subsets of C4 along with our original proof dataset fine tuned models:
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Perplexity vs. Alignment against AF
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Figure 5: No significant change in perplexity across C4 subsets.

E.1 DISCUSSION OF C4 SUBSET EXPERIMENT RESULTS

As seen in Table [6] each subset of C4 has comparable perplexity scores. This is further highlighted
in the graph where we can see that the subsets are all closely clustered together; this does not affect
our line of regression significantly and our claim still holds. This experiment serves as a proof-of-
concept that a subset of a dataset can be used to approximate the subset of the entire dataset.

F EXPERIMENT ON SPLITTING FORMAL AND INFORMAL STATEMENTS IN
THE TRAINING PROCESS:

So far we have pre-processed our data as depicted in Figure [3] where each input contains a formal
and informal statement (proof dataset) or code and docstring (code dataset). However, we conducted
an experiment to observe if inputting formal and informal statements as separate inputs and training
on that would produce better results. Figure []depicts what this would look like.

We compared the results of AF and AF-Split as follows. We first standardized the number of tokens
to 4000 as seen in table[7]

Then, we calculated the alignment as shown in Table 2]

Table 7: AF and AF split tokens.

Subset Number of tokens
AF Original 4092
AF Split 3960

Proof Dataset Columns

Informal Formal
Statement Statement

=1 1=

Model Input: “Informal Formal
Code Dataset Columns
‘ Code ‘ e ‘ Docstring ‘
Model Input: “Code Docstring

Figure 6: Data preprocessing visualization.
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Finally, we fine-tuned the model on AF-Split and compared the perplexity loss to AF; this is depicted
in Table

Table 8: Perplexity loss scores for AF and AF split.

Model Perplexity
AF fine-tuned 41.8261
AF split fine-tuned 57.8004

F.1 DiscussiON OF AF-SPLIT EXPERIMENT OUTCOMES

The investigation revealed a discernible reduction in alignment for the AF-Split dataset by approx-
imately 21.7 percent, which constitutes a moderate deviation. Furthermore, there was a notable
increase in perplexity loss for AF-Split, approximately 38.2 percent underscoring a significant im-
pact. These findings suggest that models are more adept at Autoformalization tasks when trained
on datasets that present related information cohesively, rather than on datasets where related content
is disjointed. Specifically, models excel in Autoformalization when they can discern the intrinsic
connection between an informal and a formal statement, as exemplified in the format “Informal
Statement ____ Formal Statement ____,” implying an inherent correlation. Conversely, when such
relational cues are absent, as in the case of AF-Split where informal and formal statements are
segregated, model performance in Autoformalization tasks diminishes.

F.2 RELATED WORK (CONT.)

The article |(Google| (2023a) “PalLM 2 Technical Report” by Google discusses the development and
performance of PalLM 2. The study showcases PalLM 2’s versatility but also emphasizes the role of
architectural enhancements and diverse model objectives in achieving superior results. The inclusion
of a diverse data mixture, even incorporating a small amount of translation pairs, results in perfor-
mance comparable to dedicated translation services, a statement which supports our belief that data
quality can be a critical factor in determining how well a dataset can train an LLM. This sentiment is
also expressed in the article “Model Performance Scaling with Multiple Data Sources” by Tatsunori
Hashimoto/Hashimoto| (2021) It discusses the challenges of training ML models using data from
various sources that vary in quality and cost. Hashimoto proposes a parametric model to approx-
imate generalization error, which is more accurate for various models compared to existing linear
approximations. The work represents a step toward better understanding model performance under
varying data conditions and questions whether the approach can scale to more extreme scenarios or
larger numbers of data sources in future research.

“Random Network Distillation as a Diversity Metric for both Image and Text Generation” [Fowl
et al. (2020) is a paper that establishes a diversity metric that measures how wide a range of text or
images a GAN is capable of outputting. The authors assert that there are many ways that GANs are
being evaluated, but the diversity of their generation is often overlooked and that pre-existing metrics
for measuring diversity in their generation were “rudimentary tools” which further emphasizes the
importance of research on data quality.
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