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ABSTRACT
Data-Free Knowledge Distillation (DFKD) is a novel task that aims
to train high-performance studentmodels using only the pre-trained
teacher network without original training data. Most of the existing
DFKD methods rely heavily on additional generation modules to
synthesize the substitution data resulting in high computational
costs and ignoring the massive amounts of easily accessible, low-
cost, unlabeled open-world data. Meanwhile, existing methods ig-
nore the domain shift issue between the substitution data and the
original data, resulting in knowledge from teachers not always
trustworthy and structured knowledge from data becoming a cru-
cial supplement. To tackle the issue, we propose a novel Open-
world Data Sampling Distillation (ODSD) method for the DFKD
task without the redundant generation process. First, we try to
sample open-world data close to the original data’s distribution by
an adaptive sampling module and introduce a low-noise represen-
tation to alleviate the domain shift issue. Then, we build structured
relationships of multiple data examples to exploit data knowledge
through the student model itself and the teacher’s structured repre-
sentation. Extensive experiments on CIFAR-10, CIFAR-100, NYUv2,
and ImageNet show that our ODSD method achieves state-of-the-
art performance with lower FLOPs and parameters. Especially, we
improve 1.50%-9.59% accuracy on the ImageNet dataset and avoid
training the separate generator for each class.

CCS CONCEPTS
• Security and privacy→ Data anonymization and sanitiza-
tion; Database and storage security; • Computing methodolo-
gies → Reasoning about belief and knowledge.
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1 INTRODUCTION
Deep learning has made refreshing progress in computer vision and
multimedia fields [14, 20, 28, 30, 32, 37, 40, 42, 52, 56, 57, 60, 61, 68].
Despite the great success, large-scale models [9, 12, 26, 29, 31, 33,
41, 47, 51, 58, 59, 62] and unavailable privacy data [3, 46, 50, 53, 54]
often impede the application of advanced technology on mobile
devices. Therefore, model compression and data-free technology
have become the key to breaking the bottleneck. To this end, Lopes
et al. [34] propose Data-Free Knowledge Distillation (DFKD). In this
process, knowledge is transferred from the cumbersome model to
a small model that is more suitable for deployment without using
the original training dataset. As a result, this widely applicable
technology has gained much attention.

To replace unavailable private data, most existing data-free knowl-
edge distillation methods rely on alternately training of the genera-
tor and student, called the generation-based method. However,
these generation-based methods have many issues. First, their
trained generators are abandoned after the students’ training [6, 13,
16, 19, 36, 67]. The training of generators brings additional compu-
tational costs, especially for large datasets. For instance, a thousand
generators are trained for the ImageNet dataset [11], which intro-
duces more computational waste [15, 35]. Then, a serious domain
shift issue exists between the generated substitution data and the
original training data. Because the substitute data are composed of
random noise transformation without supervision information and
are highly susceptible to teacher preferences [54]. As a result, the
efficiency and effectiveness of the generation-based methods are
constrained, affecting student performance [2, 13, 39].
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Figure 1: Comparison of (a) generation-based and (b)
sampling-based methods. The sampling-based process uti-
lizes the open-world unlabeled data to distill the student
network, so it does not need additional generation costs. At
the same time, the extra knowledge in these unlabeled data
enriches the knowledge representation from the teacher.

Rather than relying on additional generation modules, Chen et al.
[5] propose a sampling-based method to train the student network
via unlabeled data without the generation calculations. Compared
with generation-based methods, sampling-based methods can avoid
the training cost of generators, thus improving algorithm efficiency.
The comparison of the two methods is shown in Figure 1. Mean-
while, they try to reduce label noise by updating the learnable noise
matrix, but the noise matrix’s computational costs are expensive.
More restrictedly, their sampling method relies on the strict con-
fidence ranking and does not consider the data domain similarity
issue (We discuss the distribution similarity between sampled data
and original data in detail in Section 4.4). In addition, the existing
generation-based and sampling-based methods can be summarized
as simple imitation learning, i.e., the student mimics the output of
a particular data example represented by the teacher [37, 53, 64].
Therefore, these methods do not adequately utilize the implicit
relationship among multiple data examples, which leads to the lack
of effective knowledge expression in the distillation process.

Based on the above observations, we construct a sampling-based
method to sample helpful data from easily accessible, low-cost, unla-
beled open-world data, avoiding unnecessary computational costs.
In addition, we propose two aspects of customized optimization. (i)
To cope with the domain shift issue between the open-world and
original data, we preferentially try to sample data with a similar
distribution to the original data domain to reduce the shifts and
design a low-noise knowledge representation learning module to
suppress the interference of label noise from the teacher model. (ii)
To explore the data knowledge adequately, we set up a structured
representation of unlabeled data to enable the student to learn the
implicit knowledge among multiple data examples. As a result, the
student can learn from carefully sampled unlabeled data instead
of relying on the teacher. At the same time, to explore an effective
distillation process, we introduce a contrastive structured relation-
ship between the teacher and student. The student can make better
progress through the structured prediction of the teacher network.

In this paper, we consider a solution to the DFKD task that
does not require additional generation costs. On the one hand,

we look forward to the solution to data domain shifts from both
data source and distillation methods. On the other hand, we try to
explore an effectively structured knowledge representation method
to deal with the missing supervision information and the training
difficulties in the DFKD scenes. Therefore, we propose an Open-
world Data Sampling Distillation (ODSD) method, which includes
Adaptive Prototype Sampling (APS) and Denoising Contrastive
Relational Distillation (DCRD) modules. Specifically, the primary
contributions and experiments are summarized as follows:

• We propose a sampling-based method with the unlabeled
open-world data. The method does not require additional
training of one or more generator models, thus avoiding
unnecessary computational costs and model parameters.

• During the sampling process, considering the domain shifts
between the unlabeled data and the original data, we propose
an Adaptive Prototype Sampling (APS) module to obtain data
closer to the original data distribution.

• During the distillation process, we propose a Denoising Con-
trastive Relational Distillation (DCRD) module to suppress
label noise and exploit knowledge from data and the teacher
more adequately by building structured relationships.

• The proposed method achieves state-of-the-art performance
with lower FLOPs, improves the effectiveness of the sampling
process, and alleviates the distribution shift between the
unlabeled data and the original data.

2 RELATEDWORK
2.1 Data-Free Knowledge Distillation
Data-free knowledge distillation aims to train lightweight models
when the original data are unavailable. Therefore, the substitute
data are indispensable to help transfer knowledge from the cum-
bersome teacher to the flexible student. According to the source of
these data, existing methods are divided into generation-based and
sampling-based methods.
Generation-based Methods. The generation-based methods de-
pend on the generation module to synthesize the substitute data.
Lopes et al. [34] propose the first generation-based DFKD method,
which uses the data means to fit the training data. Due to the weak
generation ability, it can only be used on a simple dataset such
as the MNIST dataset. The following methods combine the Gen-
erative Adversarial Networks (GANs) to generate more authentic
and reliable data. Chen et al. [6] firstly put the idea into practice
and define an information entropy loss to increase the diversity
of data. However, this method relies on a long training time and a
large batch size. Fang et al. [16] suggest forcing the generator to
synthesize images that do not match between the two networks to
enhance the training effect. Hao et al. [19] suggest using multiple
pre-trained teachers to help the student, which leads to additional
computational costs. Do et al. [13] propose a momentum adversarial
distillation method to help the student recall past knowledge and
prevent the student from adapting too quickly to new generator
updates. The same domain typically shares some reusable patterns,
so Fang et al. [15] introduce the sharing of local features of the
generated graph, which speeds up the generation process. Since
the generation quality is still not guaranteed, some methods spend
extra computational costs on gradient inversion to synthesize more
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Figure 2: The pipeline of our proposed ODSD. First, all open-world unlabeled data passes through adaptive prototype sampling
so that the substitute dataset resembles the distribution of the original data. Then, based on these data, the student can make
progress through low-noise information representation, data knowledge mining, and structured knowledge from the teacher.

realistic data [17, 65]. In addition, Choi et al. [10] combine DFKD
with other compression technologies and achieve encouraging per-
formance. However, generation-based DFKD methods generate a
large number of additional calculation costs in generation modules,
while these modules will be discarded after students’ training [5].
Sampling-based Methods. To train the student more exclusively,
Chen et al. [5] propose to sample unlabeled data to replace the
unavailable data without the generation module. Firstly, they use a
strict confidence ranking to sample unlabeled data. Then, they pro-
pose a simple distillation method with a learnable adaptive matrix.
Despite no additional generating costs and promoting encouraging
results, their method ignores the intra-class relationships of mul-
tiple unlabeled data. Simultaneously, the simple strict confidence
causes more data to be sampled for simple classes, leading to imbal-
anced data classes. In addition, their proposed distillation method
is relatively simple and lacks structured relationship expression,
which limits the student’s performance.

2.2 Contrastive Learning
Contrastive learning makes the model’s training efficient by learn-
ing the data differences [63]. The unsupervised training pipeline
usually requires storing negative data by a memory bank [55], large
dictionaries [21], or a large batch size [8]. Even it requires a lot of
computation costs, e.g., additional normalization [18], and network
update operations [4]. The high storage and computing costs seri-
ously reduce knowledge distillation efficiency. But at the same time,
this idea of mining knowledge in unlabeled data may be helpful
for the student’s learning. Due to such technical conflicts, there
are few methods to combine knowledge distillation and contrastive
learning in the past perfectly. As a rare attempt, Tian et al. [48]
propose a contrastive data-based distillation method by updating a
large memory bank. However, data quality cannot be guaranteed

for data-free knowledge distillation, and data domain shifts are
intractable, making the above process challenging.

In this work, we attempt to explore additional knowledge from
both the data and the teacher. Therefore, we further stimulate stu-
dents’ learning ability by using the internal relationship of unla-
beled data and constructing a structured contrastive relationship.
To our best knowledge, this is the first combination of data-free
knowledge distillation and contrastive learning at a low cost during
the distillation process, which achieves an unexpected effect.

3 METHODOLOGY
3.1 Overview
Our pipeline includes two stages: (i) unlabeled data sampling and
(ii) distillation training, as shown in Figure 2. For the sampling
stage, we sample unlabeled data by an adaptive sampling mech-
anism to obtain data closer to the original distribution. For the
distillation stage, the student learns the knowledge representation
after denoising through a spatial mapping denoise module. Further,
we mine more profound knowledge of the unlabeled data and build
the structured relational distillation to help the student gain better
performance. The complete algorithm is shown in Algorithm 1.

3.2 Adaptive Prototype Sampling
The unlabeled data and the original data are distributed differently
in many cases. To obtain the substitution data with a more sim-
ilar distribution to the original data from the specific unlabeled
dataset, we propose an Adaptive Prototype Sampling (APS) module,
which considers the teacher’s familiarity with the data, excludes
misclassified offset noisy data, and focuses on the class balance of
the sampled data. Based on these, we design three score indicators
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Algorithm 1 The proposed ODSD algorithm.
Input: A frozen teacher network 𝑓𝑇 , an unlabeled open-world

dataset 𝑋𝑈 , and the target number of sampled data𝑀 .
1: Module 1: Adaptive pototype sampling
2: for unlabeled data 𝒙𝑖 in 𝑋𝑈 do
3: Classify teacher predictions 𝑝𝑖 as 𝜌𝑖,𝑐 = 𝑝𝑖 ∈ 𝑐;
4: Calculate confidence probability: 𝑝𝑖 = 𝜎 (𝑝𝑖 )
5: Cluster the prediction vector as the prototypes 𝜇𝑐,𝑘 .
6: end for
7: for Prototypes 𝜇𝑐,𝑘 in class 𝑐 do
8: Obtain prototype similarity: 𝑜𝑖 = cos(𝜌𝑖,𝑐 , 𝜇𝑐,𝑘 )𝐾𝑘=1;
9: Calculate intra-class outliers mean: 𝑢𝑐 = 1

𝑛𝑐

∑
𝑝𝑖 ∈𝑐𝑜𝑖 ;

10: Calculate the density score 𝐷𝑐 =
√
𝑢𝑐

log𝑒 (𝑛𝑐+𝐶 ) .
11: end for
12: Calculate sampling score: 𝑆 =

�̃�𝑖
|max{�̃� } | −

𝑜𝑖
|max{𝑜 } | +

𝐷𝑐

|max{𝐷 } |
13: Sample top-𝑀 data with the highest score as 𝑋𝐴 .
14: Module 2: Denoising contrastive relational distillation.
15: for 𝑖 in number of epochs do
16: for training data 𝒙 in 𝑋𝐴 do
17: Calculate L𝑡𝑜𝑡𝑎𝑙 as Eq.8 and update the student 𝑓𝑆 .
18: end for
19: end for
Output: The trained student 𝑓𝑆 and a reusable sampling list 𝐿 of

the teacher 𝑓𝑇 on dataset 𝑋𝑈 .

to evaluate the effectiveness of the unlabeled data for student train-
ing corresponding to the above three aspects, including the data
confidence score, the data outlier score, and the class density score.
(a) Data Confidence Score. The teacher provides the predic-
tion logits 𝑃 = [𝑝1, . . . , 𝑝𝑛] ∈ R𝑛×𝐶 on the unlabeled dataset
{𝒙0, . . . , 𝒙𝑛}, where 𝑝𝑖 denotes the prediction for the 𝑖-th sample
satisfying 𝑝𝑖 ∈ R1×𝐶 . 𝑛 denotes the number of data, and 𝐶 denotes
the number of classes. Then the prediction is converted into the
probability of the unified scale as 𝑝𝑖 = 𝜎 (𝑝𝑖 ), where 𝜎 denotes
the softmax layer and 𝑝𝑖 denotes the confidence probability corre-
sponding to the predicted result class. Therefore, 𝑝 = [𝑝1, . . . , 𝑝𝑛]
represents the confidence of each data in the unlabeled dataset. We
choose the largest max{𝑝} for normalization. The confidence score
of 𝑖-th sample 𝒙𝑖 can be calculated as: 𝑠𝑐𝑖 =

�̃�𝑖
|max{�̃� } | .

(b) Data Outlier Score. The data distribution of the substitution
data and the original data is different. Therefore, the confusing edge
data should be excluded, i.e., the data with different distributions
but also predicted as the same target class. For example, a tiger is
predicted as the class of cat, as shown in the orange part of Stage 1 in
Figure 2. We first separate the teacher predictions according to the
predicted classes as 𝜌𝑖,𝑐 = 𝑝𝑖 ∈ 𝑐 . For each class, 𝜌𝑖,𝑐 is clustered [25]
to explore the intra-class relationships through 𝑘 layering as 𝜇𝑐,𝑘 .
Then the prediction features for the whole unlabeled dataset can
be expressed as a group of 𝐶𝐾 prototypes as

{
𝜇𝑐,𝑘 ∈ R1×𝐶 }𝐶,𝐾

𝑐,𝑘=1,
where 𝑐 denotes the 𝑐-th class, and 𝐾 denotes the hyperparameter
representing the number of prototypes for each class. The prototype
centers of the 𝑐-th class can be expressed as

{
𝜇𝑐,𝑘

}𝐾
𝑘=1. The outlier

of each unlabeled data 𝑥𝑖 can be calculated with the sum of the

prototype centers of its class as 𝑜𝑖 =
∑𝐾
𝑘=1 cos(𝜌𝑖,𝑐 , 𝜇𝑐,𝑘 ), where

cos denotes the cosine similarity metric. Similar to the confidence
score, we select the maximum value max{𝑜} for normalization. As
a result, the outlier score can be calculated as: 𝑠𝑜𝑖 = 𝑜𝑖

|max{𝑜 } | .
(c) Class Density Score. To help the student learn various classes
effectively, we calculate the class density for the class balance of
the sampled data. As shown in Stage 1 of Figure 2, we increase the
sampling range for classes with sparse data (the blue part) while
we reduce the sampling range for classes with redundant data (the
orange part). Based on this, we first separate the above intra-class
outliers 𝑜𝑖 of all data by their predicted classes. The outliers mean
value of each class can be calculated as 𝑢𝑐 = 1

𝑛𝑐

∑
𝑝𝑖 ∈𝑐𝑜𝑖 , where

𝑛𝑐 is the number of the data predicted as 𝑐-th class. Therefore, the
Dcluster parameter𝐷𝑐 can be calculated as:𝐷𝑐 =

√
𝑢𝑐

log𝑒 (𝑛𝑐+𝐶 ) , which
reflects the data density predicted to be 𝑐-th class. The introduction
of a constant𝐶 (the number of classes) helps the numerical stability
when the available unlabeled data is small while having little effect
on the results when the amount of data is sufficient (under normal
conditions). After selecting themaximum valuemax{𝐷} for normal-
ization, the density score of each data can be calculated according
to the predicted class as 𝑠𝑑𝑖 = 𝐷𝑐

|max{𝐷 } | ,when arg max(𝑝𝑖 ) = 𝑐 .
Finally, we calculate the total score as 𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑠𝑐𝑖 − 𝑠𝑜𝑖 + 𝑠𝑑𝑖 .

Based on this, the data closer to the distribution of the original data
domain are sampled, which can help the student learn better. The
quantitative analysis is shown in Table 7.

3.3 Denoising Contrastive Relational
Distillation

After obtaining the high score data, the distillation process can
be carried out. We denote 𝑓𝑇 and 𝑓𝑆 as the teacher and student
networks and denote 𝒙 as the data in sampled set 𝑋𝐴 . According to
the definition [23], the knowledge distillation loss is calculated as:

L𝐾𝐷 =
∑︁
𝒙∈𝑋𝐴

𝐷𝐾𝐿 (𝑓𝑇 (𝒙)/𝜏𝑘𝑑 , 𝑓𝑆 (𝒙)/𝜏𝑘𝑑 ), (1)

where 𝐷𝐾𝐿 is the Kullback-Leibler divergence, and 𝜏𝑘𝑑 is the distil-
lation temperature. L𝐾𝐷 allows the student to imitate the teacher’s
output. However, the main challenge is the distribution differences
between the substitute and original data domains, leading to label
noise interference. Simultaneously, the ground-truth labels are un-
available, so correct information supervision is missing. Therefore,
we propose a Denoising Contrastive Relational Distillation (DCRD)
module, which includes a spatial mapping denoise component and
a contrastive relationship representation component to help the
student get better performance and mitigate label noise.
Spatial Mapping Denoise. The distribution in the unlabeled data
differs from the unavailable original data, which indicates the in-
evitable label noise. Inspired by manifold learning [44], low dimen-
sional information representation contains purer knowledge with
less noise interference [1]. Here, we utilize a low-dimensional spa-
tial mapping denoise component to help the student learn low-noise
knowledge representation. Based on this, we perform eigendecom-
position Φ on the teacher’s prediction and its transposed product
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matrix [24]. According to the distance invariance, the autocorrela-
tion matrix 𝑑2

𝑖 𝑗
in a mini-batch as:

𝑁∑︁
𝑖

𝑁∑︁
𝑗

𝑑2
𝑖 𝑗 = 2𝑁 · 𝑡𝑟 (𝑍𝑡𝑍𝑇𝑡 ), (2)

where 𝑁 denotes the batch size, and 𝑡𝑟 (·) denotes the trace of a
matrix. 𝑍𝑡 is the low-dimensional spatial vector representation
from the teacher calculated as Φ(𝑓𝑇 (𝒙) · 𝑓𝑇𝑇 (𝒙)) = 𝑍𝑡 = 𝑉𝑡Λ

1/2
𝑡 ,

where 𝑉𝑡 is the eigenvalue, and Λ𝑡 is the eigenvector. Similarly, we
can get the student predictions of low-dimensional representation
as 𝑍𝑠 . Then, we set up a distillation loss to correct the impact of
label noise by the spatial mapping of the two networks. The spatial
mapping denoise distillation loss is calculated as:

L𝑛 = ℓℎ (Φ(𝑓𝑇 (𝒙) · 𝑓𝑇𝑇 (𝒙)),Φ(𝑓𝑆 (𝒙) · 𝑓𝑆𝑇 (𝒙))) = ℓℎ (𝑍𝑡 , 𝑍𝑠 ), (3)

where ℓℎ (·, ·) denotes the Huber loss.
Contrastive Relational Distillation. The missing supervision
information limits the student’s performance. It is indispensable to
adequately mine the knowledge in unlabeled data to compensate for
the lack of information. To avoid a single imitation of a particular
data example, we build two kinds of structured relationships to
mine knowledge from the data and the teacher.

Firstly, the student can adequately explore the structured relation
among multiple unlabeled data by learning the instance invariant.
𝒙𝑖 , 𝒙 𝑗 are the different data in a mini-batch. We calculate the pre-
diction difference between data as follows:

ℓ
𝒙𝑖𝒙 𝑗

𝑠 =
cos(𝑓𝑆 (𝒙𝑖 ), 𝑓𝑆 (𝒙 𝑗 ))/𝜏∑2𝑁

𝑘=1,𝑘≠𝑖 cos(𝑓𝑆 (𝒙𝑖 ), 𝑓𝑆 (𝒙𝑘 ))/𝜏
, (4)

where 𝜏1 denotes contrastive temperature. Next, we can calculate
the consistency instance discrimination loss as:

L𝑐1 = − 1
𝑁

𝑁∑︁
𝑗=1

log ℓ𝒙 𝑗 �̄� 𝑗

𝑠 , (5)

where 𝒙 𝑗 denotes the strong data augmentation of 𝒙 𝑗 . This unsu-
pervised method is especially effective when the teacher makes
wrong results.

Secondly, we construct a structured contrastive relationship be-
tween the teacher and student, which promotes consistent learning
between the teacher and student. The structured knowledge trans-
fer process is calculated as:

ℓ
𝒙′
𝑖

𝑡𝑠 =
cos(𝑓𝑇 (𝒙′𝑖 ), 𝑓𝑆 (𝒙

′
𝑖
))/𝜏∑4𝑁

𝑘=1,𝑘≠𝑖 cos(𝑓𝑇 (𝒙′𝑖 ), 𝑓𝑆 (𝒙
′
𝑘
))/𝜏

, (6)

where 𝒙′ = 𝒙 ∪ 𝒙 denotes the set of the sampled data before and
after strong data augmentation. And 𝒙′ contains 2𝑁 samples for
each batch. We calculate the teacher-student consistency loss as:

L𝑐2 = − 1
2𝑁

2𝑁∑︁
𝑗=1

log ℓ
𝒙′
𝑗

𝑡𝑠 . (7)

The student can obtain better learning performance through the
mixed structured and consistent relationship learning between the
two networks. Then, the contrastive relational distillation loss is

Table 1: Illustration of original private data and their corre-
sponding substitute open-world datasets.

Original data CIFAR ImageNet NYUv2
Unlabeled data ImageNet Flickr1M ImageNet

L𝑐 =L𝑐1 + L𝑐2. Finally, we can get the total denoising contrastive
relational distillation loss as:

L𝑡𝑜𝑡𝑎𝑙 = L𝐾𝐷 + 𝜆1 ·L𝑛 + 𝜆2 ·L𝑐 , (8)

where 𝜆1, 𝜆2 are the trade-off parameters for training losses.

4 EXPERIMENTS
4.1 Experimental Settings
Datasets. We evaluate the proposed ODSD method for the clas-
sification and semantic segmentation tasks. For classification, we
evaluate it on widely used datasets: 32 × 32 CIFAR-10, CIFAR-100
[27], and 224 × 224 ImageNet [11]. For semantic segmentation, we
evaluate the proposed method on 128× 128 NYUv2 dataset [45]. Be-
sides, the corresponding open-world datasets are shown in Table 1,
which is the same as DFND [5] for a fair comparison.
Implementation Details. The proposed model is implemented in
PyTorch [38] and trained with RTX 3090 GPUs. For the CIFAR-10
and CIFAR-100 datasets, we conduct five sets of backbone combina-
tions, set two groups of different numbers of sampled samples (150k
or 600k), and train the students for 200 epochs. For the ImageNet
dataset, we conduct three sets of backbone combinations and train
the students for 200 epochs. The number of sampled samples is
600k. For the NYUv2 dataset, the DeeplabV3 [7] is used as the model
architecture followed previous work. The teacher uses ResNet-50
[22] as the backbone, and the student uses mobilenetv2 [43]. We
sample 200k unlabeled samples and train the student for 20 epochs.
For the above datasets, we set 𝜏𝑘𝑑 as 4 to be the same as other dis-
tillation methods and set 𝜏 as 0.5 to be the same as [8]. Besides, we
set 𝜆1 as 10 and 𝜆2 as 0.5, use the SGD optimizer with momentum
as 0.9, weight decay as 5 × 10−4, the batch size 𝑁 as 64, and cosine
annealing learning rate with an initial value of 0.025.
Baselines.We compare generation-based and sampling-basedDFKD
methods, including DeepInv [65], CMI [17], DAFL [6], ZSKT [36],
DFED [19], DFQ [10], Fast [15], MAD [13], DFD [35], KAKR [39],
SpaceshipNet [66], DFAD [16], and DFND [5].

4.2 Performance Comparison
To evaluate the effectiveness of our ODSD, we compare it with
SOTA DFKD methods regarding the student’s performance, the
effectiveness of the sampling method, and training costs.
Experiments on CIFAR-10 and CIFAR-100. We first verify the
proposedmethod on the CIFAR-10 andCIFAR-100 [27]. The baseline
“Teacher" and “Student" means to use the corresponding backbones
of the teacher or student for direct trainingwith the original training
data, and “KD" represents distilling the student network with the
original training data. Generation-based methods include training
additional generators and calculating model gradient inversion.
Sampling-based methods use the unlabeled ImageNet dataset. We
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Table 2: Student accuracy (%) on CIFAR datasets. Bold and underline numbers denote the best and the second best results.

Dataset Method Type ResNet-34 VGG-11 WRN40-2 WRN40-2 WRN40-2
ResNet-18 ResNet-18 WRN16-1 WRN40-1 WRN16-2

C
IF
A
R
-1
0

Teacher
-

95.70 92.25 94.87 94.87 94.87
Student 95.20 95.20 91.12 93.94 93.95
KD 95.58 94.96 92.23 94.45 94.52

DeepInv [65]

Generation

93.26 90.36 83.04 86.85 89.72
CMI [17] 94.84 91.13 90.01 92.78 92.52
DAFL [6] 92.22 81.10 65.71 81.33 81.55
ZSKT [36] 93.32 89.46 83.74 86.07 89.66
DFED [19] - - 87.37 92.68 92.41
DFQ [10] 94.61 90.84 86.14 91.69 92.01
Fast [15] 94.05 90.53 89.29 92.51 92.45
MAD [13] 94.90 - - - 92.64
KAKR_MB [39] 93.73 - - - -
KAKR_GR [39] 94.02 - - - -
SpaceshipNet [66] 95.39 92.27 90.38 93.56 93.25

DFND_150𝑘 [5]

Sampling

94.18 91.77 87.95 92.56 92.02
DFND_600𝑘 [5] 95.36 91.86 90.26 93.33 93.11
ODSD_150𝑘 95.05 92.02 89.14 92.94 92.34
ODSD_600𝑘 95.70 92.55 91.53 94.31 94.02

C
IF
A
R
-1
00

Teacher
-

78.05 71.32 75.83 75.83 75.83
Student 77.10 77.10 65.31 72.19 73.56
KD 77.87 75.07 64.06 68.58 70.79

DeepInv [65]

Generation

61.32 54.13 53.77 61.33 61.34
CMI [17] 77.04 70.56 57.91 68.88 68.75
DAFL [6] 74.47 54.16 20.88 42.83 43.70
ZSKT [36] 67.74 54.31 36.66 53.60 54.59
DFED [19] - - 41.06 60.96 60.79
DFQ [10] 77.01 66.21 51.27 54.43 64.79
Fast [15] 74.34 67.44 54.02 63.91 65.12
MAD [13] 77.31 - - - 64.05
KAKR_MB [39] 77.11 - - - -
KAKR_GR [39] 77.21 - - - -
SpaceshipNet [66] 77.41 71.41 58.06 68.78 69.95

DFND_150𝑘 [5]

Sampling

74.20 69.31 58.55 68.54 69.26
DFND_600𝑘 [5] 74.42 68.97 59.02 69.39 69.85
ODSD_150𝑘 77.90 72.24 60.55 71.66 72.42
ODSD_600𝑘 78.45 72.71 60.57 72.71 73.20

reproduce the DFND using the unified teacher models, and the
result is slightly higher than the original paper.

As shown in Table 2, our ODSD has achieved the best results on
each baseline. Under most baseline settings, ODSD brings gains of
1% or even higher than the SOTA methods, even though students’
accuracy is very close to their teachers. In particular, the students
of our ODSD outperform the teachers on some baselines. As far as
we know, it is the first DFKD method to achieve such performance.
The main reasons for its breakthrough in analyzing the algorithm’s
performance come from three aspects. First, our data sampling
method comprehensively analyzes the intra-class relationships in
the unlabeled data, excluding the difficult edge data and significant
distribution differences data. At the same time, the number of data
in each class is relatively more balanced, which is conducive to all
kinds of balanced learning compared with other sampling methods.
Second, our knowledge distillation method considers the represen-
tation of low-dimensional and low-noise information and expands

the representation of knowledge through data augmentation. The
structured relationship distillation method helps the student ef-
fectively learn knowledge from both multiple data and its teacher.
Finally, the knowledge of our ODSD does not entirely come from
the teacher but also the consistency and differentiated representa-
tion learning of unlabeled data, which is helpful when the teacher
makes mistakes. The previous methods ignore the in-depth mining
of data knowledge, decreasing students’ performance.
Experiments on ImageNet. We conduct experiments on a large-
scale ImageNet dataset to further verify the effectiveness. Due to the
larger image size, it is challenging to effectively synthesize training
data for most generation-based methods. Generation-based meth-
ods train 1,000 generators (one generator for one class), resulting
in a large amount of computational costs. In this case, our sampling
method reduces the computational costs more significantly. We
set up three baselines to compare the performance of our method
with the SOTA methods. Table 3 reports the experimental results.
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Table 3: Student accuracy (%) on ImageNet dataset.

Method Type ResNet-50 ResNet-50 ResNet-50
ResNet-18 ResNet-50 MobileNetv2

Teacher
-

75.59 75.59 75.59
Student 68.93 75.59 63.97
KD 68.10 74.76 61.67

DFD [35]
Generation

54.66 69.75 43.15
DeepInv2𝑘 [65] - 68.00 -
Fast50 [15] 53.45 68.61 43.02

DFND [5] Sampling 42.82 59.03 16.03
ODSD 58.24 71.25 52.74

Table 4: Total FLOPs and params in DFKD methods.

Method DeepInv CMI DAFL ZSKT DFQ DFND ODSD

FLOPs 4.36G 4.56G 0.67G 0.67G 0.79G 0.56G 0.56G
params 11.7M 12.8M 12.8M 12.8M 17.5M 11.7M 11.7M

Table 5: APS compared with the SOTA sampling method.

Sampling methods Method
KD DFND ODSD

Random 76.85 73.15 76.43
DFND 76.67 73.68 77.40
APS 77.27 73.89 77.90

Our ODSD still achieves several percentage points increase com-
pared with other SOTA methods, especially in the cross-backbones
situation (9.59%). Due to the lack of structured knowledge repre-
sentation, the DNFD algorithm performs poorly on the large-scale
dataset. Comparing DFND and ODSD, our structured framework
improves the overall understanding ability of the student.
Comparison of Training Costs. We further calculate the total
floating point operations (FLOPs) and parameters (params) required
by various DFKD algorithms, as shown in Table 4. Our method only
needs training costs and params of the student network without
additional generation modules. Our sampling process introduces
256.78 seconds for sample selection (𝐾 = 5) on the CIFAR100 with
a single RTX 3090 GPU (The teacher uses the ResNet-34) while
the fastest generation-based method ZSKT also takes 1.54 hours to
synthesize data. These generation modules will be discarded after
student training, which causes a waste of computing power.
Comparison of Data Sampling Efficiency. To verify the sam-
pling mechanism’s effectiveness, we compare our APS method with
the current SOTA unlabeled data samplingmethod DFND [5]. Three
data sampling methods (random sampling, DFND sampling, and our
proposed APS) are set on three different distillation algorithms, in-
cluding: KD [23], DFND [5], and our ODSD method. Table 5 reports
the results. For KD, we use the sampled data instead of the original
generated data with L𝐾𝐷 distillation loss. From the result, this set-
ting is competitive, even better than the distillation loss of DFND.
For DFND, we reproduce it with open-source codes and keep the
original training strategy unchanged. We find the performance of

Table 6: Segmentation results on NYUv2 dataset.

Algorithm Teacher Student DAFL DFAD Fast DFND ODSD
mIoU 0.517 0.375 0.105 0.364 0.366 0.378 0.397

Table 7: Diagnostic studies of the proposed method.

Training objective L Data sampling scores 𝑆

ID Setting Accuracy (%) ID Setting Accuracy (%)
50k 150k 50k 150k

(1) ours 75.26 77.90 (5) ours 75.26 77.90
(2) w/o L𝑛 74.82 77.71 (6) w/o 𝑠𝑐𝑖 73.96 77.04
(3) w/o L𝑐 74.71 77.58 (7) w/o 𝑠𝑜𝑖 68.07 76.67
(4) w/o L𝑛,L𝑐 74.39 77.27 (8) w/o 𝑠𝑑𝑖 70.24 76.59

the DFND sampling method is unstable, which causes it to be lower
than random sometimes. For ODSD, we use the distillation loss
in Equation (8). Our proposed sampling method achieves the best
performance in all three benchmarks and significantly improves
performance. By comprehensively considering the data confidence,
the data outliers, and the class density, our ODSD can more fully
mine intra-class relationships of the unlabeled data. As a result, the
sampled data are more helpful for subsequent student learning.
Experiments about Semantic Segmentation. In addition to im-
age classification tasks, our algorithm can also effectively solve the
problem of DFKD in image semantic segmentation on the NYUv2
dataset. Mean Intersection over Union (mIoU) is set as the segmen-
tation evaluation metric. No generation module is defined for our
method, and other settings are the same as DFAD [16]. Table 6
shows segmentation results on the NYUv2 dataset. Our ODSD also
achieves the best performance. Besides, we visualize the segmen-
tation results of different networks to get more convincing results
as shown in Figure 3. “Input" and “Ground Truth" represent the
input test data and their corresponding real labels. Most data-free
distillation algorithms hide the code of the segmentation part, so it
is not easy to make a visual comparison. Here, we choose DFAD
as the baseline algorithm of visualization. Our proposed ODSD
algorithm achieves better segmentation results than DFAD, espe-
cially for object contour segmentation. The slight noise around the
contour is effectively suppressed. Further, through in-depth mining
the knowledge from the data and teacher, our student have gained
better understanding ability.

4.3 Diagnostic Experiment
We conduct the diagnostic studies on the CIFAR-100 dataset and use
ResNet-34 and ResNet-18 as the teacher’s and student’s backbones
with 50k and 150k sampled data.
Distillation Training Objective. We first investigate our over-
all training objective (cf. Equation (8)). As shown in the experi-
ments (1-4) of Table 7, the model with L𝐾𝐷 alone achieves ac-
curacy scores of 74.39% and 77.27% on 50k and 150k data sam-
pling settings. Adding L𝑛 or L𝑐 individually brings gains (i.e.,
0.32%, 0.31%/ 0.43%, 0.44%), indicating the effectiveness of our
proposed distillation method. Our method performs better with
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Input Ground Truth Teacher ODSD (ours)DFAD

Figure 3: Visualization segmentation results on the NYUv2 dataset.
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Figure 4: t-SNE visualization of the data distributions on
CIFAR-100 and ImageNet datasets. Red dots denote original
domain data, while blue dots denote unlabeled sampled data.

75.26% and 77.90%. Therefore, the proposed training objectives are
effective and can help the student gain better performance.
Data Sampling Scores. We further verify the effectiveness of the
three sampling scores in section 3.2. Using all scores, the model can
achieve the best performance with 75.26% and 77.90% accuracy
shown in experiments (5-8) of Table 7. When the confidence score
𝑠𝑐𝑖 is abandoned, the familiarity of the teacher network with the
sampled data decreases, reducing the amount of adequate infor-
mation contained in the data. Without the outlier score 𝑠𝑜𝑖 , the
lack of modeling of the intra-class relationship of the data to be
sampled leads to increased data distribution difference between
the substitute data domain and the original data domain. Further,

the class density score 𝑠𝑑𝑖 can measure the number of data in each
class and maintain the balance of the sampled data. In summary,
all three score indicators can help students perform better.

4.4 Visualization
To verify the distribution similarity between the sampled data and
the original data of our APS sampling method and the DFND sam-
pling method, we use t-SNE [49] to visualize the data feature distri-
bution. The teacher uses ResNet-34 on the CIFAR-100 and ResNet-50
on the ImageNet. For both datasets, we reserve 100 classes from
validation data. In addition, we also visualize the distribution of
data obtained by random sampling as a baseline reference. Figure 4
shows the data distribution results of different sampling methods.
Our clustering results are closer to the extracted features of the
original data. For the more complex ImageNet, this advantage is
further amplified. Reducing the distribution difference between
sampled and original data helps reduce data label noise, which is
the key for the student to perform well.

5 CONCLUSION
Most existing data-free knowledge distillation methods rely heavily
on additional generation modules, bringing additional computa-
tional costs. Meanwhile, these methods disregard the domain shifts
issue and ignore the data knowledge. This paper proposes an Open-
world Data Sampling Distillation method. We sample unlabeled
data with a similar distribution to the original data and introduce
low-noise representation learning to cope with domain shifts. To
explore the data knowledge adequately, we design a structured
knowledge representation. Comprehensive experiments illustrate
the effectiveness of the proposed method, which achieves state-of-
the-art performance on various benchmarks.
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