
Under review as submission to TMLR

Explaining Graph Neural Networks for Node Similarity on
Graphs

Anonymous authors
Paper under double-blind review

Abstract

Similarity search is a fundamental task for exploiting information in various applications
dealing with graph data, such as citation networks or knowledge graphs. Prior work on
the explainability of graph neural networks (GNNs) has focused on supervised tasks, such
as node classification and link prediction. However, the challenge of explaining similarities
between node embeddings has been left unaddressed. We take a step towards filling this gap
by formulating the problem, identifying desirable properties of explanations of similarity, and
proposing intervention-based metrics that qualitatively assess them. Using our framework,
we evaluate the performance of representative methods for explaining GNNs, based on the
concepts of mutual information (MI) and gradient-based (GB) explanations. We find that
unlike MI explanations, GB explanations have three desirable properties. First, they are
actionable: selecting particular inputs results in predictable changes in similarity scores of
corresponding nodes. Second, they are consistent: the effect of selecting certain inputs
hardly overlaps with the effect of discarding them. Third, they can be pruned significantly
to obtain sparse explanations that retain the effect on similarity scores. These important
findings highlight the utility of our metrics as a framework for evaluating the quality of
explanations of node similarities in GNNs.

1 Introduction

Graphs provide a powerful and expressive data structure for modeling relations between objects across diverse
domains, such as social networks, biological systems, and knowledge bases (Newman, 2018; Hamilton et al.,
2017a; Nickel et al., 2016; Hogan et al., 2021). Additionally, their ability to represent entities and their
interactions makes them a natural representation for machine learning methods that seek to learn structural
patterns and use them in downstream tasks.

A fundamental problem that arises across domains is similarity search, where the goal is to identify objects
that resemble a given query object according to structural or semantic notions of similarity. In particular, we
are concerned with similarity search over graphs, where given a query node, the goal is to retrieve a ranked
list of similar nodes. Several methods to solve this problem have been proposed in the literature, ranging
from heuristic-based methods to data-driven machine learning methods. Heuristics for similarity search on
graphs exploit various graph statistics or techniques based on hashing to solve the problem (Shimomura
et al., 2021; Shi et al., 2021).

Machine learning methods, on the other hand, avert the need to design handcrafted heuristics or features.
Instead, they seek to exploit domain-specific patterns in the graph to learn node representations, or embed-
dings, after which similarities are captured via metrics such as cosine similarity on these representations.
Graph neural networks (GNNs), in particular, have become a standard in machine learning approaches that
process graph-structured data (Kipf & Welling, 2017; Schlichtkrull et al., 2018; Gilmer et al., 2017).

While GNNs offer several advantages due to their capacity to adapt to specific properties of the graph at
hand, these benefits may be compromised when interpretability becomes a necessity (Burkart & Huber,
2021; Arrieta et al., 2020). Given their demonstrated effectiveness on different tasks, there are compelling
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Figure 1: Illustration of the problem we investigate in our work. Given nodes 1 and 2 in a graph, unsupervised
learning methods can be used to train a GNN to learn node embeddings, where a score of similarity can
be estimated by cosine similarity. We investigate how to create explanations for such scores, that assign
values of attributions to edges in the graph. In this example, we show with blue a positive influence in the
similarity score, and with red a negative influence.

motivations to explore methods for explaining their predictions (Yuan et al., 2023), which would enable
applications that require accountable decision-making to leverage their predictive power.

While extensive works on explaining GNNs exist, the majority of the methods focus on supervised learning
problems, where the predicted target is well-defined based on some ground-truth data, as in the case of node
classification (Ying et al., 2019; Luo et al., 2020; Lucic et al., 2022; Miao et al., 2022). To the best of our
knowledge, the applicability of such methods to the problem of explaining node similarities remains an open
question.

Fig. 1 illustrates this problem, where a learning algorithm is used to train a GNN for computing embeddings
for nodes 1 and 2. The embeddings are used to compute the cosine similarity that we aim at explaining.
The explanation consists of an attribution of values to edges, depending on their influence on the similarity
score. In the example, blue edges result in increasing similarity scores and red edges result in decreasing the
score. Depending on the explanation method used, the effect of attribution values on similarity scores can
be different.

Our work takes a step towards understanding what it means to explain node similarity in graph neural
networks. This setting differs fundamentally from the supervised tasks for which existing GNN explainers
were designed (Yuan et al., 2023). While prior work focuses on discrete predictions, such as node classification
or link prediction, explaining continuous similarity scores is a fundamentally different problem that has not
been addressed by current evaluation protocols. We bridge this gap and provide the following contributions:

• We introduce and study the problem of explaining node similarity in GNNs, which to the best of
our knowledge, has not been addressed in prior work.

• Building on principles from explainable AI, we derive three criteria for explanations of node similarity.
We then propose model-agnostic metrics that quantify these criteria by measuring how explanations
behave under controlled interventions on the graph.

• We demonstrate the utility of our framework by applying it to representative mutual-information and
gradient-based methods, yielding several important insights that demonstrate the practical utility
of our criteria and metrics.

2 Related work

Similarity learning. The problem of computing node similarities on graphs has been addressed in previous
methods that rely on heuristics, rather than representations learned from the data. Some examples of
such methods rely on statistics of connectivity (Brin, 1998; Haveliwala, 2002), co-occurrence statistics (Jeh
& Widom, 2002), meta-paths in heterogeneous networks (Sun et al., 2011), and metrics for measuring
structural similarities (Xu et al., 2007). Other methods employ ideas from hashing techniques to compute
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vector representations useful for similarity search (Gionis et al., 1999; Zadeh & Goel, 2013; Shimomura
et al., 2021). Such heuristics are beneficial when they are broad enough to be applicable to different graphs.
Graph neural networks, on the other hand, are able to adapt to specific signals present in the data, such as
domain-specific topological properties and rich multi-modal features like text and images (Markowitz et al.,
2022; Gao et al., 2020). Their demonstrated effectiveness for different tasks thus warrants an investigation
on how explanations can be provided for them, in the event of applications where rationales for predictions
of GNNs are valuable, which is the open question we address in this work.

Unsupervised learning on graphs. In contrast to tasks like node classification or regression where
labeled data is available, similarity learning is rarely accompanied with ground truth data. An alternative is
concerned with learning representations that capture patterns already present in the graph (Liu et al., 2023a;
Xie et al., 2023; Liu et al., 2023b). In the absence of labels that could be used for training, learning in this
setting relies on optimization algorithms that produce representations useful for a pretext task. Examples
of pretext tasks are maximizing the mutual information between different views of a graph (Velickovic et al.,
2019; Sun et al., 2020; Peng et al., 2020), embedding shortest path distances (Bojchevski & Günnemann,
2018; Frogner et al., 2019), reconstructing parts of the input (Kipf & Welling, 2016; Wang et al., 2017a), or
maintaining invariance with respect to small changes in the input (Thakoor et al., 2022; Xie et al., 2022b).
The resulting representations can then be employed in tasks such as clustering and similarity search.

Most of the research in this area has focused on studying different ways of designing pretext tasks. However,
the area of explainability in unsupervised learning on graphs is underexplored (Xie et al., 2023; Liu et al.,
2023b). A recently proposed method is Task-Agnostic Graph Explanations (TAGE) (Xie et al., 2022a), which
proposes explaining specific dimensions of embeddings obtained via unsupervised learning. The motivation
for explaining embedding dimensions is transferring the explainer module of TAGE to supervised learning
tasks. The performance of TAGE for generating explanations for problems where labeled data is not available,
such as similarity computations, has been so far left unexplored. In our work, we focus on evaluating
explanations of similarity in the unsupervised learning setting, which is the problem that has not been
explored in TAGE or any prior work on unsupervised learning on graphs, and has also been acknowledged
in comprehensive reviews in this area (Liu et al., 2023b; Xie et al., 2023).

Explaining graph neural networks. Graph neural networks (GNNs) are neural networks tailored to
the irregular structure of graphs, that are able to learn representations of a node in a graph taking into
consideration arbitrary subgraphs around it (Zhou et al., 2020; Wu et al., 2021; Ye et al., 2022). A growing
number of methods have been proposed in the literature that provide explanations to predictions computed
by GNNs, in the form of edges and features responsible for a prediction (Yuan et al., 2023). Existing methods
assume a trained GNN and provide post hoc mechanisms for explaining their predictions (Ying et al., 2019;
Luo et al., 2020; Duval & Malliaros, 2021; Yuan et al., 2021; Muschalik et al., 2025), or propose methods
that are explainable a priori (Miao et al., 2022; Lee et al., 2023). Fundamentally, these methods focus on
devising mechanisms for explaining supervised tasks, such as node or graph classification. In our work, we
instead focus on how this problem differs from the task of node similarity, and how to evaluate such methods
for the respective task.

Orthogonally, approaches for data valuation have proposed methods for identifying how “valuable” certain
parts of a graph (e.g., nodes or edges) are for a GNN, which can be defined in terms of changes to its
learned weights (Chen et al., 2023); or its performance for node classification (Song et al., 2023; Chi et al.,
2025). Our goal is complementary to these works: rather than studying the effect of graph components on
GNN parameter updates or classification performance, we analyze how they influence the computation of
individual similarity scores. This constitutes a fundamentally different, label-free setting, where similarity is
a continuous quantity and standard notions of prediction correctness or task utility are not as well defined
as in accuracy metrics for node classification.

More recently, Piaggesi et al. (2025) proposed metrics for evaluating the interpretability of unsupervised
node embeddings. These metrics are designed to assess the semantic structure of the latent space produced
by a specific representation learning method, and require ground-truth graph annotations (e.g., communities
or motifs). In contrast, our objective is not to evaluate embeddings but rather to evaluate explanations of
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similarity scores produced by arbitrary GNNs. Our metrics are model-agnostic and operate by measuring
the effect of graph interventions; therefore, they quantify the quality of explanations when defined over
the structure of the graph rather than the embedding space. As such, the two sets of metrics address
complementary but fundamentally different questions.

Knowledge graph embeddings and entity similarity. Knowledge graph embeddings are representa-
tions of entities and relation types, which are commonly trained for the link prediction task (Nickel et al.,
2016; Wang et al., 2017b): Given a query entity and a relation, the embeddings are used to predict a target
entity that is likely to form a valid triple with the query entity and relation. KG embeddings have been
applied in similarity computations via functions like cosine similarity or the dot product (Liu et al., 2019;
Yamada et al., 2020; Gerritse et al., 2020; Daza et al., 2021; Khan et al., 2022), which are not designed to
be explainable.

Prior work has explored the problem of explainability for KG embeddings. Some methods have proposed
learning embeddings with a predefined structure, such as a set of interpretable concepts (Chandrahas et al.,
2020; Xie et al., 2017; Zhang et al., 2021), or via sparsity constraints (Zulaika et al., 2022). The result is an
embedding space, where it is possible to identify distinct semantic regions, e.g., “professions” or “cities”. This
differs from the problem of grounding similarities computed between pairs of entities on known attributes of
the entities, which is the focus of our work.

In several other works, given an existing set of KG embeddings trained for link prediction, explanations
have takem the form of a subset of supporting triples (Zhang et al., 2019; Pezeshkpour et al., 2019; Betz
et al., 2022; Rossi et al., 2022), paths (Gusmão et al., 2018), or Horn rules (Gad-Elrab et al., 2020). While
there is empirical evidence for KG embeddings being able to capture notions of similarity (Gad-Elrab et al.,
2020), some works have suggested that the link prediction objective is sub-optimal for this task (Ristoski &
Paulheim, 2016; Cochez et al., 2017; Ristoski et al., 2019). This motivates our use of GNNs that operate
directly on node features and subgraphs, which can serve as explanations for predicted similarity scores.

Another line of work (Petrova et al., 2017; 2019) focused on identifying the reasons behind the similarity
of two given entities by extracting SPARQL queries, which have both of the entities as answers. However,
unlike in our proposal, in (Petrova et al., 2017; 2019) the authors did not aim at explaining the similarity
scores computed by a machine learning method, but rather exclusively relied on the graph structure.

3 Learning and explaining similarities

Let G = (A, X) be a graph with n nodes, where A is an n × n adjacency matrix with Aij = 1 if nodes i and
j are connected, and 0 otherwise, and X ∈ Rn×m is a feature matrix, where the i-th row xi contains the
m-dimensional feature vector of the node i. In the following sections, we discuss the problems of learning
representations of nodes for the similarity task, and our proposals on how similarity scores can be explained.

3.1 Learning representations for similarity

Graph neural networks have become a standard architecture for processing graph-structured data, due to
their ability to incorporate arbitrary neighborhoods around a node (Kipf & Welling, 2017; Gilmer et al.,
2017; Xu et al., 2019; Maron et al., 2019; Corso et al., 2020). They can easily be extended to graphs with
rich edge features and multimodal data (Schlichtkrull et al., 2018; Saqur & Narasimhan, 2020; Galkin et al.,
2020; Ektefaie et al., 2023). Furthermore, the fact that GNNs implement an explicit function that maps
node neighborhoods and features to an embedding offers the opportunity for determining which parts of the
input are responsible for a certain output. This is a desirable property when explaining computations such
as similarity scores.

A prominent example of a graph neural network is the Graph Convolutional Network (GCN) (Kipf & Welling,
2017). A single layer of the GCN implements the following propagation rule:

GCN(X, A) = σ
(
ÃXΘ

)
, (1)
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where Ã is the normalized adjacency matrix, Ã = D̂− 1
2 ÂD̂− 1

2 . Let In be the n × n identity matrix. Then
Â = A + In is the adjacency matrix, adding self-loops, and D̂ is the degree matrix after adding self loops,
such that D̂ii =

∑
j Âij .

The weight matrix Θ in Eq. 1 contains the parameters of the layer to be learned during training. When
composing together multiple GCN layers, we obtain a function fθ(X, A) = Z ∈ Rn×d that maps each node
and its features to an embedding, conditioned on the features of nodes in its neighborhood.

We approach the problem of training a GNN to learn node embeddings from the perspective of unsupervised
learning: In the absence of labeled data containing ground-truth similarity information, we resort to methods
that learn node embeddings by capturing patterns existing in the graph, such as communities or structural
roles (Hamilton et al., 2017a). The resulting node embeddings are vectors zi ∈ Rd, with i = 1, . . . n, where
such patterns are preserved by the geometry of the space. This allows us to address the problem of similarity
search for a given query node i, by ranking the rest of the nodes in the graph according to a function such
as cosine similarity:

y(i, j) = z⊤
i zj

∥zi∥∥zj∥
, (2)

where j = 1, . . . , n and ∥zi∥ is the ℓ2-norm of zi.

Several methods are available in the literature for unsupervised learning on graphs (Hamilton et al., 2017a;
Liu et al., 2023b; Ju et al., 2023). Examples include Graph Autoencoders and Variational Graph Autoen-
coders (Kipf & Welling, 2016), which optimize node embeddings so that they are able to reconstruct the
adjacency matrix; Deep Graph Infomax (Velickovic et al., 2019), that learns node embeddings by maximizing
the mutual information between them and a summarized representation of the graph; and Graph Contrastive
Representation Learning (Zhu et al., 2020), which compares different views of a node by perturbing its neigh-
borhood and features.

3.2 Explaining GNNs

The success of GNNs at various tasks has been accompanied by increased interest in explaining the predictions
they provide (Yuan et al., 2023). Informally, methods for explaining GNNs aim to determine i) which parts
of the input graph G = (X, A) are responsible for a particular prediction, and ii) how they are responsible.
The mechanisms used to answer these questions vary with each method.

A recent survey (Yuan et al., 2023) classifies methods for explaining GNNs into two main groups: instance-
level and model-level methods. Instance-level methods produce a distinct explanation for a particular pre-
diction (such as the label predicted for a specific node in the graph), while model-level methods aim to
understand the behavior of the GNN under different inputs. Since we are interested in explaining similarity
scores computed for specific pairs of nodes, we focus on the class of instance-level explanations.

Examples of instance-level methods are perturbation methods and gradient-based methods (Yuan et al.,
2023). They represent an explanation as an assignment of values to parts of the input (for example, edges
in the graph or node features), where the values indicate a degree of importance for computing the output
of the GNN, as we illustrate in Fig. 1. In this work, the parts of the inputs to the GNN that we consider for
explanations are edges between nodes, but our discussion can be easily extended to consider node features.

Formally, we assume that we have access to an already trained GNN. The output fθ(X, A) of the GNN is
used to compute a prediction y = g(fθ(X, A)), and we wish to compute an explanation for it that describes
the degree of influence of an edge in a prediction. For similarity search the prediction is the cosine similarity
between two specific node embeddings as defined in Eq. 2.

Explanations over edges in the graph can be defined as a function that maps a prediction to a matrix
M ∈ Rn×n containing explanation values for each of the (non-zero) entries of the adjacency matrix. For
the majority of perturbation methods, the explanation values in M lie in the interval [0, 1], and they can
be interpreted as a mask, where values of 1 indicate relevant edges and 0 irrelevant ones. Gradient-based
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methods, on the other hand, are unconstrained, providing explanation values over the real numbers that
not only carry the magnitude with which an edge influences a prediction, but also its direction (positive or
negative) via the sign of the gradient.

Given a matrix M of explanation values, a subset of the edges in the graph can be selected by defining an
explanation threshold t. The subset is defined by the entries in the adjacency matrix Aij such that Mij > t.
The meaning of the selected edges for an explanation of the similarity score depends on whether the matrix
is interpreted as a mask, or as a gradient.

Explaining node similarities. Prior work on explaining GNNs has primarily focused on supervised tasks
like node classification and link prediction (Yuan et al., 2023), where the goal is to justify a discrete output
label. In contrast, node similarity is a continuous, unsupervised quantity, and existing GNN explainers do
not come with criteria which a good similarity explanation should satisfy. To address this gap, we revisit
principles from the general explainable AI literature and adapt them to the problem of explaining similarity
scores. We identify a set of criteria that such explanations should meet and introduce metrics that allow us
to quantitatively evaluate them.

4 Criteria for explanations of similarity

Several works in the literature have highlighted the importance of explainability in artificial intelligence
systems, particularly when they face human users that could benefit from an understanding of their pre-
dictions (Ras et al., 2018; Mueller et al., 2019; Miller, 2019; Arrieta et al., 2020; Yang et al., 2023). These
works define a series of properties that explanations should have. For example, they should “produce details
or reasons to make its functioning clear or easy to understand’ ’ (Arrieta et al., 2020), they should be useful
for debugging algorithms (Yang et al., 2023), they should provide answers to why questions (Miller, 2019)
–e.g. why is this the similarity score?–; and they should have properties such as fidelity (how much the
explanation agrees with the input-output map of the prediction under explanation), low ambiguity, and low
complexity, among others (Ras et al., 2018). In the context of node similarity in GNNs, several explanation
methods assign a relevance value to each edge involved in the computation. We derive three criteria such
explanations should meet:

1. Actionable explanations. We can use the edges whose explanation value is above or below the
threshold t to make interventions in the graph that result in a predictable effect on the original similarity
score. This facilitates an understanding of the specific effect of some edges on the similarity score, and
follows requirements on understanding model decisions (Miller, 2019; Arrieta et al., 2020), interactivity via
interventions (Arrieta et al., 2020), model debugging (Yang et al., 2023), and fidelity (Ras et al., 2018).

2. Consistent explanations. Actionability alone does not guarantee that the two sides of the threshold
capture distinct explanatory behavior. An explanation can be actionable yet non-discriminative: both edges
above and below a threshold t may produce the same effect (e.g., both increase similarity). Thus explanations
should be consistent: the effect of keeping edges above the threshold is distinct from the effect of discarding
them. This implies that the explanations capture specific behaviors of the similarity under explanation,
indicating fidelity and low ambiguity (Ras et al., 2018).

3. Sparse explanations. Explanations should admit a principled reduction to a small subset, e.g.,
selecting the smallest subset that preserves 90% of the effect attributed to the intervention. This does not
follow from actionability or consistency, as an explanation may satisfy both yet distribute its effect uniformly
across many edges, making it impossible to reduce. Sparsity, therefore, captures the compressibility of an
explanation while maintaining the effects that define its actionability and consistency. This leads to simpler,
parsimonious explanations (Ras et al., 2018) that users can interpret (Miller, 2019).

We now introduce concrete, intervention-based metrics that operationalize these criteria and allow us to
evaluate explanation methods quantitatively.
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4.1 Metrics for intervention-based evaluation

Given a trained GNN fθ, we evaluate the properties of explanations for node similarities by measuring
quantities that assess changes in the similarity score, after performing interventions in the graph on the
basis of the explanation. More concretely, let (i, j) be a pair of nodes in the graph. Given the set of node
embeddings Z = fθ(X, A), we select the embeddings of i and j from it and compute the cosine similarity
y(i, j) as defined in Eq. 2. The explanation method is then executed on this value, which results in an
explanation matrix M.

Given M, we compute two matrices Ma and Mb that select values above or below a threshold t, respectively,
such that

Ma,ij = Mij if Mij ≥ t else 0 (3)
Mb,ij = Mij if Mij < t else 0, (4)

where the threshold for GNNexplainer is 0.5 and 0 for Gradient Based (GB) methods.

We use these matrices to intervene in the graph, by computing the element-wise multiplication of these
matrices with the adjacency matrix, and re-computing the node embeddings, which yields

Za = fθ(X, A ⊙ Ma) (5)
Zb = fθ(X, A ⊙ Mb). (6)

Given these embeddings, we then re-compute the similarity scores, which for each case we denote as ya(i, j)
and yb(i, j) respectively.

Measuring actionability. Based on these new similarity scores, we first compute a fidelity metric (Ribeiro
et al., 2016), which measures the change in the similarity score after the intervention with respect to the
original similarity score:

Fida = ya(i, j) − y(i, j) (7)
Fidb = yb(i, j) − y(i, j) (8)

Positive values of Fida and Fidb indicate an increase in similarity, negative values a decrease. If either
intervention produces effects in a predictable direction, the explanation is actionable. Importantly, Fida

and Fidb capture absolute, independent changes, and they do not reveal how the two interventions relate.

Measuring consistency. To evaluate whether explanations induce distinct effects above vs. below the
threshold, we consider only the signs of the fidelity values. For each node pair, we count a1: times where
Fida is positive; a2: times where Fida is negative; and b1 and b2 defined similarly for Fidb. We then define
the Effect Overlap (EO) as the generalized Jaccard similarity between these counts:

EO =
∑2

i=1 min(ai, bi)∑2
i=1 max(ai, bi)

. (9)

An explanation method with an EO of zero indicates that the effect observed in Fida is always positive, and
always negative in Fidb (or viceversa). This indicates that the effects are distinct and thus the explanations
are consistent. The maximum value of EO is 1 and it occurs if the effect is always positive or always negative,
leading to an undistinguishable effect. Values between 0 and 1 indicate partial overlap.

EO thus resolves a limitation of fidelity: even if both Fida and Fidb suggest actionability, EO determines
whether the two interventions imply complementary effects on node similarity.

Measuring sparsity. Sparsity evaluates whether an explanation can be reduced to a smaller subset of
edges while preserving the intervention effects that determine actionability and consistency. Given the
explanation matrix M and the thresholded masks Ma and Mb, we simulate different sparsity levels by
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removing a fraction s ∈ [0, 1] of the least relevant edges: in Ma we drop the smallest s-fraction of nonzero
values, and in Mb we drop the largest s-fraction. We then recompute the same fidelity and effect-overlap
metrics across increasing values of s.

An explanation satisfies the sparsity criterion if its actionable and consistent behaviors are preserved as s
increases, indicating that the explanatory signal can be concentrated in a compact subset of edges.

5 Experiments

In our experiments, we aim to evaluate the proposed criteria and metrics in practice. To demonstrate this,
we apply our framework to representative explanation methods from two major families of methods in the
related work: mutual-information methods and gradient-based methods.

5.1 Explainability methods

5.1.1 Mutual information methods

A common approach for identifying explanations for GNNs consists of determining what edges are relevant
for computing a prediction, by relying on the concept of Mutual Information (MI)(Ying et al., 2019; Luo
et al., 2020; Wang et al., 2021; Miao et al., 2022). Existing works have proposed explaining a prediction
y = g(fθ(X, A)) by finding a subgraph from the original graph that has high mutual information with the
prediction. This implies that only a region of the graph is relevant for computing a prediction, whereas the
rest can be discarded without affecting it. This mechanism for finding an explanation can be formalized by
assuming that the matrix M of explanation values is a sample of a random variable M with values in {0, 1},
and then maximizing the mutual information between the original prediction (now a random variable Y )
and the prediction after “masking” the adjacency matrix with the values in M :

max
M

I(g(fθ(X, A); g(fθ(X, A ⊙ M)), (10)

where ⊙ indicates element-wise multiplication.

In practice, the problem in Eq. 10 is not tractable. Instead, an approximation leads to the problem of finding
a matrix that minimizes the cross-entropy loss (Ying et al., 2019):

MMI := arg min
M

−EY [log p(Y |X, A ⊙ M)] (11)

This problem is solved by randomly initializing MMI and updating it via gradient descent in the direction
that minimizes the cross-entropy loss (Ying et al., 2019; Luo et al., 2020; Miao et al., 2022).

Interpreting the explanation matrix. Given the formulation of MI-based methods for explaining
GNNs, entries of MMI with a value of 1 indicate edges that are relevant for the prediction, and 0 if they are
irrelevant. When the matrix contains values in the continuous interval [0, 1], an appropriate threshold for
selecting or discarding edges is then t = 0.5.

In our experiments, we employ GNNExplainer (Ying et al., 2019) as an instance of MI methods.

5.1.2 Gradient-based methods

An early approach for identifying parts of the inputs relevant for a prediction computed by a neural network
is to compute the gradient of the output with respect to the input (Simonyan et al., 2014; Shrikumar et al.,
2017; Selvaraju et al., 2017; Sundararajan et al., 2017). This is motivated by the fact that the gradient
indicates the direction and rate with which the outputs change with respect to the inputs.

In gradient-based (GB) methods, the extension of this approach to explaining GNNs is natural: the expla-
nation matrix is equal to the gradient of the prediction with respect to the adjacency matrix,

MGB := ∇Ag(fθ(X, A)). (12)
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Relying on the gradient alone might become problematic in deep neural networks using non-linearities like
the ReLU activation function, whose derivative is zero over half of its domain. To address this issue, more
advanced methods based on the gradient have been proposed, such as Guided Backpropagation (Springen-
berg et al., 2015), which ignores zero gradients, or Integrated Gradients (Sundararajan et al., 2017), which
computes the total change from different values of the gradient, rather than relying on a single gradient.

Interpreting the explanation matrix. The values in the explanation matrix MGB are unconstrained,
and they can take positive or negative values, depending on the sign of the gradient. This means that for
each edge in the graph, GB explanations provide a magnitude and direction of influence. In this case, an
appropriate threshold for selecting or discarding edges is t = 0.

When explaining predictions of node similarity, the (i, j) entry of the explanation matrix indicates i) how
much the presence of an edge between nodes i and j influences the similarity score, via the magnitude of the
gradient, and ii) the direction of influence –positive or negative– via the sign. Unlike explanations from MI
methods, we note that GB explanations are therefore more fine-grained, by providing additional information
about how inputs affect changes in similarity scores.

In our experiments with GB methods, we consider direct gradient computation with respect to the adjacency
matrix (as defined in Eq. 12), and Integrated Gradients (Sundararajan et al., 2017).

5.2 Node embedding methods

We implement the following unsupervised methods for learning node embeddings: Graph Autoencoders
(GAE) and Variational Graph Autoencoders (VGAE) (Kipf & Welling, 2016), Deep Graph Infomax
(DGI) (Velickovic et al., 2019), and Graph Contrastive Representation Learning (GRACE) (Zhu et al., 2020).
We use them to train a 2-layer GCN (Kipf & Welling, 2017) as defined in Eq. 1. We tune hyperparameters
via grid search, selecting the values with the lowest training loss.

5.3 Datasets

We run experiments with six graph datasets of different sizes and domains: Cora, Citeseer, and Pubmed (Sen
et al., 2008; Namata et al., 2012; Yang et al., 2016) are citation networks from the computer science and
medical domains, where each node corresponds to a scientific publication and an edge indicates that there
is a citation from one publication to another. These graphs are known to exhibit high homophily: similar
nodes (such as publications within the same field) are very likely to be connected (McPherson et al., 2001).

To consider graphs with different structural properties, we also carry out experiments with heterophilic
graphs where connected nodes are not necessarily similar. Chameleon and Squirrel are graphs obtained from
Wikipedia, where each node is a web page and an edge denotes a hyperlink between pages (Rozemberczki
et al., 2021). Actor is a graph where each node is an actor, and an edge indicates that two actors co-occur
on a Wikipedia page (Tang et al., 2009). Furthermore, we also experiment with the DBpedia50k knowledge
graph (Shi & Weninger, 2018), a subset of the DBpedia knowledge graph (Auer et al., 2007). The DBpedia50k
graph does not contain node features, therefore for this dataset we also train input node embeddings for the
GNN. Statistics of all datasets is presented in Table 1.

5.4 Results

We present the results of the fidelity (Equation (7) and Equation (8)) and effect overlap (Equation (9))
metrics in Tables 2 for the homophilic and heterophilic graphs, and Table 3 for DBpedia50k. We denote
GNNExplainer as MI, directly using the gradient as GB1, and Integrated Gradients as GB2.

GB explanations are actionable. The values of Fida and Fidb for GB methods show that across all
unsupervised learning methods and datasets, keeping edges above the explanation threshold always results in
an increase of the similarity score, while keeping the edges below the threshold always results in a lower score.
This means that GB explanations are actionable, as they allow interventions that result in a predictable
effect on the similarity score. Relying on these explanations would allow to determine what edges contribute
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Table 1: Statistics of graphs used in our experiments.

Dataset Nodes Edges Features
Cora 2,708 5,429 1,433
Citeseer 3,327 4,732 3,703
Pubmed 19,717 44,338 500
Chameleon 2,277 36,101 2,325
Actor 7,600 33,544 931
Squirrel 5,201 217,073 2,089
DBpedia50k 30,449 57,161 N/A

Table 2: Results of fidelity metrics (Fida and Fidb) and effect overlap (EO, lower is better) when applying
different explanation methods to multiple unsupervised learning methods and graphs. As explanation meth-
ods we consider GNNExplainer (Ying et al., 2019) (MI), and two gradient-based methods based on direct
computation of the gradient (GB1), and Integrated Gradients (Sundararajan et al., 2017) (GB2).

Cora Citeseer Pubmed Chameleon Actor Squirrel
Method Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO

GAE
MI 0.133 0.019 0.451 0.130 0.029 0.406 0.136 0.202 0.532 0.292 0.353 0.531 0.134 0.209 0.521 0.386 0.357 0.411
GB1 0.118 -0.076 0.033 0.114 -0.026 0.129 0.236 -0.064 0.141 0.355 -0.107 0.125 0.442 -0.146 0.120 0.520 -0.126 0.160
GB2 0.279 -0.067 0.013 0.366 -0.025 0.098 0.443 -0.144 0.011 0.718 -0.180 0.030 0.555 -0.392 0.008 0.755 -0.317 0.038

VGAE
MI 0.103 0.039 0.504 0.156 0.004 0.397 0.140 0.149 0.502 0.311 0.403 0.540 0.142 0.176 0.506 0.363 0.399 0.450
GB1 0.149 -0.087 0.045 0.078 -0.054 0.049 0.250 -0.121 0.098 0.412 -0.156 0.105 0.423 -0.203 0.081 0.577 -0.172 0.150
GB2 0.392 -0.075 0.007 0.185 -0.045 0.023 0.418 -0.180 0.017 0.781 -0.218 0.030 0.522 -0.386 0.009 0.766 -0.400 0.042

DGI
MI 0.015 0.032 0.546 0.039 0.029 0.568 0.061 0.008 0.452 0.322 0.441 0.539 -0.009 -0.000 0.552 0.142 0.162 0.561
GB1 0.218 -0.118 0.060 0.105 -0.084 0.082 0.023 -0.055 0.254 0.515 -0.196 0.326 -0.009 -0.012 0.511 0.119 -0.400 0.277
GB2 0.283 -0.161 0.053 0.149 -0.122 0.056 0.029 -0.043 0.182 0.399 -0.299 0.288 -0.087 -0.373 0.491 0.216 -0.449 0.273

GRACE
MI 0.076 0.007 0.536 0.102 0.010 0.475 0.222 0.096 0.513 0.254 0.132 0.535 0.016 -0.185 0.511 0.112 0.020 0.594
GB1 0.142 -0.057 0.016 0.113 -0.030 0.062 0.182 -0.016 0.158 0.338 -0.149 0.022 0.124 -0.262 0.155 0.253 -0.276 0.046
GB2 0.155 -0.071 0.017 0.140 -0.028 0.063 0.235 -0.041 0.052 0.382 -0.154 0.055 0.012 -0.443 0.217 0.133 -0.382 0.151

to increase (or decrease) in the score, and to interact with them by re-computing the similarity score with
the knowledge provided by the explanation. This property is not observed with GNNExplainer, where the
effect of keeping edges above the threshold is not clear, and certain patterns seem to depend on factors such
as the model used to learn the embeddings, and the dataset. For example, for GAE and VGAE embeddings,
keeping the edges above the threshold increases the similarity score more than keeping the edges below the
threshold on Cora and Citeseer, but the opposite happens in the remaining datasets.

GB explanations are consistent. GB methods result in the lowest effect overlap across all learning
methods and datasets. In the majority of the cases the overlap is around 0.1 or lower, indicating that the
effect of keeping edges above the threshold is distinct from the effect of keeping the edges below the threshold,
thus showing that GB explanations are consistent. Interestingly, this behavior is not as clear when using
DGI embeddings on the heterophilic datasets (Chameleon, Actor, and Squirrel), where the overlap increases.
This could be an effect of how the performance of DGI degrades in heterophilic graphs (Xiao et al., 2022),
lowering the quality of its embeddings in graphs with these properties and thus becoming sensitive to the
interventions required to compute the fidelity and effect overlap metrics. In the case of GNNExplainer, in
the majority of the cases, the effect overlap is around 0.4 or even larger than 0.5, indicating that in almost
half of the cases keeping the edges above the threshold increases the score, and in the other half the score
decreases. We thus cannot rely on its explanations for a consistent effect on similarity scores.

We present further extended results in Appendix A, where we experiment with four additional GNN archi-
tectures. These results are consistent with our prior observations, while also showing that in some cases
overlap can be low while actionability is limited, indicating the importance of assessing jointly our proposed
metrics for explaining node similarities.
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Table 3: Results of fidelity metrics (Fida and Fidb) and effect overlap (EO, lower is better) when applying
different explanation methods to multiple unsupervised learning methods on the DBpedia50k knowledge
graph.

DBpedia50k
Method Fida Fidb EO

GAE
MI 0.057 -0.073 0.564
GB1 0.148 -0.190 0.050
GB2 0.149 -0.213 0.028

VGAE
MI 0.059 -0.054 0.614
GB1 0.149 -0.185 0.059
GB2 0.182 -0.187 0.037

DGI
MI -0.035 -0.044 0.618
GB1 0.107 -0.189 0.065
GB2 0.121 -0.215 0.030

GRACE
MI -0.120 -0.002 0.541
GB1 0.055 -0.071 0.043
GB2 0.033 -0.081 0.046

Sparse GB explanations preserve effects. We next evaluate whether explanations preserve their prop-
erties when made increasingly sparse. Since previous experiments showed that Integrated Gradients yields
actionable and consistent explanations, we focus our study on this method.

To carry out this study, instead of taking all values of the explanation matrix above the threshold (as outlined
in Eqs. 3 and 4), we drop a fraction s of the smallest values in Ma, and a fraction s of the largest values in
Mb, where s is the sparsity level taking values in the interval [0, 1]. When s = 0 all values in the explanation
matrix are used, and we obtain the results previously described in Table 2. As s increases, only the edges
with the largest or the smallest values are kept in Ma and Mb.

We compute the fidelity and effect overlap metrics for different values of sparsity from 0 up to 0.9 with
increments of 0.1, when using GAE to learn embeddings. The results are shown in Fig. 2. We observe that
the actionable and consistent properties of GB explanations remain almost constant across all datasets. This
implies that when obtaining GB explanations, we can further reduce the set of edges in the explanation by up
to 90%, and the different effects on the similarity scores will be preserved. This is beneficial for applications
in which a more compact explanation is desired.

Examples. We present concrete examples of the explanations obtained by GNNExplainer and Integrated
Gradients in Fig. 3. For this case study, we train node embeddings using GAE on the DBpedia50k knowledge
graph (Shi & Weninger, 2018). We then select the most relevant edges according to the explanation values
assigned by each method. We consider two entities in the graph: Lilium and Dendrobium, which are two
genera of flowering plants. Their similarity is reflected in a cosine similarity value of 0.705. We denote the
effect attributed to each edge with colors, with blue indicating an increase in the similarity, red a decrease,
and gray indicating little or no effect. When we obtain explanations with GNNExplainer, we observe that
a few edges increase the similarity score, and none of them are in the 1-hop neighborhood of the entities,
where their similarities are apparent. Both entities belong to the Plant kingdom and the Flowering Plant
division. With gradient-based explanations, we observe that edges containing this information contribute to
the increase of the similarity score, with the highest contributions (illustrated with the thickness of the edges)
assigned to the relationships with Plant and Flowering Plant. Conversely, this analytical framework also
enables the identification of specific informational elements that exert a negative influence on the calculated
similarity score, thereby facilitating diagnostic assessment of dissimilarity factors. Overall, we note that
gradient-based explanations are intuitive, by indicating both the magnitude and direction in which inputs
affect similarity scores.
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Figure 2: Influence of sparse explanations on fidelity metrics (Fida and Fidb) and effect overlap (EO),
evaluated with GAE embeddings across different datasets. At zero sparsity, all edges above (or below) the
explanation threshold are kept and used to compute the change in similarity scores Fida (or Fb), as well as
the effect overlap (EO). Larger values of sparsity indicate the fraction of edges discarded before computing
the change in similarity scores. Confidence intervals are shown indicating two standard deviations over 10
runs.

6 Conclusion

We have studied the problem of explaining node similarities computed by graph neural networks, a setting
relevant in practice but largely overlooked by prior work on GNN explainability. Building on principles from
explainable AI, we introduced criteria that explanations of similarity should satisfy, and we operationalized
them through intervention-based metrics. We have demonstrate the utility of our framework by applying
it to representative mutual-information and gradient-based methods. Our results reveal that unlike prior
results on supervised tasks like node classification (Ying et al., 2019; Luo et al., 2020; Yuan et al., 2023),
gradient-based methods are more suitable in the setting of node similarity, by providing explanations with a
predictable and consistent effect of increasing or decreasing similarity scores. Furthermore, we observe that
the complexity of the explanations can be reduced while maintaining their desirable properties.

In this work, we focused on evaluating explanation methods based on how graph interventions derived from
them affect similarity scores. An additional important aspect to be taken into account in the practical choice
of an explanation method is its computational complexity. Gradient-based explanations require computing
the gradient of a scalar similarity score with respect to the input graph, which amounts to a single backward
pass through the GNN and scales linearly with the size of the graph up to constant factors. In contrast,
mutual-information–based methods such as GNNExplainer rely on an iterative optimization procedure that
repeatedly evaluates and differentiates the GNN over multiple steps, making them strictly more expensive in
practice. While computational cost was not the main focus of our empirical study, it represents an additional
criterion that may further favor gradient-based explanations in large-scale similarity search settings.

Beyond the specific methods examined here, our criteria and evaluation methodology offer a general founda-
tion for evaluating explanations of similarity on graphs. They can inform the development of new methods
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(b) Gradient-based explanation.

Figure 3: Example of explanations provided by GNNExplainer (3a) and Integrated Gradients (3b) for the
similarity computed between two entities in the DBpedia50k knowledge graph: Lilium and Dendrobium, two
genera of flowering plants. Edge thickness indicates magnitude, while the color of the edges is associated
with the score, i.e., blue edges reflect the score increase, red edges decrease, and gray edges have little effect.

for node similarity, and the design of methods that are explainable a priori. Moreover, based on our proposed
methodology, further explainers (e.g., PGExplainer Luo et al. (2020), SubgraphX Yuan et al. (2021), PGM-
Explainer Vu & Thai (2020)) could be analyzed, which is an interesting direction left for future research.

While we focused on cosine similarity, as it is the standard choice for fast dense similarity search over learned
embeddings, our proposed intervention-based metrics are not specific to cosine similarity. They only require
a similarity function defined over node embeddings, and can be applied to alternatives such as Euclidean
distance without modification. The intervention logic, which measures how explanations predictably affect
similarity under controlled graph perturbations, remains the same. We expect the qualitative behavior
observed in our study to extend to other commonly used similarity measures without modification. We
view these directions as promising avenues for future work.
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Table 4: Results of fidelity metrics (Fida and Fidb) and effect overlap (EO, lower is better) when using an
SGC (Wu et al., 2019) as the base GNN architecture.

Cora Citeseer Pubmed Chameleon Actor Squirrel
Method Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO

GAE
MI 0.020 -0.005 0.916 0.185 0.006 0.832 0.090 0.231 0.978 0.231 -0.069 0.668 0.161 -0.053 0.676 0.042 0.250 0.892
GB1 0.049 -0.036 0.067 0.075 -0.048 0.050 0.214 -0.008 0.232 0.137 -0.191 0.034 0.253 -0.254 0.052 0.281 -0.005 0.251
GB2 0.060 -0.040 0.074 0.239 -0.033 0.049 0.433 -0.120 0.012 0.185 -0.169 0.117 0.209 -0.221 0.095 0.561 -0.233 0.010

VGAE
MI 0.072 0.135 0.957 0.179 0.010 0.880 0.066 0.265 0.797 0.312 -0.041 0.678 0.225 -0.044 0.733 -0.014 0.346 0.516
GB1 0.177 -0.060 0.105 0.098 -0.044 0.076 0.261 -0.043 0.206 0.233 -0.283 0.030 0.362 -0.387 0.039 0.355 0.013 0.307
GB2 0.539 -0.063 0.015 0.280 -0.035 0.072 0.479 -0.166 0.017 0.289 -0.245 0.065 0.315 -0.324 0.098 0.603 -0.324 0.018

DGI
MI 0.018 0.000 0.955 -0.079 0.005 0.350 -0.089 -0.027 0.417 -0.010 0.134 0.374 0.017 0.042 0.479 0.008 -0.015 0.823
GB1 0.017 -0.010 0.015 -0.013 -0.104 0.353 -0.112 -0.096 0.914 0.209 -0.213 0.110 0.088 -0.053 0.055 -0.208 -0.287 0.682
GB2 0.018 -0.011 0.006 -0.085 -0.338 0.527 -0.110 -0.218 0.553 0.310 -0.261 0.125 0.079 -0.059 0.068 -0.265 -0.403 0.650

GRACE
MI 0.007 -0.005 0.837 0.010 -0.002 0.908 0.118 0.106 0.729 0.140 -0.017 0.813 -0.066 -0.064 0.953 0.075 -0.008 0.608
GB1 0.047 -0.040 0.074 0.030 -0.021 0.095 0.115 -0.045 0.162 0.098 -0.107 0.033 0.095 -0.244 0.027 0.070 -0.064 0.262
GB2 0.057 -0.047 0.050 0.041 -0.024 0.085 0.221 -0.060 0.045 0.124 -0.104 0.047 0.015 -0.321 0.200 0.080 -0.189 0.185

A Additional results

Our main experimental results are aimed at investigating the effect of the metrics we proposed over different
embedding learning algorithms and datasets, when the architecture is designed from GCN layers (Kipf &
Welling, 2017).

To determine whether our results generalize to other architectures, here we present extended results where
we repeat the experiments using four additional architectures: SGC (Wu et al., 2019), a simplified variant
of the GCN that reformulates message passing in multi-layer GNNs as a single matrix multiplication with
powers of the adjacency matrix; GraphSAGE (Hamilton et al., 2017b), which for a given node, concatenates
embeddings of the node from previous layers during the neighborhood aggregation process (in contrast to
the GCN which mixes only embeddings from the same layer); MixHop (Abu-El-Haija et al., 2019), which
is designed to capture higher-order patterns by computing at each layer representations from powers of the
adjacency matrix; and R-GCN (Schlichtkrull et al., 2018), a variant of the GCN that learns different weight
matrices for heterogeneous relation types that arise in knowledge graphs.

We present results with SGC in Table 4, GraphSAGE in Table 5, and MixHop in Table 6. On the DBPedia50k
knowledge graph, we present additional results using these three architectures plus the R-GCN in Table 7.
The extended results indicate that the behaviour observed with our proposed metrics remains under changes
in the architecture in the majority of cases: gradient-based explanations are actionable, as interventions
based on them produce predictable effects on the score (either increasing it or decreasing it); and they are
consistent, as these effects are distinct, which is demonstrated by the low effect overlap.

A special case is found in the combination of DGI as a learning algorithm, and GraphSAGE as the base
GNN (shown in Table 5). Here we note that in virtually all cases, any intervention results in decreasing the
similarity between two nodes (denoted by the negative values of Fida and Fidb) but the magnitude of changes
is larger when using gradient-based explanations, resulting in higher actionability. In contrast, the mutual
information (MI) method results in smaller changes, thereby indicating low actionability. In spite of this,
the MI method results in lower overlap in several cases, indicating higher consistency than gradient-based
methods.

We conclude that EO must be interpreted jointly with fidelity: the lower EO of MI here follows from
near-zero effects, whereas gradient-based explanations result in substantially stronger interventions (higher
actionability) even though their effects are not sign-separated, which raises EO. Despite occasional cases
where MI attains lower EO, gradient-based explanations are preferable for similarity explanation because
they provide stronger, controllable interventions; MI’s improved overlap in this regime is largely explained by
its limited impact on the similarity score. This suggests that on DGI+GraphSAGE, the similarity function
is globally fragile (interventions mostly reduce similarity), making sign-based separation difficult for any
explainer despite differences in actionability.
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Table 5: Results of fidelity metrics (Fida and Fidb) and effect overlap (EO, lower is better) when using
GraphSAGE (Hamilton et al., 2017b) as the base GNN architecture.

Cora Citeseer Pubmed Chameleon Actor Squirrel
Method Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO

GAE
MI 0.000 0.002 0.496 0.001 0.000 0.724 0.081 0.074 0.908 0.036 0.029 0.720 0.060 0.031 0.810 0.037 0.037 0.969
GB1 0.012 -0.008 0.159 0.024 -0.022 0.149 0.171 -0.041 0.234 0.082 -0.038 0.103 0.094 -0.035 0.235 0.144 -0.083 0.113
GB2 0.019 -0.014 0.080 0.030 -0.026 0.083 0.264 -0.130 0.046 0.123 -0.050 0.070 0.194 -0.075 0.105 0.188 -0.121 0.028

VGAE
MI 0.057 0.061 0.892 0.056 0.058 0.832 0.079 0.121 0.944 0.041 0.035 0.898 0.097 0.085 0.967 0.035 0.043 0.919
GB1 0.116 -0.037 0.103 0.091 -0.021 0.137 0.202 -0.020 0.269 0.151 -0.082 0.106 0.232 -0.077 0.177 0.158 -0.106 0.116
GB2 0.183 -0.058 0.026 0.168 -0.042 0.082 0.343 -0.142 0.053 0.257 -0.126 0.022 0.338 -0.157 0.068 0.208 -0.154 0.030

DGI
MI -0.105 -0.236 0.720 -0.038 -0.365 0.626 0.005 -0.000 0.969 0.000 -0.027 0.708 0.013 -0.009 0.373 -0.038 -0.017 0.242
GB1 -0.303 -0.410 0.946 -0.464 -0.423 0.878 -0.651 -0.604 0.970 -0.276 -0.433 0.869 -0.133 -0.396 0.634 -0.148 -0.218 0.845
GB2 -0.475 -0.660 0.959 -0.420 -0.783 0.672 -0.170 -0.213 0.953 -0.385 -0.627 0.901 -0.317 -0.556 0.807 -0.251 -0.365 0.862

GRACE
MI 0.001 -0.002 0.754 -0.004 -0.002 0.676 -0.013 -0.004 0.459 0.027 -0.002 0.576 0.016 -0.005 0.556 -0.001 -0.000 0.645
GB1 0.023 -0.024 0.079 0.010 -0.016 0.075 0.036 -0.056 0.087 0.050 -0.043 0.057 0.054 -0.064 0.045 0.080 -0.108 0.085
GB2 0.029 -0.028 0.046 0.011 -0.017 0.066 0.048 -0.061 0.026 0.071 -0.050 0.035 0.066 -0.077 0.026 0.107 -0.146 0.026

Table 6: Results of fidelity metrics (Fida and Fidb) and effect overlap (EO, lower is better) when using
MixHop (Abu-El-Haija et al., 2019) as the base GNN architecture.

Cora Citeseer Pubmed Chameleon Actor Squirrel
Method Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO Fida Fidb EO

GAE
MI 0.002 -0.002 0.558 0.013 0.003 0.604 0.080 0.165 0.912 0.069 -0.098 0.860 0.029 -0.038 0.932 0.057 0.048 0.878
GB1 0.047 -0.038 0.065 0.027 -0.016 0.098 0.198 0.047 0.428 0.113 -0.202 0.043 0.170 -0.198 0.052 0.239 -0.023 0.294
GB2 0.055 -0.042 0.059 0.032 -0.018 0.117 0.363 -0.144 0.050 0.114 -0.226 0.071 0.152 -0.222 0.060 0.272 -0.230 0.033

VGAE
MI 0.011 -0.011 0.990 0.006 -0.004 0.908 0.088 0.279 0.942 0.112 0.086 0.921 0.171 0.130 0.800 0.101 0.111 0.784
GB1 0.079 -0.070 0.072 0.033 -0.029 0.148 0.248 0.026 0.355 0.268 -0.130 0.062 0.380 -0.119 0.119 0.272 0.035 0.420
GB2 0.083 -0.075 0.064 0.038 -0.027 0.167 0.425 -0.180 0.057 0.361 -0.170 0.021 0.499 -0.247 0.024 0.376 -0.291 0.031

DGI
MI -0.023 0.002 0.342 -0.031 0.011 0.386 0.065 0.023 0.757 0.004 0.006 0.596 -0.079 -0.010 0.370 0.000 -0.030 0.656
GB1 -0.142 -0.245 0.817 -0.211 -0.349 0.696 -0.037 -0.129 0.652 -0.003 -0.214 0.360 -0.227 -0.524 0.762 -0.303 -0.417 0.898
GB2 -0.070 -0.205 0.711 -0.169 -0.351 0.601 -0.019 -0.097 0.541 -0.009 -0.334 0.407 -0.032 -0.138 0.577 -0.212 -0.376 0.773

GRACE
MI -0.016 -0.024 0.590 -0.014 -0.010 0.584 -0.021 -0.026 0.567 -0.021 -0.033 0.608 -0.114 -0.091 0.587 -0.034 -0.069 0.742
GB1 0.032 -0.072 0.083 0.030 -0.051 0.153 0.006 -0.091 0.324 0.061 -0.149 0.077 0.027 -0.257 0.164 0.017 -0.120 0.211
GB2 0.031 -0.081 0.100 0.028 -0.058 0.142 0.012 -0.094 0.304 0.062 -0.156 0.086 -0.047 -0.308 0.382 0.008 -0.133 0.296

Table 7: Results of fidelity metrics (Fida and Fidb) and effect overlap (EO, lower is better) on the DBPedia50k
dataset, when using SGC (Wu et al., 2019), GraphSAGE (Hamilton et al., 2017b), MixHop (Abu-El-Haija
et al., 2019), and R-GCN (Schlichtkrull et al., 2018) as the base GNN architecture.

SGC GraphSAGE MixHop R-GCN
Method Fidp Fidn EO Fidp Fidn EO Fidp Fidn EO Fidp Fidn EO

GAE
MI 0.006 -0.112 0.914 0.013 -0.037 0.874 -0.029 -0.079 1.000 -0.014 -0.019 0.970
GB1 0.124 -0.172 0.089 0.051 -0.084 0.241 0.096 -0.166 0.127 0.095 -0.114 0.198
GB2 0.155 -0.184 0.129 0.094 -0.092 0.159 0.110 -0.211 0.087 0.116 -0.132 0.137

VGAE
MI -0.009 0.071 0.711 0.012 -0.052 0.833 0.005 -0.055 0.976 -0.014 -0.025 0.929
GB1 0.166 -0.128 0.153 0.067 -0.081 0.242 0.137 -0.172 0.083 0.071 -0.114 0.186
GB2 0.375 -0.160 0.114 0.081 -0.114 0.135 0.156 -0.206 0.041 0.089 -0.136 0.091

DGI
MI -0.037 0.273 0.252 -0.087 -0.017 0.753 -0.082 -0.020 0.239 -0.041 -0.054 0.850
GB1 0.264 -0.080 0.140 0.123 -0.324 0.357 -0.146 -0.213 0.843 0.057 -0.171 0.331
GB2 0.345 -0.113 0.095 0.093 -0.508 0.234 -0.095 -0.211 0.612 0.064 -0.215 0.230

GRACE
MI 0.010 -0.022 0.813 -0.001 -0.007 0.546 -0.015 -0.010 0.373 -0.022 -0.024 0.813
GB1 0.108 -0.083 0.058 0.017 -0.024 0.074 0.021 -0.043 0.085 0.077 -0.072 0.203
GB2 0.107 -0.089 0.048 0.019 -0.030 0.046 0.017 -0.045 0.099 0.057 -0.072 0.201
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