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Abstract

We introduce the notion of risk-limiting financial
audits (RLFA): procedures that manually evalu-
ate a subset of N financial transactions to check
the validity of a claimed assertion A about the
transactions. More specifically, RLFA satisfy two
properties: (i) if A is false, they correctly disprove
it with probability at least 1− δ, and (ii) they val-
idate the correctness of A with probability 1, if
it is true. We propose a general RLFA strategy,
by constructing new confidence sequences (CSs)
for the weighted average of N unknown values,
based on samples drawn without replacement from
a (randomized) weighted sampling scheme. Next,
we develop methods to improve the quality of CSs
by incorporating side information about the un-
known values. We show that when the side infor-
mation is sufficiently accurate, it can directly drive
the sampling. For the case where the accuracy is
unknown a priori, we introduce an alternative ap-
proach using control variates. Crucially, our con-
struction adapts to the quality of side information
by strongly leveraging the side information if it is
highly predictive, and learning to ignore it if it is
uninformative. Our methods also recover the state-
of-the-art bounds for the special case of uniformly
sampled observations with no side information,
which has already found applications in election
auditing. The harder weighted case with general
side information solves the more challenging prob-
lem of AI-assisted financial auditing.

1 INTRODUCTION

Consider the following scenario: in a given year, a company
has N recorded financial transactions with reported mone-
tary values M(i) ∈ (0,∞) for each i ∈ [N ] := {1, . . . , N}.

As required by law, an external auditor is required to attest
with “reasonable assurance” about whether the financial
records as a whole are free from “material misstatement.”
For example, the company has cash receipts for sales of
products, and it wants to ensure that the reported monetary
value matches the true amount that was made on the sales
according to prescribed accounting rules as some receipts
may actually represent past sales or future deliveries. This
can be done, for instance, by manually examining the entire
sales process to determine the true sales amount against the
the amount recorded by the company. Since the task of au-
diting each transaction can be complex requires substantial
human labor it can be prohibitively expensive to perform a
comprehensive audit of a company’s records.

Suppose that the auditor has built an AI system for “auto-
mated auditing”, i.e., this AI system can output predictions
about the accuracy of a transaction value, based on receipts,
OCR (optical character recognition), databases, etc. Such
systems are in a state of active development and deployment,
and the high level of industry demand is unsurprising given
the remarkable predictive capabilities of modern machine
learning algorithms. But there’s a catch: because the system
is trained and deployed on differently distributed data, its
accuracy on a new set of records in a new time period is
unknown a priori. Even if anecdotally, the AI system seems
to perform reasonably well on data collected from a vari-
ety of companies, we cannot make statistically certifiable
conclusions based solely on the output of the AI system
on a new company and/or in a new time period. Thus we
can think of AI systems in deployment as black boxes for
which we have (reasonable) hopes of high accuracy but lack
formal guarantees.

The auditor’s goal is to minimize the amount of manual
auditing that must be done by a person, while accurately
estimating the true monetary amount of those transactions
that have not manually audited. When the AI system is accu-
rate, we want to reduce the amount of human auditing effort
required. More importantly, we want a statistically rigorous
conclusion regardless of the AI system accuracy. Hence,
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our method should interpolate between using predictions to
reduce its uncertainty rapidly when the system is accurate,
and the most efficient AI-free strategy if it is inaccurate.

Problem setup and notation. Denote the unknown mis-
stated fraction of the ith transaction as f(i) ∈ [0, 1], for
each i ∈ [N ]. In other words, if M∗(i) denotes the true
value of the transaction i, and M(i) is the reported value,
then 1 f(i) = |M∗(i) − M(i)|/M(i). We can normalize
the reported transaction values by the sum over all transac-
tion values to get a weight π(i) := M(i)/(

∑N
i=1 M(i)) for

each i ∈ [N ], where
∑n

i=1 π(i) = 1. The auditor wishes to
obtain an estimate of m∗ =

∑N
i=1 π(i)f(i), the fraction of

the total monetary value that is misstated, up to an accuracy
ε ∈ [0, 1]. By S(i), we denote the side information, a score
for the ith transaction that (ideally) predicts f(i). In our
setup, the side information can be generated through any
method, e.g., through an AI system that automatically ana-
lyzes the documents a human auditor would use, may also
be available to the auditor. Each transaction can be evaluated
by the auditor to reveal M∗(i) (or equivalently, f(i)).

Risk-limiting financial audit (RLFA). Motivated by the
analogous concept of risk limiting election audits [18, 19],
we use risk limiting financial audits (RLFA) to refer to any
procedure that checks the validity of an assertion A about
the true misstated fraction m∗ by manually evaluating a
subset of the N transactions. Formally, given a risk limit δ ∈
(0, 1), an RLFA method should satisfy these two properties:

• If A is false, it correctly identifies this with probability
at least 1− δ, while manually auditing as few transac-
tions as possible.

• If A is true, the procedure never refutes it.

Following Stark [20], Waudby-Smith et al. [24], we con-
sider assertions about m∗ lying in a subset of [0, 1], and we
overload the notation to use A to denote both the assertion,
and the subset of [0, 1]. Then, the auditing task can be stated
as a sequential hypothesis testing problem

H0 : m∗ ̸∈ A, vs. H1 : m∗ ∈ A.

The task then reduces to defining a stopping time τ ≡
τ(A, δ) at which we stop and reject H0, satisfying the prop-
erties: (i) PH0

(τ < N) ≤ δ, and (ii) PH1
(τ < N) = 1. We

refer to this formulation as regulatory (or external) RLFA,
since it takes the perspective of an external auditor asked
to verify the claim A. This formulation takes a hypothe-
sis testing perspective of auditing, similar to the existing
approaches in prior works in this area.

1We are primarily concerned with estimating the downside that
arises from misstatement, e.g., M(i) represents the money that
should have been received for a sale, and M∗(i) represents the
actual money received. In this scenario, we may lose at most M(i)
amount of money if M∗(i) = 0. Hence, we assume f(i) ∈ [0, 1].

An interesting variation of the above formulation is the
friendly (or internal) RLFA, where an in-house auditor also
performs the correction in the reported value of each manu-
ally evaluated transaction. In other words, for every manu-
ally evaluated transaction i ∈ [N ], we have f(i) = 0. As a
result, we can define the notion of residual misstated fraction
after t transactions (I1, . . . , It) have been audited, denoted
by m∗

t = m∗− (
∑T

j=1 M(Ij)f(Ij))/(
∑N

i=1 M(i)). Using
this term, we can now define RLFA from an estimation per-
spective. In particular, for any given assertion A ⊂ [0, 1],
we can consider the test:

H0 : ∩N
n=1 ∪N

t=n {m∗
t ̸∈ A},

versus H1 : ∪N
n=1 ∩N

t=n {m∗
t ∈ A}. (1)

The auditor’s objective, as before, is to define a stopping
time τ at which to reject H0. One constraint required by
this formulation, to reject H0 at some t < N is that the set
A must be such that if m∗

t ∈ A for some t, then m∗
t′ ∈ A

for all t′ > t. A sufficient condition for this is if A = [0, ε]
for some ε ∈ (0, 1). With this choice, the connection to
estimation is explicit: the audit stops as soon as the residual
misstated fraction m∗

t falls below ε; or equivalently, it stops
as soon as the misstated fraction m∗ is known within an
accuracy of ε. For simplicity, we will focus on this specific
instance of RLFA for the rest of this paper, and we formally
record its definition next.

Definition 1 ((ε, δ)-RLFA). For ϵ, δ ∈ (0, 1), consider the
RLFA problem with assertion A = [0, ϵ], and H0 and H1

as defined in (1). Then, an (ε, δ)-RLFA procedure is any
stopping time τ = τ(ε, δ) that satisfies PH0

(τ < N) ≤ δ,
and PH1

(τ < N) = 1.

Our general strategy for developing (ε, δ)-RLFA proce-
dures relies on constructing confidence sequences for m∗;
that is, a sequence of sets {Ct ⊂ [0, 1]} that satisfy
P (∀t ∈ [N ] : m∗ ∈ Ct) ≥ 1 − δ. The risk limit δ ∈ (0, 1)
plays a vital role, as it allows for the possibility of certi-
fying A by evaluating only a small subset of the N trans-
actions (i.e., τ << N ). That is, if δ were 0, then the best
strategy is simply to audit the transactions in decreasing or-
der of their reported monetary value, and stop only when the
remaining transactions constitute smaller than an ε fraction
of the total. However, we as we show in this paper, even for
a small δ > 0 (e.g., 0.01), there exist strategies based on ran-
domized sampling WoR that allow us to stop much earlier.
In other words, for each t ∈ [N ], we adaptively construct
a sampling distribution qt over the remaining N − t + 1
unaudited transactions, and sample It, the index of the tth
transaction to audit, according to qt. We then obtain f(It)
through manual auditing, and incorporate this new informa-
tion to update our estimate of m∗. If our residual uncertainty
is sufficiently small (i.e., smaller than ε), we stop sampling.
Otherwise, we continue the process by drawing the next in-
dex, It+1, according to an appropriately chosen distribution
qt+1.



Before presenting the technical details, we note that we
use (Xt)t∈I to denote a sequence of objects indexed by
a set I, and the tth object is Xt. We drop the indexing
subscript if it is clear from context. For any t ∈ [N ], we
use Ft := σ({Ii}i∈[t]) to denote the sigma-algebra over our
query selections for the first t queries.

Confidence sequences for sequential estimation. Let
T ∈ [N ] be a random stopping time, that is, a random
variable for which the event {T = t} belongs to Ft for
each t ∈ [N ], and let T denote the universe of all such
stopping times. Confidence sequences [12, 10] (CSs), or
time-uniform confidence intervals, are sequences of inter-
vals, (Ct)t∈[N ], that satisfy

sup
T∈T

P (m∗ ̸∈ CT ) ≤ δ ⇔ P (∃t ∈ [N ] : m∗ ̸∈ Ct) ≤ δ,

where δ ∈ (0, 1) is a fixed error level. Ramdas et al. [14]
showed the equivalence above, i.e., that any sequence of
intervals (Ct) that satisfies one side of the implication will
immediately satisfy the other as well.

Using this equivalence, we can define a simple (ε, δ)-RLFA
procedure: construct a CS for m∗, denoted by (Ct), and
produce Cτ where τ is the following stopping time:

τ = τ(ε, δ) := min{t ≥ 1 : |Ct| ≤ ε}. (2)

The width of all nontrivial CSs converges to zero as t → N ,
and thus the above stopping time is well-defined, and is
usually smaller than N . To see its relation to (ε, δ)-RLFA
procedure, see Remark 4.

Note that the only source of randomness in this problem
is the randomized sampling strategy (qt)t∈[N ], used to se-
lect transactions for manual evaluation. Hence, (qt)t∈[N ] is
another design choice for us to make. To summarize, our
goal in this paper is to (i) design sampling strategies (qt),
and (ii) develop methods of aggregating the information so
collected with any available side information, in order to
construct CSs for m∗ whose width decays rapidly to 0.

Among existing works in literature, the recent papers
by Waudby-Smith and Ramdas [23, 22] are the most closely
related to our work. In these works, the authors considered
the problem of estimating the average value of N items
via WoR sampling—however, they considered only uniform
sampling, and estimating only the unweighted mean of the
population. Our methods work with any sampling scheme,
and can estimate any weighted mean; we recover their exist-
ing results in Appendix D.

WoR confidence intervals for a fixed sample size. Most
existing results on concentration inequalities for observa-
tions drawn via WoR sampling focus on the fixed sample
size setting, starting with Hoeffding [9], who bounded the
probability of deviation of the unweighted empirical mean
with WoR sampling in terms of the range of the observations.

In particular, Hoeffding [9] showed that for observations
XI1 , . . . , XIn ∈ [a, b] drawn uniformly WoR from N val-
ues (Xi)i∈[N ], we have

P
(∑n

t=1 XIt

n −
∑N

t=1 Xi

N > ε
)
≤ exp

(
− 2nε2

(b−a)2

)
. (3)

In WoR sampling, as the sample size n approaches N , the
total number of items, we expect the empirical estimate to
approximate the true average very accurately. This observa-
tion, not captured by the above bound, was made formal by
Serfling [16], who showed that the n in (3) can be replaced
by n

1−(n−1)/N , thus highlighting the significant improve-
ment possible for larger n values. Ben-Hamou et al. [3]
prove a Hoeffding style concentration inequality on the un-
weighted sample mean to its own expectation, which is a dif-
ferent estimand than the weighted population mean. Finally,
in the unweighted case, Bardenet and Maillard [2] obtained
variance adaptive Bernstein and empirical-Bernstein vari-
ants of Serfling’s results, that are tighter in cases where the
variance of the observations is small. These results appear
to be incomparable to those of Waudby-Smith and Ramdas
[22, 23], that have found successful application to auditing
elections [24].

1.1 CONTRIBUTIONS

We introduce the concept of risk limiting financial au-
dits (RLFA) that generalizes the notion of a risk-limiting
audits introduced by Stark [18] for election auditing. In par-
ticular, we make the following key technical contributions:

1. New CSs for weighted means with non-uniform sam-
pling. To design an (ε, δ)-RLFA procedure, we con-
struct novel CSs for m∗ that are based on a betting
method that was pioneered in [23] in Section 4, as well as
Hoeffding and empirical-Bernstein CSs in Appendix C
(which are looser but have a simple analytical form).
Our results generalize previous methods in two ways: (i)
they can estimate the weighted mean of N items, and
(ii) they work with adaptive, data-dependent, sampling
strategies. In particular, our betting CSs, which we show
empirically are the most powerful in Appendix E) are
based on simultaneously playing gambling games with
an aim to disprove the possibility that m∗ = m, for each
m ∈ [0, 1]. Values for m, where we accumulate much
wealth are eliminated from the CS. Consequently, we de-
velop a simple, lucrative betting strategy for this setting
(ApproxKelly), which is equivalent to formulating
narrower CSs.

2. Adaptive sampling strategies that minimize CS width. In
addition to designing CSes that are intrinsically narrow,
we are also able to change the sampling distribution of
the transactions at each time step, and develop a sampling
strategy that will minimize CS width in concert with any
valid CS construction. We propose two sampling strate-
gies, prop-M and prop-MS, the latter of which can



incorporate approximately accurate scores (S(i))i∈[N ]

to improve the sample efficiency of our CSs. This is
accomplished by choosing the sampling distribution, at
each time step, that maximizes the wealth accumulated
by the betting strategies that underlie our CSs. We find
that this is approximately equivalent to choosing the sam-
pling distribution with the minimal variance, and we
show that our sampling strategies result in a noticeable
improvement over uniform sampling through simulations
in Section 5.

3. Robust use of side information to tighten CSs. Finally,
in Section 4, we develop a principled way of lever-
aging any available side information, inspired by the
idea of control variates used for variance reduction in
Monte Carlo sampling. Interestingly, our method adapts
to the quality of the side information—if (S(i))i∈[N ]

and (f(i))i∈[N ] are highly correlated, the resulting CSs
are tighter, while in the case of uncorrelated (S(i)), we
simply learn to discard the side information.

2 BETTING-BASED CS CONSTRUCTION

We derive our CSs by designing sequential tests to simultane-
ously check the hypotheses that m∗ = m, for all m ∈ [0, 1].
By the principle of testing by betting [17], this is equiva-
lent to playing repeated gambling games aimed at disprov-
ing the null m∗ = m, for each m ∈ [0, 1]. Formally, for
all m ∈ [0, 1], we construct a process (Wt(m))t∈[N ] (the
wealth process), such that (i) if m = m∗, then (Wt(m)) is
a test martingale, i.e., a nonnegative martingale with initial
value 1, and (ii) if m ̸= m∗, then Wt(m) grows at an ex-
ponential rate. Recall that a process (Wt)t∈[N ] adapted to
(Ft)t∈[N ] is a supermartingale iff E[Wt | Ft−1] ≤ Wt−1

for all t ∈ [N ], and a martingale if the inequality is replaced
with an equality. Assuming we can construct such a pro-
cess, we define the confidence set at any time t as the set of
those m ∈ [0, 1] for which (Wt(m)) is ‘small’, because a
nonnegative martingale is unlikely to take large values.

As mentioned earlier, this approach requires us to design
sampling distributions (qt), and a method for constructing
a CS (Ct) from the queried indices. We begin by formally
defining a sampling strategy.

Definition 2 (Sampling Strategy). A sampling strategy con-
sists of a sequence (qt)t∈[N ], where qt is a probability dis-
tribution on the set Nt := [N ] \ {I1, . . . , It−1}. Here Ij
denotes the index drawn according to the predictable (i.e.,
Fj−1-measurable) distribution qj .

A natural baseline sampling strategy is to set qt to be uni-
form over Nt for all t ∈ [N ]. We will develop other, more
powerful, sampling strategies that are more suited to our
problem in Section 3.

We now describe how to construct the wealth process for an

arbitrary sampling strategy. First, define the following:

Zt := f(It)
π(It)
qt(It)

, and µt(m) := m−
t−1∑
j=1

π(Ij)f(Ij).

Note that µt(m) is the remaining misstated fraction after
accounting for the first t−1 queries to f if m is truly the total
misstated fraction. Now, we can define the wealth process:

Wt(m) = Wt−1(m)× (1 + λt(m) (Zt − µt(m))) ,

with W0 = 1. (λt(m))t∈[N ] is a predictable sequence with
values in [0, 1/ut(m)], and ut(m) is the largest value in the
support of Zt − µt(m), for each t ∈ [N ]. Note that this
constraint on (λt(m)) ensures that Wt(m) is nonnegative
for each t ∈ [N ]. We also let W0(m) = 1 for all m ∈ [0, 1].
If we view the wealth process as the wealth we earn from
gambling on the outcome of Zt − µt(m), then (λt(m)) rep-
resents a betting strategy, i.e., how much money to gamble
each turn. Hence, we refer to (λt(m)) as a betting strategy.

It is easy to verify that (Wt(m
∗)) is a nonnegative mar-

tingale for any sampling strategy (qt) and betting strategy
(λt(m

∗))). Hence, it is unlikely to take large values, as we
describe next.

Proposition 1. For any sampling and betting strategies (qt)
and (λt(m

∗)), the following holds:

P (∃t ≥ 1 : Wt(m
∗) ≥ 1/δ) ≤ δ.

This is a consequence of Ville’s inequality, first obtained
by Ville [21], which is a time-uniform version of Markov’s
inequality for nonnegative supermartingales. This result
immediately implies that for any sampling strategy, and any
betting strategy, the term m∗ must lie in the set

Ct = {m : Wt(m) < 1/δ} (4)

with probability at least 1− δ, making (Ct) a (1− δ)-CS.

Theorem 1. (Ct) is an (1− δ)-CS, where Ct defined by (4).
Hence, the associated stopping time τ is an (ε, δ)-RLFA,
for any sampling strategy (qt) and betting strategies
(λt(m)) for each m ∈ [0, 1]. Recall that the τ is defined in
(2) as the first time where |Ct| ≤ ε.

This methodology gives us flexible framework for construct-
ing different (Ct) that result in different RLFAs. Now, we
can turn our attention to finding betting strategies (λt(m))
that reduces the CS width quickly and minimizes τ .

Remark 1. Note that the set Ct in (4), does not admit a
closed form expression, and is computed numerically in
practice by choosing m values over a sufficiently fine grid
on [0, 1]. In Appendix C, we design CSs based on nonnega-
tive supermartingales (instead of martingales) that do ad-
mit closed form representation. However, this analytical
tractability comes as the price of empirical performance, as
we demonstrate in Appendix E.



Remark 2. Ville’s inequality (Fact 1 in Appendix A.2),
used for proving Proposition 1, is known to be tight
for continuous-time nonnegative martingales with infinite
quadratic variation, and incurs a slight looseness as we
move to the case of discrete time martingales. As a result,
the martingale-based CSs constructed in this section pro-
vide nearly tight coverage guarantees, that are strictly better
than the supermartingale based closed-form CSs discussed
in Appendix C. This near-tightness of the error probability
of our betting-based CSs implies that there exists no other
CS that is uniformly tighter than ours, while also control-
ling the error probability below α. In other words, our CSs
satisfy a notion of admissibility or Pareto-optimality.

2.1 POWERFUL BETTING STRATEGIES

Besides validity, we also want the size of the CS to shrink
rapidly. This depends on how quickly the values of Wt(m)
for m ̸= m∗ grow with t. One such criterion is to consider
the growth rate, i.e., the expected logarithm of the outcome
of each bet. We can define the one-step growth rate Dn, for
each n ∈ [N ] as follows:

Dn(m,λ) := log(1 + λ(Zt − µt(m))).

We are interested in maximizing the expected logarithm of
the wealth process [8, 17], since it is equivalent to mini-
mizing the expected time for a wealth process to exceed
a fixed threshold (asymptotically, as the threshold grows
larger) [5]. Thus, in the context of the auditing problem,
maximizing E[Dt(λ,m) | Ft−1], approximately minimizes
E[τ ]. The one-step growth rate is a broadly studied objec-
tive known as the “Kelly criterion” [11]. In general, finding
the best sequence of bets λt(m) for different values of n
is non-tractable. Instead we consider the approximation
log(1 + x) ≥ x − x2 for |x| ≤ 1/2, and define the best
constant bet λ∗

n in hindsight, as

Bt(m,λ) := λ (Zt − µt(m))− λ2 (Zt − µt(m))
2
, (5)

λ∗
n := argmax

λ∈[±1/2c]

1

n

n∑
t=1

Bt(m,λ),

where c = max{|Zt − µt(m)| : t ∈ [n]}. We get the
following result on λ∗

n for each n ∈ [N ]:

λ∗
n ∝

∑n
t=1 Zt − µt(m)∑n

t=1(Zt − µt(m))2
:=

An

Vn
.

Since λ∗
n depends on the nth sample itself, Zn, we cannot

use this strategy in our CS construction. Instead, at any
n ∈ [N ], we can use a predictable approximation of this
strategy, that we shall refer to as the ApproxKelly betting
strategy. This strategy sets λt(m) as follows:

λt(m) = ct
At−1

Vt−1
, (ApproxKelly)

where the (predictable) factor ct is selected to ensure that
λt(m)× (Zt − µt(m)) ∈ (−1,∞), i.e., to satisfy the non-
negativity constraint of (Wt(m)).

Remark 3. Note that there exist several other betting
schemes besides ApproxKelly, such as those based on
alternative approximations of log(1 + x) [7, 23, 15], or
the ONS strategy that relies on the exp-concavity of the
log-loss [6]. In practice, however, we did not observe signif-
icant difference in their performance, and we focus on the
ApproxKelly strategy due to its conceptual simplicity.

2.2 LOGICAL CS

Irrespective of the choice of the sampling and betting strate-
gies, we can construct a CS that contains m∗ with probabil-
ity 1, based on purely logical considerations. After sampling
t transactions, we know that m∗ is lower bounded by quanti-
ties derived from the the misstatement fraction accumulated
in the items we have sampled already. Hence, we can derive
the following lower and upper deterministic bounds on m∗:

Ll(t) :=

t∑
j=1

π(Ij)f(Ij), Ul(t) := Ll(t) +
∑
i∈Ut

π(i).

Note that Ll(t) (resp. Ul(t)) values are obtained by noting
that all the remaining unknown f values must be larger
than 0 (resp. smaller than 1). Additionally, due to the time-
uniform nature of confidence sequences,we can intersect the
logical CS with a ‘probabilistic’ CS constructed in (4), and
obtain the following CS:

C̃t := Ct ∩ [Lℓ(t), Uℓ(t)] ∩ C̃t−1, (6)

where C̃0 := [0, 1]. Note that we may take the running
intersection of a CS since it remains a CS, simply by defini-
tion. Consequently, the combined CS in (6) dominates the
probabilistic CS.

Remark 4. Note that at any t ≥ 1, the residual misstate-
ment m∗

t is equal to m∗ − Ll(t). Thus, if m∗ ∈ C̃t, and
|C̃t| ≤ ε, then by definition, we must have m∗

t′ ≤ ε for all
t′ ≥ t. This means that the stopping time defined in (2) by
incorporating logical CS is an (ε, δ)-RLFA procedure.

3 SAMPLING STRATEGIES

The choice of the sampling strategy, (qt), is also critical
to reducing uncertainty about m∗ quickly. Recall that qt
is a probability distribution on the remaining indices Nt

for each t ∈ [N ]. To motivate the choice of our sampling
strategy, we first consider the following question: what is
the randomized sampling strategy that leads to the fastest
reduction in uncertainty about m∗? In general, it is difficult
to characterize this strategy in closed form (other than the



computational aspect of the strategy being the solution of
a multistage optimization problem). Thus, we consider a
simplified question, that of finding the sampling strategy
that maximizes the expectation of the one-step growth rate,
Dn(λ,m), for each n ∈ [N ]. We seek to maximize the
lower bound, Bn(λ,m), introduced in (5):

q∗n := argmax
q∈∆Nn

EIn∼q [Bn(λ,m)] ,

where ∆Nn is the universe of distributions supported on Nn.
We now obtain a closed-form characterization of q∗n.

Proposition 2. Note that q∗n = argminq∈∆Nn VIn∼q[Zn],
which implies that q∗n(i) ∝ π(i)f(i). Hence, for any valid
betting strategy (λt) and sampling strategy (qt), we have
EI∼qt [Bt(λt,m)] ≤ EI∼q∗t

[Bt(λt,m)].

We defer the proof to Appendix B.1, which proceeds by
showing that maximizing the lower bound on the one-step
growth rate is equivalent to minimizing the variance of
Zn. It turns out that q∗n(i) ∝ π(i)f(i) is the minimum (in
fact, zero) variance sampling distribution, and thus, (q∗t )
dominates any other sampling strategy w.r.t. maximizing the
expected bound on the one-step growth rate.

Remark 5. The oracle strategy in Proposition 2 can be
considered as a solution of an alternative question: suppose
there is an oracle who knows the true values of f(i), and
needs to convince an observer that the value m∗ is within
an interval of width ε with probability at least 1 − δ. The
oracle wishes to do so by revealing as few f(i) values to the
observer as possible. Clearly, any deterministic sampling
strategy from the oracle will lead to skepticism from the
observer (i.e., the observer will only be convinced once the
π(i) corresponding to the unrevealed f(i) sum to ε). Hence,
the sampling strategy used by the oracle must be random,
and according to Proposition 2, it should draw transactions
with probability ∝ π(i)× f(i).

Sampling without side information. Since the (f(i))
values are unknown by definition of the problem, we cannot
use (q∗t ) in practice. Instead, we consider a sampling strategy
that selects a index i ∈ Nt in proportion to its π(i) value
— we refer to this strategy as the prop-M strategy. This
strategy is also known as “sampling proportional to size”
[4] or “dollar unit sampling” [13] in auditing literature, and
is similar to the best deterministic strategy, which queries
indices in descending order w.r.t. π(i).

qt(i) =
π(i)∑

j∈Nt
π(j)

, (prop-M)

for each i ∈ Nt. Sampling with prop-M minimizes the
“worst case” support range, and max value, of Zt. This al-
lows for the largest possible choice of λt, i.e., our bet.

Using accurate side information for sampling. Propo-
sition 2 motivates a natural sampling strategy in situations
where we have access to side information (S(i)) that is
known to be a high-fidelity approximation of the true (f(i))
values—draw indices proportional to π(i)× S(i). We will
refer to this strategy as the prop-MS strategy:

qt(i) =
π(i)S(i)∑

j∈Nt
π(j)S(j)

. (prop-MS)

Under certain relative accuracy guarantees on the side infor-
mation, we can characterize the performance achieved by
the prop-MS strategy as compared to the optimal strategy
of Proposition 2, as we state next.

Corollary 1. Assume that the side information, (S(i)), is
an accurate prediction of (f(i)), i.e., there exists a known
parameter a ∈ [0, 1), such that

S(i)/f(i) ∈ [1± a] (7)

for all i ∈ [N ]. With the prop-MS strategy for (qt), we can

ensure EIt∼qt [Bt(λt,m)] ≥ EIt∼q∗t
[Bt(λt,m)]

(
1

1+a

)2

,

where (q∗t ) is the optimal sampling strategy of Proposition 2.

Next, we develop an approach to properly incorporate side
information without any accuracy guarantees.

4 USING POSSIBLY INACCURATE SIDE
INFORMATION

Often, we do not have a uniform guarantee on accuracy
on (S(i)) as we assumed in the previous section. In such
cases, we cannot continue to use the prop-MS strategy, as
it requires knowledge of the range of f(i)/S(i) to ensure
the non-negativity of the process (Wt(m)). We develop new
techniques in this section that can exploit the side infor-
mation without the uniform accuracy guarantees, provided
that the side information is correlated with the unknown
(f(i)) values. In particular, the method developed in this
section for incorporating the side information is orthogo-
nal to the choice of the sampling strategy; and thus, it can
be combined with any sampling strategy that ensures the
non-negativity of the process (Wt(m)).

Our approach is based on the idea of control variates [1,
§ V.2] that are used to reduce the variance of Monte
Carlo (MC) estimates of an unknown quantity, using some
correlated side information whose expected value is known.
More specifically, let m̂ denote an unbiased estimate of an
unknown parameter m, and let v̂ denote another (possibly
correlated to m̂) statistic with zero mean. Then, the new
statistic, m̂β = m̂ + βv̂ is also an unbiased estimate of
m, for all β ∈ R. Furthermore, it is easy to check that
V(m̂β) = V(m̂) + β2V(v̂) + 2βCov(m̂, v̂), which im-
plies that the variance of this new estimate is minimized



at β = β∗ := − (Cov(m̂, v̂)/V(v̂)). Finally, note that the
variance of m̂β∗ cannot be larger than the variance of the
original estimate m̂, since V(m̂β∗) ≤ V(m̂0) = V(m̂) by
the definition of β∗.

Returning to our problem, given some possibly inaccurate
side information (S(i)), define the control variate (that is,
an analog of the term v̂) as Ut := S(It) − EI′∼qt [S(I

′)],
and let (βt) denote a sequence of predictable terms taking
values in [−1, 1] used to weigh the effect of (Ut). Note that,
similar to v̂, the term Ut has zero mean for each t ∈ [N ]. We
now define the wealth process with control variates, denoted
by (W̃t(m)), and its corresponding CS as follows:

W̃t(m) :=

n∏
t=1

(1 + λt(m)(Zt + βtUt − µt(m))) ,

Ct = {m ∈ [0, 1] : W̃n(m) < 1/α}, (8)

where (λt(m)) is a betting strategy for each m ∈ [0, 1].

Theorem 2. For any set of side information (S(i)), se-
quence (βt), sampling strategy (qt), and betting strategies
(λt(m)), (Ct) as defined in (8) is an (1 − δ)-CS for m∗.
Consequently, the stopping rule τ(ϵ, δ) associated with (Ct)
is an (ε, δ)-RLFA.

The discussion above suggests that by a suitable choice of
the parameters (βt), we can reduce the variance of the first
term. To see why this is desirable, recall that the optimal
value of the approximate growth rate after n steps of the
new wealth process satisfies the following:

B̃n(λ,m) :=λ(Zt + βtUt − µt(m))

− λ2(Zt + βtUt − µt(m))2,

max
λ

B̃n(λ,m) ∝
∑n

t=1 Zt + βtUt − µt(m)∑n
t=1(Zt + βtUt − µt(m))2

.

Note that by setting βt = 0 for all t ∈ [n], we recover
B̃n(λ,m) = Bn(λ,m), i.e., the wealth lower bound with
no side information. Next, we observe that

∑n
t=1 βtUt con-

centrates strongly around its mean (0).

Proposition 3. For any δ ∈ (0, 1) and sequence (βt), the
following statement is simultaneously true for all n ∈ [N ]
with probability at least 1− δ∣∣∣∣∣ 1n

n∑
t=1

βtUt

∣∣∣∣∣ = O
(√

log(log n/δ)/n
)
.

This result, proved in Appendix B.2, implies that in order
to select the parameters (βt), we can focus on its effect on
the second order term in the denominator. In particular, the
best value of β for the first n observations, is the one that

minimizes the denominator, and can be defined as follows:

β∗
n := argmin

β∈[−1,1]

n∑
t=1

(Zt − µt(m) + βUt)
2

∝ −
∑n

t=1(Zt − µt(m))Ut∑n
t=1 U

2
t

.

The numerator of β∗
n varies with

∑n
t=1 f(It)S(It)—hence,

the magnitude of βt increases with the amount of correla-
tion between f(i) and S(i). Since β∗

n is not predictable
(it is Fn instead of Fn−1 measurable), we will use the
following strategy of approximating β∗

n at each n ∈ [N ]:

βn ∝ −
∑n−1

t=1 (Zt−µt(m))Ut∑n−1
t=1 U2

t

, for n ≥ 2 and we let β1 = 0.
This provides a principled way of incorporating side infor-
mation even when the relationship between the side infor-
mation and the ground truth is unclear.

Remark 6. Our work is motivated by applications where
the side-information is generated by an ML model trained
on historical data. In practice, ML models are trained via
empirical risk minimization, and we expect that models with
lower risk should result in side-information with higher
correlation. For some simple cases, such as least-squares
linear regressors, we can obtain a precise relation between
correlation and risk: ρ2 = 1−MSE. Characterizing this
relation for more general models is left for future work.

5 EXPERIMENTS

We conduct simulations of our RLFA methods on a vari-
ety of scenarios for π and f . For each simulation setup,
we choose two positive integers Nlg and Nsm such that
Nlg + Nsm = N . We generate the weight distribution π,
consisting of Nlg ‘large’ values and Nsm ‘small’ values.
The exact range of values taken by these terms are varied
across experiments, but on an average the ratio of ‘large’
over ‘small’ π values lie between 10 and 103. We then gen-
erate the f values in one of two ways: (1) f ∝ π, where
indices with where large π values take f values in [0.4, 0.5]
and small π values take on f values in [0.001, 0.01], or (2)
f ∝ 1/π, where the f value ranges are swapped for large
and small values. The simulations in this section focus on
the different sampling strategies as well as the efficacy of
control variates — we provide additional experiments com-
paring the betting CS with other types of CS in Appendix E.

No side information: uniform vs. prop-M sampling. In
the first experiment, we compare the performance of the
prop-M strategy with the uniform baseline. In addition to
this, we also illustrate the significance of logical CS (intro-
duced in Section 2.2) especially in cases when there are a
few large π values. From the widths of the CSs plotted in
Figure 1a, we can see that prop-M outperforms the uniform
baseline in all four cases. The gap in performance increases
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Figure 1: A comparison of prop-M vs. uniform sampling,
and the impact of intersecting with the logical CS (Sec-
tion 2.2) where ε = δ = 0.05. The prop-M strategy pro-
duces tighter CSs that results in fewer audited samples. In-
tersecting with the logical CS further reduces the width,
particularly when few transactions are large (Nlg = 0.2).

when Nlg is small since π deviates more significantly from
the uniform weighting: it consists of a few large weights
with the rest close to 0. On the other hand, when Nlg is large,
the weights resemble the uniform distribution, leading to the
competitive performance of the uniform baseline. The logi-
cal CSs are most useful in the case of small Nlg, especially
with f ∝ π. This is because for small Nlg, every query to
an index with large π value leads to a significant reduction
in the uncertainty about m∗.

Next, in Figure 1b, we plot the distribution of the stop-
ping time τ for an RLFA with ε = δ = 0.05, over 500
independent trials. The prop-M strategy leads to a signif-
icant reduction in the sample size requirement to obtain
an ε-accurate estimate of m∗ as compared to the uniform
baseline, both with and without the logical CS. Furthermore,
the distribution of τ with the prop-M strategy often has
less variability than the uniform strategy. Hence, prop-M
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Figure 2: Comparison of prop-MS vs. prop-M with ac-
curate side information (S(i)), i.e., S(i)/f(i) ∈ [0.9, 1.1]
where ε = δ = 0.05. We see that prop-MS outperforms
prop-M in both CS width and sample efficiency.

has demonstrated itself empirically to be a better sampling
strategy than simply sampling uniformly, as one would do
when all the weights are equal.

Using prop-MS with accurate side information. In the
second experiment, we study the benefit of incorporating
accurate side information in the design of our CSs, by com-
paring the performance of prop-MS strategy with that of
the prop-M strategy. We generate S randomly while en-
suring S(i)/f(i) ∈ [1± a] (from (7)) for some a ∈ (0, 1).
Thus smaller values of a imply that the scores S(i) are more
accurate approximations of f(i) for all i ∈ [N ].

In Figure 2a, we can see that the prop-MS strategy with
accurate side information dominates the prop-M strategy.
This is further reflected in the distribution of τ for an RLFA
where ε = δ = 0.05 in Figure 2b. Hence, in situations where
we are confident in the accuracy of our side information, we
should incorporate it directly into our sampling strategy to
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Figure 3: The plots above show the width of the CSs and
the distribution of τ for the f ∝ π and the f ∝ 1/π cases,
where Nlg/N = 0.2 and c = 0.9.

reduce the width of the CS.

Control variates from possibly inaccurate side informa-
tion. Finally, we consider the case in which we do not
have prior information about the accuracy of the side infor-
mation. Thus, using the prop-MS strategy in this scenario
directly can lead to very conservative CSs (this is because
in the absence of tight guarantees on the range of the S/f
ratio, we will have to use the worst case range). Instead,
we compare the performance of the prop-M strategy, with
and without using control variates described in Section 4.
In this case, we set S(i) = c × f(i) + (1 − c) × Ri for
c ∈ (0, 1), where (Ri)i∈[N ] are i.i.d.random variables dis-
tributed uniformly over [0, 1]. The parameter c controls the
level of correlation between f and S values, with small c
values indicating low correlation.

We generate the data with Nlg = 40 and N = 200. In Fig-
ure 3, we compare the CSs and the distribution of τ for an
RLFA (with ε = δ = 0.05) for the prop-M strategy with
and without control variates, when the side information is
generate with c = 0.9. Due to the high correlation, there
is a significant decrease in the samples needed to reach an
accuracy of ε, when using control variates.

Finally, in Figure 4, we study the variation in sample effi-
ciency as the correlation between S and f changes (i.e., by
varying c). In particular, for 9 linearly spaced c values in
the range [0.1, 0.9], we compute the τ for an RLFA without
(τno-CV) and with control variates (τCV) over 250 trials, and
then plot the variation of the mean of their ratio, τCV/τno-CV.

Figure 4 highlights the key advantage of our CS construc-
tion using control variates — this method automatically
adapts to the correlation between the side information and
the f values. In cases where the side information is highly
correlated (i.e., larger c values), the reduction in samples is
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Figure 4: The figures plot the variation of the reduction
in τ for an RLFA with ε = 0.025, δ = 0.05, when the
CS is constructed with and without using control variates .
The x-axis denotes the parameter c ∈ [0.1., 0.9], and thus
controls the amount of correlation between S and f . As the
amount of correlation between S and f increases, the CS
with control variates decreases takes a decreasing fraction
of the time it would take the CS w/o control variates.

large; whereas when the correlation is small, our approach
automatically reduces the impact of the side information.

6 CONCLUSION

In this paper, we defined the concept of an (ε, δ)-RLFA and
devised RLFA procedures from confidence sequences (CSs)
for the weighted average of N terms (denoted by m∗), using
adaptive randomized sampling WoR. For arbitrary sampling
strategies, we developed two methods of constructing CSs
for m∗ using test martingales. We then addressed the ques-
tion of improving CSs by incorporating side information,
with or without guarantees on their accuracy.

Our work opens up several interesting directions for future
work. For instance, in Proposition 2, we derived the sam-
pling strategy that optimizes a lower bound on the one-step
growth rate. Future work could investigate whether we can
obtain a more complete characterization of the optimal pol-
icy, without relying on approximations. Another interesting
issue, not addressed in our paper is that of considering more
general types of side information available to us. As de-
scribed in Section 1, we have assumed that we have access
to [0, 1] valued side information that is supposed to be a
proxy for the true (and unknown) f values. However, in
practical auditing problems, the side information is usually
available in terms of a collection of numeric, discrete and
categorical features that are correlated with the unknown f
values. Developing methods for incorporating these more
realistic forms of side information into our framework for
designing CSs is another important question for future work.
Furthermore, another type of side information is any knowl-
edge from a prior audit. For example, auditors may know
before reviewing any data (transactions or AI-generated
side-info) that for this year, some accounts are likely to have
smaller or bigger f values than other accounts because of
the specific performance incentives placed on the company
managers by their supervisors or by the market conditions.
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