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Abstract

The multi-head attention mechanism, or rather the Transformer-based models have always been under
the spotlight, not only in the domain of text processing, but also for computer vision. Several works
have recently been proposed around exploring the token attributions along the intrinsic decision
process. However, the ambiguity of the expression formulation can lead to an accumulation of error,
which makes the interpretation less trustworthy and less applicable to different variants. In this work,
we propose a novel method to approximate token contributions inside Transformers. We start from
the partial derivative to each token, divide the interpretation process into attention perception and
reasoning feedback with the chain rule and explore each part individually with explicit mathematical
derivations. In attention perception, we propose the head-wise and token-wise approximations in
order to learn how the tokens interact to form the pooled vector. As for reasoning feedback, we
adopt a noise-decreasing strategy by applying the integrated gradients to the last attention map. Our
method is further validated qualitatively and quantitatively through the faithfulness evaluations across
different settings: single modality (BERT and ViT) and bi-modality (CLIP), different model sizes
(ViT-L) and different pooling strategies (ViT-MAE) to demonstrate the broad applicability and clear
improvements over existing methods.

1 Introduction

The Transformer (Vaswanti et al., [2017) and its variants (Dosovitskiy et al., |2021; [Devlin et al., 2019; [Brown et al.}
2020) take a leading place in the domain of natural language processing (NLP), where texts are firstly tokenized
into words or sub-words, identified as tokens, and then fed into the deep neural network. The main architecture of
Transformer consists of several attention blocks, where the query-relevant tokens are captured and combined to make a
new representation. With its huge success in NLP, more and more Transformer-based models have been proposed for
multiple tasks, such as image classification (Dosovitskiy et al., 2021}, object detection (Carion et al.,[2020), VQA (Antol
et al., 2015) and GQA (Hudson & Manning, |2019). For images, tokens are usually the patches which are uniformly
segmented (Dosovitskiy et al., 2021)), obtained with a shift window (Liu et al., 2021) or captured with an object
detector (Tan & Bansal, [2019;|Li et al., [ 2019).

Explaining how tokens are mixed and used inside the Transformer to make the final prediction can help a lot in
understanding, debugging and refining the model. Some classic interpretation methods can be applied with modifications
considering a Transformer literature, such as the input gradient based methods (Selvaraju et al., 2017;|Sundararajan
et al.,2017;|Smilkov et al.,2017). Regardless of their versatility for all differentiable models, the explanation results can
be noisy to certain extent, due to the saturation and vanishing of gradients caused by numerous non-linear components
in the deep models. Some attention-based explanation methods also have been proposed for the Transformers (Michel
et al., [2019; |Abnar & Zuidemal 2020; (Chefer et al.l 2021ajjb; Hao et al.| 2021)), despite the disputation about the
legitimacy of attentions being an explanation (Jain & Wallace, |2019; |Wiegreffe & Pinter, [2019; [Kobayashi et al.| [2020).
With more characteristics inside Transformer taken into account, these attention-based algorithms generally provide
more faithful explanation results than simply adopting the raw attentions.

However, existing attention-based Transformer explanation methods are built either on too strong assumptions, or
without clear theoretical frameworks. Rollout (Abnar & Zuidemal, [2020) takes skip connections into consideration
but ignores the existing effects of linear projections inside attention blocks (as detailed in Section[3.2)). Transformer
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Figure 1: With different ViT variants, we observe an accumulation of error for the intuitive interpretation method Generic
Attribution when the model gets deeper or adopts a global pooling strategy, which makes the results contradictory with
the model performances.

Attribution (Chefer et all [20214) and Generic Attribution (Chefer et al.,[2021b) combine the gradients with layer-wise
relevance propagation (Binder et al.,2016)) (LRP) or attention maps along a rolling out path, and eliminate the negative
components in each attention block. Though gradients in a way reflect the direct influence to the final objective,
involving them intuitively and masking the negatives in each attention block risk losing useful information from
relevance scores or attention maps.

In this work, we intend to bring up the potential risks of introducing the methods intuitively. The unidentified errors from
intuitive designs can be disclosed and magnified under different settings, causing the methods with good performances
in the vanilla models fail in explaining their variants. We show in Figure [T] some visualizations with Generic Attribution
to different types of Vision Transformers (Dosovitskiy et al., 2021} [He et al., [2022). In spite of its good performances in
explaining ViT-Base, the visualizations on other ViT variants show some contradictions to the models’ properties, where
the model with better performances (ViT-L) is visualized with a focus on less semantic pixels, and the explanation
results do not correspond with the semantics enhancement brought by the masked pretraining technique (ViT-MAE).
These contradictions decrease the trustworthiness of interpretation methods and make them less applicable to all
Transformer-based models.

Contributions. In order to explicitly explain how the model predicts and theoretically formalize the token interactions
inside Transformers, we introduce a novel explanation method with main contributions as following:

1) Based on the partial derivative of the loss function to each token, we propose a novel interpretation framework with
the chain rule, dividing the whole process into the Attention Perception and Reasoning Feedback, as shown in Figure 2]
We believe that this framework can inspire more interpretation methods with other approximation strategies.

2) In attention perception, we look into the relation between the input and output in each attention block and mathemati-
cally derive two recurrence formulas with our head-wise and token-wise attention maps, where the token-wise one
achieves 20x more accurate on average than Attention Rollout. By recurring from the first to the last attention block,
we reach the expression indicating the contributions of input tokens in the pooled vector before prediction head.

3) To validate the faithfulness of the proposed explanation algorithm, we follow the previous evaluation methods

et al|, 2017 [Vu et al.| 2019} [DeYoung et al, [2020), and compare ours with existing algorithms. The evaluation
settings cover different modalities, different sizes and different pooling strategies concerning Transformers, including
BERT-Base (Devlin et al.,[2019) for texts, ViT-Base (Dosovitskiy et al.} [202T)) for images, CLIP (Radford et al,[2021)

for bi-modality, ViT-Large (Dosovitskiy et al., 2021) for the large model, and VIT-MAE [2022) for the global
pooling strategy. Our approach outperforms other strong baselines (e.g., (Abnar & Zuidema) 2020} [Chefer et al.]

2021ajb)) through quantitative metrics and qualitative visualizations, and shows better applicability to various settings.
More analyses and ablation studies are also provided.

2 Related work

Transformer-based Models. For the first time being proposed by Vaswani et al.| (2017), the Transformer has been
rapidly and widely used for almost all kinds of deep learning tasks. A variety of derived methods (Dosovitskiy et al.,
2021}, [Devlin et al} 2019; [Brown et al} [2020; [Liu et al., 2019) has sprung up in recent years. These Transformer-based
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Figure 2: Illustration of our method with ViT (Dosovitskiy et al.,2021). We show how information propagates during
the decision process and explain the results with two sub-processes: Attention Perception and Reasoning Feedback.

models have become the state of the art in most of the NLP benchmarks and stepped in the domain of computer
vision as well (Dosovitskiy et al., 2021} [Liu et al., 2021). Vision Transformer (ViT) (Dosovitskiy et al., |2021)) takes a
sequence of image patches, regraded as tokens, into successive attention blocks and feeds the last class token [CLS] into
prediction head for downstream tasks. With its broad usage covering both image and text, the Transformer architecture
has been explored for a lot of bi-modal models, e.g., VisualBERT (Li et al.,2019), LXMERT (Tan & Bansal, 2019),
CLIP (Radford et al.,|2021) and VLM (Xu et al., 2021)). A single or dual self-attention/cross-attention based encoder is
used to get the representations of both text and image. Thus, being capable to explain the decision process of these
Transformer-based models is rather important for a deeper understanding and a refinement for better performance.

Explainability of Deep Models. Deep models are well known for their superb performance as well as their black-box
nature. Before Transformers, many explanation methods have been proposed to explain the deep models. For instance,
as a post-hoc local explanation method, LIME (Ribeiro et al., [2016) locally explains the deep model at a single
data point. Many methods based on gradients have also been proposed because of the differentiability of most deep
models. Smooth Gradient (SG) (Smilkov et al., 2017 and Integrated Gradient (IG) (Sundararajan et al.,[2017) are two
explanation algorithms to produce input gradient based saliency maps, through adding noisy inputs, or using the integral
respectively. More methods focus on specific model structures, e.g., CAM/Grad-CAM (Zhou et al.||2016; Selvaraju
et al.|[2017;Wang et al.||2020) for convolutional networks, GNNExplainer (Ying et al.,[2019) for graph neural networks,
and GAN dissection (Bau et al.| 2019) for generative adversarial networks.

Explainability for Transformers. Some Transformer-specific explanation methods have also been proposed recently,
especially towards the goal of better understanding the characteristic components inside. Previous studies (Bahdanau
et al.l 2015} Xu et al.| |2015; |Choi et al., 2016 show that raw attention maps can be used as explanations for attention-
based models. Considering the multi-head mechanism, Michel et al.| (2019) find that the contributions of heads vary
a lot from one to another, and therefore propose that pruning the unimportant heads has little impact to the model.
Attention Rollout (Abnar & Zuidemal 2020) assumes that the input tokens are linearly combined based on the attention
weights and takes the [CLS] token as explanations. Generic Attribution (Chefer et al.||2021b) generalizes the idea of
Rollout and adds the gradient information to each attention map, while Transformer Attribution (Chefer et al.,[2021a)
exploits LRP (Binder et al}2016)) and gradients together for getting the explanations.

3 Method

We start by recalling the concept of Multi-Head Self-Attention (MSA) blocks and introducing the setup of our problem.
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Preliminaries. We assume a Transformer-based model consisting of L blocks. The input of the model is a sequence of
N tokens. After the embedding module E, the tokens are turned into vectors of dimension D, with a special [CLS]
token at the top and a positional embedding E, o5 = [Epos,0; Epos,1; - - - ; Epos.n]. Let I be the [-th attention block
composed of layer normalisation, multi-head self-attention, skip connections and projection layers. We denote the input
of the block / as Z(*~1), and the output Z("). In this MSA block, the attentions A", defined as softmax(Q - KT //dy,),
capture the important tokens from a certain query and combines them to make an output. Here for self-attention, query
(Q), key (K) and value (V) are from trainable transformations of the same input data. Layer Normalisation (LN) (Ba
et al., |2016) re-scales the input for a single training case. The MLP module consists of two linear layers with an
activation function ReLU/GeLU in between. In brief, we have

ZO = [Xovs; X1E; XoF; ...; XNE] 4 Epoe, E ¢ RUXXD e RIWFIXD (1
ZO) = MSA(LN(Z(=Y)) 4 201, l=1,..,L , 2)
Z") = MLP(LN(ZW)) + 2O, l=1,..,L . 3)

Note that the MSA module operates on the sub-spaces of dimension Dj,, where h refers to the head index, and we have
H heads so that HD;, = D.

Most Transformers perform the classification task via the last [CLS] embedding, while some use global pooling
instead (He et al., 2022). In this section, we introduce our method particularly with [CLS] pooling, but the same
methodology can also be applied for other cases.

3.1 Token Attributions inside Transformers

Let £€ be the loss function while predicting class ¢ and X the input. The aim of our method is to obtain the importance
of each input token with respect to the decision process. Using the back-propagated gradients to the input % could
be an answer, but here we would like to study directly the entire attribution of each token, since the transformation from
the obtained high-dimensional explanation results to a single scalar which represents the contribution of each token
can bring unexpected noise. By formulating the input-output relations in attention blocks (details in Section [3.2)), we
propose a set B of vectors, ~ ~ ~

B={Xcws, X1,.--, XN} (G))
where each element represents the corresponding token. These basis vectors will be identified later in Eq.[T2] In this
way, we can rewrite the input vector X as X = (Zg, #1,...,Zn), where &g is the coordinate of Xcus and ; is the

aLe(X)

coordinate of X; fori € {1,..., N'}. Thus, we can define the attribution of the i-th token 55 -

From the chain rule, we develop 8%;(?() and denote ZEjLL)S the [CLS] token of the output in the last L-th attention block,

having

OLX) _0L(X) VZgls | OLNX)  AZips)s )
0oz 0N W(Zgl)s O

With , ZéLL)S can be rewritten under the basis B as (ZE;LL)S)IB = ng), indicating the attributions of each
input token to the last [CLS] before the prediction head. Here we make an approximation that 9L%(X) ~ 9£°X)  which

oPF T oAl
could be tenable for the cases where raw attentions can in a way represent the attributions in last [CLS] token. So we
c c a(zE oz
have M(S() ~ % Eﬁ) As for the second term %, we can have % =(0,..., P(()L-), ...,0).
A(Zg1s)m O0A;” T Z; i

Now plugging the above formulas into Eq.[5] we can compute the attribution of i-th token, which is

OL(X) _ OLY(X) 0(B&s)s _ OL(X) )

= = = ; (6)
0%; o A(()f) 0%; o AE),LZ') 0,
Combining all the tokens together and using F to denote %, we reach the expression of our explanation method:
0L X 0L X 0L X ,
X) ocx) - oLX) z(FCQP(L)) . %)
071 0%; 0TnN 0,{1...N}
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Proposition 1.  For the Transformer-based model, the attributions of partitioned tokens to the final decision T can be
expressed as a Hadamard product of two parts:

T = (p<L> © FC>P . ®)

We denote the first part P(X), representing how the input tokens integrate in L successive attention blocks and being
regarded as a process of representation learning, so called attention perception. The second part, denoted as F¢, implies
how the last [CLS] token is used for predicting a certain class c, so called reasoning feedback. Their details will be
introduced in Sections and respectively. The subscript P € {cls, glp, ... } is determined by the pooling strategy,
such as [CLS] pooling and global pooling. In [CLS] pooling, it refers to the indices {(0,1),..., (0, N)} of the matrix
Tas = (PH) o F€)o,1...n}- In global pooling, by replacing Z(CLL)S with [ZgL); cel Z%)], we obtain its expression

7;;11) = ﬁjv(P(L) © FC)k,{l...N}~
3.2 Attention Perception

In this subsection, in order to identify P(L), we analyze how the input tokens interact to obtain the last [CLS]
representation. We first unfold each attention block to derive the relation between the input and output of the block.

Proposition 2. In MSA blocks with attentions AY, the relations between input Z0=) and output Z) can be
approximated in the form of Z) ~ [AWZDWO £ ZE=DYW 1 oo ]t

Proof. The non-linear components such as layer normalisation (LN) and activation function play an important role in
deep neural networks. Here we neglect the LN’s effect, because it operates on individual tokens and does not make
tokens interacted. And we consider the result of ReLU/GeL.U as an elimination of the negative feature maps. Thus we
simplify the information flow in the attention block as linear combinations and transformations for all the tokens with a
removal of all the negative terms at the output:

z M A (DWW el 4z I=1,.L ©
linear = =
ZO "= (ZOW b+ b ) Watlps + 0ips + ZO)T I=1,...[ , (10)

assum.

where WV, Wzgf,)oj € RP*P and bfnlr)oj € RP indicate the linear transformations inside Eq. [2| and bl(\il)LP,l €

RDhidden’ bg\l}LP,Q cRP, Wl\(/?LP,l € RDP*Dhidden Wl\(/i)LPQ € RDniddenXD jp Eq.

After putting Eq. [9into Eq.[I0] we rearrange the formula and obtain the relations between the input and output of the
attention block [ as:

Z0 = [(AOZEDWO 4z 4 g0 an

! ! I Dvrr(l ! ! ! ! !
where Wl\(/I)LP = WIS/I%JPJWI\(/I)LPQJ’_I’ W =W )W;rgr)oj and B = b;(n?oj(Wl\(&P,lWl\(/{}JP,Q+I)+b1(v1)LP,1W1\(/I£P,2+

bl(\f[)LP ,- We will neglect B(!) because it is shared by all tokens and does not make tokens interacted. Thus, we reach the
Proposition

Proposition 3. If there exists A satisfying AOZC-DWO 4 70=1 ~ (AD 4 1Z=D | the relations be-
tween the input tokens Xioken = (XCLS, Xl, e ,XN)T and the output vectors of last attention block Z@L) =
(Z(CLL)S, Z(lL), cee Z%J))T can be expressed as Z") ~ P X, yen , where P = (AL 4 1) (AWM + 1) and
X = (XE+Epos ) Wiy . Wil

Proof. With AOZ-Dw 1 1 70-1 ~ (A® 4 [YZ(~1), we can obtain the recurrence relation Z() = [(A®) +
1 )Z(l_l)Wlsﬁp]Jr. Hence, the conclusion can be reached directly from recursion. We recur from the last block L to the
first block and obtain the relation between output of block L and input tokens:

Z(c(LLL))s (Xcws + Epos,O)W * XQLS
2" |~ @® . A0 4| KEAEe )W | pay | X . a2
ZS\%) (XNE + Epos,N)W XN
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where W = WI&LL)P e Wlf/[lﬁp and X; = (X;E + Eps;)W. With the normalization components in neural networks
and the assumption of independence between the input tokens, { Xcrs, X7 ..., X} forms a set of basis vectors.

Remark. The recurrence relation of Attention Rollout method (Abnar & Zuidema, 2020) can be rediscovered under
the assumption that W) = I. With this assumption, we have AW Z-D ) 1 7(-1) = ADZ(-1) 4 Z(-1 5o
that A = A® + I. Hence, we obtain the expression of Attention Rollout with the conclusions from
Rollout = (A®) +7)...(AD +1).

However, the assumption of regrading it as an identity matrix is too strong. Although W only operates on the
embedding dimension, due to A(l), it also contributes to a token interaction. In order to study its effect and find a more
accurate A()) expression, we derive O{)k, = AW Z=DW® by two approximations: A", and A" = We name
the token-wise attention map using “token” since it contributes the effect of W) to A(®) as a norm difference between

token vectors, and name the head-wise one for a difference between heads.

Token-wise Attention Map. By the definition of matrix product, we develop O = AZW and have

Zm W i token VA4 m..
Oi,j = ZAL,m( %)Zm,j ~ Z(Ai,m,”(Z)|7H)Zm,,j (13)
™ & m,j wise m,-
— 0l = ADZEVW tognAE?kenZ(l_l) 7 (14)
where (Agg)kcn)',c = Och-(,lz and o, = % So with A‘Ei))kcn’ we obtain Z(® t;%e: [(A,Ef}kcn +

I )Z(l’l)Wﬁ}JP]Jﬂ More derivation details can be found in the appendix.

Head-wise Attention Map. We redevelop O = AZW by taking different heads into consideration, and have

Zm,ka};L ] head

0i; = ZZA?,m( — L)Zn 2 Zeh(AhZ)i,j ; (15)
h m k msJ ok

where A" is the attention of head h and 6}, can be regarded as a head weight. Recent works (Michel et al., 2019; Hao

et al.,[2021) propose a head importance concept I;, by considering the sensitivity of head mask, which means that if [},

is small, removing this head won’t affect the model output a lot. A head importance expression is also provided in their

work, with the inner product of the attention and its gradient: I, = (A”’)TgT‘CZ. We adopt here the concept of I, with

normalisation 6, = ZI ’11 to describe the head weight. Hence, we propose another head-wise type, which is easier to
h h
. .= Nhea o l head . ~ (] _ l
apply in practice, A{/,, = S (s JAL and 2O K" [(Af), + DZDW L)
hih wise

With the above defined recurrence relations and [Proposition 3| we obtain the tokens’ interactions P (%) until the last
attention block L:

PH = (AW 4+ 1) . PED = (AD 4 1) (AW +1) | (16)

where A(®) can be A&)ken from Eq. or Age)ad from Eq.

Our token-wise attention perception achieves 20 x more accurate than Attention Rollout. In order to learn the
errors between different methods and the true value, we conduct several approximation tests for Attention Rollout,

token-wise and head-wise attention maps. In each block [, we compare ZE?llout, Zif))ken and de)a 1 by Zh =

[(AD 4 I)Z(Z*I)Wﬁipﬁ with the true output O and calculate the square error E = ||O — Z( || for each method.

Randomly selected 5000 images from ImageNet val set are used for the test. Both of the averages for our token-wise
and head-wise methods are below Attention Rollout, especially the token-wise approximation achieves 20x more
accurate than Attention Rollout. Figure [3| presents the errors in different blocks, where we can see that our token-wise
method has a more stable performance when the layer gets deeper.

3.3 Reasoning Feedback
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Attention perception, taken for the first sub-process,
is explained by P%) as introduced previously. It
remains to the reasoning part F¢, which refers to
the stage of making the final decision based on 8
the representations before the prediction head. We
explain it by % , the back-propagated gradients
of the final prediction with respect to the attention
map of the last block.

Approximation Test

attention rollout
ours token-wise I

Error (log10)

6
Integrated Gradient for Token-level Importance. T F 7 F [
Directly calculating the gradient of the last attention s1 | ¥ I
map may bring some noise and irrelevant features
to the saliency map, due to the lack of sensitiv- 4 ——
ity, which causes gradients to focus on the irrele- 12z 3 4 B5|0ck Sumb; § 9 10 1
vant features practically (Sundararajan et al., 2017

Smilkov et al., 2017). In order to reduce the gra-
dient self-induced noise, we use an Integrated Gra- Figure 3: Results of our approximation tests. We notice that our

dient method (IG) (Sundararajan et al, 2017) to token-wise approximation achieves 10~100x more accurate than
get the relevant gradients of the last attention map. Attention Rollout in different blocks. Besides, the variance of
We set the baseline to all zero, i.e. a black image €rrors in each block also decreases in our token-wise method.

or all padding tokens, and a linear path to the in-
put. With Riemann approximation, we discretize
the integration, having

. Koco(Ex) | Koy L aLc(aX)

where only the positive part of the gradient is taken into consideration and K the total steps.

To make a summary, by combining the results of attentional perception and reasoning feedback, our explanation
method 75 can be expressed as

K
OL($:X),
— (pW® c = (PW
Tas = (P QF)O,{l.,.N} (P © ReLU(— § A )0{1 . (18)

where P(X) = (:/3;(1) +1)(A® + 1)...(A®) 4 I) and two types of A" are proposed: token-wise A} in Eq.
and head-wise Aflle)ad in Eq.

4 Experiments

We validate our proposed explanation method by comparing the results with several strong baselines. The experiment
settings are based on two aspects: different modalities and different model versions. The experimental results show the
clear advantages and wide applicability of our methods over the others in explaining Transformers.

4.1 Experimental Settings

Faithfulness Evaluation. Following previous works (Abnar & Zuidema, [2020; |Chefer et al.,2021ajb; Samek et al.,
20175 Vu et al., 2019; DeYoung et al., [2020), we prepare three types of tests for the trustworthiness evaluation:

Perturbation Tests gradually mask out the tokens of input according to the explanation results and measure the mean
accuracy of all these masked inputs, i.e., area under the curve (AUC). There are two kinds of perturbation tests, positive
and negative. In the positive perturbation test, tokens are masked from the highest (most relevant) to the lowest. A
steep decrease (lower AUC) indicates that the relevance does reflect their importance to the classification score. And
vice versa in the negative perturbation test. Segmentation Tests equal the explanation to a semantic segmentation of
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Figure 4: Localization of fine-grained regions for single class prediction of ViT-Base. Both samples are correctly
predicted with a high probability score.
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Figure 5: Class-specific visualization results of ViT-Base. We select the class discriminative methods at the very first
place, and present the results of two different classes.

image and compare it with the ground-truth in the dataset. It can be evaluated by four metrics: pixel accuracy, mean
Intersection over Union (mloU), mean Average Precision (mAP) and mean F1 (mF1). Both pixel accuracy and mloU
are obtained after binarizing with a threshold set as the average of attribution scores. The metrics mAP and mF1 are
calculated by averaging the corresponding scores at each threshold point. Language Reasoning comes from a NLP
benchmark ERASER (DeYoung et al [2020) for rationales extraction, whose goal is to extract the input text spans that
support the classification. Similar to the segmentation test, with the provided ground-truth, we measure the F1 score of
the top-k tokens according to the relevance map, where we consider them to be part of the “rationale”.

Baselines and Ours. The following six explanation methods are used as the baselines for a comparison in our
experiments: Raw Attention Map (RAM), Attention Rollout (Abnar & Zuidemal [2020) (Rollout), Generic Attribu-
tion (Chefer et al, 2021b)) (GA), GradCAM (Selvaraju et al.,[2017) (CAM), Partial LRP (PLRP)
and Transformer Attribution (Chefer et al.| [20214) (TA). The appendix provides a detailed description of each method.
We choose these baselines according to their explainability literature and applicability to the faithfulness evaluations.
Black-box methods, which are computationally expensive and intrinsically different, are not considered here. As for
our methods, we have, for each experiment, the token-wise (Ours-T) and the head-wise (Ours-H) types.

4.2 Transformers on Different Modalities

In this subsection, we focus on the explanation results of all methods with different modalities. We test them on
three types of Transformers: BERT (Devlin et al.| 2019) for texts, ViT (Dosovitskiy et all, 2021) for images and
CLIP (Radford et al}, 2021) for bi-modality. And we will present the experimental results by models. In terms of a
Transformer literature and model size equivalence, we select BERT-base, ViT-base-16-224 and ViT-B/32 for CLIP,
where all of them are derived from the Transformer Encoder architecture. The architectures of BERT and ViT are the
same, except that BERT deals with (sub-)words while ViT copes with patches of an input image. CLIP adopts a dual
encoder, in which text and image are respectively encoded and interact by cosine similarities.
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Figure 6: Results for BERT: (from left to right) Negative Perturbation Test on Movie Reviews, Positive Perturbation
Test on Movie Review, Language Reasoning Test on Movie Reviews, Negative Perturbation Test on 20 Newsgroups
and Positive Perturbation Test on 20 Newsgroups.

Table 1: Comparison of Positive (lower is better) and Negative (higher is better) perturbation AUC scores (percents) on
ImageNet for ViT-Base, ViT-Large and ViT-MAE. H stands for the Head-Wise methods and T for Token-Wise.

RAM Rollout CAM PLRP GA TA Ours-H Ours-T
Predicted 23.68 19.84 3401 1938 16.82 16.71 15.31 15.77

Positive

ViT-Base Target - - 3349 1940 1639 16.14 14.61 15.11
Negative Predicted 46.37 54.12 41.85 51.28 5589 55.15 57.88 58.84

Target - - 4223 5127 5697 56.00 59.18 59.82

Positive Predicted 26.71 21.41 4523 2931 18.60 22.04 17.39 17.37

ViT-Large Target - - 45.09 2932 1793 2191 17.13 17.03
Negative Predicted 40.51 5245 46.74 36.74 5394 5643 55.21 55.62

Target - - 46.83 36.76 5544 56.60 5556 56.10

Positive Predicted 37.51 37.09 55.68 2591 3247 33.04 19.92 20.08

VIT-MAE Target - - 56.17 2589 31.81 3270 19.48 19.66
Negative Predicted 39.66 5098 24.09 5437 56.86 56.10 64.02 63.46

Target - - 2372 5437 58.02 56.54 64.76 64.02

ViT. Class-discriminability and the capacity of capturing fine-grained details are the criteria of a good visual
explanation (Selvaraju et al.| [2017). Figures [ and [5|provide the visualizations of some images selected from Ima-
geNet (Deng et al.,|2009)), demonstrating that our method is of such capacities. More samples can be found in appendix.
As shown in the figures, Rollout captures a complete region of the target, but simply taking an average of attentions
brings noises on the irrelevant pixels. TA and GA eliminate all the attentions with negative gradients which may result
in an ignorance of some relevant pixels. Our methods perform well in capturing a very localized area without too much
loss of the entire object, thanks to the combination of the attentional perception that captures the entire object, and the
reasoning feedback that decreases the noises of irrelevant pixels.

As for the quantitative evaluation, we use 5k randomly selected images from the ImageNet validation set for the
perturbation tests, and the dataset of ImageNet-Segmentation (Guillaumin et al., | 2014])) for the segmentation tests. As
shown in Tables[I|and 2] our methods outperform the other baselines on most of the metrics, especially the token-wise
one, which leaves a great margin in segmentation tests, because of its more accurate approximation.

BERT. For the text modality, we first have the perturbation and language reasoning tests on the Movie Reviews
Dataset (DeYoung et al., 2020) containing 1999 samples, which concerns a classification of positive and negative
sentiments according to certain movie review. Our methods outperforms all the baselines in the language reasoning test.

For the perturbation test on Movie Reviews, the accuracy stops at a random guess (i.e. accuracy of 50%) at the end. We
can see from Figure [6|that our methods outperform almost all the baselines, especially the token-wise method on the
negative perturbation and language reasoning tests, where significant improvements are observed. As for the positive
perturbation test, we see from the final score that TA is better than our methods, whereas in the first half of positive
perturbation, the decrease according to both of our methods is clearly sharper than TA. We also notice that the methods
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Table 2: Segmentation test (higher is better) on the ImageNet-segmentation dataset (percent) for ViT-Base, ViT-Large
and ViT-MAE.

RAM Rollout CAM PLRP GA TA Ours-H Ours-T

mloU 46.37 5542 4130 5795 5834 6192 60.74 66.32
ViT-Base pixel accuracy 67.87  73.54 6591 7631 7630 79.68 78.04 82.15
mAP 80.24 8476  71.60 84.67 8528 8599 86.18 88.04
mF1 2944 4368 1942 38.82 41.85 40.10 4445 45.72
mloU 41.18 5288 39.72 40.09 5440 5631 61.24 61.65
ViT-Large pixel accuracy 6320 71.15 6849 6231 7393 7575 78.92 78.87
mAP 7475 8348 6329 7356 8193 8339 8552 86.33
mF1 2558 4276 1025 2399 38.04 38.18 4240 43.38
mloU 37.30 4239 22,60 51.13 47.66 4598  62.47 62.36
VIT-MAE pixel accuracy 56.10 62.00 39.62 72.01 67.10 66.70 79.66 79.63
mAP 6741 7638 5728 81.15 79.58 7841 86.58 86.21
mF1 3199 3420 1299 3394 3651 3243 44.67 44.08

Table 3: Comparison of Positive (lower is better) and Negative (higher is better) perturbation AUC scores (percents) on
CIFAR-100 for CLIP.

RAM Rollout GradCAM GA Ours-H Ours-T
Predicted 15.63 20.94 16.25 12.14 11.69 11.56

Positive

Target - - 16.08 11.40 11.18 11.06
Negative  Predicted  26.18 2065 2687  31.10 3145  32.40
& Target - - 2720 3222 3244 3330

with good performance on image, such as Rollout and GradCAM, lose its advantage for text. In contrast, our methods
stay competitive for both text and image.

Since both of quantitative test for BERT are based on the Movie Review Dataset and the same fine-tuned classifier,
we have another text perturbation test on 20 Newsgroups Dataset (Lang, [19935)) for category classification. The 20
Newsgroups Dataset is a a collection of approximately 20,000 newsgroup documents across 20 different newsgroups.
We finetune a BERT-base model on its training data, with the accuracy reaching 93% on testing set. We randomly select
3000 documents from the testing set for the perturbation. The results are consistent with the perturbation test on Movie
Review, as shown in Figure[6] where GradCAM and Rollout lose their advantages and our methods still outperform the
other baselines.

CLIP. A pretrained CLIP achieves good performances in some vision-language tasks, such as image captioning, and
matches the performance of original ResNet50 (He et al.| 2016) on ImageNet for the zero-shot prediction task with
a designed prompt. Two visualization examples are shown in Figure[/| For images, the captured area of our method
corresponds well with the text, even for multiple objects in a noun phrase. For texts, the captured tokens are also the
key words in the noun phrase. More examples can be found in the appendix.

For the perturbation test, we have a zero-shot image classification task with Sk randomly selected images from the test
set of CIFAR-100 (Krizhevsky, |[2009). As shown in TableE], our methods outperform all the baselines as well.

4.3 Transformers of Different Versions

In this subsection, we test the applicability of all explanation algorithms to different versions of Transformers, for
example, with different model depth and pooling strategies. Besides ViT-Base in Sub-section4.2| we conduct evaluation
experiments on another two variants: ViT-large-16-224 (Dosovitskiy et al.,2021), denoted ViT-Large and ViT-MAE
with the global pooling strategy instead of [CLS] pooling in vanilla ViT-base-16-224 model. ViT-Large (ViT-L/16) is a

10
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Figure 7: Visualization of bi-modal model: CLIP. The visualization results with our method correspond well with the
highlighted input phrases, even for that with multiple objects.

GradCAM

Ours-H

Ist Line:
ViT-Large

2nd Line:
ViT-Base

3rd Line:
ViT-MAE

Figure 8: Visualizations of ViT-Large (1st line), ViT-Base (2nd line) and ViT-MAE (3rd line) on the same image for the
same class tiger cat. Our methods show a more stable and less noisy capturing of semantic pixels than other baselines.

very big model, which consist of 24 successive attention blocks and 16 attention heads with embedding size set as 1024.
ViT-MAE adopts the same architecture as ViT-Base, but with a different pretraining approach and pooling strategy. The
masked autoencoder (MAE) is a self-supervised learning approach of masking random patches of the
input images and reconstructing the missing pixels. By reconstruction, the encoder learns more complex semantics,
thus leading to better performances.

ViT-Large. We provide in the first line of Figure [§|the visualizations of ViT-Large for the class “tiger cat”. It’s
interesting to see that the explanation methods, such as GradCAM, GA and TA, which capture the quite semantic
tokens for ViT-base, focus on very irrelevant tokens for ViT-Large, whereas the ViT-Large shows better accuracy and
transferability in the prediction. We believe that the irrationality results from an intuitive formulation of expression.
With more successive attention blocks, the error accumulates, thus leading to less trustworthy visualizations. However,
our methods, derived from explicit derivations, show far more understandable results in predicting the “tiger cat”.

As for quantitative tests, we show in Table[2]and Table [T]the segmentation results and perturbation results for ViT-Large,
where our methods outperform all the baselines in almost all the settings, except TA in negative perturbation test. But
our methods show competitive results and leave a great margin in positive perturbation test.

11
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ViT-MAE. For all the baselines, their explanations of Transformer in global pooling setting are not provided in the
original paper. To be more fair, we modify these methods by using the average of attribution scores from the second to
the last line, indicating the first to the last token, instead of the first line for [CLS] token.

The visualization of ViT-MAE is shown in the third line of Table [§] with the same photo and predicting class. Our
methods not only capture the very semantic tokens, but also show a good coherence with the masked autoencoder
approach, where by masking and reconstructing, the model can learn from more semantics. We credit the applicability
of our methods in global pooling setting to the theoretical analysis as well.

Table [2| and Table|l|shows the results for segmentation and perturbation tests, where our methods leave a even more
significant margin than the previous settings in both the positive and negative tests. It further demonstrates that our
methods can also be applied to global pooled Transformers and provide trustworthy performances.

4.4 Ablation Study

We propose two ablation studies: the first focuses on the effectiveness of our expression, while the second focuses on
the benefits of introducing the token-wise and head-wise coefficients. We conduct our ablation analyses with the same
evaluation settings for ViT-Base, mentioned in Section[4.2] From Table ] we notice that the results correspond well
with our derivations in Section[3] Introducing token-wise and head-wise attention maps clearly enhances the quality of
explanations. Moreover, the first ablation study also indicates the effectiveness of introducing the integrated version of
gradients to reduce the noise.

Table 4: Results of ablation study with ViT-Base. Avg stands for a simple average of attentions for all heads. A (%)
denotes the attention map of the last block and G () the attention gradient of the last block. The first part is designed
to analyse the effectiveness our derived attribution expression 7 and the second part for the befits of introducing our
token-wise/head-wise attention maps.

Setting Segmentation Perturbation

Perception Feedback Acc. mloU mAP mFl Pos.  Neg.

X v 6731 4876 77.93 38.44 1829 53.09
Head-wise X 71.83 5324 83.66 4226 1997 53.16
Head-wise G@ 75.67 5775 8449 4301 16.82 56.80
Head-wise v 78.04 60.74 86.18 44.45 1531 57.88

AL v 7755 59.16 84.65 38.82 18.49 53.00

Avg v 7788 60.56 86.14 4434 15.84 57.85
Head-wise v 78.04 60.74 86.18 44.45 1531 57.88
Token-wise v 82.15 66.32 88.04 4572 1577 58.84

5 Conclusions

Most of the Transformer-based models give the prediction by first integrating different tokens via successive attention
blocks, and then using the pooled vector of last token representations for a prediction task. In this work, we propose a
novel explanation method based on gradients, the change of basis and the chain rule, dividing the entire process into
attention perception and reasoning processes. Moreover, by taking into account the linear projections, we derive two
attention maps (token-wise and head-wise) for the attention perception process, which are more accurate than traditional
Attention Rollout. We show in the experiments that our method achieves a better performance than all baselines in a
series of evaluation settings, on specifying the class information, capturing the fine-grained pixels and being applicable
to different model sizes, pooling strategies and modalities.

Based on this tool, we can explore in depth those Transformer-based models in the fields of both computer vision and
language processing, which gives a hand in debugging, training and evaluating different Transformers. In this work,
we only deal with Transformer Encoder. Other model architectures, such as Encoder-Decoder (Yang et al., 2019) or
Decoder types (Brown et al.,|2020), will be tackled in our future work.
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A Details of Baselines

Raw attention map (RAM) Raw attention map is a rather straightforward explanation method, which takes into
consideration only the attention map of the last block. For the model with a [CLS] pooling method, it explains the
importance of different patches with the first line of the attention matrix. In our experiment, the last attention layer is
visualized.

Attention Rollout (Abnar & Zuidema), 2020) (Rollout) Different from raw attention, all the attention maps along a
forward-pass count for the explanation, where they assume a linear combination of tokens and quantify the influence of
skip connections by adding an identity matrix. Note that both raw attention and Attention Rollout are class-agnostic.

GradCAM (Selvaraju et al.,2017) GradCAM provides a class-specific explanation, where they add weights to gradient
based feature map of the last convolution layer for a ConvNet based model. Following the work of |Chefer et al.|(2021a)),
we use a weighted gradient map of the last attention block, which corresponds to the [CLS] token .

Partial LRP (Voita et al., 2019) (PLRP) Not only the attention map of each block is considered, the relevance
propagation based methods also take the information flow inside the whole neural network into account. These methods
are also class-agnostic, which means the visualization remains the same for the prediction of all classes. Here, we
visualize the relevance map of the last attention layer.

Transformer attribution (Chefer et al., 2021a) (TA) Transformer attribution method is a state-of-the-art class-specific
explanation method for Transformer. It combines relevancy and attention-map gradient by regarding the gradient as a
weight to the relevance for certain prediction task.

Generic attribution (Chefer et al., 2021b) (GA) Generic attribution extends the usage of Transformer attribution to
co-attention and self-attention based models, such as VisualBERT, LXMERT etc. and propose a more generic relevancy
update rule. Meanwhile, it replaces the relevance of Transformer attribution with the attention layer in each block.

B Token-wise Attention Map

Here, we provide the mathematical derivation details of the Eq.[T4]and Eq.[I5] The goal is to develop the formula
O = AZW, where O € RW+DXD A ¢ RINFDX(N+1) and 77 € RP*D,

By the definition of matrix product, we have:

N+1 D

O0ij =Y > AimZmiWi; - (19)

m=1 k=1

Since A; n, Zm 1 and Wy, ; € R, it is possible to write when Z,,, ; # 0 that,

2
s

N+1 D

D
Z W Zp W
Oz,] = ZAi,m 7 - J Zm,j = Z (Z Ai,m 7, ] J )Zm,j (20)

m=1k=1 m.J m=1 k=1 m,J
N+1 A D N+1A‘

=\ Z“’f O 2 kWi j) s = > #(zvv)m’jzm’j (21)
m=1 """ k=1 m=1 "]
N+1 N+1

Z m,j oken Z m.-

= Ai,m%zm,j X 3 Ai,mwzmd (22)
o Zm,j wise o \|Zm’||
N+1

= AimZy ;= (AtokenZ)ij - (23)
m=1

Here comes the definition of our token-wise attention map.
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C Visualizations: Full Baselines and More Samples

Rollout GradCAM
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Figure 9: More samples of localization of fine-grained regions for single class prediction of ViT with full baselines.
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Figure 10: More samples of class-specific visualization results of ViT. We just present the results of two classes with
class-specific baseline methods, while for the other methods, there are not any differences between different classes.
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Figure 11: More samples of CLIP visualization. Both text and image visualizations are provided here.
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