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ABSTRACT

The merit of Conformal Prediction (CP), as a distribution-free framework for un-
certainty quantification, depends on generating prediction sets that are efficient,
reflected in small average set sizes, while adaptive, meaning they signal uncer-
tainty by varying in size according to input difficulty. A central limitation for
deep conformal classifiers is that the nonconformity scores are derived from soft-
max outputs, which can be unreliable indicators of how certain the model truly is
about a given input, sometimes leading to overconfident misclassifications or un-
due hesitation. In this work, we argue that this unreliability can be inherited by the
prediction sets generated by CP, limiting their capacity for adaptiveness. We pro-
pose a new approach that leverages information from the pre-softmax logit space,
using the Helmholtz Free Energy as a measure of model uncertainty and sample
difficulty. By reweighting nonconformity scores with a monotonic transformation
of the energy score of each sample, we improve their sensitivity to input difficulty.
Our experiments with four state-of-the-art score functions on multiple datasets and
deep architectures show that this energy-based enhancement improves the adap-
tiveness of the prediction sets, leading to a notable increase in both efficiency and
adaptiveness compared to baseline nonconformity scores, without introducing any
post-hoc complexity.

1 INTRODUCTION

Deploying machine learning models in critical, real-world applications requires not just high accu-
racy, but also trustworthy uncertainty quantification. Conformal Prediction (CP) has emerged as an
effective framework for this challenge (Vovk et al., 2005). It provides a model-agnostic method to
construct prediction sets, C(X), that are guaranteed to contain the true class, Y , with a user-specified
probability:

P (Y ∈ C(X)) ≥ 1− α.

This distribution-free guarantee is a significant asset. However, the practical utility of CP depends on
the characteristics of these prediction sets. Ideally, they should be adaptive and efficient: small for
inputs that the model finds easy, and appropriately larger for inputs that are difficult or ambiguous.

This adaptiveness is governed by the nonconformity score. While many nonconformity scores are
designed to produce adaptive sets, they are typically derived from a model’s final softmax probabili-
ties. This choice inherits a fundamental weakness, as softmax outputs are often unreliable indicators
of a model’s true uncertainty. They can exhibit overconfidence even for misclassified or out-of-
distribution (OOD) inputs. Post-hoc calibration helps reduce this issue, but only to a limited extent,
as it cannot fully correct the underlying limitations in uncertainty quantification. (Guo et al., 2017;
Lee et al., 2018a; Hein et al., 2019). Consequently, the adaptiveness of these scores is by design
limited, which can lead to inefficiently large sets for simple inputs, or misleadingly small sets for
difficult ones.

One approach to improve adaptiveness involves adjusting the score based on an input-specific mea-
sure of difficulty, such as the variance of ensemble predictions, the error predicted by an auxil-
iary model (Hernández-Hernández et al., 2022), or the variance estimated via Monte-Carlo dropout
(MCD) with a neural network (Cortés-Ciriano & Bender, 2019). This principle is related to Nor-
malized Conformal Prediction, which has been shown to produce tighter and more informative sets
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APS Set: {macaw  , l o r i k eet  , sc r een  , mo dem , space bar  , bee eat er }

APS Set : {bu ck l e  , t hi mbl e  , pi ck  , do o r mat  , so mbr er o  , nemat o de  , mai l bag  , shi e l d , Pu r se}

{ho u se f i nch , r o bi n  , br ambl i ng  , i ndi g o  bu nt i ng  , q u ai l  , j u nco  , 
par t r i dg e}

{ho u se f i nch , r o bi n  , br ambl i ng  , i ndi g o  bu nt i ng  , q u ai l  , j u nco  , 
par t r i dg e  , w at er  o u z el  , r u f f ed g r o u se  , hu mmi ng bi r d}

Ener gy-based APS Set: {macaw  , l o r i k eet  , sc r een}

{bu ck l e  , t hi mbl e  , pi ck  , do o r mat  , so mbr er o  , nemat o de  , mai l bag  , shi e l d , pu r se  , 
e l ec t r i c  r ay  , cal dr o n  , w af f l e  i r o n  , bo t t l ecap , bo l o  t i e  , Eg y pt i an cat }
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Figure 1: Prediction sets from a standard method (APS Romano et al. (2020)) versus our energy-based variant,
demonstrating improved adaptiveness on ImageNet. (i) For an easy input like the image of a Macaw, whose
clear visual cues (vivid colors, long tail) make it simple to classify, our energy-based method produces a smaller,
more efficient set. (ii) For a hard input—a bird image labeled as Hummingbird—its appearance deviates from
typical hummingbirds (e.g., a thicker, less tapered beak) and shares features with other bird classes, making the
image difficult for the model. In this case, the energy-based method returns a larger prediction set, signaling
higher uncertainty. (iii) Finally, for an out-of-distribution (OOD) input like a brain MRI that the model was
never trained on, our method generates a much larger set, warning the user that the prediction is unreliable.
This improvement in adaptive behavior is guided by the Helmholtz free energy, which captures the model’s
uncertainty about an input.

in regression by scaling a base score with an uncertainty estimate (Papadopoulos et al., 2002a; Pa-
padopoulos & Haralambous, 2011; Boström et al., 2017). Building on this principle, we argue that
a reliable signal for sample difficulty and model uncertainty exists in the pre-softmax logit space.
We propose using the Helmholtz free energy computed from the logits, as a principled measure of a
model’s familiarity with an input. Inputs aligned with the training data distribution are assigned low
energy (high certainty), while atypical or ambiguous inputs receive high energy (low certainty).

The energy signal is then incorporated into the conformal framework by applying per-sample
reweighting of the nonconformity scores. For “easy” inputs where the model is certain, the energy-
based term magnifies the base score, yielding smaller, more efficient prediction sets. For “hard” or
OOD inputs, this term dampens the score, producing larger sets that signal the model’s uncertainty.
This improved adaptiveness is exemplified in Figure 1. Compared to existing adaptive scores, our
proposed energy-based variants, by leveraging Helmholtz free energy derived from the pre-softmax
logit space for per-sample reweighting of nonconformity scores, increase both adaptiveness and
efficiency. This approach improves prediction sets across state-of-the-art score functions, while
preserving the theoretical coverage guarantees of Conformal Prediction.

We summarize our contributions as follows:

• We provide a theoretical and empirical motivation for moving beyond softmax-based
scores. We establish the connection between Helmholtz free energy and model uncertainty
and demonstrate that this energy signal distinguishes sample difficulty more effectively
than standard softmax metrics.

• We introduce a general framework of Energy-Based Nonconformity Scores, which mod-
ulates a base nonconformity score with the free energy of each sample to create more
adaptive prediction sets that are smaller for easy inputs and larger for difficult or out-of-
distribution inputs.

• We provide theoretical and empirical evidence showing that our energy-based enhance-
ment improves the efficiency and adaptiveness of prediction sets for multiple deep learning
architectures across a range of different scenarios.
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2 MOTIVATION AND METHOD

In this section, we (i) explain why the softmax probabilities that underpin conventional noncon-
formity scores for deep classifiers are often unreliable for efficiently capturing model uncertainty,
(ii) introduce Helmholtz free energy as a more robust measure of uncertainty derived directly from
model logits, and (iii) use this concept to motivate and define a new class of energy-aware scores that
produce more adaptive and efficient prediction sets. All notations are summarized in Appendix A.

2.1 SOFTMAX UNRELIABILITY AND IMPLICATIONS FOR CONFORMAL PREDICTION

Given logits f(x), a calibrated softmax with temperature T > 0 is

π̂(y | x) = softmax
y

(
f(x)
T

)
=

exp[fy(x)/T ]∑K
k=1 exp[fk(x)/T ]

. (1)

The common nonconformity scores for classification are functions of π̂ (as detailed in Ap-
pendix E.2). However, relying on softmax values alone is unreliable for uncertainty assessment.
First, modern networks produce poorly calibrated and often overconfident posteriors (Guo et al.,
2017), including spuriously high confidence on unrecognizable inputs (Nguyen et al., 2015). While
temperature scaling can improve in-distribution calibration, it does not address epistemic uncer-
tainty: OOD, “far” or even “hard” inputs may still map to representation regions that yield confident
softmax outputs (Hein et al., 2019; Lee et al., 2018a). This sensitivity to representation geometry
means that when class manifolds overlap or decision boundaries are poorly separated, softmax con-
fidence can be misleading even after calibration (Cohen et al., 2020). Second, softmax posteriors
entangle likelihoods with learned class priors, biasing scores under label shift or class imbalance.
Margins for minority classes tend to be smaller, intensify uncertainty mis-estimation unless logits
are explicitly adjusted (Ren et al., 2020). Collectively, these issues undermine CP adaptiveness:
probability-based scores can produce (i) unnecessarily large sets for easy samples when tails are in-
flated, or (ii) deceptively small sets on ambiguous/OOD inputs that happen to receive high softmax
confidence. For a comprehensive compilation of softmax criticism, see Appendix C.

These observations motivate adjusting nonconformity scores with an additional signal that reflects
the model’s holistic signal about Its familiarity with x. In the next subsection, we use the Helmholtz
free energy computed from the logits as a principled, model-aware measure of epistemic uncertainty,
that also correlates with sample difficulty, assigning low energy to easy in-distribution inputs and
high energy to hard, ambiguous, or OOD inputs.

2.2 FREE ENERGY AS A MEASURE OF EPISTEMIC UNCERTAINTY

To quantify a model’s uncertainty in its predictions, we seek a measure that reflects its familiarity
with the input data. We turn to the framework of Energy-Based Models (EBMs) (LeCun et al.,
2006). An EBM defines a scalar energy for every configuration of variables, where lower energy
corresponds to higher probability. Any standard discriminative classifier can be interpreted through
the lens of an EBM (Grathwohl et al., 2020). We refer to Appendix D for more details on EBMs.

For a classifier with a logit function f(x) : RD → RK , we can define a joint energy function over
inputs x and labels y as:

E(x, y; f) = −fy(x), y ∈ {1, . . . ,K}. (2)
This formulation connects the classifier’s outputs directly to an energy landscape. The conditional
probability p(y|x) is then given by the Gibbs-Boltzmann distribution:

p(y|x) = exp(−E(x, y))∑K
k=1 exp(−E(x, k))

=
exp(fy(x))∑K
k=1 exp(fk(x))

, (3)

which is identical to the standard softmax function.

By marginalizing over the labels, we can derive an unnormalized density over the input space. This
process yields the Helmholtz free energy, F (x), which acts as the energy function for the marginal
distribution p(x):

F (x; f) = −τ log

K∑
k=1

exp

(
−E(x, k)

τ

)
= −τ log

K∑
k=1

exp

(
fk(x)

τ

)
, (4)
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(a) Softmax Scores: 1.0 (easy sample) vs. 0.998 (hard sample)
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(b) Negative Energy Scores: 32.49 (easy sample) vs. 14.08 (hard sample)

Figure 2: (a) Softmax probability distributions and (b) raw logit outputs of two CIFAR-100 samples computed
by a trained ResNet-56. Both samples receive similarly high softmax confidence scores, despite differing
significantly in difficulty (1 vs. 27). In contrast, their negative energy scores more clearly reflect this difference.

where τ is a temperature parameter. The free energy represents a soft minimum of the joint energies
for a given input x. A low free energy indicates that the model assigns high certainty to at least
one class, suggesting the input is familiar. Conversely, a high free energy indicates that the model is
uncertain across all classes.

This relationship allows us to define a model-implied marginal density over the input space X :

p(x) =
exp(−F (x)/τ)

Z
, where Z =

∫
x′∈X

exp(−F (x′)/τ) dx′, (5)

is the partition function, a constant that ensures the distribution integrates to one. This formulation
implies that inputs corresponding to high-density regions of the data distribution (i.e., “typical”
examples) are assigned low energy, while those in low-density regions have high energy (Liu et al.,
2020). We now formalize the connection between free energy and epistemic uncertainty.

Proposition 2.1. The Helmholtz free energy F (x) is a valid measure of epistemic uncertainty, as it
is linearly proportional to the negative log-likelihood of the model-implied data density p(x).

We refer to Appendix G.2 for proof. This alignment makes the energy score a desirable quantity for
epistemic uncertainty (Fuchsgruber et al., 2024; Zong & Huang, 2025) and thus suitable for OOD
detection (Liu et al., 2020; Wang et al., 2021).

2.3 ENERGY-BASED NONCONFORMITY SCORES

To clarify our motivation for energy-based conformal classification, we illustrate with a real example
how integrating free energy into conformal classification can be beneficial, as it provides additional
information not necessarily captured in the softmax space.

Following the definition in Angelopoulos et al. (2021), we quantify the difficulty of a sample (x, ytrue)
as

D(x, ytrue) = ox(ytrue), (6)

where ox(ytrue) denotes the rank of the true label ytrue in the model’s predicted class-probability
ordering (from most to least likely). Formally,

ox(y) =
∣∣{k ∈ [K] : π̂(k | x) ≥ π̂(y | x)}

∣∣. (7)

4
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Inspired by the analysis in Liu et al. (2020), Figure 2(a) displays the softmax probability distributions
produced by a pretrained ResNet-56 model for two samples from the CIFAR-100 dataset, while
Figure 2(b) shows the corresponding raw logit outputs for each sample.

The first sample is considered “easy”, with a difficulty of 1 (i.e., the true label has the highest
predicted probability), while the second is “hard”, with a difficulty of 27 (i.e., misclassified by the
model). Notably, despite the substantial difference in difficulty, both samples exhibit nearly identical
softmax confidence scores, which would make them indistinguishable under standard softmax-based
uncertainty metrics. In contrast, their negative energy scores (−F (x)), computed from the logits,
are significantly more separable. This suggests that F (x) captures a different, and potentially more
nuanced, aspect of uncertainty. Easy or high-density samples yield large −F (x), while hard, am-
biguous, low-density or OOD samples yield smaller −F (x).

To further investigate this behaviour, Figure 3 shows the distribution of energy scores across the
CIFAR-100 test set calculated with a trained ResNet-56 model, stratified by sample difficulty. As
the figure illustrates, energy distributions shift noticeably across difficulty levels, suggesting that
logits (and their derived energy scores) retain richer information about a model’s confidence than
the softmax outputs alone. This highlights energy as an informative signal for uncertainty that can
improve the efficiency of nonconformity scores, particularly in cases where softmax probabilities
are overconfident or poorly aligned with true sample difficulty.
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Figure 3: Distribution of negative energy scores (−F (x)), stratified by sample difficulty. As difficulty increases,
the distribution shifts toward lower energy values, indicating reduced model confidence.

Theorem 2.2 (Monotonicity of Expected Confidence with Sample Difficulty). Consider two diffi-
culty levels d1 and d2 such that 1 ≤ d1 < d2 ≤ K. Let E(X,Y )∼D[· | D(X,Ytrue) = d] denote the
expectation over the data distribution conditional on samples having difficulty d. For a classifier
successfully trained to convergence on a representative dataset, the expected negative free energy is
a strictly monotonically decreasing function of difficulty:

E[−F (X) | D(X,Ytrue) = d1] > E[−F (X) | D(X,Ytrue) = d2]. (8)

The proof of Theorem 2.2 is provided in Appendix G.3.

Having established that the free energy, derived from the logit space, captures epistemic uncertainty
and sample difficulty more effectively than softmax probabilities, we propose to integrate the energy
score into the nonconformity scores, an approach that aligns with the principles of normalized con-
formal prediction. By using free energy as a sample-specific difficulty measure, we aim to scale the
base nonconformity scores to produce prediction sets that better adjust to the model’s uncertainty
regarding each sample.

We define the energy-based variant of a base adaptive nonconformity score, S(x, y), as:

SEnergy-Based(x, y) = S(x, y) · 1
β
log

(
1 + e−βF (x)

)
. (9)

Here, the scaling factor is a softplus function of the negative free energy, −F (x), which ensures
a positive, input-dependent weight. The parameter β > 0 controls the sharpness of this function.
This modulation re-calibrates the nonconformity score on a per-sample basis, leveraging the model’s
epistemic uncertainty.

The intuition behind this formulation is as follows:

• For “easy” in-distribution samples, the model is certain, resulting in a large negative
free energy (i.e., large and positive −F (x)). This yields a large scaling factor, which

5
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magnifies the base score S(x, y). This reweighting causes the scores of incorrect labels
to more readily exceed the fixed conformal quantile q̂, leading to smaller and more efficient
prediction sets.

• For “hard” or OOD samples, the model is uncertain, and −F (x) is small or negative. The
scaling factor becomes small, thereby dampening the base score. This dampening reduces
the magnitude of all scores for the given input, causing more plausible labels to fall below
the conformal quantile q̂ and thus producing adaptively larger sets that reflect the model’s
uncertainty.

As shown in Proposition 2.3, scaling the score is equivalent to adjusting the quantile threshold q̂
for each input, tightening it for confident predictions and relaxing it for uncertain ones. In our
experiments, we apply this modulation to several state-of-the-art scores, including APS, RAPS, and
SAPS. An extension of this modulation to the LAC score is provided in Appendix J.
Proposition 2.3 (Equivalence to Sample-Dependent Thresholding). Let S(x, y) be any adaptive
base nonconformity score and let G(x) be a positive, sample-dependent scaling function (e.g.,
G(x) = softplus(−F (x);β) = 1

β log(1 + e−βF (x))), assuming this is positive. Let CG(x) be the
prediction set constructed using the scaled score SG(x, y) = G(x)S(x, y) and its corresponding
quantile q̂

(G)
1−α derived from the calibration set Dcal = {(xi, yi)}Ni=1.

This construction is mathematically equivalent to using the original base score S(x, y) with a
sample-dependent threshold θ(x) that varies for each test sample:

CG(x) = {y ∈ {1, . . . ,K} | S(x, y) ≤ θ(x)} , (10)

where the threshold is defined as:

θ(x) =
q̂
(G)
1−α

G(x)
. (11)

We refer to Appendix G.4 for proof.

3 EXPERIMENTS

We present a comprehensive empirical evaluation of our proposed energy-scaled nonconformity
scores, comparing them across various data regimes and distributional challenges. The objective of
CP is to produce prediction sets C(X) for a test instance X such that its unknown true label Y is
included with a user-specified probability 1− α, i.e., P(Y ∈ C(X)) ≥ 1− α.

3.1 BALANCED TRAINING DATA

We first evaluate performance when models are trained on datasets where the prior distribution over
class labels is uniform, i.e., Ptrain(Y = y) = 1/|Y| for all y ∈ Y . This includes standard ImageNet-
Val, Places365, and CIFAR-100 training sets. For α ∈ {0.01, 0.025, 0.05, 0.1}, we report empirical
coverage and average prediction set size in Table 1. This establishes whether energy-based methods
maintain coverage while potentially improving adaptiveness and efficiency under standard, balanced
training conditions. Detailed difficulty-stratified results are also reported in Appendix I.

3.2 IMBALANCED TRAINING DATA

We then study performance on data with an imbalanced class prior. For this, we use CIFAR-100-LT
training variants, which are designed to simulate long-tailed distributions where class frequencies
decay exponentially (Ptrain(Y = j) ∝ exp(−λ · j)). The parameter λ controls the severity of this
imbalance, with higher values indicating a stronger imbalance, as illustrated in Figure 7.

Modern deep networks trained on such long-tailed data exhibit a “familiarity bias”, where the model
shows higher confidence for majority classes and lower confidence for minority classes (Wallace &
Dahabreh, 2012; Samuel et al., 2021). This makes conformal prediction with standard softmax
scores to under-cover minority classes. To address this, our energy-based variants dampen the non-
conformity scores of minority classes more than those of majority classes. This helps to expand
prediction sets for minority classes, fostering their labels’ inclusion.

6
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Table 1: Performance comparison of APS, RAPS, and SAPS nonconformity score functions and their energy-
based variants on CIFAR-100, ImageNet, and Places365 at miscoverage levels α ∈ {0.01, 0.025, 0.05, 0.1}.
Results are averaged over 10 trials. For the Set Size column, lower is better. Bold values indicate the best
performance within each method family (e.g., APS with and without Energy).

α = 0.1 α = 0.05 α = 0.025 α = 0.01

Method Coverage Set Size Coverage Set Size Coverage Set Size Coverage Set Size

CIFAR-100 (ResNet-56)

w/o Energy 0.90 ± 0.01 3.17 ± 0.09 0.95 ± 0.00 6.91 ± 0.24 0.975 ± 0.002 13.29 ± 0.44 0.99 ± 0.00 25.79 ± 1.20

A
P
S

w/ Energy 0.90 ± 0.01 3.16 ± 0.08 0.95 ± 0.00 6.49 ± 0.24 0.974 ± 0.001 11.48 ± 0.25 0.99 ± 0.00 22.90 ± 0.82

w/o Energy 0.90 ± 0.00 3.13 ± 0.07 0.95 ± 0.01 8.17 ± 0.47 0.974 ± 0.002 16.38 ± 0.81 0.99 ± 0.00 30.88 ± 1.90

R
A
P
S

w/ Energy 0.90 ± 0.01 3.13 ± 0.08 0.95 ± 0.00 6.18 ± 0.25 0.974 ± 0.002 11.34 ± 0.32 0.99 ± 0.00 23.63 ± 0.86

w/o Energy 0.90 ± 0.01 2.87 ± 0.09 0.95 ± 0.00 7.47 ± 0.43 0.974 ± 0.002 15.08 ± 0.72 0.99 ± 0.00 29.80 ± 1.82

S
A
P
S

w/ Energy 0.90 ± 0.01 2.87 ± 0.11 0.95 ± 0.00 5.94 ± 0.16 0.974 ± 0.001 10.73 ± 0.23 0.99 ± 0.00 22.90 ± 0.82

ImageNet (ResNet-50)

w/o Energy 0.90 ± 0.00 1.60 ± 0.02 0.95 ± 0.00 3.99 ± 0.18 0.976 ± 0.001 11.72 ± 0.26 0.99 ± 0.00 39.08 ± 1.18

A
P
S

w/ Energy 0.90 ± 0.00 1.66 ± 0.03 0.95 ± 0.00 3.84 ± 0.17 0.976 ± 0.001 10.11 ± 0.30 0.99 ± 0.00 32.93 ± 1.25

w/o Energy 0.90 ± 0.00 1.77 ± 0.03 0.95 ± 0.00 4.22 ± 0.06 0.976 ± 0.001 10.56 ± 0.21 0.99 ± 0.00 37.01 ± 1.33

R
A
P
S

w/ Energy 0.90 ± 0.00 1.76 ± 0.04 0.95 ± 0.00 3.88 ± 0.07 0.976 ± 0.001 9.18 ± 0.29 0.99 ± 0.00 31.47 ± 1.28

w/o Energy 0.90 ± 0.00 1.67 ± 0.01 0.95 ± 0.00 3.67 ± 0.08 0.976 ± 0.001 9.75 ± 0.31 0.99 ± 0.00 35.97 ± 1.46

S
A
P
S

w/ Energy 0.90 ± 0.00 1.66 ± 0.03 0.95 ± 0.00 3.66 ± 0.06 0.976 ± 0.001 8.50 ± 0.29 0.99 ± 0.00 30.24 ± 1.12

Places365 (ResNet-50)

w/o Energy 0.90 ± 0.00 7.56 ± 0.13 0.95 ± 0.00 14.28 ± 0.24 0.975 ± 0.002 24.92 ± 0.79 0.99 ± 0.00 46.81 ± 1.93

A
P
S

w/ Energy 0.90 ± 0.00 7.11 ± 0.11 0.95 ± 0.00 12.98 ± 0.23 0.975 ± 0.002 22.32 ± 0.68 0.99 ± 0.00 40.73 ± 1.69

w/o Energy 0.90 ± 0.00 7.37 ± 0.16 0.95 ± 0.00 14.37 ± 0.27 0.976 ± 0.001 26.34 ± 0.57 0.99 ± 0.00 50.64 ± 1.68

R
A
P
S

w/ Energy 0.90 ± 0.00 6.85 ± 0.11 0.95 ± 0.00 12.67 ± 0.23 0.975 ± 0.002 22.35 ± 0.64 0.99 ± 0.00 41.59 ± 1.32

w/o Energy 0.90 ± 0.00 7.20 ± 0.14 0.95 ± 0.00 14.11 ± 0.30 0.976 ± 0.001 25.76 ± 0.49 0.99 ± 0.00 49.80 ± 1.74

S
A
P
S

w/ Energy 0.90 ± 0.00 6.79 ± 0.09 0.95 ± 0.00 12.51 ± 0.18 0.975 ± 0.002 22.19 ± 0.69 0.99 ± 0.00 41.19 ± 1.29

Indeed, energy scores capture this training imbalance (Liu et al., 2024a). Figure 4 visually demon-
strates how the distributions of negative energy scores shift across different class bins under both
balanced and imbalanced training conditions.
Theorem 3.1 (Free Energy as an Indicator of Class Imbalance). Let f be a classifier trained on a
dataset drawn from a distribution Ptrain(X,Y ) with imbalanced class priors. Consider two classes,
a majority class ymaj and a minority class ymin, such that their training priors satisfy Ptrain(Y =
ymaj) > Ptrain(Y = ymin).

Let the model be evaluated on a balanced test distribution Ptest. Assume the classes are of compara-
ble intrinsic complexity. Then, the expected negative free energy for test samples from the majority
class will be greater than that for the minority class:

EX∼Ptest(X|Y=ymaj)[−F (X)] > EX∼Ptest(X|Y=ymin)[−F (X)]. (12)

See Appendix G.5 for proof. This setup allows us to evaluate how energy influences adaptiveness
when a model’s representations are shaped by imbalanced training. We report marginal coverage
and average set size with the standard balanced CIFAR-100 calibration set and test set, with results
presented in Table 2. We refer to Appendix K for additional experiments on imbalanced scenario.

3.3 RELIABILITY UNDER DISTRIBUTIONAL SHIFT

An important test for any uncertainty quantification method is its response to out-of-distribution
(OOD) data. This scenario is particularly challenging for conformal prediction because the assump-
tion of exchangeability between the calibration and test data is violated. Consequently, the formal
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(b) imbalanced class priors

Figure 4: Distributions of negative energy scores across various class bins under balanced and imbalanced
training. Results are for CIFAR-100. (a) Balanced model: scores are consistent across class bins. (b) Imbal-
anced model (λ = 0.03): minority classes exhibit lower negative energy scores, reflecting reduced confidence.

Table 2: Performance comparison of different nonconformity scores and their energy-based vari-
ants on imbalanced CIFAR-100 with an imbalance factor of λ = 0.005 and at miscoverage levels
α ∈ {0.01, 0.025, 0.05, 0.1}. Results are averaged over 10 trials with a ResNet-56 model. For the Set Size
column, lower is better. Bold values indicate the best performance within each method family (e.g., APSwith
and without Energy). Results for additional λ values are provided in Appendix K.

α = 0.1 α = 0.05 α = 0.025 α = 0.01

Method Coverage Set Size Coverage Set Size Coverage Set Size Coverage Set Size

CIFAR-100-LT (λ = 0.005) (ResNet-56)

w/o Energy 0.90 ± 0.01 8.44 ± 0.30 0.95 ± 0.00 17.22 ± 0.55 0.973 ± 0.003 28.32 ± 0.86 0.99 ± 0.00 45.10 ± 0.75

A
P
S

w/ Energy 0.90 ± 0.01 7.41 ± 0.22 0.95 ± 0.01 13.30 ± 0.65 0.973 ± 0.004 21.72 ± 1.27 0.99 ± 0.00 34.78 ± 1.72

w/o Energy 0.90 ± 0.01 8.88 ± 0.30 0.95 ± 0.00 18.54 ± 0.73 0.972 ± 0.003 30.09 ± 0.94 0.99 ± 0.00 51.65 ± 1.75

R
A
P
S

w/ Energy 0.90 ± 0.01 7.59 ± 0.25 0.95 ± 0.01 13.26 ± 0.69 0.973 ± 0.004 22.27 ± 1.24 0.99 ± 0.00 35.43 ± 1.88

w/o Energy 0.90 ± 0.01 8.59 ± 0.35 0.95 ± 0.00 17.96 ± 0.66 0.972 ± 0.003 29.25 ± 1.04 0.99 ± 0.00 50.30 ± 1.86

S
A
P
S

w/ Energy 0.90 ± 0.01 7.58 ± 0.23 0.95 ± 0.01 13.19 ± 0.68 0.973 ± 0.004 21.99 ± 1.27 0.99 ± 0.00 35.18 ± 1.91

guarantee of marginal coverage no longer holds. This challenge is amplified in real-world deploy-
ments where a model, calibrated on in-distribution samples, inevitably encounters novel inputs.
These inputs can range from simple covariate shifts (e.g., familiar objects in new contexts) to more
severe semantic shifts, where the inputs belong to classes entirely unseen during training.

In the absence of coverage guarantees, a reliable conformal classifier should not provide a small, in-
correct prediction without some indication of its uncertainty. This motivates the following desiderata
for the behavior of a conformal predictor C(·) when presented with an OOD input xood drawn from
an OOD distribution Pood, compared to an in-distribution input xid drawn from Pid.

Desiderata for a Reliable Conformal Classifier on OOD Data We establish the following
desiderata for a conformal predictor’s behavior when encountering OOD data, where the standard
exchangeability assumption is violated and coverage guarantees no longer hold.
Desideratum 1 (Adaptive Uncertainty Response). When faced with an out-of-distribution input,
a reliable conformal predictor must adapt its output to signal increased uncertainty. This signal
should manifest as either an expansion of the prediction set size or as a principled abstention via an
empty set. This response is characterized by one or both of the following outcomes:

(i) A significant increase in the probability of abstention:

PX∼Pood(C(X) = ∅) ≫ PX∼Pid(C(X) = ∅) ≈ 0

(i) An inflation in the size of non-empty prediction sets, such that the expected size of non-
empty OOD sets is greater than the expected size of in-distribution sets:

EX∼Pood [|C(X)|] > EX∼Pid [|C(X)|]

8
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Desideratum 2 (Avoidance of False Confidence). The predictor should minimize the probability of
producing a small, non-empty set (e.g., of size 1 or 2) for an OOD input.

minimize PX∼Pood(1 ≤ |C(X)| ≤ k) for small k

In summary, as also discussed in Appendix P, a larger or empty set is an informative and appropriate
outcome in this scenario, whereas a small, incorrect set is problematic. To assess how our method
aligns with the OOD desiderata, we designed an experiment under a semantic shift. A ResNet-56
model was calibrated on in-distribution CIFAR-100 data and evaluated on the Places365 as the OOD
dataset. As coverage is not a meaningful metric in this context, our analysis focuses on prediction
set size.
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(a) in-distribution evaluation

0 5 10 15
Prediction Set Size

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

C
o
u
n
t

RAPS:     = 3.69

EB-RAPS:  = 5.54

(b) out-of-distribution evaluation

Figure 5: Prediction set size distributions for the SAPS score and its energy-based variant with α = 0.05, on
(a) in-distribution CIFAR-100 and (b) out-of-distribution Places365 data. The energy-based variant produces
larger prediction sets on OOD data. Here, µ represents the overall set size.

The results demonstrate an alignment with our desiderata. As shown in Table 3, energy-based
scores produce larger average sets compared to their base counterparts. Figure 5 provides a visual
illustration of this adaptive behavior, comparing the RAPS score with its energy-based variant. The
Energy-based RAPS produces smaller prediction sets on ID data and larger prediction sets for OOD
samples. This response, shows improvement towards Desideratum 1, compared to baseline RAPS.

Table 3: Comparison of average prediction set sizes for a ResNet-56 model trained on CIFAR-100. The model
is evaluated on both in-distribution (CIFAR-100) and out-of-distribution (Places365) data. Energy-based vari-
ants demonstrate adaptiveness to the distributional shift by maintaining small sets on ID data while producing
significantly larger sets for OOD inputs. Bold values indicate the preferred result: the smallest average set size
for ID (efficiency) and the largest for OOD (uncertainty awareness).

α = 0.1 α = 0.05

Method
Set Size ID

(in distribution)

Set Size OOD
(out of distribution)

Set Size ID
(in distribution)

Set Size OOD
(out of distribution)

w/o Energy 3.17 ± 0.09 6.18 ± 0.25 6.91 ± 0.24 14.91 ± 0.81

A
P
S

w/ Energy 3.16 ± 0.08 86.76 ± 0.94 6.49 ± 0.24 93.40 ± 0.53

w/o Energy 3.13 ± 0.07 3.70 ± 0.04 8.17 ± 0.47 8.95 ± 0.47

R
A
P
S

w/ Energy 3.13 ± 0.08 5.53 ± 0.07 6.18 ± 0.25 9.05 ± 0.49

w/o Energy 2.87 ± 0.09 3.78 ± 0.05 7.47 ± 0.43 8.82 ± 0.46

S
A
P
S

w/ Energy 2.87 ± 0.11 5.55 ± 0.10 5.94 ± 0.16 9.53 ± 0.18

4 CONCLUSION

This paper demonstrates that the reliability of conformal classifiers is enhanced by moving beyond
softmax probabilities to leverage information about model uncertainty from the logit space. Our
proposed energy-based framework adjusts standard nonconformity scores on a per-sample basis,
leveraging this principled measure of model certainty to make each score sensitive to the model’s
confidence in that specific input. Our evaluations on common nonconformity scores, across multiple
datasets and architectures, confirm that our approach yields prediction sets with improved efficiency
and adaptiveness, all while preserving the theoretical coverage guarantee.
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5 REPRODUCIBILITY STATEMENT

The empirical results presented in this paper are fully reproducible. Our implementation, based on
PyTorch and leveraging the TorchCP library, will be made publicly available. Detailed descriptions
of hyperparameters, and environment specification for running experiments, are provided in §F.
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APPENDIX

A NOTATION

Table 4: Notation used in this work.

Symbol Meaning

x∈RD Input (feature) vector

K Total number of classes

y∈{1, . . . ,K} Class label

f(x)=(f1, . . . , fK) Pre-softmax logit vector produced by the classifier

π̂(y | x) Model’s softmax probability for class y, Equation 1

fmax(x) maxk fk(x)

S(x, y) General nonconformity score

T Temperature used in the calibrated softmax

τ Temperature used in the energy calculation

α Desired miscoverage level / target error rate

q̂1−α Quantile threshold for prediction set construction

E(x, y) Joint energy, E(x, y) = −fy(x)

F (x) Helmholtz free energy score, Equation 4

β Softplus sharpness parameter

D(x, Ytrue) Sample difficulty measure

ox(y) Rank of label y in the model’s predicted class-probability ordering

H(x) Shannon entropy of π̂(y | x)
D = {(xi, yi)}Ni=1 Dataset with N samples, inputs xi and labels yi
δ(x) Geometric distance of x from the decision boundary

B RELATED WORKS

CP is a statistical framework that provides distribution-free, finite-sample coverage guarantees
for predictions (Vovk et al., 2005). This robust approach to uncertainty quantification has seen
widespread adoption across numerous real-world applications. These include regression (Lei &
Wasserman, 2014; Romano et al., 2019), classification (Sadinle et al., 2019), structured predic-
tion (Bates et al., 2021), large language models (LLMs) (Su et al., 2024; Cherian et al., 2024; Ku-
mar et al., 2023; Ren et al., 2023; Quach et al., 2024), and diffusion models (Horwitz & Hoshen,
2022; Teneggi et al., 2023). graph neural networks (GNNs) (Zargarbashi et al., 2023; Huang et al.,
2023; Wijegunawardana et al., 2020; Clarkson, 2023; Song et al., 2024), and image generative mod-
els (Horwitz & Hoshen, 2022). Further applications are found in robotic control (Kang et al., 2024;
Luo & Zhou, 2024), hyperspectral imaging (Liu et al., 2024b), healthcare (Lindemann et al., 2024),
finance (Bellotti, 2021), autonomous systems and automated vehicles (Lindemann et al., 2024;
Zecchin et al., 2024; Bang et al., 2024), human-in-the-loop decision making (Straitouri et al., 2023;
Cresswell et al., 2024), bioprocessing (Pham et al., 2025), and scientific machine learning (Moya
et al., 2024; Podina et al., 2024).

The foundational inductive conformal prediction framework (Vovk et al., 2005) often employs a
split conformal (or inductive conformal) approach, where the dataset is divided into a training set
for model fitting and a disjoint calibration set for uncertainty quantification (Papadopoulos et al.,
2002b; Vovk et al., 2005; Shafer & Vovk, 2008; Angelopoulos & Bates, 2021; Lei et al., 2015). This
is done to manage the computational aspects of CP. Beyond this common split, other CP variants
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include methods based on cross-validation (Vovk, 2015) or the jackknife (i.e., leave-one-out) tech-
nique (Barber et al., 2021). The primary goals within CP research are to enhance the efficiency of
prediction sets (i.e., reduce their size) and to ensure and improve the validity of coverage rates.

Improving Prediction Set Efficiency. Strategies to improve the efficiency of prediction sets pre-
dominantly fall into two categories: training-time modifications and post-hoc adjustments.

One line of research focuses on developing new training algorithms or regularizations to learn
models that inherently produce smaller prediction sets while maintaining coverage (Bellotti, 2021;
Colombo & Vovk, 2020; Chen et al., 2021; Stutz et al., 2022; Einbinder et al., 2022; Bai et al., 2022;
Fisch et al., 2021; Yang & Kuchibhotla, 2021; Correia et al., 2024). For example, the uncertainty-
aware conformal loss aims to optimize APS (Romano et al., 2020) by encouraging non-conformity
scores towards a uniform distribution (Einbinder et al., 2022), while ConfTr introduces a regular-
ization term to minimize average set size (Stutz et al., 2022). However, such training methods can be
computationally intensive due to model retraining and optimization complexity. Early stopping has
also been explored as a technique to select models leading to more compact prediction sets under
guaranteed coverage (Liang et al., 2023).

The other avenue involves post-hoc techniques applied to pre-trained models. This includes the de-
sign of novel non-conformity score functions. Notable examples are LAC (Sadinle et al., 2019),
APS (Romano et al., 2020), RAPS (Angelopoulos et al., 2021), SAPS (Huang et al., 2024b),
Top-K (Angelopoulos et al., 2021; Luo & Zhou, 2024), and others (Ghosh et al., 2023). Post-
hoc learning methods have also been proposed (Xi et al., 2024). Research also addresses unique
settings such as federated learning (Lu et al., 2023; Plassier et al., 2023), multi-label classifica-
tion (Cauchois et al., 2021; Fisch et al., 2022; Papadopoulos, 2022), outlier detection (Bates et al.,
2023; Guan & Tibshirani, 2022), and out-of-distribution (OOD) detection (Chen et al., 2023; Nov-
ello et al., 2024). A common challenge for some post-hoc methods is their reliance on potentially
unreliable probability outputs from models.

Recent efforts have sought to make conformal prediction sets more adaptive by explicitly incorporat-
ing epistemic uncertainty. One line of work proposes methods that operate on richer, second-order
predictions. For instance, Javanmardi et al. (2025) introduce Bernoulli Prediction Sets (BPS), which
construct provably optimal (i.e., smallest) prediction sets under the assumption that the true data
distribution is contained within a given ”credal set” derived from models like deep ensembles or
Bayesian neural networks. A complementary, model-agnostic approach is taken by Cabezas et al.
(2025) with EPICSCORE, which enhances any standard nonconformity score by training a separate
Bayesian model to learn its conditional distribution. This transforms the score to reflect epistemic
uncertainty, achieving asymptotic conditional coverage. However, our energy-based framework im-
proves the adaptiveness of Conformal Classifiers by leveraging uncertainty information from pre-
softmax logits via the Helmholtz free energy, thus avoiding the need for second-order predictors or
additional post-hoc computational costs.

Ensuring Validity and Enhancing Coverage Rates. A significant body of work is dedicated to
ensuring the validity of the marginal coverage rate and improving it, particularly under challeng-
ing conditions, as well as striving for stronger conditional coverage guarantees (Shi et al., 2013;
Löfström et al., 2015). Efforts have been made to maintain marginal coverage by adapting CP
to scenarios involving adversarial examples (Gendler et al., 2022; Kang et al., 2024), covariate
shift (Tibshirani et al., 2019; Deng et al., 2023), label shift (Podkopaev & Ramdas, 2021; Plassier
et al., 2023), and noisy labels (Feldman et al., 2023; Sesia et al., 2023).

Beyond marginal coverage, many CP algorithms pursue forms of conditional coverage (Vovk, 2012).
This includes training-conditional validity, which aims to ensure that most training dataset realiza-
tions result in valid marginal coverage on future test data (Bian & Barber, 2023; Pournaderi & Xiang,
2024). Group-conditional CP methods seek to guarantee coverage across predefined groups within
the population (Javanmard et al., 2022; Gibbs et al., 2025; Melki et al., 2023). While achieving exact
pointwise conditional coverage is known to be impossible in general (Foygel Barber et al., 2021),
practical approaches for approximate or class-conditional coverage exist. For instance, LAC demon-
strates the possibility of efficient class-conditional coverage (Sadinle et al., 2019). Clustered CP
improves class-conditional coverage by leveraging the label space taxonomy, particularly when the
number of classes is large (Ding et al., 2023a). Other methods, like k-Class-conditional CP, cali-
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brate class-specific score thresholds based on top-k errors. The goal remains to enhance conditional
coverage properties while still producing efficient and informative prediction sets.

C ON THE LIMITATIONS OF SOFTMAX OUTPUTS FOR MEASURING MODEL
UNCERTAINTY

Our motivation for developing energy-based nonconformity scores, as detailed throughout Section 2,
is the inadequacy of softmax outputs for reliably quantifying model uncertainty. To provide a
broader context, we reproduce a selection of established criticisms originally compiled in the ap-
pendix of Pearce et al. (2021), along with a few more recent perspectives published thereafter.

• “[The softmax output] is often erroneously interpreted as model confidence.” (Gal &
Ghahramani, 2016)

• “Deterministic models can capture aleatoric uncertainty but cannot capture epistemic un-
certainty.” (Gal et al., 2017)

• “NNs . . . until recently have been unable to provide measures of uncertainty in their pre-
dictions.” (Malinin & Gales, 2018)

• “When asked to predict on a data point unlike the training data, the NN should increase
its uncertainty. There is no mechanism built into standard NNs to do this . . . standard NNs
cannot estimate epistemic uncertainty.” (Pearce, 2020)

• “NNs are poor at quantifying predictive uncertainty.” (Lakshminarayanan et al., 2017)
• “Deep neural networks with the softmax classifier are known to produce highly overconfi-

dent posterior distributions even for such abnormal samples.” (Lee et al., 2018b)
• “The output of the [softmax] classifier cannot identify these [far from the training data]

inputs as out-of-distribution.” (Hein et al., 2019)
• “The only uncertainty that can reliably be captured by looking at the softmax distribution

is aleatoric uncertainty.” (van Amersfoort et al., 2020)
• “Softmax entropy is inherently inappropriate to capture epistemic uncertainty.” (Mukhoti

et al., 2021)
• “For [softmax] classifiers . . . misclassification will occur with high confidence if the un-

known is far from any known data.” (Boult et al., 2019)
• “. . . softmax output only reflects the total predictive uncertainty instead of the model uncer-

tainty, leading to false confidence under distribution shift.” (Wang et al., 2024)
• “. . . the raw softmax output is neither very reliable . . . nor can it represent all sources of

uncertainty” (Gawlikowski et al., 2023)
• “Furthermore, the softmax output cannot be associated with model uncertainty.” (Gaw-

likowski et al., 2023)
• “. . . the softmax output is often erroneously interpreted as model confidence. In reality, a

model can be uncertain in its predictions even with a high softmax output.” (Mobiny et al.,
2021)

Additional commentary and remarks also reinforce this view:

• “Softmax is not telling you anything about . . . model uncertainty.” — Elise Jennings, Train-
ing Program on Extreme-Scale Computing (2019)1

• “The [softmax] network has no way of telling you ‘I’m completely uncertain about the
outcome and don’t rely on my prediction’.” — Florian Wilhelm, PyData Berlin (2019)2

• “Just adding a softmax activation does not magically turn outputs into probabilities.” —
Tucker Kirven, Neural Network Prediction Scores are not Probabilities (2020)3

1https://youtu.be/Puc_ujh5QZs?t=1323
2https://youtu.be/LCDIqL-8bHs?t=262
3https://jtuckerk.github.io/prediction_probabilities.html
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D ENERGY-BASED MODELS

An Energy-Based Model (EBM) defines a probability distribution over an input space RD through
an energy function Eθ : RD → R, which is typically parameterized by a neural network with
parameters θ. For any input vector x ∈ RD, the probability density is given by the Boltzmann
distribution:

pθ(x) =
exp(−Eθ(x))

Zθ
, (13)

where Zθ =
∫
x′ exp(−Eθ(x

′))dx′ is the partition function. This normalization constant is a key
challenge in EBMs, as its computation involves integrating over the entire high-dimensional input
space, which is generally intractable.

This framework can be extended to model a joint distribution over inputs and class labels, p(x, y).
A standard discriminative classifier, which produces a logit vector f(x), can be re-interpreted as an
EBM by defining a joint energy function E(x, y). Following common practice LeCun et al. (2006);
Grathwohl et al. (2020), we define the joint energy as the negative logit corresponding to class y:

E(x, y) = −fy(x). (14)
From this joint model, the conditional probability p(y | x) can be derived as:

p(y | x) = p(x, y)

p(x)
=

p(x, y)∑K
k=1 p(x, k)

=
exp(−E(x, y))∑K
k=1 exp(−E(x, k))

=
exp(fy(x))∑K
k=1 exp(fk(x))

, (15)

which is precisely the standard softmax probability π̂(y | x). The marginal probability p(x) can
then be associated with a “free energy” function E(x) = − 1

τ log
∑K

k=1 exp(fk(x)/τ), where τ is
a temperature parameter.

Training EBMs often proceeds via Maximum Likelihood Estimation (MLE), which aims to shape
the energy function Eθ(x) such that it assigns low energy to data points from the true distribution
and high energy elsewhere. The objective is to maximize the log-likelihood of the observed data D:

argmax
θ

Ex∼pdata [log pθ(x)]. (16)

The gradient of the log-likelihood with respect to the parameters θ is given by:
∇θ log pθ(x) = ∇θ(−Eθ(x)− logZθ) (17)

= −∇θEθ(x)−
1

Zθ
∇θ

∫
x′
exp(−Eθ(x

′))dx′ (18)

= −∇θEθ(x)−
∫
x′

exp(−Eθ(x
′))

Zθ
(−∇θEθ(x

′))dx′ (19)

= −∇θEθ(x) + Ex′∼pθ
[∇θEθ(x

′)]. (20)
Remarkably, this gradient can be computed without explicitly evaluating the intractable partition
function Zθ. Updating the parameters via stochastic gradient ascent on the log-likelihood is equiva-
lent to descending on the following loss function:

LMLE = Ex∼pdata [Eθ(x)]− Ex′∼pθ
[Eθ(x

′)]. (21)
This objective can be intuitively understood as a force that “pulls down” the energy of “positive”
samples drawn from the data distribution (pdata) while “pushing up” the energy of “negative” samples
synthesized from the model’s current distribution (pθ).

To operationalize this training procedure, we must be able to draw samples x′ from the model dis-
tribution pθ(x). Since direct sampling is infeasible, this is typically approximated using Markov
Chain Monte Carlo (MCMC) methods. A prevalent choice is Stochastic Gradient Langevin Dynam-
ics (SGLD) Welling & Teh (2011), which iteratively refines an initial sample x0 (e.g., drawn from a
simple noise distribution or a buffer of previous samples) according to the rule:

xt+1 = xt − αt∇xEθ(xt) +
√
ηtϵ, where ϵ ∼ N (0, I), (22)

where αt is the step size and ηt controls the scale of the injected Gaussian noise. After a sufficient
number of steps, the resulting sample xT is treated as an approximate sample from pθ(x). Different
strategies for initializing and running the MCMC chain lead to various training algorithms, such as
Contrastive Divergence (CD) Hinton (2002), which re-initializes the chain from data points at each
step, and Persistent Contrastive Divergence (PCD) Tieleman (2008), which maintains a persistent
chain across training iterations to obtain higher-quality samples.
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E EXPERIMENTAL PRELIMINARIES

This section details the experimental design, including the conformal prediction framework, the
nonconformity scores used, and evaluation metrics used to validate our proposed Energy-based non-
conformity scores.

E.1 CONFORMAL PREDICTION FRAMEWORK

We employ the standard Split Conformal Prediction (CP) framework in our experiments. A base
model is trained on a proper training set, and its outputs on a held-out calibration set are used to
compute non-conformity scores and determine the quantile threshold q̂ required to form prediction
sets. The procedure is formally outlined in Algorithm 1.

Algorithm 1 Split Conformal Prediction

1: Input: Dataset D, desired error rate α ∈ (0, 1), non-conformity score function S(x, y).
2: Partition D into a training set Dtrain and a calibration set Dcal, such that Dtrain ∩ Dcal = ∅. Let

n = |Dcal|.
3: Train the classifier on Dtrain to learn the mapping x 7→ f(x).
4: For each example (xi, yi) ∈ Dcal, compute the non-conformity score si = S(xi, yi).
5: Calculate the quantile threshold q̂ from the set of calibration scores {s1, . . . , sn}. Specifically,

q̂ is the ⌈(n+1)(1−α)⌉
n -th empirical quantile of these scores.

6: Output: For a new input xnew, the prediction set is constructed as:

C(xnew) = {y ∈ {1, . . . ,K} : S(xnew, y) ≤ q̂}

E.2 NONCONFORMITY SCORES FOR DEEP CLASSIFIERS

The non-conformity score function S(x, y) measures how poorly the label y fits the input x accord-
ing to the trained model. The prediction set C(xnew) is then formed by including all labels whose
non-conformity scores do not exceed the calibrated threshold q̂. A key property of this procedure is
that the resulting set is guaranteed to contain the true label with a probability of at least 1−α, assum-
ing the test and calibration data points are exchangeable. Exchangeability is a statistical assumption
that the joint distribution of the data is invariant to permutation, making it a suitable assumption for
scenarios like simple random sampling.

We evaluate a range of established non-conformity scores, each based on a different principle for
measuring how much a model’s prediction disagrees with a given label, as summarized in Table 5.
We compare these established baselines against their Energy-based counterparts, as defined in Equa-
tion 9.

Table 5: Nonconformity scores considered in this work. All scores are functions of π̂(y | x) where u∼U [0, 1];
The function ox(y) returns the rank position of label y among all possible labels, ordered by the model’s
predicted probabilities (with rank 1 being the most likely); π̂max(x) = maxk π̂(k | x); (·)+ denotes the
positive part; λ and kreg are hyperparameters.

Method Nonconformity Score
LAC / THR (Sadinle et al., 2019) SLAC(x, y) = 1− π̂(y | x) ≡ −π̂(y | x)

A
da

pt
iv

e
Sc

or
es 
APS (Romano et al., 2020) SAPS(x, y) =

∑K
k=1 π̂(k | x) I

{
π̂(k | x) > π̂(y | x)

}
+ u · π̂(y | x)

RAPS (Angelopoulos et al., 2021) SRAPS(x, y) = SAPS(x, y) + λ
(
ox(y)− kreg

)+
SAPS (Huang et al., 2024b) SSAPS(x, y) =

{
u · π̂max(x), ox(y) = 1,

π̂max(x) +
(
ox(y)− 2 + u

)
λ, otherwise,

Below, we briefly describe how each method works:
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Least Ambiguous Class (LAC/THR) (Sadinle et al., 2019) is one of the simplest and earliest scores.
Its non-conformity is defined as SLAC(x, y) = 1− π̂(y | x). The score is thus inversely proportional
to the model’s confidence; a high probability for the true class yields a low non-conformity score.
It is worth noting that using the negative probability, S(x, y) = −π̂(y | x), is mathematically
equivalent for constructing the prediction set, as the “+1” in the original formula merely shifts the
range from [−1, 0] to [0, 1] for non-negative interpretability without altering the relative ordering,
where higher scores indicate greater nonconformity (less conformity between label and sample).
This is because the conformal procedure relies on the rank-ordering of scores to determine the
quantile q̂, and the transformation from 1− π̂ to −π̂ is monotonic, preserving the rank order. For the
Energy-based counterpart of this score, we use −π (without the bias term). This method provably
yields the smallest expected prediction sets compared to other methods proposed after this model,
while preserving the marginal coverage, assuming the predicted probabilities are correct. However,
this score is non-adaptive, meaning it tends to produce prediction sets of similar size regardless of
the sample’s intrinsic difficulty, which opened the room for adaptive nonconformity scores and their
variants to be proposed later.

Adaptive Prediction Sets (APS) (Romano et al., 2020) introduced the concept of adaptiveness to
conformal prediction. The score SAPS(x, y) is the cumulative probability mass of all classes deemed
more likely than class y. Mathematically, this is the sum of softmax probabilities for all labels k
whose probability π̂(k | x) is greater than π̂(y | x), plus a randomized term to handle ties. This
design has a crucial effect: for “easy” examples where the model is confident (i.e., π̂max(x) is high
and Entropy is low), the scores for incorrect labels grow rapidly, leading to small prediction sets.
Conversely, for “hard” examples where the model is uncertain (a flatter softmax distribution), the
scores grow slowly, resulting in larger, more inclusive sets that reflect this uncertainty.

Regularized Adaptive Prediction Sets (RAPS) (Angelopoulos et al., 2021) builds directly upon
APS by adding a regularization term. Its score is SRAPS(x, y) = SAPS(x, y) + λ(ox(y) − kreg)

+,
where ox(y) is the rank of label y’s probability. This term penalizes the inclusion of labels with
a low rank (i.e., large ox(y)), effectively preventing the prediction sets from becoming excessively
large, especially for uncertain inputs. The hyperparameters kreg and λ control the onset and strength
of this size-regularizing penalty.

Sorted Adaptive Prediction Sets (SAPS) (Huang et al., 2024b) is a more recent refinement that
aims to mitigate the effects of probability miscalibration in the softmax tail. It treats the top-ranked
class differently from all others. For labels not ranked first, the score is based on the maximum
probability π̂max(x) plus a penalty that increases linearly with the label’s rank, weighted by a hy-
perparameter λ. This approach avoids summing many small, potentially noisy tail probabilities (as
APS does) and instead relies on the more stable top probability and the rank ordering.

E.3 EVALUATION METRICS

We assess the performance of all methods using a target miscoverage level α ∈
{0.01, 0.025, 0.05, 0.1}. Let {(xi, yi)}ntest

i=1 be the test set. The primary metrics are:

• Empirical Coverage: The fraction of test samples where the true label is included in the
prediction set.

Coverage =
1

ntest

ntest∑
i=1

I[yi ∈ C(xi)] (23)

• Macro-Coverage (MacroCov): While empirical coverage reflects marginal reliability
over the entire test distribution, MacroCov measures the average per-class coverage, giving
each class equal weight regardless of its frequency. Let ĉy = 1

|Iy|
∑

i∈Iy
I[yi ∈ C(xi)]

denote the empirical coverage for class y, where Iy = {i : yi = y}. Then,

MacroCov =
1

K

K∑
y=1

ĉy. (24)

This metric is particularly informative in imbalanced or long-tailed settings, since it pre-
vents head classes from dominating the overall coverage and highlights systematic under-
coverage of rare classes.
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• Average Prediction Set Size: The mean size of the prediction sets over the test data.

Size =
1

ntest

ntest∑
i=1

|C(xi)| (25)

To assess class-conditional reliability, we report the following metrics to verify that they are main-
tained while reducing the average prediction set size:

• Average Class Coverage Gap (CovGap): This metric measures the average absolute de-
viation of per-class coverage from the target coverage level 1− α (Ding et al., 2023b). Let
Iy = {i : yi = y} be the indices of test samples for class y. The empirical coverage for
class y is ĉy = 1

|Iy|
∑

i∈Iy
I[yi ∈ C(xi)]. The gap is then:

CovGap =
1

K

K∑
y=1

|ĉy − (1− α)| (26)

We report this value as a percentage.

To measure the adaptiveness of the prediction sets, we use:

• Size-Stratified Coverage Violation (SSCV): As introduced by Angelopoulos et al. (2021),
SSCV quantifies whether coverage is maintained across different prediction set sizes. We
define disjoint set-size strata {Sj}sj=1 and group test indices into bins Jj = {i : |C(xi)| ∈
Sj}. The SSCV is the maximum deviation from the target coverage across all bins:

SSCV = sup
j

∣∣∣∣ |{i ∈ Jj : yi ∈ C(xi)}|
|Jj |

− (1− α)

∣∣∣∣ (27)

F REPRODUCIBILITY DETAILS

To ensure full reproducibility, we detail our experimental setup, key hyperparameters, and imple-
mentation. All source code will be made publicly available. All experiments are implemented based
on the TorchCP library (Huang et al., 2024a), which provides a robust framework for conformal
prediction on deep learning models. The pre-trained backbone models are sourced from TorchVi-
sion (maintainers & contributors, 2016).

F.1 COMPUTATIONAL ENVIRONMENT

• Operating System: Linux kernel 5.14.0-427.42.1.el9 4.x86 64.
• GPU Hardware: NVIDIA H100 80GB HBM3.
• CPU Hardware: 8 cores.
• System Memory: 32 GB RAM.
• NVIDIA Driver Version: 550.144.03.
• CUDA Version: 12.2.

• Python Version: 3.9.21.
• PyTorch Version: 2.0.0+ (with CUDA support).

F.2 DATASETS AND MODELS

Our experiments are conducted on several standard image classification benchmarks: CIFAR-
100 (Krizhevsky et al., 2009), ImageNet-Val (Deng et al., 2009), and Places365 (Zhou et al.,
2018). These benchmarks are chosen because they contain a large number of classes, which makes
performance differences between methods more evident. We use pre-trained ResNet (He et al.,
2016), VGG (Simonyan & Zisserman, 2015), ViT (Dosovitskiy et al., 2021), Swin Transformer (Liu
et al., 2021), EfficientNet (Tan & Le, 2019), and ShuffleNet (Zhang et al., 2018) architectures from
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TorchVision as our base classifiers. To evaluate performance under distributional shift, we use a
model trained on CIFAR-100 and test its out-of-distribution (OOD) performance on the Places365
dataset.

To investigate the methods’ robustness to class imbalance, we create four long-tailed variants
of CIFAR-100, denoted as CIFAR-100-LT. The number of training samples for class j ∈
{1, . . . , 100}, denoted nj , is set to be proportional to exp(−λ · j). The imbalance factor λ ∈
{0.005, 0.01, 0.02, 0.03} controls the severity of the class imbalance, with larger values of λ cre-
ating a more pronounced long-tail distribution. For evaluation, we have considered two scenarios:
(i) the calibration and test sets are balanced while the training data remain imbalanced, and (ii) the
calibration and test sets follow the same imbalance ratios as the training data.

F.3 HYPERPARAMETER SETTINGS

In our experiments, we set kreg = 2 and λ = 0.2 for RAPS and we use λ = 0.2 for SAPS. The soft-
max probabilities π̂(y|x) used by all scores are computed with a temperature parameter T , while
the free energy Fτ (x) is calculated with its own temperature τ . Crucially, to ensure a fair compar-
ison, the softmax temperature T was tuned for all baseline and proposed methods to optimize their
performance. We tune the temperature energy parameter τ with ln(τ) ∈ [−9, 9] and the calibration
temperature T ∈ {0.01, . . . , 25}.
Remark F.1. A critical consideration in our proposed modulation is the positivity of the reweight-
ing factor. When reweighting a base nonconformity score, it is critical the scaling factor must be
strictly positive. A negative factor would reverse the score’s ordering, invalidating the fundamental
assumption of conformal prediction that lower scores indicate higher conformity. While our uncer-
tainty signal is the negative free energy, −F (x), it is not guaranteed to be positive. Mathematically,
−F (x) becomes negative if

∑K
k=1 exp(fk(x)/τ) < 1, a condition which implies that the maximum

logit fmax(x) is negative (a necessary, though not always sufficient, condition). This scenario sig-
nifies extreme model uncertainty, where the model lacks evidence for any class and typically occurs
only for far out-of-distribution inputs.

Although we empirically observe that −F (x) is positive for nearly all in-distribution and OOD
samples in our experiments, to ensure the theoretical robustness of our method, we scale the base
scores by the softplus of the negative free energy. The hyperparameter β in the softplus function,
1
β log(1+ eβz), controls its approximation to the Rectified Linear Unit (ReLU) function. By choos-
ing a large value for β, the scaling factor softplus(−F (x)) behaves almost identically to −F (x)
when it is positive, but smoothly transitions to a value near zero in the rare cases where −F (x) < 0.
This behavior is highly beneficial for conformal prediction. For such uncertain inputs, the near-zero
scaling factor drives the modulated scores for all labels toward zero, causing most or all of them
to fall below the conformal quantile q̂. This correctly produces an extensively large prediction set,
signaling the model’s high epistemic uncertainty. Throughout our experiments, we set β = 1. See
Appendix O for a detailed ablation study on β.

F.4 CODE AVAILABILITY

The full codebase will be made publicly available to facilitate direct reproduction.
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G PROOFS

G.1 THEORETICAL VALIDITY OF ENERGY-BASED SCORES

In conformal prediction, the validity of the coverage guarantee relies on the exchangeability of the
nonconformity scores. Specifically, for a set of exchangeable data points, their corresponding non-
conformity scores must also be exchangeable. This property ensures that the prediction sets contain
the true label with the desired probability. We now establish that our proposed Energy-modulated
scores, as defined in Equation 9, satisfy this critical property under standard assumptions. This en-
sures that using these modulated scores yields valid prediction sets with the guaranteed marginal
coverage central to conformal prediction theory (Vovk et al., 2005).

Theorem G.1 (Exchangeability of Energy-Based Nonconformity Scores). Let (Xi, Yi)
n+1
i=1 be an

exchangeable sequence of random variables drawn from a distribution PXY . Assume that:

(i) The base nonconformity score S(x, y) is a deterministic function of its arguments.

(ii) The free energy F (x) is a deterministic function of x as defined in Equation 4.

Define the modulated score for i = 1, . . . , n+ 1 as:

S′
i = SEnergy-based(Xi, Yi) := S(Xi, Yi) ·

1

β
log

(
1 + e−βF (Xi)

)
. (28)

Then the sequence of modulated scores (S′
1, . . . , S

′
n+1) is exchangeable.

Proof. A sequence of random variables is exchangeable if its joint distribution is invariant under
any finite permutation of its indices.

Let the transformation be defined as h(x, y) = S(x, y) · 1
β log

(
1 + e−βF (x)

)
. By assumptions (i)

and (ii), the base score S(x, y) and the energy function F (x) are deterministic. Since the softplus
function and multiplication are also deterministic operations, the entire mapping h(x, y) is deter-
ministic and measurable.

A fundamental property of exchangeable sequences is that they remain exchangeable after applying
a measurable transformation. That is, if (Zi) is an exchangeable sequence and g is a measurable
function, then the sequence (g(Zi)) is also exchangeable.

Applying this principle with Zi = (Xi, Yi) and the transformation g = h, we find that the sequence
of scores (S′

i) = (h(Xi, Yi)) inherits exchangeability from the data sequence ((Xi, Yi)). Formally,
for any permutation σ of {1, . . . , n+ 1},

(S′
σ(1), . . . , S

′
σ(n+1))

d
= (S′

1, . . . , S
′
n+1), (29)

where d
= denotes equality in distribution. Hence, the sequence (S′

i)
n+1
i=1 is exchangeable.

G.2 PROOF OF PROPOSITION 2.1

Proof. Let the epistemic uncertainty UE(x) be defined as the negative logarithm of the model-
induced input density, UE(x) = − log p(x). This definition captures the intuition that uncertainty is
high where the model assigns low probability density.

Starting from the definition of the input density in Equation 5:

p(x) =
exp(−F (x)/τ)

Z
.

Taking the logarithm of both sides yields:

log p(x) = log (exp(−F (x)/τ))− logZ

log p(x) = −F (x)/τ − logZ.
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Multiplying by −1 and rearranging for F (x), we obtain:

− log p(x) = F (x)/τ + logZ

F (x) = τ(− log p(x))− τ logZ.

Substituting UE(x) = − log p(x) and letting C = −τ logZ (a constant with respect to x), we arrive
at:

F (x) = τ · UE(x) + C.

This shows that the free energy F (x) is linearly proportional to the epistemic uncertainty UE(x),
scaled by the temperature τ and shifted by a constant. Therefore, a higher free energy value directly
corresponds to higher epistemic uncertainty.

G.3 PROOF OF THEOREM 2.2

Proof. The proof proceeds by first establishing the relationship between the negative free energy
−F (x) and the maximum logit, and then arguing that the expected maximum logit decreases as
sample difficulty increases for a well-trained model.

Step 1: Relating Negative Free Energy to the Maximum Logit. The negative free energy, −F (x),
is the LogSumExp (LSE) of the scaled logits. The LSE function is a smooth approximation of the
maximum function and is tightly bounded by it. For any vector z ∈ RK , the sum of exponentials
can be bounded relative to its maximum term, zmax = maxk zk:

ezmax ≤
K∑

k=1

ezk ≤ K · ezmax . (30)

By taking the logarithm across all parts of the inequality, we obtain the standard bounds for the LSE
function:

max
k

zk ≤ log

K∑
k=1

ezk ≤ max
k

zk + logK. (31)

Applying this to our scaled logits, zk = fk(x)/τ , and multiplying by τ gives:

max
k

fk(x) ≤ −F (x) ≤ max
k

fk(x) + τ logK. (32)

This inequality demonstrates that −F (x) is a tight, monotonically increasing function of the maxi-
mum logit, maxk fk(x). Therefore, proving Theorem 2.2 is equivalent to proving that the expected
maximum logit is a strictly monotonically decreasing function of difficulty:

E[max
k

fk(X) | D(X,Ytrue) = d1] > E[max
k

fk(X) | D(X,Ytrue) = d2]. (33)

Step 2: Characterizing the Maximum Logit by Difficulty Level. We analyze the maximum logit
for samples conditioned on their difficulty.

• Low Difficulty (d = 1): A sample (x, y) has difficulty d = 1 if and only if its true label
y receives the highest logit. Thus, for this subpopulation of data, the maximum logit is the
logit of the true class:

D(x, ytrue) = 1 =⇒ max
k

fk(x) = fy(x). (34)

A model trained via a standard objective like cross-entropy is explicitly optimized to in-
crease the value of fy(x) for all training samples. Consequently, the set of samples where
the model succeeds (d = 1) corresponds to inputs for which the model produces a large,
dominant logit for the correct class.

• High Difficulty (d > 1): A sample (x, y) has difficulty d > 1 if and only if the model’s
prediction is incorrect. This implies that the maximum logit corresponds to an incorrect
class k′ ̸= y:

D(x, ytrue) = d > 1 =⇒ max
k

fk(x) = fk′(x) for some k′ ̸= y. (35)
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Step 3: Comparing Conditional Expectations. We compare the expected maximum logit over
the subpopulation of correctly classified samples (d1 = 1) versus incorrectly classified samples
(d2 > 1). The training objective directly pushes the values in the set {fY (X) | D(X,Ytrue) = 1}
to be as large as possible. In contrast, the values in the set {maxk fk(X) | D(X,Ytrue) > 1} arise
from the model’s failure to generalize.

A fundamental property of a successfully trained and well-generalized, and well-calibrated classifier
is that its confidence on the examples it classifies correctly is, on average, higher than its confidence
on the examples it classifies incorrectly (Guo et al., 2017). If this were not the case, the model would
not have learned a meaningful decision boundary from the data. Thus, the average maximum logit
for the population of “easy” samples must be greater than that for the population of “hard” samples.
Formally, for d1 < d2:

E[max
k

fk(X) | D(X,Ytrue) = d1] > E[max
k

fk(X) | D(X,Ytrue) = d2]. (36)

Given the monotonic relationship established in Equation 32, it follows directly that the expected
negative free energy also decreases with increasing difficulty. This completes the proof and aligns
with our empirical observation in Section 2.

G.4 PROOF OF PROPOSITION 2.3

Proof. The proof follows directly from the definition of a conformal prediction set. By definition,
the prediction set CG(x) for a new instance x includes all labels y for which the scaled nonconformity
score does not exceed the calibrated quantile q̂

(G)
1−α.

CG(x) =
{
y
∣∣∣ SG(x, y) ≤ q̂

(G)
1−α

}
. (37)

Substituting the definition of the scaled score, SG(x, y) = G(x)S(x, y), we have:

CG(x) =
{
y
∣∣∣ G(x)S(x, y) ≤ q̂

(G)
1−α

}
. (38)

Since we assume G(x) is strictly positive, we can divide both sides of the inequality by G(x) without
changing its direction:

CG(x) =

{
y

∣∣∣∣∣ S(x, y) ≤ q̂
(G)
1−α

G(x)

}
. (39)

By defining the instance-adaptive threshold θ(x) = q̂
(G)
1−α/G(x), we arrive at the equivalent formu-

lation:
CG(x) = {y | S(x, y) ≤ θ(x)} . (40)

This concludes the proof.

Remark G.2. It is important to emphasize that the new quantile, q̂(G)
1−α, is fundamentally different

from the baseline quantile, q̂1−α, which would be computed from the unscaled scores.

Let Sbase = {S(Xi, Yi)}ni=1 be the set of baseline calibration scores, and SG =
{G(Xi)S(Xi, Yi)}ni=1 be the set of Energy-reweighted calibration scores.

• q̂1−α is the (1− α)-quantile of the empirical distribution defined by Sbase.

• q̂
(G)
1−α is the (1− α)-quantile of the empirical distribution defined by SG.

There is no simple, closed-form relationship between q̂1−α and q̂
(G)
1−α. Scaling each score Si by

a different factor G(Xi) changes the distribution of scores, including the relative ordering of the
calibration samples. For instance, a sample (Xj , Yj) that had a median score in Sbase might have a
very high score in SG if its corresponding energy factor G(Xj) is large.

Consequently, the sample that happens to fall at the ⌈(1− α)(n+ 1)⌉-th position (thus defining the
quantile) will almost certainly be different in the baseline and Energy-based cases. In other words,
one cannot simply take the baseline quantile q̂1−α and scale it by some factor. The entire set of
calibration scores must be re-computed and re-sorted to find the new, correct quantile q̂

(G)
1−α.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

G.5 PROOF OF THEOREM 3.1

Proof. The proof relies on the connection between the logits of a classifier trained with cross-entropy
and the Bayesian posterior probability, which shows that the model’s parameters internalize the
training set’s class priors.

Step 1: Bayesian Decomposition of Logits. A classifier trained to minimize cross-entropy loss
learns to approximate the posterior probability P (Y = y|X = x). Its logits fy(x) thus approximate
the log-posterior, up to an instance-specific normalization constant. Using Bayes’ rule, we can
decompose the log-posterior:

logP (Y = y|X = x) = logP (X = x|Y = y) + logP (Y = y)− logP (X = x). (41)

When trained on Ptrain, the model’s logits learn to reflect this structure:

fy(x) ≈ logPtrain(X = x|Y = y) + logPtrain(Y = y) + C(x), (42)

where the term C(x) absorbs instance-dependent factors like − logPtrain(X = x) and other model-
specific biases. Critically, the logit fy(x) encodes the log-prior probability of class y from the
training distribution.

Step 2: Connecting Negative Free Energy to the Maximum Logit. As established in the proof of
Theorem 2.2, the negative free energy −F (x) is tightly and monotonically related to the maximum
logit, −F (x) ≈ maxk fk(x). For a reasonably accurate classifier, the expectation of the maximum
logit over test samples from a given class y is dominated by instances where the model is correct.
For a correct classification of a sample (x, y), the maximum logit is the logit of the true class:
maxk fk(x) = fy(x). Building on this, we can state that the expected negative free energy for class
y is primarily driven by the expected logit for that class:

EX∼Ptest(X|Y=y)[−F (X)] ≈ EX∼Ptest(X|Y=y)[fy(X)]. (43)

Step 3: Comparing Expected Logits for Majority and Minority Classes. Using the decomposi-
tion from Equation 42, we can express the expected logit for a class y as:

EX∼Ptest(X|Y=y)[fy(X)] ≈ EX∼Ptest(X|Y=y)[logPtrain(X|Y = y) + C(X)] + logPtrain(Y = y).
(44)

Let us define the term A(y) = EX∼Ptest(X|Y=y)[logPtrain(X|Y = y)+C(X)]. This term represents
the average ”data-fit” or ”evidence” for class y, as learned by the model. Under our assumption that
classes ymaj and ymin have comparable intrinsic complexity and are well-represented, this evidence
term should be similar for both, i.e., A(ymaj) ≈ A(ymin).

We can now compare the expected negative free energy for the two classes:

E[−F (X)|Y = ymaj] ≈ A(ymaj) + logPtrain(Y = ymaj) (45)
E[−F (X)|Y = ymin] ≈ A(ymin) + logPtrain(Y = ymin) (46)

By the proposition’s premise, Ptrain(Y = ymaj) > Ptrain(Y = ymin), which implies logPtrain(Y =
ymaj) > logPtrain(Y = ymin). Since A(ymaj) ≈ A(ymin), the additive log-prior term learned during
training becomes the dominant factor driving the difference. Therefore, we conclude that:

EX∼Ptest(X|Y=ymaj)[−F (X)] > EX∼Ptest(X|Y=ymin)[−F (X)]. (47)

This result confirms that the model’s systematically higher epistemic uncertainty (lower negative
free energy) for minority classes is a bias inherited from the training distribution’s class priors. This
aligns with prior work showing that models have lower expected logits for minority classes (Ren
et al., 2020; Lyu et al., 2025; Kato & Hotta, 2023; Chen & Su, 2023).
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H ANALYSIS OF SOFTMAX SATURATION AND ENERGY-BASED ADAPTIVITY

In this section, we provide a formal mechanism linking the limitations of softmax-based noncon-
formity scores to conformal inefficiency. We demonstrate that while softmax probabilities saturate
rapidly away from the decision boundary, thereby losing information about sample difficulty, the
Helmholtz Free Energy retains this geometric information. We validate this analysis with a toy
experiment visualizing the decision landscapes.

H.1 DISTANCE TO DECISION BOUNDARY AND LOGIT MAGNITUDE

Consider a deep classifier f : X → RK . For a given input x, let ŷ = argmaxk fk(x) be the
predicted class. The decision boundary between the predicted class ŷ and the second most likely
class j is defined by the hyperplane where fŷ(x) = fj(x).

It has been established that for neural networks, the magnitude of the logit vector typically scales
with the distance of the input from the decision boundary (Hein et al., 2019). Let δ(x) denote the
geometric distance of x from the decision boundary. We observe the following proportionality:

δ(x) ∝ max
k

fk(x). (48)

Therefore, an “easy” sample (one far from the boundary in a high-density region) is characterized by
logits with large magnitudes, while a “hard” sample (near the boundary) yields logits with smaller
or entangled magnitudes. Ideally, an adaptive conformal predictor should produce smaller sets as
δ(x) increases.

H.2 THE SATURATION OF SOFTMAX AND ENTROPY

Standard conformal scores rely on the softmax distribution π̂(y|x) = exp(fy(x))/
∑

k exp(fk(x)).
A critical limitation of this mapping is gradient saturation.

Consider a sample x moving away from the decision boundary such that its logit magnitude scales
by a factor α > 1. As α → ∞, π̂(ŷ|x) → 1. The gradient of the softmax output with respect to the
dominant logit fŷ is given by:

∂π̂(ŷ|x)
∂fŷ

= π̂(ŷ|x)(1− π̂(ŷ|x)). (49)

As π̂ → 1, this gradient approaches 0. Similarly, the Shannon Entropy H(x) of the distribution
approaches 0.

Implication for Conformal Prediction: Once a sample is sufficiently far from the boundary to
achieve a high confidence (e.g., π̂ > 0.99), the softmax score saturates. The model becomes geo-
metrically insensitive: a sample at distance d and a sample at distance 10d yield indistinguishable
conformal scores. This saturation restricts the adaptive capacity of the prediction sets. For high-
confidence samples, the sets cannot achieve greater efficiency because the score yields no further
signal.

H.3 NON-SATURATION OF FREE ENERGY

In contrast, the negative Helmholtz Free Energy is defined as −F (x) = τ log
∑

k exp(fk(x)/τ).
As derived in Appendix G.3, this quantity is bounded by the maximum logit:

−F (x) ≈ max
k

fk(x). (50)

Unlike softmax, the Free Energy does not saturate. Its derivative with respect to the dominant logit
is approximately 1:

∂(−F (x))

∂fŷ
≈ 1. (51)

This indicates that −F (x) grows linearly with the logit magnitude, thereby acting as a faithful proxy
for the distance δ(x) even in high-confidence regimes.
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H.4 EMPIRICAL VISUALIZATION OF UNCERTAINTY LANDSCAPES

To empirically validate this behavior, we trained a 3-layer Multilayer Perceptron (MLP) on a 2D
toy dataset consisting of two concentric classes. Figure 6 visualizes the value of Max Softmax
Confidence, Shannon Entropy, and Negative Free Energy across the input space X .
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(a) Softmax Confidence Landscape
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(c) Negative Energy Score Landscape

Figure 6: Evolution of uncertainty landscapes on a 2D toy dataset throughout the training process. Columns
represent progressive checkpoints from the early training phase (left) to full convergence (right). The red line
indicates the decision boundary. (a) Softmax probabilities saturate rapidly. The yellow region (confidence
≈ 1.0) is flat, making points near the boundary indistinguishable from points far away. (b) Entropy exhibits
similar saturation (dark blue region), vanishing to zero for most of the domain. (c) Negative Free Energy
retains gradients throughout the domain. Note the continuous color transition scaling with the distance from
the decision boundary, identifying “easier” points with higher values even when softmax is saturated.

H.5 MECHANISM OF ENERGY-BASED EFFICIENCY

Our proposed method leverages this non-saturating property by modulating the base nonconformity
score S(x, y) with a sample-specific scaler G(x) ∝ softplus(−F (x)).

For ”easy” samples (large δ(x)), −F (x) is large positive. This results in a large scaling factor
G(x) ≫ 1.

1. The nonconformity scores for incorrect labels (which are naturally non-zero) are magnified
significantly by G(x), pushing them well above the calibrated quantile q̂.

2. The nonconformity score for the true label (typically near zero) remains small even after
scaling.

This amplification forces the exclusion of incorrect classes that might otherwise have been included
due to the looseness of the global quantile q̂, thereby reducing the prediction set size. Because
F (x) does not saturate, this efficiency gain continues to improve as samples get ”easier,” a property
unattainable with softmax-based modulation.
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I PERFORMANCE ANALYSIS STRATIFIED BY SAMPLE DIFFICULTY

In this section, we report the performance of different nonconformity scores by stratifying test sam-
ples based on their difficulty. Sample difficulty is defined as the rank of the true label in the model’s
predicted probability ordering; a lower rank indicates an “easier” sample, while a higher rank signi-
fies a “harder”, often misclassified, one.

In Section 3.1, we established that energy-reweighting reduces the overall average prediction set
size while maintaining target coverage. However, this aggregate metric does not reveal whether
these efficiency gains are distributed evenly or are concentrated on specific types of samples. This
stratified analysis provides a more granular view to answer that question.

We expect an adaptive method to produce the most significant set size reductions for easy samples,
where the model is confident, while appropriately adjusting for harder samples where uncertainty
is higher. Table 6 presents these stratified results, detailing how coverage and average set size vary
across the different difficulty levels.

Table 6: Coverage and average set size on ImageNet, stratified by sample difficulty. Results are for a ResNet-
50 model at α = 0.01 and averaged over 10 trials. The table compares baseline adaptive scores with their
energy-based variants, which generally produce smaller sets for easier samples while maintaining coverage.

APS RAPS SAPS

w/o Energy w/ Energy w/o Energy w/ Energy w/o Energy w/ Energy

Difficulty Count Cov. Set Size Cov. Set Size Cov. Set Size Cov. Set Size Cov. Set Size Cov. Set Size

1 to 1 15990 1.00 39.08 1.00 32.31 1.00 36.97 1.00 30.53 1.00 35.69 1.00 29.11

2 to 3 2547 1.00 38.38 1.00 34.96 1.00 37.17 1.00 34.10 1.00 36.98 1.00 33.69

4 to 6 638 1.00 37.86 1.00 36.46 1.00 37.32 1.00 36.29 1.00 37.35 1.00 36.02

7 to 10 306 1.00 37.66 1.00 37.09 1.00 37.40 1.00 37.20 1.00 37.47 1.00 36.96

11 to 100 453 0.76 37.49 0.76 37.84 0.76 37.51 0.76 38.27 0.76 37.58 0.76 37.98

101 to 1000 66 0.00 37.82 0.00 38.45 0.00 37.60 0.00 38.60 0.00 37.34 0.00 38.05
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J ENERGY-BASED LAC

The standard LAC score is inversely proportional to the softmax probability. For its energy-based
variant, as mentioned in Appendix E.2, we use a base score of SLAC(x, y) = −π̂(y|x). For a
difficult input, which corresponds to a low negative free energy score, the objective is to produce
a larger prediction set. This requires the nonconformity scores of more classes to fall below the
calibrated threshold. Conversely, for an easy input (high negative free energy), the nonconformity
scores should be scaled to produce a smaller set. Therefore, for the energy-based LAC, we divide
the base score by the energy-based scaling factor. This adjustment ensures that for difficult inputs,
the small scaling factor in the denominator makes the nonconformity scores smaller, including more
labels in the set.

So formally, we define the Energy-based LAC nonconformity score as:

SEB-LAC(x, y) =
−π̂(y|x)

1
β log(1 + e−βF (x))

(52)

where π̂(y|x) is the softmax probability, F (x) is the Helmholtz free energy, and β is the softplus
sharpness parameter.

J.1 ENERGY-BASED LAC PERFORMANCE IN STANDARD SCENARIO

Table 7: Performance of the LAC nonconformity score function and its energy-based variant on CIFAR-100,
ImageNet, and Places365 at miscoverage levels α ∈ {0.01, 0.025, 0.05, 0.1}. Results are averaged over 10
trials. For the Set Size column, lower is better. Bold values indicate the best performance within the method
family (with and without Energy).

α = 0.1 α = 0.05 α = 0.025 α = 0.01

Method Coverage Set Size Coverage Set Size Coverage Set Size Coverage Set Size

CIFAR-100 (ResNet-56)

w/o Energy 0.90 ± 0.01 2.54 ± 0.06 0.95 ± 0.00 5.26 ± 0.17 0.974 ± 0.001 9.50 ± 0.21 0.99 ± 0.00 21.14 ± 0.74

L
A
C

w/ Energy 0.90 ± 0.01 2.52 ± 0.04 0.95 ± 0.00 5.21 ± 0.15 0.974 ± 0.002 9.09 ± 0.16 0.99 ± 0.00 20.65 ± 0.83

ImageNet (ResNet-50)

w/o Energy 0.90 ± 0.00 1.49 ± 0.01 0.95 ± 0.00 2.68 ± 0.05 0.975 ± 0.001 5.48 ± 0.18 0.99 ± 0.00 14.79 ± 0.80

L
A
C

w/ Energy 0.90 ± 0.00 1.48 ± 0.01 0.95 ± 0.00 2.68 ± 0.04 0.975 ± 0.001 5.42 ± 0.15 0.99 ± 0.00 13.89 ± 0.64

Places365 (ResNet-50)

w/o Energy 0.90 ± 0.001 6.21 ± 0.03 0.95 ± 0.00 11.36 ± 0.04 0.973 ± 0.001 19.55 ± 0.41 0.99 ± 0.001 37.12 ± 0.93

L
A
C

w/ Energy 0.90 ± 0.001 6.19 ± 0.03 0.95 ± 0.001 11.11 ± 0.11 0.973 ± 0.001 19.28 ± 0.43 0.99 ± 0.001 35.28 ± 0.63
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J.2 ENERGY-BASED LAC PERFORMANCE WITH IMBALANCED TRAINING PRIORS

Table 8: Performance of LAC and its energy-based variant on imbalanced CIFAR-100 with varying imbalance
factors (λ ∈ {0.005, 0.01, 0.02, 0.03}) and at miscoverage levels α ∈ {0.01, 0.025, 0.05, 0.1}. Results are
averaged over 10 trials with a ResNet-56 model. For the average set size, lower is better. Bold values indicate
the best performance.

α = 0.1 α = 0.05 α = 0.025 α = 0.01

Method Coverage Set Size Coverage Set Size Coverage Set Size Coverage Set Size

CIFAR-100-LT (λ = 0.005, mild imbalance) (ResNet-56)

w/o Energy 0.897 ± 0.007 7.04 ± 0.24 0.947 ± 0.004 12.98 ± 0.49 0.973 ± 0.003 21.31 ± 0.84 0.988 ± 0.002 33.97 ± 1.37

L
A
C

w/ Energy 0.897 ± 0.006 6.91 ± 0.19 0.947 ± 0.005 12.68 ± 0.51 0.973 ± 0.004 20.56 ± 1.01 0.989 ± 0.002 32.99 ± 0.87

CIFAR-100-LT (λ = 0.01) (ResNet-56)

w/o Energy 0.900 ± 0.007 11.92 ± 0.41 0.951 ± 0.003 20.75 ± 0.51 0.975 ± 0.003 30.58 ± 0.68 0.990 ± 0.001 45.93 ± 1.02

L
A
C

w/ Energy 0.900 ± 0.007 11.52 ± 0.32 0.950 ± 0.003 20.32 ± 0.39 0.976 ± 0.003 30.51 ± 0.64 0.990 ± 0.001 44.49 ± 0.79

CIFAR-100-LT (λ = 0.02) (ResNet-56)

w/o Energy 0.901 ± 0.007 27.78 ± 0.73 0.950 ± 0.007 42.03 ± 1.67 0.975 ± 0.003 54.88 ± 1.13 0.990 ± 0.002 68.21 ± 1.00

L
A
C

w/ Energy 0.900 ± 0.007 27.63 ± 0.65 0.951 ± 0.006 41.49 ± 1.19 0.976 ± 0.003 54.13 ± 0.93 0.990 ± 0.001 67.28 ± 1.47

CIFAR-100-LT (λ = 0.03, severe imbalance) (ResNet-56)

w/o Energy 0.901 ± 0.006 28.34 ± 0.47 0.951 ± 0.004 41.79 ± 0.73 0.976 ± 0.002 54.71 ± 0.82 0.990 ± 0.002 68.73 ± 1.14

L
A
C

w/ Energy 0.901 ± 0.006 27.93 ± 0.42 0.952 ± 0.004 41.50 ± 0.71 0.975 ± 0.003 54.02 ± 1.07 0.990 ± 0.003 68.20 ± 1.45

J.3 ENERGY-BASED LAC PERFORMANCE ANALYSIS STRATIFIED BY SAMPLE DIFFICULTY

Table 9: Coverage and average set size for the LAC method on ImageNet, stratified by sample difficulty. Results
are shown for α = 0.01 and α = 0.025. The table compares the baseline LAC with its energy-based variant.

LAC

α = 0.01 α = 0.025

w/o Energy w/ Energy w/o Energy w/ Energy

Difficulty Level Count Cov. Set Size Cov. Set Size Cov. Set Size Cov. Set Size

1 to 1 15990 1.00 10.77 1.00 9.24 1.00 4.34 1.00 4.25

2 to 3 2547 1.00 21.47 1.00 20.61 0.99 8.86 0.99 8.78

4 to 6 638 0.99 32.07 0.98 32.96 0.93 13.29 0.93 13.36

7 to 10 306 0.96 38.18 0.96 40.00 0.84 15.86 0.85 16.14

11 to 25 275 0.92 44.22 0.91 47.14 0.60 17.07 0.56 17.05

26 to 50 104 0.62 47.37 0.61 50.88 0.04 17.60 0.06 17.59

51 to 100 74 0.32 56.19 0.39 64.61 0.00 19.99 0.00 21.07
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K ADDITIONAL EXPERIMENTAL RESULTS FOR IMBALANCED DATA

To evaluate performance under class imbalance as described in Section 3.2, we construct several
long-tailed variants of the CIFAR-100 dataset. In these variants, the number of training samples per
class follows an exponential decay controlled by an imbalance factor λ. Figure 7 illustrates how
different values of λ create varying levels of imbalance in the training distribution.
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Figure 7: Class distributions under varying imbalance levels. The number of samples per class follows an
exponential decay pattern proportional to exp(−λ · j), where larger λ values induce stronger imbalance.

K.1 RESULTS FOR DIFFERENT IMBALANCE FACTOR λ

Table 10: Performance comparison of APS, RAPS, SAPS, and their Energy-based variants on imbal-
anced CIFAR-100 with varying imbalance factors (λ ∈ {0.01, 0.02, 0.03}) and at miscoverage levels
α ∈ {0.01, 0.025, 0.05, 0.1}. Results are averaged over 10 trials with a ResNet-56 model. For the Set Size
column, lower is better. Bold values indicate the best performance within each method family.

α = 0.1 α = 0.05 α = 0.025 α = 0.01

Method Coverage Set Size Coverage Set Size Coverage Set Size Coverage Set Size

CIFAR-100-LT (λ = 0.01, mild imbalance) (ResNet-56)

w/o Energy 0.90 ± 0.01 14.56 ± 0.46 0.95 ± 0.00 25.59 ± 0.25 0.975 ± 0.003 37.56 ± 0.98 0.99 ± 0.00 55.26 ± 2.49

A
P
S

w/ Energy 0.90 ± 0.01 11.86 ± 0.37 0.95 ± 0.00 21.44 ± 0.52 0.975 ± 0.003 31.70 ± 0.97 0.99 ± 0.00 46.40 ± 0.72

w/o Energy 0.90 ± 0.01 15.48 ± 0.47 0.95 ± 0.00 27.62 ± 0.33 0.974 ± 0.003 40.87 ± 1.00 0.99 ± 0.00 60.13 ± 1.86

R
A
P
S

w/ Energy 0.90 ± 0.01 11.77 ± 0.42 0.95 ± 0.00 21.57 ± 0.56 0.975 ± 0.003 31.93 ± 0.98 0.99 ± 0.00 47.30 ± 1.01

w/o Energy 0.90 ± 0.01 15.02 ± 0.50 0.95 ± 0.00 26.98 ± 0.32 0.974 ± 0.002 40.38 ± 1.26 0.99 ± 0.00 59.12 ± 1.76

S
A
P
S

w/ Energy 0.90 ± 0.01 11.80 ± 0.40 0.95 ± 0.00 21.35 ± 0.55 0.975 ± 0.003 31.84 ± 1.02 0.99 ± 0.00 47.17 ± 1.05

CIFAR-100-LT (λ = 0.02) (ResNet-56)

w/o Energy 0.90 ± 0.01 29.62 ± 0.56 0.95 ± 0.01 45.76 ± 1.32 0.975 ± 0.003 59.26 ± 0.82 0.99 ± 0.00 73.49 ± 1.36

A
P
S

w/ Energy 0.90 ± 0.01 28.23 ± 0.74 0.95 ± 0.01 42.36 ± 1.13 0.976 ± 0.003 54.95 ± 0.91 0.99 ± 0.00 69.58 ± 1.92

w/o Energy 0.90 ± 0.01 32.86 ± 0.81 0.95 ± 0.01 52.01 ± 1.55 0.976 ± 0.003 66.83 ± 1.18 0.99 ± 0.00 79.97 ± 1.36

R
A
P
S

w/ Energy 0.90 ± 0.01 28.72 ± 0.77 0.95 ± 0.01 42.72 ± 1.02 0.976 ± 0.003 56.31 ± 0.86 0.99 ± 0.00 70.72 ± 1.56

w/o Energy 0.90 ± 0.01 32.37 ± 0.83 0.95 ± 0.01 51.47 ± 1.48 0.976 ± 0.003 66.28 ± 1.21 0.99 ± 0.00 79.14 ± 1.54

S
A
P
S

w/ Energy 0.90 ± 0.01 28.73 ± 0.78 0.95 ± 0.01 42.63 ± 1.09 0.976 ± 0.003 56.16 ± 0.89 0.99 ± 0.00 70.48 ± 1.56

CIFAR-100-LT (λ = 0.03, severe imbalance) (ResNet-56)

w/o Energy 0.90 ± 0.01 30.35 ± 0.57 0.95 ± 0.00 44.45 ± 0.79 0.975 ± 0.002 58.05 ± 0.95 0.99 ± 0.00 71.34 ± 2.09

A
P
S

w/ Energy 0.90 ± 0.00 28.42 ± 0.52 0.95 ± 0.00 42.40 ± 0.63 0.975 ± 0.003 55.61 ± 1.54 0.99 ± 0.00 70.85 ± 1.58

w/o Energy 0.90 ± 0.01 34.47 ± 0.72 0.95 ± 0.01 49.94 ± 1.14 0.975 ± 0.003 64.66 ± 1.13 0.99 ± 0.00 78.91 ± 1.06

R
A
P
S

w/ Energy 0.90 ± 0.01 29.29 ± 0.66 0.95 ± 0.00 43.68 ± 0.78 0.975 ± 0.003 57.23 ± 1.02 0.99 ± 0.00 72.74 ± 1.54

w/o Energy 0.90 ± 0.01 34.05 ± 0.71 0.95 ± 0.01 49.45 ± 1.33 0.974 ± 0.003 64.35 ± 1.33 0.99 ± 0.00 78.41 ± 1.06

S
A
P
S

w/ Energy 0.90 ± 0.01 29.19 ± 0.61 0.95 ± 0.01 43.61 ± 0.85 0.975 ± 0.003 57.12 ± 0.97 0.99 ± 0.00 72.48 ± 1.49
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K.2 PERFORMANCE UNDER IMBALANCED CALIBRATION AND TEST SETS

The results reported in Table 2 and Table 10 evaluate models trained on imbalanced data but cali-
brated and tested on balanced sets. We now consider a more realistic scenario where the calibration
and test sets also follow the same imbalanced distribution as the training set.

This setting is particularly challenging for standard CP methods, as the limited number of calibration
samples for minority classes can impede reliable coverage guarantees. In such cases, approaches
like clustered conformal prediction Ding et al. (2023b), which can provide coverage with fewer
calibration samples, are practical alternatives.

Our energy-based method is designed to address this challenge by adaptively enlarging prediction
sets for uncertain inputs, which often correspond to minority class samples. To benchmark this be-
havior, we compare it against another principled reweighting strategy that directly uses class priors.
This approach was introduced by Ding et al. (2025), who proposed the Prevalence-Adjusted Soft-
max (PAS) score. The PAS score modifies the non-adaptive score by dividing the negative softmax
probability (LACscore without bias term) by the empirical class prior, p̂(y), to improve coverage for
rare classes. The nonconformity score is defined as:

SPAS(x, y) =
−π̂(y|x)
p̂(y)

(53)

We extend this concept to adaptive nonconformity scores such as APSand RAPS. For these scores,
a smaller value indicates higher conformity. To increase the likelihood of including labels from rare
classes (which have a small p̂(y)), we multiply the base score by the class prior. This makes the
minority classes more likely to be included in the final prediction set. We refer to this method as
Prevalence-Adjusted (PA) Nonconformity Scores. The general formulation is:

SPA(x, y) = Sadaptive(x, y) · p̂(y) (54)

where Sadaptive(x, y) is an adaptive score like SAPS(x, y).

Given this, Table 11 and Table 12 present a comparison between the standard adaptive scores, our
energy-based variants, and the prevalence-adjusted variants in this fully imbalanced setting. We
report marginal coverage, average set size, and MacroCov to provide a comprehensive view of
performance.
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Table 11: Performance on fully imbalanced CIFAR-100-LT for high confidence levels (α ∈ {0.025, 0.01}).
For each method, we compare the Standard baseline, the Prevalence-Adj. variant, and our Energy-based
variant. Lower Set Size is better.

α = 0.025 α = 0.01

Method Variant Cov Size MacroCov Cov Size MacroCov
CIFAR-100-LT (λ = 0.005, mild imbalance)

LAC
Standard 0.97 ± 0.00 21.48 ± 0.86 0.97 ± 0.00 0.99 ± 0.00 34.60 ± 1.77 0.99 ± 0.00

Prevalence-Adj. (PAS) 0.98 ± 0.00 22.84 ± 0.99 0.98 ± 0.00 0.99 ± 0.00 36.23 ± 0.98 0.99 ± 0.00

Energy-based 0.97 ± 0.00 21.11 ± 0.79 0.97 ± 0.00 0.99 ± 0.00 33.18 ± 1.44 0.99 ± 0.00

APS
Standard 0.97 ± 0.00 28.61 ± 1.23 0.97 ± 0.00 0.99 ± 0.00 46.37 ± 1.39 0.99 ± 0.00

Prevalence-Adj. 0.98 ± 0.00 29.72 ± 1.80 0.97 ± 0.00 0.99 ± 0.00 50.57 ± 2.08 0.99 ± 0.00

Energy-based 0.97 ± 0.00 22.09 ± 1.19 0.97 ± 0.00 0.99 ± 0.00 35.78 ± 1.43 0.99 ± 0.00

RAPS
Standard 0.97 ± 0.00 30.52 ± 1.44 0.97 ± 0.00 0.99 ± 0.00 51.46 ± 1.84 0.99 ± 0.00

Prevalence-Adj. 0.97 ± 0.00 31.45 ± 1.66 0.97 ± 0.00 0.99 ± 0.00 51.41 ± 1.66 0.99 ± 0.00

Energy-based 0.97 ± 0.00 22.57 ± 1.08 0.97 ± 0.00 0.99 ± 0.00 36.75 ± 1.42 0.99 ± 0.00

SAPS
Standard 0.97 ± 0.00 29.54 ± 1.48 0.97 ± 0.00 0.99 ± 0.00 50.35 ± 2.04 0.99 ± 0.00

Prevalence-Adj. 0.97 ± 0.00 30.41 ± 1.62 0.97 ± 0.00 0.99 ± 0.00 50.50 ± 1.33 0.99 ± 0.00

Energy-based 0.97 ± 0.00 22.36 ± 1.13 0.97 ± 0.00 0.99 ± 0.00 36.39 ± 1.23 0.99 ± 0.00

CIFAR-100-LT (λ = 0.01)

LAC
Standard 0.97 ± 0.00 30.22 ± 0.83 0.97 ± 0.00 0.99 ± 0.00 45.45 ± 1.77 0.99 ± 0.00

Prevalence-Adj. (PAS) 0.98 ± 0.00 33.95 ± 1.00 0.98 ± 0.00 0.99 ± 0.00 50.56 ± 1.59 0.99 ± 0.00

Energy-based 0.97 ± 0.00 29.93 ± 0.99 0.97 ± 0.00 0.99 ± 0.00 43.94 ± 1.34 0.99 ± 0.00

APS
Standard 0.97 ± 0.00 36.97 ± 1.61 0.97 ± 0.00 0.99 ± 0.00 54.90 ± 2.32 0.99 ± 0.00

Prevalence-Adj. 0.98 ± 0.00 43.29 ± 2.15 0.98 ± 0.00 0.99 ± 0.00 66.30 ± 2.14 0.99 ± 0.00

Energy-based 0.97 ± 0.00 31.20 ± 1.12 0.97 ± 0.00 0.99 ± 0.00 45.15 ± 1.81 0.99 ± 0.00

RAPS
Standard 0.97 ± 0.00 40.39 ± 1.29 0.97 ± 0.00 0.99 ± 0.00 60.09 ± 2.93 0.99 ± 0.00

Prevalence-Adj. 0.98 ± 0.00 43.21 ± 2.15 0.98 ± 0.00 0.99 ± 0.00 65.82 ± 2.35 0.99 ± 0.00

Energy-based 0.97 ± 0.00 31.64 ± 1.24 0.97 ± 0.00 0.99 ± 0.00 45.99 ± 1.67 0.99 ± 0.00

SAPS
Standard 0.97 ± 0.00 39.81 ± 1.53 0.97 ± 0.00 0.99 ± 0.00 59.11 ± 2.61 0.99 ± 0.00

Prevalence-Adj. 0.98 ± 0.00 42.34 ± 2.12 0.98 ± 0.00 0.99 ± 0.00 65.18 ± 2.45 0.99 ± 0.00

Energy-based 0.97 ± 0.01 31.46 ± 1.26 0.97 ± 0.01 0.99 ± 0.00 45.73 ± 1.71 0.99 ± 0.00

CIFAR-100-LT (λ = 0.02)

LAC
Standard 0.97 ± 0.00 52.86 ± 1.54 0.97 ± 0.00 0.99 ± 0.00 66.53 ± 1.36 0.99 ± 0.00

Prevalence-Adj. (PAS) 0.98 ± 0.00 61.74 ± 1.37 0.98 ± 0.00 0.99 ± 0.00 75.07 ± 1.20 0.99 ± 0.00

Energy-based 0.97 ± 0.00 51.96 ± 1.30 0.97 ± 0.00 0.99 ± 0.00 65.48 ± 2.27 0.99 ± 0.00

APS
Standard 0.96 ± 0.00 56.87 ± 1.30 0.97 ± 0.00 0.99 ± 0.00 71.19 ± 0.92 0.99 ± 0.00

Prevalence-Adj. 0.99 ± 0.00 74.42 ± 0.39 0.98 ± 0.00 1.00 ± 0.00 86.18 ± 0.30 0.99 ± 0.00

Energy-based 0.97 ± 0.00 53.13 ± 1.53 0.97 ± 0.00 0.99 ± 0.00 68.02 ± 1.60 0.99 ± 0.00

RAPS
Standard 0.96 ± 0.00 61.92 ± 1.24 0.97 ± 0.00 0.99 ± 0.00 76.89 ± 1.40 0.99 ± 0.00

Prevalence-Adj. 0.99 ± 0.00 73.38 ± 0.28 0.98 ± 0.00 1.00 ± 0.00 86.52 ± 0.40 0.99 ± 0.00

Energy-based 0.97 ± 0.00 54.13 ± 1.37 0.97 ± 0.00 0.99 ± 0.00 69.14 ± 1.92 0.99 ± 0.00

SAPS
Standard 0.96 ± 0.00 61.42 ± 1.18 0.97 ± 0.00 0.99 ± 0.00 76.01 ± 1.11 0.99 ± 0.00

Prevalence-Adj. 0.99 ± 0.00 73.12 ± 0.36 0.98 ± 0.00 1.00 ± 0.00 86.15 ± 0.29 0.99 ± 0.00

Energy-based 0.97 ± 0.00 54.02 ± 1.58 0.97 ± 0.00 0.99 ± 0.00 69.01 ± 1.67 0.99 ± 0.00

CIFAR-100-LT (λ = 0.03, severe imbalance)

LAC
Standard 0.96 ± 0.00 51.39 ± 1.25 0.97 ± 0.00 0.98 ± 0.00 67.76 ± 0.84 0.99 ± 0.00

Prevalence-Adj. (PAS) 0.98 ± 0.00 62.93 ± 0.99 0.98 ± 0.00 1.00 ± 0.00 75.03 ± 0.46 0.99 ± 0.00

Energy-based 0.96 ± 0.00 50.77 ± 1.35 0.97 ± 0.00 0.98 ± 0.00 66.87 ± 0.95 0.99 ± 0.00

APS
Standard 0.96 ± 0.00 53.95 ± 1.21 0.97 ± 0.00 0.99 ± 0.00 69.98 ± 1.29 0.99 ± 0.00

Prevalence-Adj. 0.99 ± 0.00 79.13 ± 0.69 0.98 ± 0.00 1.00 ± 0.00 86.14 ± 0.28 0.99 ± 0.00

Energy-based 0.96 ± 0.01 52.00 ± 1.48 0.97 ± 0.00 0.99 ± 0.00 69.77 ± 1.34 0.99 ± 0.00

RAPS
Standard 0.96 ± 0.00 60.09 ± 1.28 0.97 ± 0.00 0.98 ± 0.00 75.77 ± 1.34 0.99 ± 0.00

Prevalence-Adj. 0.99 ± 0.00 78.45 ± 0.47 0.98 ± 0.00 1.00 ± 0.00 86.09 ± 0.42 0.99 ± 0.00

Energy-based 0.96 ± 0.01 53.67 ± 1.54 0.97 ± 0.00 0.99 ± 0.00 71.64 ± 1.17 0.99 ± 0.00

SAPS
Standard 0.96 ± 0.00 59.61 ± 1.28 0.97 ± 0.00 0.98 ± 0.00 75.59 ± 1.15 0.99 ± 0.00

Prevalence-Adj. 0.99 ± 0.00 78.38 ± 0.51 0.98 ± 0.00 1.00 ± 0.00 86.02 ± 0.33 0.99 ± 0.00

Energy-based 0.96 ± 0.00 53.68 ± 1.51 0.97 ± 0.00 0.98 ± 0.00 71.72 ± 1.30 0.99 ± 0.00
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Table 12: Performance on fully imbalanced CIFAR-100-LT for lower confidence levels (α ∈ {0.1, 0.05}). For
each method, we compare the Standard baseline, the Prevalence-Adj. variant, and our Energy-based variant.
Lower Set Size is better.

α = 0.1 α = 0.05

Method Variant Cov Size MacroCov Cov Size MacroCov
CIFAR-100-LT (λ = 0.005, mild imbalance)

LAC
Standard 0.90 ± 0.01 7.12 ± 0.26 0.90 ± 0.01 0.95 ± 0.01 13.08 ± 0.55 0.95 ± 0.01

Prevalence-Adj. (PAS) 0.90 ± 0.01 7.26 ± 0.30 0.90 ± 0.01 0.95 ± 0.01 13.39 ± 0.60 0.95 ± 0.01

Energy-based 0.90 ± 0.01 6.96 ± 0.23 0.90 ± 0.01 0.95 ± 0.01 12.74 ± 0.54 0.95 ± 0.01

APS
Standard 0.90 ± 0.01 8.48 ± 0.42 0.90 ± 0.01 0.95 ± 0.01 17.55 ± 1.03 0.95 ± 0.01

Prevalence-Adj. 0.90 ± 0.01 8.81 ± 0.35 0.90 ± 0.01 0.95 ± 0.01 17.95 ± 0.82 0.95 ± 0.01

Energy-based 0.90 ± 0.01 7.39 ± 0.22 0.90 ± 0.01 0.95 ± 0.01 13.42 ± 0.56 0.95 ± 0.01

RAPS
Standard 0.90 ± 0.01 8.95 ± 0.44 0.90 ± 0.01 0.95 ± 0.01 18.89 ± 1.06 0.95 ± 0.01

Prevalence-Adj. 0.90 ± 0.01 9.14 ± 0.46 0.90 ± 0.01 0.95 ± 0.01 19.19 ± 0.89 0.95 ± 0.01

Energy-based 0.90 ± 0.01 7.58 ± 0.25 0.90 ± 0.01 0.95 ± 0.01 13.33 ± 0.56 0.95 ± 0.01

SAPS
Standard 0.90 ± 0.01 8.63 ± 0.47 0.90 ± 0.01 0.95 ± 0.01 18.22 ± 1.09 0.95 ± 0.01

Prevalence-Adj. 0.90 ± 0.01 8.83 ± 0.46 0.90 ± 0.01 0.95 ± 0.01 18.50 ± 0.91 0.95 ± 0.01

Energy-based 0.90 ± 0.01 7.53 ± 0.28 0.90 ± 0.01 0.95 ± 0.00 13.30 ± 0.52 0.95 ± 0.00

CIFAR-100-LT (λ = 0.01)

LAC
Standard 0.89 ± 0.01 11.37 ± 0.28 0.89 ± 0.01 0.95 ± 0.01 20.09 ± 0.71 0.95 ± 0.01

Prevalence-Adj. (PAS) 0.91 ± 0.01 12.20 ± 0.24 0.90 ± 0.01 0.96 ± 0.00 22.03 ± 0.63 0.95 ± 0.00

Energy-based 0.89 ± 0.01 11.12 ± 0.29 0.89 ± 0.01 0.95 ± 0.01 19.73 ± 0.70 0.95 ± 0.01

APS
Standard 0.89 ± 0.00 13.76 ± 0.30 0.90 ± 0.00 0.95 ± 0.01 25.34 ± 0.95 0.95 ± 0.01

Prevalence-Adj. 0.91 ± 0.01 14.68 ± 0.36 0.90 ± 0.01 0.96 ± 0.01 26.62 ± 0.96 0.95 ± 0.01

Energy-based 0.89 ± 0.00 11.29 ± 0.22 0.89 ± 0.00 0.95 ± 0.01 20.80 ± 0.70 0.95 ± 0.01

RAPS
Standard 0.89 ± 0.00 14.72 ± 0.19 0.90 ± 0.00 0.95 ± 0.01 26.91 ± 1.03 0.95 ± 0.01

Prevalence-Adj. 0.90 ± 0.01 15.03 ± 0.54 0.90 ± 0.01 0.95 ± 0.00 27.14 ± 0.84 0.95 ± 0.00

Energy-based 0.89 ± 0.00 11.22 ± 0.18 0.89 ± 0.00 0.95 ± 0.01 20.95 ± 0.77 0.95 ± 0.01

SAPS
Standard 0.89 ± 0.00 14.22 ± 0.19 0.90 ± 0.00 0.95 ± 0.01 26.19 ± 0.98 0.95 ± 0.01

Prevalence-Adj. 0.90 ± 0.01 14.55 ± 0.43 0.90 ± 0.01 0.95 ± 0.00 26.65 ± 0.84 0.95 ± 0.00

Energy-based 0.89 ± 0.00 11.26 ± 0.17 0.89 ± 0.00 0.95 ± 0.01 20.73 ± 0.80 0.95 ± 0.01

CIFAR-100-LT (λ = 0.02)

LAC
Standard 0.86 ± 0.01 24.97 ± 0.67 0.88 ± 0.01 0.93 ± 0.01 38.81 ± 1.07 0.94 ± 0.01

Prevalence-Adj. (PAS) 0.91 ± 0.00 30.25 ± 0.46 0.91 ± 0.00 0.96 ± 0.00 46.98 ± 1.15 0.96 ± 0.00

Energy-based 0.86 ± 0.01 24.65 ± 0.67 0.88 ± 0.01 0.93 ± 0.01 38.46 ± 0.94 0.94 ± 0.01

APS
Standard 0.87 ± 0.01 26.69 ± 0.71 0.88 ± 0.01 0.93 ± 0.01 42.41 ± 1.32 0.94 ± 0.01

Prevalence-Adj. 0.92 ± 0.00 37.05 ± 0.63 0.91 ± 0.00 0.97 ± 0.00 60.22 ± 0.92 0.96 ± 0.00

Energy-based 0.86 ± 0.01 25.07 ± 0.76 0.88 ± 0.01 0.93 ± 0.01 39.10 ± 0.96 0.94 ± 0.01

RAPS
Standard 0.86 ± 0.01 28.44 ± 0.78 0.88 ± 0.01 0.93 ± 0.01 46.22 ± 1.45 0.94 ± 0.01

Prevalence-Adj. 0.92 ± 0.00 35.42 ± 0.69 0.91 ± 0.00 0.97 ± 0.00 59.12 ± 0.77 0.96 ± 0.00

Energy-based 0.86 ± 0.01 25.37 ± 0.70 0.88 ± 0.01 0.93 ± 0.01 39.63 ± 0.98 0.94 ± 0.01

SAPS
Standard 0.86 ± 0.01 28.26 ± 0.76 0.88 ± 0.01 0.93 ± 0.01 45.73 ± 1.28 0.94 ± 0.01

Prevalence-Adj. 0.92 ± 0.00 35.69 ± 0.66 0.91 ± 0.00 0.97 ± 0.00 59.11 ± 0.95 0.96 ± 0.00

Energy-based 0.86 ± 0.01 25.41 ± 0.71 0.88 ± 0.01 0.93 ± 0.01 39.72 ± 1.00 0.94 ± 0.01

CIFAR-100-LT (λ = 0.03, severe imbalance)

LAC
Standard 0.84 ± 0.01 24.43 ± 0.63 0.87 ± 0.01 0.92 ± 0.01 38.72 ± 0.77 0.94 ± 0.01

Prevalence-Adj. (PAS) 0.90 ± 0.01 34.18 ± 1.00 0.90 ± 0.01 0.95 ± 0.01 49.60 ± 1.43 0.95 ± 0.01

Energy-based 0.84 ± 0.01 24.06 ± 0.64 0.87 ± 0.01 0.92 ± 0.01 38.04 ± 0.90 0.94 ± 0.01

APS
Standard 0.85 ± 0.01 25.64 ± 0.94 0.88 ± 0.01 0.92 ± 0.01 39.43 ± 1.23 0.94 ± 0.01

Prevalence-Adj. 0.95 ± 0.00 48.47 ± 0.65 0.93 ± 0.00 0.98 ± 0.00 66.59 ± 0.73 0.97 ± 0.01

Energy-based 0.84 ± 0.01 24.43 ± 0.88 0.87 ± 0.01 0.92 ± 0.01 38.78 ± 1.12 0.94 ± 0.01

RAPS
Standard 0.85 ± 0.01 28.00 ± 1.00 0.87 ± 0.01 0.92 ± 0.01 43.81 ± 1.37 0.94 ± 0.01

Prevalence-Adj. 0.95 ± 0.01 46.46 ± 0.88 0.93 ± 0.01 0.98 ± 0.00 65.14 ± 0.70 0.97 ± 0.01

Energy-based 0.84 ± 0.01 24.74 ± 0.69 0.87 ± 0.01 0.92 ± 0.01 39.74 ± 1.17 0.94 ± 0.01

SAPS
Standard 0.85 ± 0.01 27.64 ± 0.85 0.88 ± 0.01 0.92 ± 0.01 43.29 ± 1.47 0.94 ± 0.01

Prevalence-Adj. 0.95 ± 0.00 46.81 ± 0.81 0.93 ± 0.01 0.98 ± 0.00 65.25 ± 0.69 0.97 ± 0.01

Energy-based 0.84 ± 0.01 24.76 ± 0.63 0.87 ± 0.01 0.92 ± 0.01 39.73 ± 1.24 0.94 ± 0.01
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L CLASS-CONDITIONAL CONFORMAL PREDICTION

Beyond marginal coverage guarantee, we evaluate the proposed Energy-based nonconformity scores
within the class-conditional setting. Class-conditional Conformal Prediction (CP) operates by parti-
tioning the calibration dataset according to the true labels. Nonconformity score quantiles are then
computed independently for each class using its respective calibration subset. The objective is to
achieve class-conditional coverage, defined as:

P(Ytest ∈ C(Xtest) | Ytest = y) ≥ 1− α, for all y ∈ Y, (55)

This condition ensures that for every class y ∈ Y , the probability of the true label being included in
the prediction set C(Xtest) is at least 1− α.

We evaluate performance on the Places365 dataset at miscoverage levels α ∈ {0.05, 0.1} using
average set size, CovGap, and SSCV(for details of these refer to E.3. As shown in Table 13, Energy-
based variants consistently yield more efficient prediction sets, reflected in reduced average set sizes
across all base nonconformity functions. Importantly, this improvement in efficiency does not com-
promise class-conditional validity and CovGap is preserved or slightly improved in most cases.
While we report SSCV for completeness—given its use in prior work—and note that it is often
maintained or even improved in our experiments, we emphasize that it is not a reliable measure of
conditional coverage quality.

Table 13: Class-conditional performance comparison of different nonconformity score functions and their
Energy-based variants on the Places365 dataset at miscoverage levels α = 0.05 and α = 0.1. For Set Size,
CovGap, and SSCV, lower values indicate better performance. Bold values denote the best result within each
method family. Results are averaged over 10 trials with a ResNet-50 model.

α = 0.1 α = 0.05

Method Coverage Set Size ↓ CovGap ↓ SSCV ↓ Coverage Set Size ↓ CovGap ↓ SSCV ↓

w/o Energy 0.89 ± 0.00 9.13 ± 0.14 5.03 ± 0.14 0.119 ± 0.015 0.95 ± 0.00 21.50 ± 0.59 3.25 ± 0.12 0.124 ± 0.039

A
P
S

w/ Energy 0.89 ± 0.00 8.65 ± 0.17 5.09 ± 0.18 0.100 ± 0.00 0.95 ± 0.00 19.20 ± 0.49 3.24 ± 0.10 0.087 ± 0.027

w/o Energy 0.89 ± 0.00 9.11 ± 0.18 4.98 ± 0.15 0.100 ± 0.00 0.95 ± 0.00 22.03 ± 0.59 3.24 ± 0.13 0.090 ± 0.024

R
A
P
S

w/ Energy 0.89 ± 0.00 8.59 ± 0.17 4.95 ± 0.19 0.112 ± 0.011 0.95 ± 0.00 19.11 ± 0.47 3.22 ± 0.11 0.119 ± 0.020

w/o Energy 0.89 ± 0.00 8.92 ± 0.20 4.98 ± 0.20 0.100 ± 0.00 0.95 ± 0.00 21.68 ± 0.58 3.26 ± 0.14 0.060 ± 0.019

S
A
P
S

w/ Energy 0.89 ± 0.00 8.62 ± 0.20 4.87 ± 0.13 0.103 ± 0.01 0.95 ± 0.00 18.99 ± 0.49 3.17 ± 0.11 0.083 ± 0.013

M EFFECT OF RAPS HYPERPARAMETERS λ AND kREG

In this section, we evaluate the sensitivity of the Regularized Adaptive Prediction Sets (RAPS)
method, and its energy-based variant, to their two core hyperparameters: the regularization weight
λ and the penalty threshold kreg. Table 14 compares the average prediction set size of the standard
RAPS baseline against our proposed Energy-based RAPS on the Places365 dataset using a ResNet-
50 model, across a grid of parameter configurations.

Table 14: Comparison of average prediction set sizes for varying regularization parameters (kreg and λ). Lower
set size is better. Values are reported as: Size (RAPS→ Energy-based RAPS). The bold value highlights the
superior (smaller) set size.

Average Set Size (w/o Energy→ w/ Energy) ↓

Regularization Penalty (λ)

kreg 0 0.05 0.1 0.2 0.5 0.7 1.0

1 14.08 → 12.88 13.11 → 12.88 13.60 → 12.24 14.07 → 12.61 14.30 → 12.90 14.30 → 12.95 14.30 → 13.00
2 14.09 → 12.86 13.13 → 12.83 13.58 → 12.34 14.05 → 12.63 14.30 → 12.97 14.30 → 13.05 14.30 → 13.11
5 14.01 → 12.85 13.11 → 13.06 13.61 → 12.67 14.07 → 12.86 14.30 → 13.22 14.30 → 13.29 14.30 → 13.34
10 14.05 → 12.90 13.13 → 13.07 13.58 → 13.57 14.07 → 13.46 14.29 → 13.62 14.30 → 13.74 14.30 → 13.82
50 14.00 → 12.86 13.97 → 12.91 14.02 → 12.85 14.00 → 12.85 14.02 → 12.88 14.05 → 12.87 13.90 → 12.88
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N EFFECT OF TCALIBRATION AND τENERGY
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Figure 8: Average Set Size heatmap for different hyperparameter settings across Energy-based variants of
RAPSand SAPS.

Sensitivity heatmaps illustrate how T (temperature in the calibrated softmax) and τ (temperature
in the energy calculation) affect the average set size on the ImageNet dataset for Energy-Based
RAPS and Energy-Based SAPS, with α ∈ {0.025, 0.05}. As ln(τ) increases, the effect of energy-
based reweighting gradually diminishes. Consequently, for larger values of τ , the model converges
to the baseline method. For instance, Energy-Based RAPS with a large positive ln(τ) behaves
almost identically to standard RAPS. As shown in Figure 8, across different values of T (softmax
probability calibration), energy-based variants of the methods (corresponding to smaller values of
ln(τ)) produce more informative prediction sets compared to their baseline counterparts (associated
with larger values of ln(τ)).
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O SENSITIVITY ANALYSIS OF THE SOFTPLUS PARAMETER β

We analyze the impact of the sharpness parameter β on the efficiency of the generated prediction
sets. As defined in Equation 9, this parameter controls the approximation of the scaling factor to the
ReLU function. We evaluate the average prediction set size across a wide range of β values for the
CIFAR-100 dataset using a ResNet-56 model.

Figure 9 presents the results for Energy-based APS, Energy-based RAPS, and Energy-based SAPSat
miscoverage levels α = 0.05 and α = 0.025. As β approaches zero, the term 1

β log
(
1 + e−βF (x)

)
yields scaling factors that are inseparable across samples. Due to this loss of distinction, the perfor-
mance converges to the baseline without energy.

However, as β increases, the performance stabilizes and remains constant across several orders of
magnitude. This behavior aligns with the theoretical motivation that the scaling factor need only ap-
proximate the ReLU function to handle rare negative free energy values while preserving the signal
for positive values. Consequently, precise tuning of this parameter is unnecessary. Selecting a suf-
ficiently large value is a safe option to achieve the performance benefits of Energy-based conformal
classification.
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(a) Energy-based APS(α = 0.05)
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(b) Energy-based APS(α = 0.025)
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(c) Energy-based RAPS(α = 0.05)
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(d) Energy-based RAPS(α = 0.025)

1e
-0
5

5e
-0
5

0.
00
02
5

0.
00
07
5

0.
00
25

0.
00
75

0.
02
5

0.
07
5
0.
25 1 5 25 10

0
20
0
30
0
40
0
50
0
10
00

6.0

6.5

7.0

7.5

8.0

S
i
z
e

(e) Energy-based SAPS(α = 0.05)

1e
-0
5

5e
-0
5

0.
00
02
5

0.
00
07
5

0.
00
25

0.
00
75

0.
02
5

0.
07
5
0.
25 1 5 25 10

0
20
0
30
0
40
0
50
0
10
00

11

12

13

14

15

S
i
z
e

(f) Energy-based SAPS(α = 0.025)

Figure 9: Ablation study of the parameter β on CIFAR-100 with ResNet-56. The plots show the average
prediction set size (shaded regions indicate standard deviation) as a function of β. Performance stabilizes for
sufficiently large values of β, indicating that the method does not require specific tuning of this parameter.
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P ON THE RELIABILITY OF CONFORMAL CLASSIFIERS WHEN FACED WITH
OOD TEST SAMPLES

A reliable system for uncertainty quantification is often expected to satisfy two primary objectives,
as outlined in the Appendix of Angelopoulos & Bates (2021):

1. Flag out-of-distribution (OOD) inputs to avoid making predictions on unfamiliar data.

2. If an input is deemed in-distribution, output a prediction set that contains the true class with
user-specified probability.

A practical strategy to achieve this is a two-stage pipeline: first, an OOD detector screens each input.
If an input is flagged as OOD, the system can abstain (e.g., by returning an empty set). If deemed
in-distribution, the input is passed to a conformal predictor to generate a valid prediction set. This
separation, while effective, requires deploying and managing two distinct models.

The utility of the energy-based paradigm becomes particularly evident in scenarios where a dedi-
cated OOD detection module is not available to filter inputs. In such cases, a standard conformal
predictor, relying solely on softmax outputs, can be misleading. An OOD input might still produce
a single, high-confidence softmax score, leading the base conformal method to output a small, high-
confidence prediction set (e.g., {‘Tuberculosis’}) for a non-medical image. This false confidence is
a critical failure mode.

  Case 2: Small Set? " i' m pretty sure (not cor rectly)
about my answer"

  Case 3: Lar ge Set? " i' m not sure about my answer !"

In-
Dist r i but i on 

Sam ple

Out-Of-
Dist r i but i on 

Sam ple

Confor m al  
Classi f i er

{Pleural Effusion, Pneumonia}

{Tuberculosis, Pleural Effusion, Atelectasis, Normal, Pneumonia}

  Case 1: Empty Set? " I don' t know the answer !"

{Tuberculosis}

{   }

Figure 10: Conceptual diagram of a reliable conformal classifier facing an OOD input. The desired behaviors
are to produce an empty or large set, both signaling uncertainty, and to avoid producing a small set that implies
false confidence.

The energy-based approach addresses this vulnerability by incorporating a more reliable measure of
model uncertainty. The key difference in behavior is:

• For familiar ID inputs, model confidence is high, resulting in a high negative free energy.
The prediction sets are thus appropriately small and efficient, similar to the base variant.

• For unfamiliar OOD inputs, the model’s uncertainty is captured by a low negative free
energy. The energy-based reweighting dampens scores so that more classes fall below the
calibrated quantile. This results in the predictor generating a large prediction set.

This is a clear improvement over the base variant, which is prone to producing small, overconfi-
dent sets for such inputs. Therefore, even when the system is not configured to abstain, the large
prediction set generated by the energy-based method provides a more robust and honest signal of
uncertainty. It reduces the risk of overconfident and incorrect predictions on OOD data, making it
a more reliable choice in deployments without a separate OOD detector. This property validates
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the use of free energy as a model-aware signal that overcomes the limitations of standard softmax
probabilities, as noted in prior work (Liu et al., 2020; Wang et al., 2021).

To illustrate the importance of the desiderata outlined in Section 3.3, consider a conformal classifier
trained to identify medical conditions from chest X-rays. If this model is fed with an image of a
completely unrelated subject, such as a corgi, a reliable classifier must signal its unfamiliarity with
the input. As visualized in Figure 10, this signal correctly manifests in two ways:

1. An empty set (∅), which communicates: “I don’t know the answer.”
2. A large set (e.g., {‘Tuberculosis’, ‘Pleural Effusion’, ‘Atelectasis’, ...}), which communi-

cates: “I am uncertain about the answer.”

In contrast, producing a small, non-empty set (e.g., {‘Tuberculosis’}) is misleading, as it incorrectly
signals high confidence in a prediction that is likely wrong.

Our experimental results in Section 3.3 confirm this behavior in practice. We observed an increase
in the average prediction set size for the energy-based variants of the nonconformity scores.

Q ENERGY-BASED REWEIGHTING VS. ENTROPY-BASED REWEIGHTING

A common measure of uncertainty in a classifier’s output is the Shannon Entropy of its softmax
probability distribution. As described by Luo & Colombo (2024), let f(x) be the logit vector pro-
duced by the classifier for an input x, and let π̂(k | x) be the softmax probability for class k. The
Entropy H(x) is given by:

H(x) = −
K∑

k=1

π̂(k | x) log π̂(k | x)

= −
K∑

k=1

π̂(k | x)

fk(x)− log

K∑
j=1

exp(fj(x))


= −

K∑
k=1

π̂(k | x)fk(x) +

log

K∑
j=1

exp(fj(x))

 K∑
k=1

π̂(k | x)

= −
K∑

k=1

π̂(k | x)fk(x) + log

K∑
j=1

exp(fj(x)) (56)

If one were to consider an “Entropy-based reweighting” for conformal scores, it would likely utilize
this H(x) or a function thereof. However, the decomposition in Equation 56 reveals two distinct
components influencing the Entropy value. The first term, −

∑K
k=1 π̂(k | x)fk(x), depends on the

alignment of softmax probabilities with the logit values. The second term is the logsumexp (LSE)
of the logits: L(x) = log

∑K
j=1 exp(fj(x)).

This LSE term, L(x), is particularly relevant as it is directly related to the concept of free energy,
which forms the basis of our proposed Energy-based nonconformity scores. It captures the overall
magnitude or scale of the raw logits. Critically, while the softmax probabilities π̂(k | x) also depend
on these logits, the LSE term L(x) is calculated purely from the logits fj(x) without π̂(k | x)
appearing as explicit factors within its own sum, unlike in the definition of entropy.

Indeed, softmax entropy is not well-suited for capturing epistemic uncertainty (Mukhoti et al., 2021).
The distinction and potential advantage of using an Energy-based measure over the Entropy H(x)
is illustrated in Figure 2. As shown, both the “easy” and “hard” samples can yield high softmax
confidence for the predicted class, resulting in very low Entropy values (close to zero) for both.
This suggests that Entropy alone might not adequately distinguish between an input for which the
model is genuinely certain (high overall logit values, “easy sample”) and an input where the model
is less certain overall but still produces a peaky softmax distribution (“hard sample” with high soft-
max for one class). In contrast, the negative energy scores clearly differentiate these two cases:
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the easy sample exhibits a significantly higher negative energy score (32.49) compared to the hard
sample (14.08). This indicates that the Energy-based metric, by reflecting the overall scale of logit
activation, provides a more nuanced signal of the model’s underlying certainty.

Our proposed Energy-based Nonconformity Scores in Section 2.3 leverages this energy signal by
reweighting a standard nonconformity score with softplus(−F (x)). The rationale is that F (x)
offers a more direct and potentially more robust indication of the model’s overall certainty about
an input x than the Entropy H(x), which can be saturated (i.e., near zero) for different levels of
underlying model certainty. Empirical comparisons supporting the benefits of Energy-reweighted
scores over Entropy-reweighted alternatives is provided in Table 15.

Table 15: Performance comparison of different nonconformity score functions and their Energy-based and
Entropy-based variants on ImageNet using a ResNet-50 classifier at miscoverage levels α = 0.05 and α = 0.1.
Results are averaged over 10 trials and reported as empirical coverage and average prediction set size. Bold
values indicate the best performance within each group. The Entropy-based variants of adaptive method, APS,
RAPS, and SAPS are defined as SH(x, y) =

S(x,y)
H(x)

, and for LAC it is defined as SH(x, y) = −π̂(y|x) ·H(x).

α = 0.1 α = 0.05

Family Coverage Set Size ↓ Coverage Set Size ↓

L
A
C

baseline 0.898 ± 0.002 1.487 ± 0.013 0.950 ± 0.002 2.682 ± 0.039

w/ Energy 0.898 ± 0.002 1.485 ± 0.012 0.949 ± 0.002 2.680 ± 0.043

w/ Entropy 0.898 ± 0.002 1.496 ± 0.014 0.949 ± 0.002 2.696 ± 0.043

A
P
S

baseline 0.899 ± 0.002 1.605 ± 0.022 0.950 ± 0.002 4.007 ± 0.164

w/ Energy 0.899 ± 0.002 1.599 ± 0.022 0.950 ± 0.002 3.842 ± 0.159

w/ Entropy 0.898 ± 0.003 2.159 ± 0.042 0.949 ± 0.002 4.990 ± 0.083

R
A
P
S

baseline 0.898 ± 0.003 1.764 ± 0.030 0.949 ± 0.001 4.222 ± 0.056

w/ Energy 0.898 ± 0.003 1.763 ± 0.033 0.949 ± 0.001 3.889 ± 0.057

w/ Entropy 0.898 ± 0.003 2.108 ± 0.052 0.949 ± 0.002 4.811 ± 0.076

S
A
P
S

baseline 0.898 ± 0.002 1.664 ± 0.034 0.949 ± 0.002 3.659 ± 0.073

w/ Energy 0.898 ± 0.002 1.662 ± 0.029 0.949 ± 0.002 3.654 ± 0.064

w/ Entropy 0.898 ± 0.003 2.101 ± 0.039 0.949 ± 0.002 4.702 ± 0.075
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R DETAILED RESULTS ON IMAGENET

The table 16 provides an evaluation of 3 nonconformity score across 16 different model architectures
on the ImageNet validation set. We compare adaptive baseline methods (APS, RAPS, and SAPS)
against their respective Energy-based counterparts.

Table 16: Comparison of average prediction set sizes and accuracy for conformal methods on ImageNet at
confidence level of 95% (α = 0.05). Lower average set size is better. Set sizes are shown as baseline (w/o
Energy) → Energy-based (w/ Energy). The bold value highlights the superior (smaller) set size within each
pair. The results are reported as the median of means over 10 trials.

Accuracy Average Set Size (w/o Energy→ w/ Energy) ↓

Model Top-1 Top-5 APS RAPS SAPS

ResNet152 0.783 0.940 3.82 → 3.48 3.25 → 3.17 2.87 → 2.83

ResNet101 0.774 0.936 3.97 → 3.70 3.60 → 3.32 3.15 → 3.03

ResNet50 0.761 0.929 4.09 → 3.97 4.16 → 3.84 3.70 → 3.63

ResNet34 0.733 0.914 9.86 → 8.29 9.94 → 7.73 9.57 → 7.41

ResNet18 0.698 0.891 14.23 → 12.06 15.16 → 11.43 14.56 → 10.93

VGG19 0.742 0.918 8.41 → 7.14 8.85 → 6.85 8.36 → 6.71

VGG16 0.734 0.915 8.70 → 7.34 9.06 → 7.01 8.67 → 6.89

VGG13 0.716 0.904 10.77 → 9.29 11.83 → 8.78 11.60 → 8.58

VGG11 0.704 0.898 12.36 → 10.55 13.42 → 10.09 13.10 → 9.62

ViT-B/16 0.811 0.953 4.70 → 4.29 4.10 → 3.56 3.53 → 3.24

ViT-B/32 0.759 0.925 9.62 → 8.25 8.52 → 7.28 7.93 → 6.68

Swin s 0.832 0.964 2.79 → 2.81 3.13 → 2.87 2.74 → 2.65

Swin t 0.815 0.958 3.36 → 3.38 3.64 → 3.42 3.28 → 3.18

EfficientNet b4 0.834 0.966 5.87 → 4.99 4.87 → 4.28 4.33 → 3.93

EfficientNet v2 m 0.851 0.972 5.93 → 5.60 5.16 → 5.16 4.86 → 4.69

ShuffleNet v2 x1 0 0.694 0.883 19.17 → 14.79 19.63 → 14.48 19.40 → 14.07

Average 0.765 0.929 7.98 → 6.87 8.02 → 6.45 7.60 → 6.13
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