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Abstract

For a wide range of combinatorial optimization problems, finding the optimal
solutions is equivalent to finding the ground states of corresponding Ising Hamilto-
nians. Recent work shows that these ground states are found more efficiently by
variational approaches using autoregressive models than by traditional methods.
In contrast to previous works, where for every problem instance a new model has
to be trained, we aim at a single model that approximates the ground states for
a whole family of Hamiltonians. We demonstrate that autoregregressive neural
networks can be trained to achieve this goal and are able to generalize across a class
of problems. We iteratively approximate the ground state based on a representation
of the Hamiltonian that is provided by a graph neural network. Our experiments
show that solving a large number of related problem instances by a single model
can be considerably more efficient than solving them individually.

1 Introduction

Ising models are of broad interest since they exhibit a remarkably wide range of interesting phenomena
in statistical mechanics and provide a universal model of classical spin physics [|; 2]. Besides their
popularity in physics, they are frequently applied in disciplines like e.g. molecular biology, operations
research, and neuroscience.

The energy of an Ising system with N spins is given by the following Hamiltonian:

N
H = _ZJijUin — Zhioi, (])
i=1

i<j

where 0;,0; € {—1,1} are the spins, i.e. the system’s degrees of freedom which are located
at lattice sites indexed by ¢,j € {1,...,N}. The interactions among these spins are given by
the couplings J;; € R in the first term. The second term represents couplings to external fields
h; € R. For the problems considered in this work, this term vanishes, because external fields
can be absorbed into the coupling term. A specific instance of an Ising model is thus in general
defined by the couplings and the external fields. The problem of finding the spin configuration with
the lowest energy, i.e the ground state, is known to be equivalent to numerous NP-hard problems
including combinatorial optimization (CO) problems, like Max-Cut and the Traveling Salesperson
problem [3]. Consequently, while the problem of finding or approximating the ground states of
Ising Hamiltonians is of general interest, under the commonly held P # NP assumption, it is
excluded that solutions to all problem instances can be found efficiently. Nevertheless, this does

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.



not imply that it is impossible that an optimal solution or an approximation might be efficiently
computable for many practically occurring problem instances. Traditionally, methods like simulated
annealing (SA) [4] are used to approximate ground states. More recently, variational methods using
autoregressive neural networks were shown to yield better approximations of the system’s Boltzmann
distribution (or of the wave function in the corresponding quantum setting) of Ising-type problems
and CO problems [5; 6; 7; 8; 9; 10; 11]. An attractive feature of these methods is that they are
general, i.e. they do not rely on a combination with other algorithms or problem-specific heuristics
and do not require ground truth data, which is typically problematic [12; 13]. The work of [14]
employs meta-learning methods to similar variational problems to obtain more efficient optimization
procedures for individual problem instances. However, also here each problem instance requires
dedicated fine-tuning. In time and computationally constrained scenarios, however, these approaches
may be infeasible since they require a potentially lengthy variational optimization procedure for each
new problem instance. We, therefore, aim at a model that approximates solutions to a family of CO
problems with a fixed set of model parameters.

Since many CO problems naturally admit a representation as graphs, numerous Graph Neural Network
(GNN) [15] applications to CO problems have been demonstrated. As pointed out in a recent review
article [16], most of these applications rely either on the availability of ground truth solutions or on
the combination with traditional algorithms or handcrafted cost functions. Notable exceptions are
the GNN-based approaches in [17; 18]. Similar to the variational approaches discussed above, these
require an individual optimization procedure for new problem instances as well. This limitation does
not apply to the GNN-based approaches in [19; 20]. However, here the learned distribution over
states are assumed to factorize with respect to individual state variables and thus neglect correlations
among them. As pointed out in [5], these mean-field approximations are in general inferior compared
to the autoregressive neural networks used in aforementioned variational approaches and in this work.
The contribution of the present work is threefold. First, we extend the variational approaches by
introducing the additional goal of generalization over families of problem instances. This aspect
is analogous to amortized variational inference where the solution to a variational optimization
problem is directly approximated by the output of a learned function and not the result of a dedicated
optimization procedure [21]. We will refer to our method as Amortized Variational Annealing (AVA).
Second, we investigate how the size of the models affect the achievable solution quality and how the
model generalises to different problem sizes. Finally, we define a new measure of problem instance
difficulty which appears to be a useful indicator for the hardness of CO problem instances.

2 Problem Setting and Methods

We consider the problem of approximating the ground state oy € {—1, +1}" of Ising Hamiltonians
with IV spins as defined in (Eq. 1). We take a variational approach to this problem and optimize the
variational parameters 6 of a probability distribution pg(o) over the states o € {—1,+1}*V such that

a high probability mass is assigned to oy. Once a sufficiently good approximation 6 of the optimal
variational parameters is found, the ground state is likely to be obtained by sampling states from
p; (o) and choosing the sample with the lowest energy. Instead of optimizing pg (o) for an individual
Hamiltonian H, we are interested in constructing a parameterization of pg(o|H,) that adapts to
the Hamiltonian of interest without requiring an optimization of #. That is, we aim at finding a
distribution that is conditioned on Hamiltonians which are sampled from a distribution py (H ).

In order to prevent our algorithm from being stuck in local minima, we use the Variational Classical
Annealing (VCA) approach, where an entropy term is added to the minimization objective and
annealed from high to low temperature 7" (A.5.3). The resulting task is to minimize the following
variational free energy with respect to 6:

min E E [H-(0) + Tlogpe(o|H,)]. 2)
0 Hr~pp o~pe(o|Hr)

Our model AVA (see Fig. 1) is built up of three components (A.4). The first part consists of a GNN
that maps the graph of an Ising Hamiltonian to a node-wise embedding. The embedding of the Ising
Hamiltonian is obtained by mapping its couplings on the edges of a graph. We then use a GNN with
several message passing steps [22] to obtain an embedding e;(H,) for each node. Then, an LSTM
[23] is used which iteratively processes these embeddings along with the previously generated spin
value 0;_. Finally, an MLP maps the hidden state of the LSTM to the parameter of a Bernoulli
distribution for the state at node 7. A spin configuration is generated by sampling these distributions
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Figure 1: An illustration of our architecture. We first run a forward pass through a GNN in order to
obtain a Hamiltonian embedding e;(H) for each node. Then, we iterate in an autoregressive manner
over each node in the graph, where the LSTM receives the GNN embedding of the current node ¢
and the previously generated spin value ¢ — 1 as an input. Here, ¢ denotes the index of the currently
visited site and < ¢ denotes indices of already visited nodes.

v ¥
- 107 5 * + 10 ¥ 5
£ % T
ﬁ : v i ® ij b N=16N=14 ; X
ayers ] ' v
102{ ¥ 6GNN Layers < 102{ v ~N= 16, ¥=17 ;g
X 8 GNN Layers X N=~]_ﬁ[ N=21
4 10 GNN Layers 4 N=K=21
102 104 101 102 103 104 105
Nannealing N, annealing

Figure 2: Left: AF,¢ over number of annealing steps for AVA with different types of Hamiltonian
embeddings. The network is evaluated on 100 SK-16 test Hamiltonians. Right: AFE,. over the
number of annealing steps for different system sizes in the training and test set. The model is trained
on N spins and evaluated on N spins. A E'. was evaluated on 300 test Hamiltonians and 50 sampled
spin configurations. Error bars in both plots indicate the standard deviation over three independent
runs.

autoregressively. The corresponding variational distribution of our autoregressive model can therefore

be written as
N

po(o|H,) = [ [ po(oilo<i, e<i(H,)). 3)
=1

3 Experiments

In the following, we report results for two classes of Hamiltonians. One class are the Sherrington-
Kirkpatrick spin-glass Hamiltonians (A.1.1) with N spins, which we denote as SK-V, and the other
class of Hamiltonians represents the Max-Cut problem (A.1.2).

Expressivity of the Embedding Network: To investigate how the model performance depends on
the expressivity of the Hamiltonian embedding, we plot in Fig. 2 (left) the relative energy difference
AFE.q (A.1.3) over the number of annealing steps for different numbers of GNN layers on SK-16.
The model tends to perform better, the more GNN layers are used. To characterize the inductive bias
of the GNN, we compare the GNN embedding with an embedding generated by a comparable MLP
(A.4.3). The results indicate that the GNN embeddings allow for more efficient annealing.

Generalisation to other System Sizes: Another advantage of the GNNs compared to the MLPs
is that once they were trained on some system size they can in principle be applied to systems of
any size. To test the generalization capability to other system sizes, we train the GNN-based model
on SK-16. Then, we make a prediction for different system sizes and evaluate A F,¢ using 300
Hamiltonians per system size. The results in Fig. 2 (right) show that the prediction on smaller systems



becomes slightly better and the prediction on larger systems becomes slightly worse compared to the
performance on SK-16 itself. The model that is trained on SK-16 and applied on SK-21 (red star) is
only slightly worse than the model that is directly trained on SK-21 (purple triangle, shown only for
Nannealing = 105)

Amortisation: Since AVA learns a conditional distribution over a distribution of Hamiltonians
while in Variational Neural Annealing (VNA) [8] each model is only trained on one specific
Hamiltonian, the task of VNA is considerably easier. Thus, it is not unexpected that for a given
amount of annealing steps, VNA performs better than AVA (see direct comparison of decay rates
in A.3). On the other hand, an important advantage of our method is that our model is able to
approximate ground states of i.i.d. Hamiltonians at inference time, whereas in VNA a new model hast
to be trained from scratch for every new Hamiltonian. Therefore, given a certain target AF,.; we es-
timate in Fig. 3 (left) at which number of Hamiltonians it is faster to use AVA compared to VNA (A.3).

Hardness Measure: Since not all problem instances from a certain CO problem class are equally
hard, [24] propose a simplicity criterion which indicates whether a given CO problem instance can
be solved by simply diagonalizing the corresponding Ising Hamiltonian H. and discretizing the state
v7. € RY that minimizes the energy. Based on this simplicity criterion, we introduce for each
problem instance H., a problem hardness measure Y(H,) € [0,1] that is based on the Hamming
distance d between a discretization of v7 ; and the whole set of all k£ ground states {07 1, ..., 00, }-

We define our hardness measure accordingly as

1
T(H;)=— min {dsnvgﬁn,a}, “4)
( ) N oc{oo,1,...; o0k} ( & ( ) )
where larger values indicate harder instances. In Fig. 3 (center), we plot the ground state probability
po(oo|H;) and AFE,, from our model over our hardness measure Y(H.). The latter clearly
correlates with the performance of our model, which indicates that this measure is a suitable to
determine the hardness of problem instances.

Maximum Cut: In addition, we conduct experiments on Hamiltonians representing the Max-Cut
problem of size N = 50 and with connection density 0.5 (A.1.2). We compare our method to the
Goemans-Williamson (GW) algorithm [25], which is a polynomial-time algorithm that achieves an
approximation ratio of ~ 0.878. This means that even for the worst-case Max-Cut instance GW
yields a fairly good expected solution quality [26]. In Fig. 3 (right), we compare GW with AVA by
computing for each of 100 test Hamiltonians the Max-Cut ratio (A.1.4) of 50 sampled states. Here,
AVA often generates states with a better Max-Cut ratio than the GW algorithm. On average, our
method achieves a Max-Cut ratio of ~ 0.988 which is better than the average Max-Cut ratio of GW
of =~ 0.971 (see A.1.4 for further comparisons).

4 Conclusion and Outlook

In this paper, we use GNNs combined with LSTMs to approximate ground states for a familiy of
Ising Hamiltonians without adapting the model to individual Hamiltonians. Our experiments show
that longer annealing and more expressive GNNs improve the solution quality considerably. We
demonstrate that our method generalises to larger system sizes without any fine tuning.

For the problem sizes studied in this work, exact solutions are still routinely obtained by traditional
methods. Future work could investigate how our method can be extended to larger systems and how
it performs on real-world data sets. Additionally, it might be interesting to investigate whether a our
models can be used as a starting point for problem instance specific fine tuning. Furthermore, we aim
to extend the evaluation of our hardness measure on further algorithms and problem classes.

5 Broader Impact

In this work, we develop and characterize a novel approach to combinatorial optimization problems
which aims to approximate solutions for problem classes without any instance-specific retraining, i.e.
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Figure 3: Left: The estimated number of Hamiltonians n.mort above which it is faster to use AVA
instead of VNA in terms of annealing steps, while reaching the same relative energy difference. Error
bars indicate errors from the fitted decay rates (A.3). For VNA we use the same architecture as for
AVA (A.5). Center: AFE, and probability of the ground state plotted over the hardness measure
defined in Eq. 4. Here, due to spin flip symmetry of the SK model, the hardest instances have a
hardness of 0.5. The model was evaluated on SK 16 and the error bars indicate the standard error
over three independent runs. Right: Comparison of the Max-Cut ratio of 50 sampled states from the
AVA and the GW algorithm on the Max-Cut-50 problem with density 0.5. Our AVA model is trained
for 2.5 - 10* annealing steps. The evaluation is done on 100 Hamiltonians.

with a fixed set of model parameters. We expect that this method will be useful for many real-world
problems in operations research and eventually for applications in material design.
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Figure 4: Comparison of the histograms of the maximum (top, left), minimum (top, right) and mean
(bottom) Max-Cut ratios over 50 states on 100 test Hamiltonians between AVA and the GW algorithm.

A Appendix

A.1 Definitions of Optimization Problems

A.1.1 Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick [27] spin-glass model (SK) is defined as
1
H(a’):—\/—N;Jijain, (5)

where the couplings J;; are sampled independently from a standard Gaussian.

A.1.2 Max-Cut

The maximum cut (MC) of an unweighted graph is defined as

MC:maX{ Z (1_7;@}: max {%aTLa'}, 6)

(7)€ oc{-1,1}N

where spins o;,; are associated with the graph nodes and & is the set of all edges. The graph Laplacian
L = D — Ais defined in term of the degree matrix D and the adjacency matrix A. Since D is diagonal, " Do
is constant and we can drop this part and ;ust minimise o7 Ao, which is equivalent to maximizing the MC as
defined in Eq. 6. Instead of minimizing o* Ao we minimize %O'TAO', so that hyperparameters are more easily
transferable to larger system sizes. In our experiments, we sample connected graphs with a density of 0.5 and
make sure that each node can be reached by any other node.

A.1.3 Relative Energy Difference

We define the relative energy difference of a model with parameters € with respect to a set of Ny Hamiltonians
as

AErel(g) = L Z L Z L (U;I)Tzo'ljggo-ﬂ())7 (7)

where N, is the number of sampled states for each Hamiltonian, o, ¢ is the true ground state of Hamiltonian
H.,and o; ~ po(o|H,).

A.1.4 Max-Cut Ratio

We define the Max-Cut ratio as MC. (o)
(o
Rue(r, o) = m7 ®)



where the relation between the approximation ratio (AR) and the Max-Cut ratio is given by

AR=inf E [RMC (7, 0')]7 9

T O~PAlgo

where paigo refers to the probability distribution stemming from an algorithm from which the configurations o
are sampled, and the infimum is taken over the set of all possible graphs.

In Fig. 4 we provide further comparisons of Max-Cut ratios between GW and AVA on MC-50. We compare the
maximum (top, left), minimum (top, right) and mean (bottom) Max-Cut ratios of both algorithms. While in most
cases our method samples better states than the GW algorithm, the maximum Max-Cut ratio averaged over 100
Hamiltonians of GW of ~ 0.996 is better than our method which achieves a value of ~ 0.991.

A.2 Free Energy Minimisation

The Free Energy minimisation objective for one Hamiltonian H; is given by
F.= E [HT(U) +T10g(p9(a|HT))]. (10)
o~po(o|Hr)
The gradient for the weight update is then given by
VoFr = E  [(Ho(0)+Tlogpe(o|H,)) — b) Vo log(pa(a| H,))] (11)

o~pg(o|Hr)
where we use b = Eo~p, (o |a,) (Hr + T log(pe(o|H-))) for variance reduction (see [8; 5] for details).

In order to obtain the amortised optimisation objective, we calculate the expectation of Eq. 11 over a batch of
Hamiltonians.

A.3 Amortisation

Beyond a certain number of problem instances, denoted by namort, it pays off to use a single AVA model. We
estimate this number by dividing the number of annealing ste; s NAVA | which AVA needs to obtain a certain
APF;e1, and divide it by the number of annealing steps N N2, that VNA takes in order to obtain the same
relative energy difference.

The equation for namort is therefore given by

AVA
N, anneal

NVNA

anneal

Namort (AErel)

12)

AE

rel

In order to estimate this amortization number of Hamiltonlans Namort, We fit the relative energy difference
as a function of annealing steps as AFye; = AFEo/NE ... We fit AEy and k for both methods on results

for SK-16 and obtain fit parameters of AE (VNA) = 10.72 £ 3.28, kyna = 1.45 £ 0.12 for VNA, and

AEMVA) 1.2940.05, kava = 0.45£0.01 for AVA. For AVA we have used the results on 100 Hamiltonians
and for VNA we have evaluated the method on 36 Hamiltonians. Since the decay rate of VNA is larger than for
AVA, VNA will achieve a lower A E,) for the same number of annealing steps.

The amortization number for a specific relative energy difference can then be calculated as

1
Neamort (AErel) (AE(AVA)) kAVA (AE(VNA)) kVNA AE kAVA T rvna ) (13)

In Fig. 3 (left), the shaded region indicates the errors from the fits, using the following upper and lower estimates

of the fit parameters. The parameters of the lower bound are estimated by AE(()AVA) = 1.29+0.05, AESVNA) =
10.72 — 3.28, kava = 0.45 — 0.01, kyna = 1.45 4 0.12 and the parameters of the upper bound are

AES™YY =129 -0.05, AESY™ =10.72 4 3.28, kava = 0.45 4 0.01, kyna = 1.45 — 0.12.
0

A.4 Architecture details

A41 LSTM

In our SK experiments, we use three LSTM layers with 120 hidden neurons each. In our Max-Cut experiments
we additionally use dilated LSTMs, where the i-th (I € {0, 1,2}) LSTM layer at site ¢ receives the hidden states
from the i — 2'-th site. In order to obtain probabilities out of our model, we apply a Probability MLP (ProbMLP)
on the hidden state of the LSTM.



A4.2 Graph Embedding Network

To obtain a graph embedding of the Hamiltonian, we first pass its couplings J;; and possibly also external
fields F; through an Encoder MLP, with which we calculate edge embeddings E?j = MLPgnc,s(Js;) and node
embeddings NY = MLPgyc,r#(F}).

Afterwards, we use GNNs to apply several message passing updates, which can be written as
N = In(@(NG, Ojenn U (NG, N, Biy)) + WN). (14)

Here, neighbouring nodes N}, N Jl and their correspoinding edges Efj at layer [ are first processed by a message
MLP denoted as ®. The resulting messages are then aggregated by a permutation invariant aggregation U e n(s),
which is in our case the mean aggregator. Afterwards, the node update function W is applied on the aggregated
messages together with the current node embedding N/. Finally, we use a skip connection, where a weight
matrix W is applied on N/ and apply layer normalization (In) [28]. For simplicity, in this work we always
employ fully connected graphs where the edge weight denotes whether there is an edge or not.

Similarly, we update edges with
BN = In(Vs(N/, N}, E}))) + WeEL), (15)
where U g is the edge update MLP and W is a weight matrix which is used for skip connections.

Our GNN architecture is similar to the Full GN block architecture introduced in [22] but without global graph
attributes.

Afterwards, we apply our decoder MLP on the output nodes of the GNN N to obtain the node-wise Hamiltonian
embedding e; (H).

Our graph embedding network uses three-layer MLPs with hidden size of [128,96,64] (encoder), [64,64,64]
(processor) and [64, 96, 128] (decoder). The decoder MLP, encoder MLP, ® and W are always three-layer MLPs.
Within MLPs we always use Relu [29] activation functions and apply layer normalization after every layer. For
Experiments in Fig. 2 (left) and 3 (left) we determined the best learning rate with a grid search in order to obtain
good hyperparameters of each setting.

A.4.3 MLP Embedding Network

In order to obtain an MLP embedding, the couplings of the Ising Hamiltonian are concatenated to a vector with
fixed ordering. We then use an L-Layer MLP with hA; X N Neurons, where N is the number of spins and h; are
the number of hidden neurons per spin in layer [. The output e(H ) of the MLP is then reshaped into a matrix
e;; of dimension hoyy X N, where the j-th column is used as the Hamiltonian embedding at node j.

For the result in Fig. 2 (left) we did a grid search over Ir € {1072,5-107*,107*}, hz, € {64,80} VL and over
L € {3,4,5} in order to find the best hyperparameters for the MLP embedding. L = 4, h1,2,34 = 64 and alr
of 1 - 1072 worked best in our experiments. The network with the MLP embedding network from Fig. 2 (left) is
with & 3.8 - 10° parameters, approximately 3.4 times larger than the network with the graph embedding network
with 10 GNN layers, which has = 1.1 - 10° parameters.

A.5 Hyperparemeters
As an optimizer, we use the RAdam optimizer [30]. All other hyperparameters can be taken from Tab. 1.

In the following, we provide further details on the Learning Rate Schedule, Annealing Schedule and other
implementation choices.

A.5.1 Learning Rate Schedule

In all of our architectures we use a Cosine decay learning rate schedule with restarts [31]. During the warmup
phase we use a cosine schedule with restarts of frequency two, where lrs¢a,¢ is increased by a factor of two
and then decreased by the same factor. During Temperature annealing we use restarts with a frequency of 10

while decreasing the learning rate with a cosine schedule down to lrenq. In our experiments we always choose
—1
1rstart =10 . lrcnd-

A.5.2 Gradient Clipping

In order to use LSTMs we observed that it is necessary to use gradient clipping at a gradient norm of 1.0.
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Table 1: Table with Hyperparameters on different problem instances.

Problem Instance SK MC

n GNN Layers 4 6 8 10 10
Irsiart 51072 5.107% 5-1071 1-1077 1-1077
Nwarmup 104 104 104 104 2 N 103

Nitates 50 50 50 50 50

N, 16 16 16 16, 21 50

Figure 2 (left) 2 (left), 2 (left) 2 (left), 2 (right), 3 (center) | 3 (right), 4

Ny 50 50 50 50 50

Tstart 2. 2. 2. 2. 0.2
ProbMLP [128,96,2] | [128,96,2] | [128,96,2] [128,96,2] [128,2]

A.5.3 Annealing Schedule

We adapt the temperature annealing schedule from [8], where first a warmup phase of Nyarmup 15 applied and
then the temperature is decreased linearily for Nanneal steps from 7' = Tyeare to T' = 0. Each step in Nwarmup
and Nanneal contains a cycle of Nequit = 5 gradient update steps.

A.5.4 VNA Hyperparameters

For VNA experiments for Fig. 3 (left) we have used the same architecture as for AVA and made a hyperparameter
search over the number of GNN layers L € {3, 5,10} and the Ir € {10™*,5 - 10™*}. Here, the Ir of 10™* with
5 GNN layers performed best. In case of VNA, we run 2 - 10* warmup steps. All other hyperparameters were
chosen as for SK-16 in Tab. 1.

A.5.5 Computational Resources

All Models for SK-16 can be trained on GTX 1080Ti (11GB) GPUs. For Max-Cut 50 distributed training on two
of such GPUs is necessary.

A.6 Evaluation Data

For small system sizes, we use exact diagonalization by reformulating the classical spin system into the quantum
setting. This procedure is justified as the (quantum) Ising Hamiltonian with no external fields,

H=-1J;Y oi®o0;, (16)
i>j

e di : : : z _ (10 ; : 2N 2N
is diagonal in the computational basis. Here, 0* = (0 ,1) is the Pauli-z operator, and H € C . The

eigenvectors with the smallest eigenvalues are the ground states | V) € €2" and the corresponding eigenvalue
is the ground state energy. Since we work with randomly sampled real-valued couplings, there is typically only
one ground state solution |o7¢) and its spin-flipped counterpart |G). These are products of computational basis
states, i.e., each individual spin is either up () = (1,0)") or down (J{) = (0, 1)T), e.g., |o0) = [)|4) - - - [4).
There is a trivial equivalence between the quantum states |oo) and the classical vectors oo € {—1,+1}" as the
k-th spin in the product state (up or down) corresponds to the k-th entry of the classical spin vector (—1 or +1).
Any superposition ¢1|o) 4 c2|o) (with |c1|? + |c2)® = 1) of these ground states is a ground state as well. In
the main text and Fig. 3 (center), we use the ground state probability in brief notation p(oo), which is computed
as p(|oo) + p(|0)).

For exact diagonalization, we make use of implementation in Netket [32]. For larger system sizes we use the
spinglass server http://spinglass.uni-bonn.de/.

A.7 Packages

The code is written in Jax [33]. For the GW algorithm we use the package cvxgraphalgs https://pypi.org/
project/cvxgraphalgs/.
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