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ABSTRACT

A popular method to adapt large language models (LLMs) to new tasks is in-
context learning (ICL), which is effective but incurs high inference costs as context
length grows. In this paper we propose a method to perform instruction induction,
where we take training examples and reduce them to a compact but descriptive
prompt that can achieve performance comparable to ICL over the full training
set. Specifically, we propose PROMPT-MII, a reinforcement learning (RL) based
framework to meta-learn an instruction induction model that can generate com-
pact instructions on the fly for an arbitrary new dataset. We train on over 3,000
diverse classification datasets from the HuggingFace hub, and evaluate on 90 un-
seen tasks. PROMPT-MII improves downstream model quality by 4-9 F1 points
(10-20% relative), matching ICL performance while requiring 3-13x fewer to-
kens. All code, data, and models will be released to the research community at
https://anonymized.

1 INTRODUCTION

Figure 1: Classification results averaged over 90
datasets using the Llama-3.1-8B-Instruct model.
PROMPT-MII achieves performance comparable
to ICL while using 13× fewer tokens.

One common usage patterns for large language
models (LLMs) is to adapt them to a particular
task at hand. In a supervised adaptation sce-
nario, we are given n labeled demonstrations
Strain = {(xk, yk)}nk=1 and are interested in the
problem of how to accurately predict labels for
a set of test examples Stest = {(xj , yj)}mj=1
drawn from the same distribution.

There are multiple typical ways to incorporate
the given examples: (1) Prompting with in-
structions, where a natural language task de-
scription I is appended to the model prefix, (2)
In-context learning (ICL), which directly uses
examples in Strain as context during inference,
and (3) Supervised fine-tuning (SFT), which
performs gradient updates on Strain to condense
the information into model parameters. Each
method has its advantages. Prompting with instructions is concise and efficient but requires exten-
sive prompt engineering (Agrawal et al., 2025). ICL achieves highly competitive performance but
can be inefficient as the number of examples grows larger (Xiao et al., 2025). SFT is efficient at test
time but requires significant compute at training time, storage of model weights, and underperforms
ICL in many cases (Bertsch et al., 2024).

In particular, as a method to bridge the gap between ICL and prompting, there are methods proposed
for instruction induction, which takes training data Strain and generates an instruction I that achieves
good performance. Representative methods for instruction induction such as APE (Zhou et al.,
2022) and GEPA (Agrawal et al., 2025) typically do so through a complex optimization process that
generates multiple candidates for prompts and evaluates them, finding the best-performing prompt
option. This raises the question: is there a way to perform instruction induction in a way that is both
effective and efficient over a wide variety of tasks?
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Figure 2: Overview of PROMPT-MII. We train an Instruction Generator’s general ability to perform
instruction induction. At inference time, given dataset examples of an unseen task, it automatically
generates a reusable task instruction in a single pass, which then guides a black-box Instruction
Follower model to make predictions.

As an answer to this question, we propose PROMPT-MII, we frame instruction induction as a meta-
learning problem: instead of individually optimizing I for each individual task, we train an instruc-
tion induction policy πθ that can effectively generate instructions in a single pass across diverse task
distributions conditioned on the in-context examples:

I = πθ(S
(i)
train) (1)

There are two major advantages to this approach. First, it allows πθ to share knowledge about how to
construct effective prompts across a wide number of datasets, instead of requiring the re-discovery
of this knowledge for each dataset. Second, it has significant efficiency benefits – generating an
instruction I for a new dataset simply requires a single forward pass through the language model,
instead of a costly optimization process.

Experiments demonstrate PROMPT-MII to be highly effective. For instance, in Figure 1 we show
how PROMPT-MII can achieve performance comparable to 100-shot ICL while consuming 13x
fewer tokens. In the remainder of this paper, we discuss the methodological details of PROMPT-MII
(§ 2), experimental details (§ 3), and results and analysis (§ 4).

2 PROMPT-MII: META-LEARNING INSTRUCTION INDUCTION

The main challenge in developing a method to generate instructions I from a dataset Stest is learn-
ing an effective policy πθ that can generate these instructions in a way that will achieve good test
performance. In this section, we develop our method for meta-learning such a policy, also shown in
Figure 2.

2.1 TRAINING OBJECTIVE

Let S = {S1, S2, . . . , SN} be a collection of datasets that we will use in the meta-learning of πθ. For
each dataset Si, we sample training examples S(i)

train for instruction generation and test examples S(i)
test

for reward computation. We define a meta-prompt template T (S
(i)
train)), which converts the dataset

into a prompt to the model, as detailed in § 2.2. Then, πθ generates an instruction prompted by this
meta-prompt, I ∼ πθ(T (S

(i)
train)).

To assess the quality of the generated instruction, we use a separate frozen language model LMeval
as the instruction follower. This LM then processes the test set Stest using this instruction, generating
results ŷj = LMeval(I + "Input: "+xj + "Label:"). We use a task-dependent evaluation metric over
m test examples to assess the model performance E

(
{ŷj}mj=1, {yj}mj=1

)
. In principle, this metric

can range from classification metrics such as accuracy and macro-F1 to generation based metrics
such as LLM-as-a-judge, but in this work we focus on classification tasks and use macro-F1 as our
target reward metric and m = 20 to balance stability and efficiency. To avoid training the model to
learn the format requirement that is easily enforced manually, we add this custom format line: Only
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return one of these options: {label_names}. Do not output "Label:" or any extra
text. after the generated instruction, before calculating the reward. This constraint is equally added
to all baseline methods we compare in the results.

Together, this results in a reward for our generated instruction of

R(I, Stest) = E
(
{ŷj}mj=1, {yj}mj=1

)
(2)

Once we have defined this reward, it can be optimized with an RL algorithm of choice. In this
work, we use Group Relative Policy Optimization (GRPO; Shao et al. (2024)) and enhance the
algorithm with asymmetric clipping and removal of KL loss, which has been shown to encourage
more exploration (Yu et al., 2025). Full details of the RL objective are in § A.1.

2.2 META-PROMPT TEMPLATE

One key element of our method is the use of a meta-prompt template T that encourages the LLM
to generate instructions with generalizable patterns rather than regurgitating specific examples or
simply summarizing the label space.

Meta-prompt design impacting prompt quality is a known phenomenon in automatic prompt opti-
mization (APO) methods (Ding et al., 2025). Our ablation studies in § 2.2 reveal model-dependent
preferences, and accordingly, we use model-specific meta-prompts optimized for each model, but
fix the same template for training and evaluation of all baselines.

Meta-Prompt Template (Qwen)

You are designing a clear instruction for a data annotator to classify text inputs into one of
these labels: {label_names}
Here are some example inputs and their correct labels: {examples}
Your task is to write a concise instruction that:

• Defines the classification task and clearly explains the meaning of each label.
• Provides general labeling strategies and decision rules so annotators can correctly

handle unseen inputs.
• Highlights common pitfalls, tricky edge cases, and misconceptions to reduce label-

ing errors.
• Keeps the instruction reasonably concise and focused — avoid unnecessary repeti-

tion or overly long explanations.

Here, {label_names} is a comma-separated list of all of the labels in the classification dataset Strain
(e.g., "positive, negative, neutral") and {examples} follows the format: Text: "example input
text here"\nLabel: example_label. See § A.6 for details.

3 EXPERIMENTS

3.1 DATA PREPARATION

We collected all publicly available text classification datasets from HuggingFace and applied auto-
mated filtering and multi-pass example generation as described in § A.2. After filtering, we obtained
3,811 diverse datasets, which were randomly split into 3,430 for training and 381 for validation and
ensured there is no overlap between the two sets. See Figure 6 for full list of datasets and statistics.

3.2 TRAINING SETUP

We conducted training using the VERL framework (Sheng et al., 2024) on two model variants:
Llama-3.1-8B-Instruct and Qwen-2.5-7B-Instruct. For each variant, we used the same archi-
tecture for both the instruction generator (πθ) and the instruction follower (LMeval). While LMeval
was kept frozen at the official checkpoint, πθ was updated during training. We used a rollout size of
n = 5, batch size of 64, maximum response length of 1k tokens and maximum prompt length of 4k
tokens. Further hyperparameter and system details are provided in § A.3.
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3.3 EVALUATION SETUP

Data We evaluated on 90 held-out datasets that were disjoint from the training data. For each
dataset and each n ∈ {5, 10, 20, 50, 100}, we sampled n demonstration examples, generated in-
structions, and applied them to 200 test examples for each of the 5 settings. The context length was
limited to 32k tokens. If the n examples exceeded this limit (applicable to ICL and PROMPT-MII),
we used the maximum value of n that fit within the context. See § A.2 for further details on dataset
selection.

Baselines We compared our method against naive instruction, in-context learning (ICL),
untrained instruction generation, and large model baselines (Llama-3.1-405B-Instruct,
Qwen-3-235B-Instruct). We also considered iterative prompting methods APE and GEPA. Since
our datasets do not provide ground-truth instructions, baselines were implemented as described in
§ A.4.

Metrics Our primary evaluation metric was the macro-F1 score, consistent with the training re-
ward. We additionally report win rates (the percentage of datasets where one method outperforms
another) and prompt token length; Additional results are provided in § A.5.

4 RESULTS

4.1 PROMPT-MII SUCCESSFULLY GENERATES CONCISE AND EFFECTIVE INSTRUCTIONS

RL training consistently improves instruction generation across held-out tasks, providing the first
evidence that one-pass instruction induction is a skill learnable by language models. As shown
in Figure 7 and Table 1, Llama PROMPT-MII (trained) achieves +0.090 absolute F1 improvement
over PROMPT-MII-Zero (untrained) at n=20 (26% relative gain), while Qwen PROMPT-MII shows
+0.051 absolute improvement (15% relative gain).

We observe that training conducted with limited context length of 4k context length is able to have
improvements generalized to 32k context length. Notably, Llama PROMPT-MII using n=20 ex-
amples (0.433 F1, 901 tokens) matches ICL performance using n=100 examples (0.430 F1, 11,531
tokens), representing a 12.8× token reduction with no statistical difference in performance, as shown
in Table 1 and Figure 3

From our win rate analysis (Figure 9, Appendix), PROMPT-MII has a similar win rate to ICL (ap-
proximately 50-50) for both models, suggesting that it is a strong alternative for practitioners to
consider.

Figure 3: Performance vs prompt length comparison across different prompting methods. PROMPT-
MII (green diamonds) consistently outperforms other methods while using fewer tokens than ICL
(blue triangles). Dashed lines connect ICL and trained methods for the same number of examples
(n), demonstrating prompt compression while maintaining performance.
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Table 1: Token efficiency comparison: macro-F1 performance (higher is better) with instruction
token length underneath (lower is better). Statistical significance markers (* p < 0.05, *** p <
0.001) indicate significant differences between PROMPT-MII and ICL methods (Wilcoxon signed-
rank test).

Method Llama3.1-8B Qwen2.5-7B
n=5 n=10 n=20 n=50 n=100 n=5 n=10 n=20 n=50 n=100

Naive 0.253 0.253 0.253 0.253 0.253 0.303 0.303 0.303 0.303 0.303
531 531 531 531 531 609 609 609 609 609

ICL 0.347 0.385 0.406 0.424 0.430 0.363 0.403 0.431 0.463 0.482
2451 3594 5177 8206 11531 2597 3765 5390 8539 12027

PROMPT-MII-Zero 0.316 0.329 0.343 0.354 0.336 0.369 0.390 0.383 0.387 0.371
709 702 709 710 715 1541 1481 1574 1538 1609

PROMPT-MII 0.388∗ 0.415 0.433 0.416 0.405∗ 0.409∗∗∗ 0.434∗ 0.441 0.432∗ 0.424∗∗∗

873 891 901 965 956 1523 1677 1807 1774 1737

Table 2: Comparison of PROMPT-MII against APE and GEPA optimization methods. Performance
shown as macro-F1 scores for different model and example count (n) combinations.

Methods Llama (n=50) Llama (n=100) Qwen (n=50) Qwen (n=100)
Naive 0.253 0.253 0.303 0.303
APE 0.278 0.288 0.358 0.356
GEPA 0.296 0.299 0.346 0.347
PROMPT-MII 0.416 0.405 0.432 0.424

4.2 PROMPT-MII OUTPERFORMS EXPLICIT OPTIMIZATION TECHNIQUES

PROMPT-MII substantially outperforms iterative prompt optimization methods despite requiring
only a single forward pass. As shown in Table 2, PROMPT-MII achieves 0.405-0.432 F1 compared
to APE’s 0.288-0.358 and GEPA’s 0.296-0.347, while using much fewer LLM calls (1 vs 150 for
GEPA, and 2000 for APE, see details in Appendix A.5).

Even when controlling for meta-prompt template (Table 4), APE with our meta-prompt template
still underperforms PROMPT-MII-Zero and significantly underperforms PROMPT-MII. This perfor-
mance gap compared with APE and GEPA likely stems from: (1) Qwen 2.5 7B Instruct may be
too small to reflect on its own mistakes helpfully (larger reflection models like might perform bet-
ter), (2) Classification tasks may be challenging for iterative refinement algorithms, as they require
understanding patterns across distributions rather than single examples. This pattern recognition
ability is critical for classification and regression, but less essential for generative tasks like QA or
summarization.

4.3 FOR WHICH DATASETS DOES PROMPT-MII EXCEL?

Per example length. First, we perform an analysis separately over datasets with relatively short ICL
examples (under 46 tokens on average) and relatively long ICL examples (more than 220 tokens on
average). The results in Figure 4 show that PROMPT-MII benefits both short and long example
datasets. However, the compression rate for longer datasets is larger, as there is more headroom to
improve. We also observe that ICL scales less well for datasets with longer examples, as context
length limitations become constraining.

Case Analysis. In the following figure, we display some (abbreviated) example prompts to
provide an intuition of where PROMPT-MII may outperforms PROMPT-MII-Zero and ICL for
Llama3.1-8B-Instruct. All methods uses the same set of n=10 examples as input. Compared
with PROMPT-MII-Zero, PROMPT-MII develops much more specific and actionable criteria. While
PROMPT-MII-Zero provides vague cues like "Useful cues include the tone and language used",
PROMPT-MII provides specific guidelines on when to predict the input a certain label, with specific
examples and keywords. In this case, both PROMPT-MII and PROMPT-MII-Zero also outperform
many-shot ICL.
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Figure 4: Analysis of when PROMPT-MII excels over ICL by per example token length.

PROMPT-MII-Zero

Classify the input text as one of the following labels:1;0;2;3.
The task is to determine whether the input text is a question
or request for advice (label 0); a statement or opinion (label
1); a spam or promotional message (label 2); or an off-topic
or unrelated message (label 3).
Useful clues for making the decision include:
- The presence of a question or request for help; which is
often indicated by words or phrases such as ’I need’...
- The tone and language used; which may indicate a question
or request for advice (e.g. polite language; uncertainty; or a
sense of seeking guidance).
- The content of the text; which may be related to a specific
topic or subject (e.g. computer hardware; medical careers;
or cryptocurrency).
Respond with only the label name; without any explanation
or additional text. Only return one of these options: 1; 0; 2;
3. Do not output ’Label:’ or any extra text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1: 0.241

PROMPT-MII

Classify each input into one of the following categories
based on its content and purpose:
- Label 0: This label is for inputs that are asking for ad-
vice; guidance; or recommendations on building or upgrad-
ing a computer; purchasing computer components; or trou-
bleshooting computer-related issues...
- Label 3: This label is for inputs that are unrelated to com-
puter hardware or software and are instead focused on other
topics; such as business; finance; or cryptocurrency...
- Label 2: This label is for inputs that are asking for advice
or guidance on non-computer related topics; such as educa-
tion; career; or personal development...
- Label 1: This label is for inputs that do not fit into any of
the above categories. If an input is unclear or does not...
Respond with the corresponding label (0; 1; 2; or 3) only...
Only return one of these options: 1; 0; 2; 3. Do not output
’Label:’ or any extra text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1: 0.829

In-Context Learning

Input: Not my first build but it s been 10 years since I built one. Have some questions. Specs B550m ds3h Ac motherboard...
Label: 0
Input: Cpu and cooler for 3080ti? I ve recently purchased 3080ti but my current cpu is i5 10400 Could you recommend one?
Label: 0
Input: need serious explaining and help I use to just play on my PS4; then It broke and I could get it fixed but I’ve always wanted a
gaming pc. Before I ask to build one I need to understand the parts and what they do; which I don’t know anything about so this...
Label: 0
Only return one of these options: 1; 0; 2; 3. Do not output ’Label:’ or any extra text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1: 0.026

4.4 CROSS-MODEL TRANSFER

An advantage of Instruction Induction compared to finetuning or soft-prompt is that Instruction
Induction is in natural language and therefore transferrable to another black-box instruction follower
model.

Larger Models Instruct, Smaller Models Follow We evaluate whether large models can gen-
erate effective instructions for smaller instruction-following models. Figure 5 demonstrates that
Llama3.1-405B PROMPT-MII-Zero and Qwen3-235B PROMPT-MII-Zero successfully generate in-
structions that work well with their smaller counterparts. However, surprisingly, our PROMPT-MII
Llama3.1-8B outperforms the much larger Llama3.1-405B (Figure 5).

Cross-model Transfer We investigate whether PROMPT-MII trained with one follower model can
generalize to different follower models at evaluation time. According to our ablation results (Table 5,
Appendix), cross-model transfer is feasible but suboptimal compared to same-model combinations.
For instance, PROMPT-MII Llama → Qwen follower (0.391-0.415 F1) outperforms PROMPT-MII-
Zero on Qwen (0.369-0.390 F1), demonstrating that training benefits partially transfer across mod-
els. However, it underperforms PROMPT-MII Qwen → Qwen follower (0.409-0.441 F1), revealing

6
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Figure 5: Cross-model transfer results showing large model instruction generation capabilities. Pur-
ple dashed lines connect larger model performance (Llama3.1-405B and Qwen3-235B) to ICL base-
lines for the same number of examples, demonstrating that large models can generate effective in-
structions off-the-shelf.

model-specific preferred instruction patterns. This makes intuitive sense: RL training optimizes
instruction generation for the specific follower model’s capabilities and preferences, learning to
generate instructions that particular model responds to best. Future work can also explore larger
models for instruction followers, in this work for practicality, we fix the instruction follower model
to smaller model, as instruction following may be applied to many test queries.

4.5 IMPORTANCE OF META-PROMPT TEMPLATE

The choice of meta-prompt template impacts instruction generation quality, and optimal templates
are model-dependent. We compare two meta-prompts evaluated on both Llama3.1-8B and Qwen2.5-
7B models.

Table 3: Meta-Prompt Template Comparison: F1 Performance Across Models

Method Llama Qwen
n=50 n=100 n=50 n=100

Naive 0.253 0.253 0.303 0.303
PROMPT-MII-Zero (meta1) 0.354 0.336 0.356 0.340
PROMPT-MII-Zero (meta2) 0.301 0.296 0.387 0.371

Both meta-prompt templates outperform naive instruction, but the results reveal model-dependent
preferences: Llama3.1-8B performs better with meta1 (+0.053 F1 vs meta2), while Qwen2.5-7B
achieves superior results with meta2 (+0.031 F1 vs meta1). In this work to optimize performance,
we use meta1 for Llama3.1-8B and meta2 for Qwen2.5-7B. Future work could explore inference-
time search or automated methods to select the most effective meta-prompt.

5 RELATED WORK

Instruction Induction Instruction Induction is a category of automatic prompt optimization tech-
niques (APO) that takes in examples as input and induces a task instruction without requiring a
custom hand-written seed prompt. Honovich et al. (2022) was the first to propose the problem
definition of instruction induction from few-shot examples, showing that it is feasible with GPT-3
on simple tasks like “capitalize the first letter” or “find the longest word.”, which had near-perfect
ground truth instructions expressible in one sentence. Our work shares a similar problem definition
but extending few examples to many examples, and testing on arbitrary classification tasks with
ambiguous decision boundaries and often no ground truth available.

More recent methods like APE (Zhou et al., 2022) and GEPA (Agrawal et al., 2025) cast instruc-
tion induction as an evolutionary search problem: APE iteratively proposes and rewrites candidate
prompts from examples and selects the best one on a validation split, while GEPA performs ge-

7
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netic–Pareto optimization with reflective changes for LLM programs. Despite their effectiveness,
both require extensive test-time search and many LLM calls, whereas PROMPT-MII produces a
reusable instruction in a single pass, avoiding per-task optimization at inference time.

Reinforcement Learning for Prompting Recent work applies RL to prompt optimization but
optimizes prompts per target task. RLPrompt Deng et al. (2022) formulates discrete prompt opti-
mization as a reinforcement-learning policy that generates task prompts directly, often yielding non-
natural (“gibberish/ungammatical”) outputs. PRewrite Zhang et al. (2024) trains a prompt rewriter
LLM with RL to take an under-optimized prompt for a given downstream task and rewrite it into
a higher-performing prompt. PRL Batorski et al. (2025) uses RL to perform instruction induction,
but also trains a new policy per each task. In contrast, PROMPT-MII learns a general instruction-
induction capability that transfers to unseen tasks, eliminating per-task training at test time.

Prompt Compression Prompt compression approaches can be broadly categorized as discrete
or continuous. Discrete methods either filter tokens (might happen at the cost of readability) or
paraphrase the text to preserve semantics more fluently Xiao et al. (2024). Recent work such as
LLMLingua-2 Pan et al. (2024) report approximately 3× compression on both long-context and
short-context tasks while maintaining performance. In contrast, Our approach changes the semantic
meaning of the prompt from examples to task description. This represents a fundamentally differ-
ent compression paradigm that could be combined with token-level methods for additional gains.
Continuous methods (e.g., soft prompts Lester et al. (2021)) operate in a latent space and are gener-
ally not interpretable; since we focus on interpretable, black-box-compatible compression, we omit
comparing against soft-prompt or other latent compression techniques.

6 DISCUSSION AND FUTURE WORK

We present PROMPT-MII as an automatic prompting strategy that has the advantage of 1) producing
an instruction prompt that is shared among all test queries 2) being optimization-free at test-time,
requiring only a single-pass inference, and 3) meta-learning instruction induction ability that gener-
alize to unseen tasks. In this paper, we show that PROMPT-MII is effective on diverse classification
tasks, which represent a common and important application for LLMs, such as LLM-as-a-judge
systems Gu et al. (2025), but has future potential to extend to generative tasks as well.

One potential interpretation for why PROMPT-MII is effective is that instruction induction acts as
pre-chain-of-thought by analyzing relationships among examples and incorporating prior knowl-
edge. Regular chain-of-thought Wei et al. (2023) is expensive because it must be performed at re-
quest time for every query, while instruction induction front-loads this reasoning process, enabling
computational savings through prefix-caching across multiple test queries.

Ultimately, the goal is to generate instruction from an entire dataset, which presents two challenging
directions. 1) Strong long-context capability. Unlike retrieval-based long-context tasks like needle-
in-a-haystack Nelson et al. (2024), we hypothesize that this task requires understanding and syn-
thesizing the entire context in order to produce an optimal instruction output. 2) Distribution-aware
iterative refinement methods. If processing entire datasets in one pass proves sub-optimal, we can
incorporate intermediate reasoning, or iterative refinement methods that process groups of examples
sequentially. This can potentially complement PROMPT-MII, but as hypothesized in our analysis, for
classification tasks we need an iterative process that is memory-preserving and distribution-aware,
where it would continuously refine a natual language "decision boundary".

Overall, our work presents a step forward in effective and efficient LLM task adaptation, and we are
excited about future developments in scalable and generalizable Instruction Induction.

REPRODUCIBILITY STATEMENT.

We provide detailed information for reproducibility in the Appendix: § A.2 for data preparation,
§ A.3 for training configuration, and § A.4 for baseline implementation. We will also release the
complete codebase required to run the experiments and generate all figures. All experiments are ran
with a fixed random seed and fully reproducible.
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THE USE OF LLMS

We acknowledge the use of LLMs in writing this paper. The use was limited to correcting grammar
and improving clarity. All research ideas, method design, and experiments were conducted solely
by the authors.
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A APPENDIX

A.1 RL OBJECTIVE

The training objective function is:

J(θ) = ESi∼SE{Ik}n
k=1∼πθold

[
1

n

n∑
k=1

min (rk(θ)Ak, clip(rk(θ), 1− ρL, 1 + ρH)Ak)

]
(3)

where importance ratio rk(θ) is:

rk(θ) =
πθ(Ik|T (S(i)

train,Li))

πθold(Ik|T (S
(i)
train,Li))

and group-relative advantage Ak is:

Ak = R(Ik, S
(i)
test,Li)−

1

n

n∑
j=1

R(Ij , S
(i)
test,Li)

with clipping bounds ρL and ρH set to 0.2 and 0.4.

A.2 DATASET PROCESSING PIPELINE

Automated filtering and quality control. We scraped all publicly available text classification
datasets on HuggingFace and used GPT-4.1-mini to automatically identify input and label columns
by analyzing dataset metadata, column names, and example entries. Datasets with more than 50%
unique labels were discarded, this step is to verify that the task is a classification task.

Evaluation dataset selection We started with random selection of 100 held-out datasets that al-
ready went through the regular data processing pipeline above. Additional processing: 2 datasets
dataset nlpaueb/multi_eurlex, TomTBT/pmc_open_access_xml, had two long of a label set so no
examples fit into context, and were filtered. 3 had single class within 200 examples and 2 had
>100/200 labels and were filtered. The same datasets with different configs but same labels were
merged leaving with 90 unique datasets for evaluation

Multi-pass example generation. To balance the number of generated examples with dataset di-
versity, we adopted a four-pass strategy with progressively larger context sizes applied to smaller
subsets of datasets. In the first pass, all datasets were used to generate examples with n = 5 con-
texts. Subsequent passes increased the context size while reducing the proportion of datasets: 30%
of datasets with n = 10 contexts, 20% with n = 20 contexts, and 10% with n = 50 contexts. This
design ensured that all datasets contributed examples, while a subset of datasets supported training
with longer contexts.
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Figure 6: Distribution of example lengths in the evaluation datasets.

A.3 DETAILED TRAINING CONFIGURATION

Hyperparameters We grouped n = 5 instructions per prompt and set the batch size to 64 prompts.
The maximum context length was 4096 tokens for prompts and 1024 tokens for responses. The
model was trained with a learning rate of 2× 10−6 with a 3.3% warmup schedule for 15 epochs.

We applied asymmetric clipping (DAPO) with clip_ratio_low = 0.2, while disabling the KL
penalty (use_kl_loss = False) to encourage exploration and aggregating the loss with the
seq-mean-token-mean mode. Decoding used a temperature of 1.0 and top-p = 1.0.

Computational Resources We used 8 H100 GPUs per training job, with each model trained for
approximately 48 hours. Training employed Fully Sharded Data Parallelism (FSDP) with both pa-
rameter and optimizer offloading, together with gradient checkpointing to optimize memory usage.
To handle high concurrency (128 simultaneous requests) during batch reward computation and prefix
caching, we deployed SGLang Serving for reward computation on 4 H100 GPUs, enabling efficient
prefill-decode disaggregation.

A.4 BASELINE IMPLEMENTATION DETAILS

We append identical format constraints “Only return one of these options: {label_names}. Do
not output ’Label:’ or any extra text.” to the instructions for all methods, including APE and
GEPA. Without explicit constraints, responses occasionally include redundancy, which hinders reli-
able scoring and prompt selection.

We used Qwen2.5-7B-Instruct for both baselines (instruction generation and prediction for APE;
task and reflection language model for GEPA) to ensure a fair comparison with PROMPT-MII-Zero.

Prompt for Naive Baseline

Classify the Input. Only return one of these options: {label1, label2, ... labeln}. Do not
output ’Label:’ or any extra text.

Prompt for ICL Baseline

Classify the Input. Only return one of these options: {label1, label2, ... labeln}. Do not
output ’Label:’ or any extra text.
Input: {Example 1}
Label: {Label 1}
...
Input: {Test case}
Label:
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Automatic Prompt Engineer (APE). We evaluated APE using both its default meta-prompt and
a custom meta-prompt derived from PROMPT-MII. Our setup followed the instruction induction
experiments in Zhou et al. (2022), using the same hyperparameters. For each n, the n training
examples were split evenly into a prompt-generation set and an evaluation set. While initial exper-
iments used accuracy as the selection metric, we found that using F1 score yielded higher final F1
scores on the test subset.

GEPA (Genetic-Pareto). We split the n training examples into training and validation sets in
a 1:2 ratio, following the procedure in the original paper for most datasets. We implemented a
Classification Adapter based on the default GEPA adapter, with only minor modifications to the
language model invocation logic. All other hyperparameters were kept at their default values, with
max_metric_calls set to 150. The seed prompt was initialized with our naive instruction prompt.

Baseline F1 (n=50) F1 (n=100)
APE 0.358 0.356
APE_META 0.353 0.384

Table 4: F1 score comparison of APE using different meta-prompt. APE_META uses PROMPT-
MII’s template, while APE uses original template.

A.5 ADDITIONAL RESULTS

Figures and tables in the appendix provide additional results: Figure 7 shows the RL training curve;
Figure 8 illustrates F1 performance trends across different values of n; Table 5 reports F1 scores
for different n; and Figure 9 presents win-rate matrices comparing different baselines and PROMPT-
MII.

Figure 7: RL training curves of validation reward progression for Qwen2.5-7B and Llama3.1-8B.

Efficiency Analysis PROMPT-MII-Zero only requires a single LLM call to produce the prompt.
This one-shot approach minimizes computational cost and is particularly suitable when resources
are limited.

In contrast, the GEPA optimization framework is more compute-intensive. To generate a prompt,
it takes max_metric_calls to evaluate all candidate prompts on minibatches and selected candi-
dates on full validation set. Additionally, generating a new candidate instruction through reflection
also requires an LLM call. A higher max_metric_calls allows GEPA to explore more candidate
prompts but requires greater computational resources, which is a core trade-off between efficiency
and performance in the GEPA framework. Therefore, in our setting, GEPA typically requires at least
150 LLM calls, while PROMPT-MII-Zero only requires one and consistently outperforms.

The APE framework is more demanding. In our setting, APE generates multiple candidate prompts
by making 3 subsamples and producing 30 prompts per subsample, resulting in 90 LLM calls for
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Figure 8: F1 performance trends across different values of n. The plots show how each method’s
performance changes as the number of training examples increases from 5 to 100. Lines connect
the same methods across different n values to highlight performance trends. Notably, Qwen3-235B
PROMPT-MII-Zero shows the best scalability as n increase.

Table 5: F1 Performance across different values of n. * indicates significance between ICL and
PROMPT-MII (Wilcoxon signed-rank test). All models are Instruct models instead of Base models

Llama3.1-8B-Instruct
Method n=5 n=10 n=20 n=50 n=100
Naive 0.253 0.253 0.253 0.253 0.253
ICL 0.347 0.385 0.406 0.424 0.430
PROMPT-MII-Zero 0.316 0.329 0.343 0.354 0.336
PROMPT-MII (Llama3.1-405B) 0.345 0.352 0.381 0.361 0.370
PROMPT-MII 0.388∗ 0.415 0.433 0.416 0.405∗
PROMPT-MII (Qwen2.5-7B) 0.342 0.358 0.353 0.347 0.311
APE – – – 0.278 0.288
GEPA – – – 0.296 0.299

Qwen2.5-7B-Instruct
Method n=5 n=10 n=20 n=50 n=100
Naive 0.303 0.303 0.303 0.303 0.303
ICL 0.363 0.403 0.431 0.463 0.482
PROMPT-MII-Zero 0.369 0.390 0.383 0.387 0.371
PROMPT-MII-Zero (Qwen3-235B) 0.386 0.408 0.404 0.461 0.465
PROMPT-MII 0.409∗∗∗ 0.434∗ 0.441 0.432∗ 0.424∗∗∗

PROMPT-MII (Llama3.1-8B) 0.391 0.412 0.438 0.434 0.415
APE – – – 0.358 0.356
GEPA – – – 0.346 0.347

prompt generation. Each of these 90 prompts is then evaluated on 20 examples, requiring 1800
additional LLM calls for evaluation. Hence, the total number of LLM calls for APE is approximately
2000 per run. This makes APE substantially more expensive than both GEPA and PROMPT-MII-
Zero.
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Figure 9: Win rate matrices showing pairwise comparison results between different methods. Each
cell (i, j) represents the percentage of datasets where method i outperforms method j. Higher
values indicate superior performance across the evaluation datasets. For Llama 3.1 8B, PROMPT-
MII shows a hight winrate of 52.2% compared to ICL 45.6%

A.6 PROMPT EXAMPLES & CASE STUDY

Llama Meta-Prompt Template

You are helping to create a prompt for a language model to classify text inputs. The model
should choose one label from the following options: {label_names}.

Here are some example inputs and their correct labels:
{examples}

Write an instruction that:
- Describes the classification task in a way that generalizes to new inputs.
- Points out any useful clues or strategies for making the decision.
- Clearly tells the model to respond with only the label name, and not to include any
explanation or additional text.

Provide only the instruction, not the examples or labels.

PROMPT-MII-Zero for Reddit Attribution Task (yyu/reddit-attrprompt)

Classify the input text as one of the following labels: 1; 0; 2; 3.
The task is to determine whether the input text is a question or request for advice (label 0);
a statement or opinion (label 1); a spam or promotional message (label 2); or an off-topic or
unrelated message (label 3).

Useful clues for making the decision include:
- The presence of a question or request for help; which is often indicated by words or
phrases such as ’I need’; ’Can you’; ’How do I’; or ’What is’.
- The tone and language used; which may indicate a question or request for advice (e.g.
polite language; uncertainty; or a sense of seeking guidance).
- The content of the text; which may be related to a specific topic or subject (e.g. computer
hardware; medical careers; or cryptocurrency).

Respond with only the label name; without any explanation or additional text.
Only return one of these options: 1; 0; 2; 3. Do not output ’Label:’ or any extra text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1: 0.241
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PROMPT-MII for Reddit Attribution Task (yyu/reddit-attrprompt)

Classify each input into one of the following categories based on its content and purpose:

- Label 0: This label is for inputs that are asking for advice; guidance; or recommendations
on building or upgrading a computer; purchasing computer components; or troubleshooting
computer-related issues. It also includes inputs that are seeking help with understanding
computer-related concepts or are looking for opinions on computer-related matters. A clue
to label 0 is the presence of words like ’build;’ ’upgrade;’ ’advice;’ ’recommendation;’
’help;’ or ’opinion’ in the input. It also often involves discussions about specific computer
hardware or software.

- Label 3: This label is for inputs that are unrelated to computer hardware or software and
are instead focused on other topics; such as business; finance; or cryptocurrency. A clue to
label 3 is the presence of words like ’sell;’ ’products;’ ’services;’ ’currency;’ or ’prestige’ in
the input.

- Label 2: This label is for inputs that are asking for advice or guidance on non-computer
related topics; such as education; career; or personal development. A clue to label 2 is the
presence of words like ’school;’ ’career;’ ’advice;’ or ’paramedic’ in the input.

- Label 1: This label is for inputs that do not fit into any of the above categories. If an in-
put is unclear or does not contain any of the clues mentioned above; it should be labeled as 1.

Respond with the corresponding label (0; 1; 2; or 3) only; without any explanation or addi-
tional text. Do not include any analysis or summary of the input in your response. Simply
choose the label that best fits the content and purpose of the input.
Only return one of these options: 1; 0; 2; 3. Do not output ’Label:’ or any extra text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1: 0.829
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ICL for Reddit Attribution Task (yyu/reddit-attrprompt)

Input: Not my first build but it s been 10 years since I built one. Have some questions. Specs
B550m ds3h Ac motherboard Amd Ryzen 5 3600 1TB WD blue sn550 hard drive (first time
ever using one of these) 32 mb ram 800w power supply Rtx 3060 12gb graphics Plus a dvd
cd So my questions are this. Do I have to have the updated flash to the bios to get the pc
turned on and running? I didn t make a boot disk; and I bought a new copy of windows. Not
sure if you need boot disks anymore or not or if we can just boot directly off the CD? I also
intended to use my old ASUS case and install it all in there but the front panel cables are not
marked and they re using 4 and 20 pin cables and I have no idea where any of that goes. I
have a new case and power supply coming tomorrow. Am I missing anything? Like my title
said I haven t built my own pc like this in many years. I think I had to use an old floppy to
boot up windows.. if that gives you an idea lol Thanks in advanced
Label: 0
Input: Cpu and cooler for 3080ti? I ve recently purchased 3080ti but my current cpu is i5
10400 Could you recommend one? Thanks!
Label: 0
Input: need serious explaining and help I use to just play on my PS4; then It broke and I
could get it fixed but I’ve always wanted a gaming pc. Before I ask to build one I need to
understand the parts and what they do; which I don’t know anything about so this is why
I’m making this post. Is it really cheaper then buying a prebuilt; what good parts are in my
price range which isn’t that large?
Label: 0
Input: Need advice on a pc for my baby brother (and myself) ) Hello; everyone! Hope you
all are safe and well!! I need advice on this build I composed for my baby brother. I was
planning to buy him a PS5 but I wasn’t able to get it; and naturally I thought it was a good
time to get a PC that both of us can use. Ever since I was a little girl; I dreamed of getting
a computer exclusively for gaming. I never had the funds for it before (or the time since) so
it never happened. I’m hoping I can play all the games I never got to play with this build.
My 12 y o brother will be playing games like Minecraft; Genshin Impact; Terraria; Among
Us and I plan on playing some CS GO; Hearthstone; Portal 2; Detroit Become Human and
a bunch of indie games I bought on Steam. I’m mainly looking for a PC that can handle
1080p gaming comfortably. I live in the UAE so buying online from Newegg; Amazon US
is really a no no since I’m forced to pay shipping costs up to 200 300. The parts I’m gonna
buy are mostly from local merchants and a few can be ordered online (from local websites).
I’m mainly looking for critique or advice. I’ve checked for the compatibility but I just want
to make sure that all the components work well together for the games that will be played.
PCPartPicker Part List CPU AMD Ryzen 5 3600X 3.8 GHz 6 Core Processor Motherboard
MSI B550 A PRO ATX AM4 Motherboard Memory G.Skill Ripjaws V 16 GB (2 x 8 GB)
DDR4 3600 CL16 Memory Storage Crucial P1 500 GB M.2 2280 NVME Solid State Drive
Video Card Asus GeForce GTX 1660 SUPER 6 GB STRIX GAMING OC Video Card Case
MSI MPG Sekira 100R ATX Mid Tower Case Power Supply Thermaltake Smart 650 W 80
Bronze Certified ATX Power Supply Operating System Microsoft Windows 10 Home OEM
64 bit If you’ve read this far; thank you so much! Have a good day )
Label: 0
Input: Something that will help Doge If you sell goods; products or services; Make some
available exclusively for Doge transactions. This will continue to solidify the Coin as a
currency as well as something exclusively and filled with prestige.
Label: 3
Input: Which one should I go with? Idk if I should go with my first choice or my second
one. There isn’t much difference but I still don’t know which one I should go with. Any
help is appreciated. Choice 1 Choice 2
Label: 0
Input: I Need Better Storage for my Legion y7000 Yes; it’s a gaming laptop; sue me. But I
love it and so far it’s played most games without issue. But the issue I’ve had as of
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1: 0.026
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PROMPT-MII-Zero for Brazilian Court Decisions (joelniklaus/brazilian_court_decisions)

Classify the given text as one of the following: no, partial, yes.

The task involves determining the outcome of a legal appeal or review.

Useful clues for making the decision include:

- The presence of words like "conhecido" (known), "provido" (granted), or "dene-
gada" (denied), which often indicate the outcome of the appeal.
- The use of phrases like "em parte" (in part) or "parcialmente procedente" (partially
granted), which suggest a partial outcome.
- The overall tone and language used in the text, which may convey a sense of approval,
denial, or partial acceptance.

Respond with only the label name, without any additional text or explanation.
Only return one of these options: no, partial, yes. Do not output "Label:" or any extra text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1: 0.147

PROMPT-MII for Brazilian Court Decisions (joelniklaus/brazilian_court_decisions)

Classify each input as ’yes,’ ’partial,’ or ’no’ based on the model’s analysis of the text. To
make this determination, pay close attention to the presence and wording of phrases such
as ’CONHECIDO E PROVIDO,’ ’CONHECIDO E NÃO PROVIDO,’ ’CONHECIDO, EM
PARTE, E PARCIALMENTE PROVIDO,’ and ’DENEGADA.’

- ’CONHECIDO E PROVIDO’ typically indicates a ’yes’ label, as it implies the re-
quest was fully granted.
- ’CONHECIDO E NÃO PROVIDO’ typically indicates a ’no’ label, as it implies the
request was fully denied.
- ’CONHECIDO, EM PARTE, E PARCIALMENTE PROVIDO’ typically indicates a
’partial’ label, as it implies the request was granted but not fully.
- ’DENEGADA’ typically indicates a ’no’ label, as it directly translates to ’denied.’
- If the input does not contain any of these phrases, look for other indicators such as ’revisão
criminal parcialmente procedente,’ which suggests a ’partial’ label.

Respond with only the corresponding label (’yes,’ ’partial,’ or ’no’) for each input,
without any explanation or additional text. Do not include any analysis or context; simply
choose the most accurate label based on the input.
Only return one of these options: no, partial, yes. Do not output "Label:" or any extra text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1: 0.937
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ICL for Stereotype Detection (McGill-NLP/stereoset)

Input: I love my BLANK grandfather.
Label: gender
Input: The Iranian had a BLANK in his personal affects.
Label: race
Input: Most prisoners are BLANK people
Label: profession
Input: People from Afghanistan are BLANK.
Label: race
Input: Jordan is know for its BLANK.
Label: race
Now classify the next input. Only return one of these options: religion, profession, gender,
race. Do not output "Label:" or any extra text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1: 0.270

PROMPT-MII for Stereotype Detection (McGill-NLP/stereoset)

Classify each input as belonging to one of the following categories: religion, profession,
gender, or race. To make this decision, look for contextual clues such as the type of noun
that fits into the blank (e.g. ’grandfather’ implies gender, ’prisoners’ implies profession,
’Iranian’ or ’Afghanistan’ implies race, and ’BLANK in his personal affects’ implies a
characteristic associated with a person’s cultural or racial background).

Key indicators for each category:
- **Gender**: References to family relationships (grandfather, grandmother, son, daugh-
ter), gendered pronouns, or gender-specific roles
- **Race**: References to countries, nationalities, ethnic groups, or cultural backgrounds
(Iranian, Afghanistan, Jordan, etc.)
- **Profession**: References to job-related contexts, workplace situations, or occupational
groups (prisoners, workers, etc.)
- **Religion**: References to religious practices, beliefs, institutions, or religious groups

When encountering a sentence with a BLANK, consider what type of word would
logically complete the sentence and which category that word would most likely belong
to. Focus on the subject and context of the sentence to determine the most appropriate
classification.

Respond with only the category name (religion, profession, gender, or race), without
any explanation or additional text.
Only return one of these options: religion, profession, gender, race. Do not output "Label:"
or any extra text.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F1: 0.930

19


	Introduction
	Prompt-MII: Meta-learning Instruction Induction
	Training Objective
	Meta-Prompt Template

	Experiments
	Data Preparation
	Training Setup
	Evaluation Setup

	Results
	Prompt-MII Successfully Generates Concise and Effective Instructions
	Prompt-MII Outperforms Explicit Optimization Techniques
	For which Datasets does Prompt-MII Excel?
	Cross-Model Transfer
	Importance of Meta-Prompt Template

	Related Work
	Discussion and Future Work
	Appendix
	RL Objective
	Dataset Processing Pipeline
	Detailed Training Configuration
	Baseline Implementation Details
	Additional Results
	Prompt Examples & Case Study


