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ABSTRACT

We propose a statistical benchmark for diffusion posterior sampling (DPS) al-
gorithms in linear inverse problems. Our test signals are discretized Lévy pro-
cesses whose posteriors admit efficient Gibbs methods. These Gibbs methods
provide gold-standard posterior samples for direct, distribution-level compar-
isons with DPS algorithms. They can also sample the denoising posteriors in
the reverse diffusion, which enables the arbitrary-precision Monte Carlo esti-
mation of various objects that may be needed in the DPS algorithms, such as
the expectation or the covariance of the denoising posteriors. In turn, this can
be used to 1solate algorlthmrc errors from the errors due to learned compo-
nents. Sers 3 3

seore: We instantiate the benchmark with the minimum-mean-squared-error op-
timality gap and posterior-coverage tests and evaluate popular algorithms on
the inverse problems of denoising, deconvolution, imputation, and reconstruction
from partial Fourier measurements. We release the benchmark code at https:

/ /glthub com/emblem saylng/dps benchmark and ~T—he—repesﬁery

ort—We 1nv1te the

commumty to contrrbute and report results

1 INTRODUCTION

Diffusion models are among the leading generative models in imaging (Rombach et al., 2022),
visual computing (Po et al., 2024), finance and time-series analysis (Huang et al., 2024; Rasul et al.,
2021), de novo protein and drug design (Watson et al., 2023; Alakhdar et al., 2024), natural language
processing (Li et al., 2022), and other domains. Their ability to model complex distributions has
motivated their use as priors in the Bayesian resolution of inverse problems. In fact, reconstruction
methods that leverage diffusion models are competitive or state-of-the-art for problems such asin;
e-g- deconvolution (Ren et al., 2023), phase retrieval (Xue et al., 2025), magnetic resonance imaging
and computed tomography reconstruction (Chung & Ye, 2022; Liu et al., 2023), weather-artifact
removal (Ozdenizci & Legenstein, 2023), task-conditioned protein design (Bogensperger et al., 2025),
audio bandwidth extension and dereverberation (Lemercier et al., 2024), and denoising of financial
time-series (Wang & Ventre, 2024).

This empirical success has come in spite of a lack ofdespite-diffusion-medelstacking a natural

mechanism for the conditioning on measurements and active research explores how to incorporate
the likelihood (Yismaw et al., 2025; Erbach et al., 2025). Currently, conditioning strategies are
evaluated in one of two ways. (i) With respect to downstream applications: As an example, evaluations
with respect to perceptual metrics such as the structural similarity (Wang et al., 2004), the Fréchet
inception distance (Heusel et al., 2017), or the learned perceptual image-patch similarity (Zhang et al.,
2018) are common in the imaging sciences. AHewever-as pointed out by Pierret & Galerne (2025b)
and Cardoso et al. (2024), however, these metrics are ill-suited for the statistical evaluation of posterior-
sampling algorithms. (ii) In overly simplistic settings: A common fallback is to evaluate conditioning
strategies in synthetic settings with (finite-component) Gaussian-mixture priors. Such mixtures
remain light-tailed with the tail decreasing exponentially like the widest component. Consequently
and;-consequently, they cannot reproduce power-law-like extremes that are common in;-e-g- asset
returns (Blattberg & Gonedes, 1974; Cont, 2001) orand statistics of images (Wainwright & Simoncelli,
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1999). We illustrate signals with such power-law-like extremes later in Figure 3. Benchmarks built
on such priors can therefore overstate posterior quality. A proper statistical evaluation in realistic
settings is critical in high-stakes applications such as medical imaging, remote sensing, and finance,
where decisions based on reconstructions and their associated uncertainties may have significant
consequences.

1.1 CONTRIBUTIONS

We propose such a statistical benchmark for diffusion posterior sampling (DPS) algorithms' for
linear inverse problems. OurWe-consider-a-setting-similarto-Bohra-et—al{2023)in-which test signals
are obtained-from discretized sparse Lévy- processes priors that admit efficient posterior-sampling
algorithms. Indeed, they admit efficient Gibbs methods with exact conditionals that provide gold-
standard posterior samples. OurFhe framework supports general posterior-level comparisons (—e.g.,
(sliced) Wasserstein or energy distances or calibration via coverage and posterior predictive checks)
— by furnishing matched samples obtained from the DPS algorithms and the geld-standard Gibbs
methods.

The Gibbs methods are also suited to sample from the denoising posteriors in the reverse diffusion.
This motivates our contribution ofWe-intredaee a new template for DPS algorithms, in which update
steps utilizewhere—eachreverse-diffusion—steputilizes samples from the corresponding denoising
posterior. These samples can be used for arbitrary-precision Monte Carlo estimation of various ob-
jects that are needed in the update steps of the algorithms, such as the minimum-mean-squared-error
(MMSE) denoiser or its Jacobian, which enables the isolation of algorithmic errors from approxima-

tion errors due to learned components—as-opposed-to-only-the- MMSE-pointestimate—. Wand-we
show how several popular DPS algonthms can be re- expressed w1th1n ourthis template fPhrs—templafe

Finally, we instantiate the framework with the MMSE optimality gap and highest-posterior-density
coverage checks across the inverse problems of denoising, deconvolution, imputation, and reconstruc-
tion from partial Fourier measurements. We target the realistic scenario where a learned denoiser is
used and check hyperparameter sensitivity by substituting the arbitrary-precision Monte Carlo counter-
parts for the learned components. The benchmark code—which is another substantial contribution—is
available in-an online. Itrepesitory-that contains efficient implementations of sampling routines and a
containerized runtime that allows novel algorithms to be easily benchmarkedbenchmarked-easily.

1.2 RELATED WORK

For unconditional sampling, many works derive theoretical bounds on varieus distances between
a target distribution and the distribution obtained by (approximations of) the reverse stochastic
differential equation (SDE) (see Section 2). For example, Gao et al. (2025) bound the Wasserstein-2
distance with respect to the discretization error of the SDE under the assumption that the target
distribution is smooth and log-concave. This directly bounds the number of reverse-diffusion steps
that-are needed to obtain a desired accuracy. Under absolute continuity of the target with respect to a
Gaussian, Strasman et al (2025) bound the Kullback Lerbler drvergence wrth respect to propert1es of
the noise schedule. sults .

A common assumption that simplifies the analysis and facilitates the computation of various errors
and bounds is that ofa Gaussran target Ma&easeﬁmyebjeetyﬂmﬁewmréﬁmeve&e%:@

i v ads: For example Hurault et al.
(2025) analyze the error mcurred When usrng adue-to-the ﬁn1te number of prior samples used for
in the estimation of the prior score {which-is-affine-inthis-ease) and track its propagation through
the iterations of the reverse-SDE solver. Pierret & Galerne (2025b) derive explicit solutions to the
SDE and use themthese to derive bounds on the Wasserstein-2 distance to the distributions that are
obtained via Euler-Maruyama discretizations.

"We use “DPS algorithms” as an umbrella term for posterior-sampling methods with diffusion priors. The
method due to Chung et al. (2023), often called DPS in the literature, will be referred to later as C-DPS.
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ForWerks—that-eonsider conditional samplinggeneration,

aﬂdﬂf&e}esest—teo«the—pfeser%paperﬁe
Pierret-&-Galerne(2025a)-and-Crafts- & Villa2025) Pierret & Galerne (2025a) derive expressions

for the Wasserstein-2 distances between the conditional forward marginals and the distributions
1nduced by specrﬁc hkehhood approxrmatrons in the reverse SDE under the assumptlon of a Gaus—

eva}uaﬁeﬁef—ﬂeve}ﬂ%geﬂthfn& Crafts & Vrlla (2025) systematlcally evaluate DPS algorlthms numer-
ically under the assumption of a (finite-component) Gaussian-mixture prior namerieally and—Similar

to-the-present-werls-they provide reference objects to the DPS algorithms to ensure a fair evaluation.
Cardoso et al. (2024) and Boys et al. (2024) also evaluate their algorithms on Gaussian-mixture pri-
ors. TheseHewever-they-only-eonsider Gaussian-mixture priors, however, whieh cannot reproduce
power-law-like extremes and can overstate posterior quality.

Beyond diffusion-specific theory, Thong et al. (2024) evaluate-pesteriorcalibration-by checking the
coverage of credible regions produced by different Bayesian recovery strategies and—TFhey find that

thosefeeevefy—%rafegie% that utilize diffusion models often under-report uncertainty. A shortcoming
of their approach is that they use an emplrlcal dlstrlbutlon of i 1mages as a surrogate for the prror
dlstrlbutlon FREW ¢ -known

§ e-com A sorithms: Frnally,
Bohra et al (2023) also used efﬁment Gibbs methods to obtam gold standard posterlor samples.
Their main focus was to quantify the quality of neural MMSE estimators with different number of
parameters. Our work extends this to posterior-level comparisons.

2 BACKGROUND

Bayesian Linear Inverse Problems We seck to estimate a signal x € R? from the measurements
y = Ax +n, &)

where the forward operator A € R™*¢ models the noiseless linear-measurement acquisition and
n € R™ is additive noise. In the Bayesian resolution of this problem (Stuart, 2010)¢see;e-g+Stuart
{2010)), the signals are modeled as a random variable, denoted X, with values in R and distribution
px, referred to as the prior. Given any measurement y, the ultimate goal is to analyze the posterior
PX|y=y- [t-whieh is related to the likelihood py|x—x and the prior px via Bayes’ rule, which states
that

pX|Y:y(X) X pY\x:x(Y)px(X)~ (@)
In contrast to classical variational methods (Scherzer et al., 2008 ){see;e-g-Scherzeret—al2008)),
the posterior distribution provides natural means to quantify uncertainty and can be summarized by
various point estimators. We provide a precise description of point estimators that are relevant in this
work in Appendix A.

For a given signal x, the likelihood pyx—x is fully specifieddetermined by the distribution of the
noise. A common assumption on the noise is that it is a vector of independent and identically
distributed (i.i.d.) Gaussian random variables with mean zero and variance JZ.Z In this case, the
likelihood is given by

Py ix=x(¥) < exp(— g5z [ Ax —y?). (3)

Thus, once the forward model and the noise distribution are specified, the remaining modeling choice
is the prior. Diffusion models are good candidates due to their ability to encode complex distributions.

Diffusion Models Diffusion models were introduced by Song et al. (2021) by unifying the discrete
approaches proposed byfrem Song & Ermon (2019) and Ho et al. (2020) in a continuous theory based
on SDEs (Klenke, 2020, Chapters 25 and 26). We denote the (diffusion) SDE with drift coefficient
f:R? x R>o — R? and diffusion coefficient g : R>g — R as

dX; = £(Xy,t) dt + g(t) AWy, 4

2Qur framework supports more general (possibly non-Gaussian) likelihoods, see Section 3.
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Figure 1: Unconditional reverse-diffusion trajectories obtained by DDPM using the arbitrary-precision
Monte Carloeraele denoiser. Rows: Increment distributions. Columns: Diffusion times. Line styles:
Different random states.

with-some-suitable-initial-eonditionXg;-where Wy is the standard Wiener process. In our setup, the
initial condition X is the random variable that describes the signal, thus, X, = X. Under suitable
choices for f and g, the forward process admits a limiting marginal X, as ¢ — oco. Sampling from
Dx, can then proceed by simulating the SDE (4) in reverse with initial condition X .. By Anderson’s
theorem (Anderson, 1982), the reverse SDE that reproduces the forward marginals satisfies

dX; = (£(X¢.t) — g*(t)Viog px, (X:)) dt + g(t) AWy, Q)
where px, denotes the density of X; defined by the forward process, and dt is negative.

The primary challenge in this approach lies in the computation of the scores V log px, for all t > 0.
A fundamental relation known as Tweedie’s formula connects the score with the MMSE denoiser: As

we derive rigorously in Appendix B, for f(x,t) = (—%t))x and g(t) = \/B(t), we have that’

Vlogpx, (%) = —o(t)?(x — a(h)E[X, | X; = x]), (6)

where a(t) = exp(—3 fot B(s)ds) and 0%(t) = (1 — a?(t)). This yields a practical way to compute

V log px, (x) through the resolution of the MMSE denoising problem of finding
E[X, | X; = x]. In standard applications where the goal is the generation of new signals, onethis-is
typically tacklesd this by approximating the map (x, t) — E[Xq | X; = x| with a neural network that
is learned in an off-line step. In our frameworkbenehmark, we can instead obtain arbitrary-precision
oracle MMSE denoisers via Gibbs methods and thereby eliminate approximation errors from a
learned surrogate andte isolate errors in DPS algorithms themselves.

The implementation oflmplementing the reverse SDE for generation requires its own time discretiza-
tion, for instance with Euler—Maruyama techniques (Higham, 2001). In this work, we will base

our backward processes onln-practice;researchers-typieally-use the alternative denoising diffusion
probabilistic model (DDPM) backward process (starting from Gauss(0, I))

Xi—1 = \/j (X; + B Viogpx, (X)) + / BiZy, @)

that originates from the discrete-time Markov chain that was initially proposed by Sohl-Dickstein
et al. (2015) and revisited and popularized by Ho et al. (2020). We relate it to the Euler-Maruyama
discretization of the reverse SDE through Taylor expansions in Appendix B.1.

Though we defer details on our signals and the Gibbs methods that we use to obtain the arbitrary-
precision MMSE denoiser to Section 3, we demonstrate in Figure 1 that our signals can be generated by

couphng the uncondmonal backward process in (7) Wlth this denmser%%hew—ffajeeteﬂes—ef—ﬂgﬂa}s
y v sare—— We furtherand

3This is theThe variance-preserving (P} formulation (Song et al., 2021, Section 3.4) with standard normal
limiting marginal, where 8 : R>o — R>¢ controls the speed of the contraction to zero and how much noise is
injected.

[tkeZ] Rephrasing
of “researchers
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motivate this arbitrary-precisionthe-eraele denoiser in Figure 2 by comparingshewing-the histograms
of signal increments producedebtained by the learned denoiser andversus the arbitrary-precision
oraele denoiser for a St( ) increment targetﬁrﬁgﬂfe% (notauons summarlzed in Appendlx C 2) the

2 The increments of 51gnals generated w1thby
using the arb1trary precmonefae}e denoiser follow the targetinerement almost perfectly. Residual
errors are due to the discretization errer of the reverse diffusion and Monte Carlo error of the
arbitrary-precisioneraele denoiser.

Diffusion Posterior Sampling Our The ‘

. . - . Learned
reverse-diffusion sampler from—the—previous : f M 8
. ——— Monte Carlo
seetion can be adapted to sample from a
posterior by replacing the prior score V log px,

with the posterior score

o
w
T

- — — Target

e
o

Frequency

o
~——

Vlogpx,jy=y = Vlogpx,+V (x — log py|x,=x(¥)
(®)

(=)

for some given measurement y, obtained by
Bayes’ theorem. Although the dependence be-
tween Y and X is known through (1) and the Figure 2: Histogram of increments of signals ob-
likelihood is explicitly modeled via (3), it is gen- tained by DDPM with different denoisers.

erally challenging to relate Y and X, for any ¢ > 0. To overcome this, the conditioning on the
measurements is usually done in one of two ways. (i) A learned component models the conditional
posterior score and also gets the measurements as input. This strategy is(pursued by;e-g- Liu et al.
(2023); Ozdenizci & Legenstein (2023); Bogensperger et al. (2025); Saharia et al. (2023));-and is
advantageous when the measurement process is unknown, difficult to model, or prohibitively expen-
sive to evaluate. However, its reconstructions ebtained-by-this-strategy typically degrade under shifts
in measurement conditions; since the learned components cannot adapt to the new measurement
conditions. (ii) The Bayesian separation that is described in (8) is pursued and the likelihood score is
approximated. This strategy (pursued byis-dene-by,eg- Chung & Ye (2022); Xue et al. (2025) and the
metheds reviewed by Lemercier et al. (2024));-and is advantageous when the measurement process
is known, relatively inexpensive to evaluate, and subject to change, but prior knowledge should be
reused, which is frequently the case in, e.g., imaging or remote-sensing applications. However, this
requires approximations to the likelihood score V(x + log py|x,—x(y)) for all ¢ > 0.

Increments

Our benchmark can evaluate either strategy, as well as{and any other method that would claims to
sample from a posterior distribution like in (2)}. Approach (i)Fhefirst-approach, however, relies
on black-box learning of the conditional posterior score and its performance heavily depends on
various implementation details. Thus, we primarily focus on approach (ii)the-seeond-approach, which
that necessitates approximations of the likelihood score (and more general DPS algorithms with
explicit conditioning, see our proposed generalization in Section 3). For those, our framework can
supply arbltrary precmon Monte Carlo estlmates of variousreferenee objects —pesterior-samples

sersvia b s—to isolate and quantify the impact of

these approx1mat1ons.

3 PROPOSED FRAMEWORK

The prior distributions in our framework will be that of signals of length d obtained by regularly
spaced samples of processes with independent, stationary increments (Lévy processes, described in
Appendix C). Let s be such a process and let the unit-step increments be [u], = (s(k) — s(k — 1))
fork =1,2, ...,d. Independence and stationarity imply that the distribution of [u], the increment
distribution py, does not depend on k. The increment vector is related to the signal x via u = Dx,
where D is a finite-difference matrix with an initial condition that allows us to write x = D~ 'u
where D! is a lower-triangular matrix of ones. This gives a convenient way to synthesize signals
once u is drawn. The independence of the increments implies that the density of the discrete signal is

d

px(x) = HPU([DXMDX)I»-) ©)

k=1

[bQS8j] Improve-
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Figure 3: Examples of signals with heavy-tailed increment distributions. Top: Asset returns. Bottom:
Columns in natural images. Left: Signals. Right: Survival function of absolute increments (no marker:
empirical; markers: best fit to empirical within distribution).

We consider four increment distributions that are commonly used in sparse-process models: Gaussian;;

Laplace;; Student-t;; and Bernoulli-Laplace (spike-and-slab). Such increment distributions are sparse
or heavy-tailed according to the taxonomy due to Unser & Tafti (2014 )in-Bnser-&Fafti; 26044) and
are relevant in signal and image processing, finance, and other fields (Schoutens, 2003). We show
instances signals with such heavy-tailed increment distributions in Figure 3. A precise definition of
Lévy processes, the matrix D, the increment distributions and their notation along with a discussion
about extensions to higher-dimensional signals or signals with more complicated graph structure are
given in Appendix C.

Efficient Posterior Sampling With the prior distribution specified in (9) and the assumption of
Gaussian noise, the posterior associated to the inverse problem intrinsic in (1) is

IS8

Px|y—y (%) o exp(— 5,z [ Ax — y[I*)px (x) = exp(— gz | Ax — y[*) H x|k (DX)k )

(10)
Unless py is a Gaussian (the simplified setting in Pierret & Galerne (2025b)), this posterior is not
conjugate, so neither closed-form sampling nor direct evaluation of moments is available. Nevertheless,
for the increment distributions used in this paper, the posterior distributions admit efficient Gibbs
methods via standard latent-variable augmentations. Motivation and more details about the Gibbs
methods, such as the burn-in period B and the number of samples S, are provided in Appendix D.

The Gaussian, Laplace, and Student-t dis-

tril?utiops admit latent represeqtations Algorithm 1 GLM Gibbs method.
as infinite-component Gaussian mixtures, - p y —
which makes them suitable for the Gaus- Require: x, € R K € R"*“, conditional la-

sian latent machine (GLM) framework that tent distributions {p(z), z,|x };/;—, and maps
was recently introduced by Kuric et al.  9m
(2025). [tFhe-GEM-framework is generally {M"“l’ Ukz}kzzl
applicable to distributions ef-theform 1: fors=1,...,B+ Sdo
n 2: Draw [z]2i ~ P(z),2,| X=[Kx._1];(Kx._,); > Par-
X) o H (bk([KX]k(KX)k) (1) attet over ki
h=t 3: Draw x; ~ Gauss(u(z), 3(z))
where K € R™*% and all distributions  4: return {XB+S}SS:]

$1,¢2,...,¢n : R — R have a latent rep-
resentation

¢k(t) /guk(z o’k(z)( )fk( ) (12)

where the latent distribution f; and the latent maps puy.;, a,‘l R — R depend on the distribution

®ri» and g, 2 is the density of a one-dimensional Gaussian distribution with mean 1 and variance

[TmEt pM9c] Ad-
dition of examples
of real signals with
heavy-tailed incre-
ment distributions.

[TmEt pM9c] Ad-
dition of examples
of real signals with
heavy-tailed incre-
ment distribution.
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o2, We can cast tFhe posterior distribution in (10) ean-be-east into this framework by rewriting it as

d m-+d
k) [T oo (IDx]x(Dx)) = [T oér (Kx]k(Kx)x).
k=1

) (13)
There,by-setting K = [A; D], ¢ = Jiyleyeoz fork = 1,2, ..., m, and ¢, = py fork =

m+ 1,m+2,...,m + d. Wesammarize-the-GEM-sampling-in—algerithm—~ Importantly, non-
Gau551an hkehhoods can be handled by some appropriate definition ofadapting the first m distribu-

tions-apprepriately.

The introduction of an appropriate n-dimensional random variable Z with non-trivial distribution
(see the details in Kuric et al. (2025)) enables the efficient sampling from the conditionals: Sampling
X | Z = z amounts to sampling a Gaussian with covariance and mean

m

PX|y=y(X) x H Iiyleys,o2 ([AX (Ax
k=1

T T

3(z) = (K 3(2) ' K) ™" and p(2) = B(2)K ~To(2) " po(2), (14)
respectively, where Xo(z) = diagdiag(o}([z]1z1),...,02([2],2,)) and po(z) =
(11([z121), .., pn([2],2,)). Sampling Z | X = x amounts to sampling n independent
one-dimensional conditional latent distributions p|z;, Zo | X=[Kx]1 (Kx)1 - -+ » P[Z],, Zn | X =[Kx],, (Kx).,

that depend on the distributions ¢, . .., ¢, and are given in Table 3 in the appendix along with the
corresponding latent distributions and latent maps. We summarize the GLM sampling in Algorithm 1.

For the Bernoulli-Laplace increment distribution, we adapt the algorithm proposed by Bohra et al.
(2023) that introduces two d-dimensional latent variables: aA Bernoulli indicator (“on”/“off”’); and
a Laplace-distributed increment height. For a self-contained exposition, we rigorously derive the
resulting Gibbs method in Appendix D.1.

The Gibbs methods that we just described are Seconds per Gibbs iteration (NVIDIA V100)
suitable for the generation of the gold-standard  Baseline

samples from the posterior that corresponds to
the initial inverse problem intrinsic in (1) as
well as the generation of samples from the de-
noising posteriors in the DPS algorithms. In the
latter case, the forward operator A is the iden-
tity, the measurements are the noisy intermedi-
ate reconstructions x;, and the noise variance

02 = o2 follows the schedule at timestep ¢.

When these Gibbs methods are embedded
within the reverse-diffusion loop, an efficient  Figure 4: Runtime improvements of the Bernoulli—
implementation is paramount to achieve accept- Laplace sampler.

able runtimes. This is most crucialespeetally

trae for the Bernoulli-Laplace increment distributions, where the sequential drawing of the binary
support vector is nested within theeeeurs-instde-the-euter Gibbs loop, which in turn may be nested
within the reverse- dlffusmn loop Accordlngly, we deliberately tailored our implementation—whieh
to modern, highly parallel compute units and optimized sev-
eral components 1nc1ud1ng custom CUDA- and Triton-compiled sampling routines and incremental
updates based on the Woodbury—Sherman—Morrison identities {see-AppendixD-2). We achieved a
cumulative speedup of 74.61 x over the baseline implementation (illustrated in Figure 4 with details
in Appendix D.2).

A Generalized DPS Template Widely used methods, such as diffusion plug-and-play (DPnP) (Xu
& Chi, 2024), fall outside the pattern described in Section 2, where one approximates—appreximating
the likelihood score inside the reverse diffusion. We therefore introduce a simple template that is
natural in our setting and accommodates a broader set of DPS algorithms. More precisely, we
characterize the iteration rule of DPS algorithms as aﬁﬂ{eﬁtﬂe&fﬂ}e—fhakeaﬁ%e—summaﬁzeéﬂme
a two-stage process: Given an iterate x; with associated noise variance o7, the eempuf&&efref
the next iterate x;_; is computeddene by (i) drawing S samples denoted {XAS} hs=1 from the

+ Parallel CUDA GIG sampler
—54.07

+ Parallel samplingof U | V =v, W =w,Y =y

—33.52

+ Woodbury—Sherman-Morrison for sampling V. | W = w,Y = y
11.71

+torch.compile

Final runtime: 1.36 s
Speedup: 74.61 X
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denoising posterior px,x,=x, % exp(—gez |- — x¢||?)px, (- )i and (ii) the subsequent com-
: t

putation ofeemputing an update step S that may utilize the cur-

rent iterate Xy, the samples {Xkb} hs=15 the measurements y, the forward operator A, and, pos-

sibly, other algorithm-internal parameters such as a scalar that weights likelihood and prior terms
or parameters that define the noise schedule. This template is summarized in Algorithm 2 and
spemahzed instances for the update step S for a varlety of popular algorlthmsfhat—eefrespeﬁd

et—&l—292%9 are glven in Appendlx E. 2 We have absorbed the (varlance preservmg) scahng 1nto
the step S since this template is not fundamentally limited to diffusion processes but supports any
(also not monotonically decreasing) noise schedules. In addition, noise variances {0 }7_, are usually
derived from the algerithm-internal parameters A that may include a noise schedule.

Through this construction, DPS algorithms can
use any statistic R of the samples {%;}?._,

Algorithm 2 Template for DPS algorithms.

in their update steps. Most methods use the
_ _ S _ _
mean R(Xi,...,Xs) = & Dohem1 Xks = M,

which is the Monte Carlo estimate of E[X |
X; = x¢]. An example of a DPS algorithm  3:
that utilizes additional statistics is C-DPS,
which requires the Jacobian of x; — E[Xj |
X; = x¢]. As we show in Appendix E.1, this
Jacobian equals (up to the known variance-
preserving scaling) the conditional covariance
of Xy | Xy = xt, an unbiased estimator of which can be obtained through the statistic

R(ila“ S 1 qu 1(st _Ij’)(ik‘,ﬁ_
lizes an alternative statistic is the DPnP algorithm that alternately samples from px,x,—x, and a
data-proximal problem. There, R(X1,...,Xg) = X7 is used to obtain one sample from DPXo|Xy=x: -
This statistic is frequently used in the asymptotically exact and the CSGM-type algorithms (using the
taxonomy due to Daras et al. (2024)). When only a learned MMSE denoiser is available, obtaining this
one sample requires a full reverse diffusion. In contrast, it requires only one iteration (and the burn-in
period) with the Gibbs methods. Thus, these algorithms are typically faster when they are endowed
with the Gibbs methods (see the runtimes in Tables 5 and 6), which enables easy benchmarking.

However, CSGM-type algorithms typically do not aim at posterior sampling and we do not benchmark
them here.

Require: Initial point x7, y, A, A
1. fort=1T,...,1do > Diffusion process
2: Sample {ik§}f§:1 ~ PXo|X i =x:

Update Xi_1 =
(Xta {st}ks, 1;Y7A A t)

4: return X8 = x > Posterior sample

TT
,Xg) = ) . An example of a DPS algorithm that uti-

Since the denoising posteriors are always sub-Gaussian, the Monte Carlo estimation of any object
enjoys favorable convergence. For instance, the computational complexity of estimating the covariance
up to a desired precision in the operator norm scales linearly with the dimensionality of the signal
(Vershynin, 2018, Theorem 4.7.1).

Extensions A prerequisite for a quantitative evaluation of posterior-sampling algorithms is the
availability of reasonably efficient samplers that can provide gold-standard samples. The development
of such samplers for posteriors arising from nonlinear measurement models and non-Gaussian noise
is challenging, and existing methods currently address only specific cases (e.g., Wang et al. (2017)
study a nonlinear-Gaussian measurement model with a Laplace prior). Importantly, our framework
is modular: as more general-purpose samplers for these posteriors become available, they can be
plugged into our benchmark directly. The denoising posteriors in the reverse diffusion do not change
with the likelihood and can, therefore, always be efficiently sampled.

When going to higher dimensions, the primary challenge lies in the sampling of the high-dimensional
Gaussian distributions required in the Gibbs methods. Luckily, the structure of the involved operators
in our case is such that the Gaussians can be efficiently sampled with perturb-and-MAP approaches
with matrix-free conjugate gradient implementations; we discuss this in more detail and show how
the runtime of different samplers change with the dimensions in Appendix D.2. Sampling high-
dimensional Gaussians is a well-studied problem and advances in that field can directly be used in
our framework.
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Our gold-standard posterior samples can be compared to samples obtained by any posterior-sampling
algorithm. This includes classical Markov-chain Monte Carlo algorithms, algorithms that utilize
flow-matching priors, and others. In this work, we primarily focus on DPS algorithms because
our framework can supply arbitrary-precision Monte Carlo objects to them. We believe that this
fundamental principle can be extended to other algorithms, in particular those that utilize flow-
matching priors. Such algorithms are frequently evaluated on toy examples based on Gaussian
mixtures (e.g. by Pourya et al. (2025)), that are overly simplistic.

4 NUMERICAL EXPERIMENTS

We consider signals of dimension d = 64 and four inverse problems that are frequently encountered in
various estimation tasks throughout the natural sciences: denoising;; deconvolution;; imputation;; and
reconstruction from partial Fourier measurements. The dimension of the signal is large enough such
that the corresponding operators can be sensibly defined, yet small enough such that the benchmark has
acceptable runtimes. We provide experiments about the runtime with larger signals in Appendix D.2,
details Petails about the operators are-provided in Appendix F.1, and precise descriptions of the
benchmarking pipeline (e.g., the number of training, validation, and test signals, and the number of
iterations in the Gibbs methods) in Appendix F.2.

4.1 RECONSTRUCTION ALGORITHMS
hi 1 | 1 L witl il ot
Model-Based Methods WAs-baselinereconstruction—algorithms—we consider the model-based
methods
“(y,\) = argmin (1[|Ax — y||* + \|Dx||?), (15)
xcR4

and

Azl(y,)\) = arg min (%HAX—yHQ—I—)\||Dx||1)Z (16)

x€ER4
as baseline reconstruction algorithms. Theywhieh coincide with the maximum-a-posteriori (MAP)
estimators of Lévy processes associated with Gaussian and Laplace increment distributions, respec-
tively.

Diffusion Posterior Sampling Algorithms We consider three-DPS-algorithms-that-are-popular
m—fhe—}ﬁefa%ufe—Fﬁst—fhe C DPS a}geﬂfhmfluﬁe (Chung et al 2023) Whid%ﬁm—(ﬁf—fhe:—ﬁfﬂ

and T—mfd—fhe DPnP algeﬂfhm—éue%e (Xu & Ch1 2024)fhatﬁkematerbetween~s&mp}mg—%he

r. This selection demonstrates the applica-

blhty of the framework to algorlthms that requ1re den01s1ng posterior samples (DPnP), the MMSE
denmser (lefPIR) and 1ts Jaeoblan (C DPS) Wthh covers most of the ex1st1ng DPS algonthms We

- For each DPS algorlthrn we benchmark
a variant that uses learned components (learning details are provided in Appendix F.3) and a variant
that uses Gibbs samples of the denoising posterior. For DPnP, this fully removes approximation
errors. For the others, the learned components and the Monte Carlo estimates of those components
have varying quality for different distributions and noise variances that we systematically investigate
in Appendix F.4. We provide our main results, the MMSE optimality gap, for the learned variant
and then 1nvest1gate changes When we substltute the G1bbs samples for the learned components
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The model-based methods and the DPS algorithms require the tuning of some hyperparameters.
These were found by grid search on validation data independently for each algorithm, increment
distribution, and forward operator. The precise setup for this grid search is given in Appendix F.5.
The hyperparameters for the DPS algorithms were tuned to the learned denoiser. Parameters obtained
with this procedure are later denoted with a star in the superscript.

Gold-Standard Gibbs Methods The Gibbs methods are used to obtain gold-standard samples
from the posterior. As described in Section 3, the Gibbs methods are parameter- and bias-free and
efficient. Cand;eonsequently, they are well-suited for ourthis purpose. Chain lengths, diagnostics,
and implementation details are given in Appendix F.2; we reuse the same settings across operators
and increment families.

4.2 RESULTS

Before—advaneing,—we—introduce—some—netation- For any given measurement y, someany DPS

algorithm alg that depends on theany parameters A will produces samples that we denoted

{28 (y, A) } =i We moreover denote X8 o (v, A) = m A %415 (y, A). For an

estimation method x**( - ) and data y with corresponding data-generating signal x we measure the
MMSE optimality gap (in decibel) defined by

sest _ 2
1Olog10< % (y) — x| ) a7

x§ivige () — |2

6y,
where X%t (y) = % ' 2(y, A*) for model-based methods and x**(y) = fci/lﬁv[SE(y, A*) for DPS

algorithms. A gap of 0 indicates a perfect recovery of the gold-standard MMSE estimate and anythe
positive nenzere values show the orders of magnitude of the error relative to the reference error. We
found that Ngumples = 50 provided a good tradeoff between runtime and accuracy by benchmarking
the gold-standard Gibbs method with that number of samples.

We report in Table | the mean and standard deviation of the MMSE optimality gap over all signal-
measurement pairs (x,y) in the test set obtained by the model-based methods and the DPS algorithms
endowed with the learned denoiser in-Table-}. The Gaussian increment distribution validates the
implementation: Since the MMSE and the MAP point estimates coincide, the model-based /5 esti-
mator matches the Gibbs reference up to the error due to the finite parameter-grid resolution. When
the posterior mean is smooth (e.g., imputation and some deconvolution cases), /s is the best model-
based choice and frequently outperforms the DPS algorithms. When the posterior mean is close
to piecewise-constant (typical in denoising of signals with sparse increments), the ¢ estimator is
preferred. Among DPS algorithms, DiffPIR is typically the top performer and often exceeds /5
and /; baselines in deconvolution, imputation, and reconstruction from partial Fourier measure-
ments. For spike-and-slab settings (Bernoulli-Laplace), DPS algorithms substantially outperform the
model-based baselines across operators. In deconvolution and reconstruction from partial Fourier
measurements, DPS algorithms frequently match or surpass the best model-based estimator.

We now inspect the change in performance after we substitute higher-quality Monte Carlo com-
ponents for the learned components. We do this without retuning of the hyperparameters, which
allows us to see if the performance of the algorlthms increases automatlcally with the quahty of
the den01ser § h § Fran § hth

whemep%aemgfhe%eameérdeﬂeﬁefwﬁh{heﬂfaelefleﬂeﬁ% Here, we dlscuss general trends an

exhaustive quantltatlve evaluation and a precise quantification of the quality of the learned and Monte
Carlo objects is given in Appendix G. For the same hyperparameters, the performance of DPnP
increases significantly with the quality of the denoising-posterior samples. For example, the optimality
gap decreases by 10.46 dB for imputation of signals with St(1) increments, and significantly for
other measurement operators for slgnals w1th St( ) increments and BL(0.1, 1) mcrements PPaP

10
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Table 1: MMSE optimality gap in decibel (mean =+ standard deviation; lower is better; O is a perfect
reconstruction) of various estimation methods over the test set. Bold: best among DPS algorithms.

Gauss(0,0.25)  Laplace(1) BL(0.1,1) St(1) St(2) St(3)
C-DPS 0.12 +0.18 0.12+0.20 2.22+£2.26 3.26 £1.01 0.28 £0.30 0.10£0.18
DiffPIR 0.16 £0.21 0.09 + 0.16 0.72 +1.10 0.93+1.06 0.07+0.14 0.15+0.21
Denoising DPnP 0.24 £0.25 0.11+0.17 1.33 +£2.12 1.19+1.38 0.10+0.17 0.10 £0.17
4y 0.15£0.21 0.06 £0.12 3.44+£238 0.38 £0.43 0.14 £0.19 0.11+£0.18
123 0.00 £+ 0.01 0.16 £0.21 8.61 £3.10 3.25 £0.99 0.74 £ 0.83 0.25 £0.33
C-DPS 0.12£0.20 0.12+0.23 4.30 £ 3.87 18.30 £ 5.28 0.46 £ 1.40 0.17£0.53
DiffPIR  0.07 £0.17 0.07 £0.19 1.09 £ 2.22 10.45+6.10 0.09 & 0.57 0.08 £ 0.26
Deconvolution DPnP 0.10£0.18 0.13+£0.22 1.71+2.49 7.84 +5.66 0.35+1.39 0.14 £ 0.41
4y 1.65 +0.84 1.38 &+ 0.86 1.86 +3.14 1.87+4.01 1.10 £ 1.19 1.28 £0.94
ly 0.00 £0.01 0.07 +£0.23 6.11 +4.49 21.50 + 4.46 1.44 +2.85 0.36 £ 1.09
C-DPS 0.15£0.29 0.18 £0.39 2.99 +£2.82 23.33 £8.69 0.50 £1.09 0.14 £0.57
DiffPIR  0.09 £+ 0.23  0.08 £+ 0.24 0.24 +1.14 0.88+3.50 0.11 +0.62 0.08 £ 0.42
Imputation DPnP 0.14 £0.32 0.17 £ 0.36 0.50 £1.28 10.89 4+ 5.92 0.25 £0.82 0.27£0.58
0y 1.74+1.12 1.77+1.35 1.25+2.78 13.32 £ 5.32 1.37 +2.56 1.55 £ 1.58
ly 0.00 £0.01 0.01 £0.05 1.10 +1.88 0.42 +£0.95 0.06 £0.34 0.02+£0.28
C-DPS 0.15£0.36 0.26 £ 0.65 5.90 +4.41 429+£5.78 0.53 £0.83 0.35 £0.77
DiffPIR  0.11 £0.29 0.08 £ 0.31 0.83 +1.44 3.19 £4.37 0.114+0.39 0.12 £ 0.37
Fourier DPnP 0.11£0.35 0.20 £ 0.51 1.88 +£2.47 2.45 +4.83  0.39+0.89 0.24 £0.64
151 1.50 £ 1.59 0.73£0.94 3.57+£2.82 1.07 +2.98 0.71 £ 0.99 0.78 £0.97
ly 0.00 £ 0.02 0.36 £0.73 12.22 £ 4.53 9.47 £ 8.34 2.66 + 3.57 1.03+1.79

By contrast C-DPS

and DiffPIR can require a retuning when the denoiser changes: S%cores can deteriorate after one has
substituted a higher-quality Monte Carlo denoiser for the learned onereplacing-the-learned-denoiser
with-the-oracle-deneiser, butwhereas a brief hand-tuning of the hyperparameters on the validation set
improves them way beyond the learned denoiser. For instance, for DiffPIR and imputation of signals
with St(1) increments, reusing the hyperparameters deteriorates the gap by 13.56 dB, whereas a
brlef hand- tumng decreased the optimality gap by almost 10 dB over tht is reported in Table 1

Quahtatlve examples of the MMSE estimates and the marglnal variances obtalned by the DPS
algorithms and the gold-standard Gibbs methods are shown in Figures 11 to 18 in the appendix.

Prototypical samples and the corresponding

MMSE estimate obtained from a DPS algorithm L ADif‘ﬂ,IR ‘ T

(here DiffPIR for deconvolution of a signal with @) e (¥)
BL(0.1, 1) increments) are shown in Figure 5.

(The full conditional reverse-diffusion trajectory,
the data-generating signal, the measurements,
and the MMSE estimated obtained with the gold-
standard Gibbs methods are shown in Figure 19 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

in the appendix.) The figure highlights a key dis- 0 20 40 60 0 20 40 60
tinction: Posterior samples often preserve high-
frequency structure and reflect prior variability,
whereas the MMSE point estimate—obtained by
averaging all samples—is much smoother. This
explains why DPS methods tend to score higher on perception-oriented metrics, while regressors that
target the MMSE point estimate (through training with the mean squared error) excel on distortion
metrics like the peak signal-to-noise-ratio (PSNR)). Consistent with this distinction, Saharia et al.
(2023) fairly compare a sampling-based method to an MMSE regressor and find the expected trade-off:
higher PSNR and structural similarity for the regressor; and better perceptual scores for the sampler.
We therefore recommend to makemaking the Bayesian target explicit—point estimate versus sample
quality—and to useusing evaluation protocols that are aligned to that target. Our framework supports
this by offering gold-standard posterior samples and arbitrary-precision Monte Carlo estimateseraele

xDxffPIR(y)

Figure 5: Conditional generation for deconvolution
of a signal with BL(0.1, 1) increments with Diff-
PIR. The shaded area indicates the variance.

In addition to the evaluation of the MMSE optimality gap;-whichis-on-the-peint-estimaterlevel; we

analyze the highest-posterior-density coverage of the algorithms. Specifically, for any measurement

11
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yandany k = 1,2, ..., Naamples, We definedenete® [ (y) == log px|y—y (&?ﬁ%k)(y, A2l&:*)) where
P is the permutation that ensures that I, (y) > la(y) > - -+ > In, ... (¥) and define the empirical
highest-posterior-density threshold at o € [0, 1] as lfan,,,.....7(¥)- We declare the data-generating
signal x covered if log px|y—y(X) > l[faN.,...1(Y) and define the coverage of a method as the
fraction of signal-measurement pairs (x,y) in the test set for which x is covered by the threshold
raN ampies] (y). The coverage of a calibrated posterior-sampling method will be v, up to Monte Carlo
error. A coverage result that is signifieantly less than « indicates that the samples obtained-by-the
methed concentrate too heavily around the mode; a coverage result that is greater than « indicates
that the samples are too spread out. We again discuss general trends here and present an exhaustive
quantitative evaluation in Appendix G. The coverages obtained by the DPS algorithms are generally
much smaller than «, which indicates that they are uncalibrated and is in line with what is reported
by Thong et al. (2024). For C-DPS and DiffPIR, the reported coverage values are almost always 0
except for BL(0.1, 1) and St(1) increments, where the coverages are usually (close to) 1 for C-DPS
and inconsistent for DiffPIR. For almost all increment distributions and forward operators, DPnP
reports coverage values that are closest to but typically smaller than a.

5 CONCLUSION

We have introduced a statistical benchmark for diffusion posterior sampling algorithms for linear
inverse problems. The framework proeeeds—by constructsing signals with a known distribution,
simulatesing the measurement process, and subsequently generatesing samples from the posterior
distribution that arises through the combination of the known prior and the known likelihood. Gold-
standard samples from this distribution are obtained via efficient Gibbs methods. T;-and-these
samples are then compared to those obtained by the diffusion posterior sampling algorithms. In
addition, the Gibbs methods can be used to obtain arbitrary-precision Monte Carlo estimates of
objects that are needed in the reverse %tocha%tlc differential equatlon such as the mlmmum mean-
squared-error denoiser or its Jacobians 3

encountered-in-each-iteration—of-thereverse-SPE. Consequently, the framework also enables the
isolation and quantification of the error attributable to the likelihood approximations in the conditional
reverse diffusion. We have provided numerical results for three common diffusion posterior sampling
algorithms applied to four common inverse problems. A consistent theme across all tested algorithms
is that they are not calibrated, which demonstrates that research into algorithms that perform better in
this respect remains crumal We invite other researchers to benchmark thelr algorlthms on our open

Reproducibility Statement We release an online repository with complete algorithm implemen-
tations and step-by-step instructions to reproduce all results. A containerized runtime enables one-
command setup and fully automated execution via the provided scripts. Each algorithm is specified
at a level that supports independent re-implementation: Tthe main text precisely details Gaussian
latent-machineGEM sampling;; and the appendix presents the Bernoulli-Laplace Gibbs method in
using implementation-aligned notation, together with practical optimizations required for accept-
able runtimes. The appendix also enumerates all experimental settings, including the numbers of
training/validation/test signals, the samples-per-datum for each sampler, and the exact grid-search
procedure used to select hyperparameters.

Usage of Large Language Models We used large language models to adapt passages of already-
written text for readability and conciseness.
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A BAYES ESTIMATORS

A benefit of the Bayesian approach over classical variational methods (see, e.g., (Scherzer et al.,
2008)) is that different point estimates arise from a fixed prior. For a given measurement y, these point
estimates summarize the posterior distribution px|y—, with respect to a given loss £ : R¢xRY - R
via the optimization problem of finding the point X,(y) that minimizes the posterior risk:

X¢(y) = arg min( £(%, %) px|y—y(X) dx). (18)
%€R4 Rd

In this paper, the Bayes estimator with respect to the mean-squared error (MSE) ¢ = é” = )P

plays a key role due to its close relation to the prior score in the reverse diffusion (see Section 2) and

because we quantify the performance of DPS algorithms via the MMSE optimality gap in Section 4.

With this choice of ¢, (18) can be written as

sonis(y) = angmin ([ 315-x]? pxy—y (0 dx) = [ xopyoy () dx = BIX | ¥ =¥],
R R

%€R4
19)
which is the expectation of the posterior px|y—y-
Another widely-used estimator arises through the choice
0(x,%x) = —xqx3 (%) (20
where
1 ifxe A
= ’ 21
Xax) {O else, @D
which leads to the MAP estimator that seeks the mode of the posterior:’
XMmap(y) = argmin (/ —X 1%} (X) Px |y =y (%) dx) = arg max px|y—y(X). (22)
%eR4 R4 %eR4
Rewriting (22) as
fiap(y) = argmin(— 5 | A% — y[* ~ log px (%)), 23)

X€R4

reveals a close relation to classical variational approaches after identifying the regularizer with
—logpx.

B TWEEDIE’S FORMULA

In the setting of Section 2, we now derive an equality that relates V log px, to E[X, | X; = - |, i.e.,
the MMSE estimate of X given that X, takes on a certain value. Similar derivations can be found
in, e.g., (Song et al., 2021; Chung et al., 2023; Daras et al., 2024), but we include it to underscore
the relevance of the MMSE estimate in this paper and to facilitate the understanding of its relation
to various objects. Under the variance-preserving choice for f(x,t) = —@x and g(t) = /B(t)

of the drift and diffusion coefficient, the diffusion SDE (4) simplifies to a time-inhomogeneous
Ornstein—Uhlenbeck SDE (see Klenke (2020, Example 26.5))

dX, = — 20X, dt + /(1) AW, (24)
whose pathwise solution
t
t
Xi=a(Xo+ [ S0 V/FDW.. es)
0

5This definition is informal but sufficient for the purposes of this paper. For continuous posteriors, the strict
0-1 loss Bayes’ rule is ill-posed. A common formalization defines MAP as the limit of Bayes estimators under
shrinking small-ball 01 losses; under additional regularity, this limit agrees with the posterior mode (Bassett &
Deride, 2018; Clason et al., 2019). The MAP estimator may also not be unique.
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where Xy is an appropriate initial condition and o(t) = exp(—1 fot B(s) ds), can be computed with
standard techniques, see, e.g., (Gardiner, 1990, Section 4.4.4). In addition, since

[(29Y swas= [‘sesn(- [ sonan)as=1-?w. o

we can write that

X, = a(t)Xo + o(t)N (27)
in distribution, where o%(¢) = (1—a?(t)). Consequently, the density of X is given by the convolution
of px, with a Gaussian with variance o%(¢) and appropriate scaling by «(t), which we write as:

P00 = [ 0.ea(x = a(tRpx, (%) dk @8)

where g, »(x) = (2m)"2|3| "2 exp(—1|x — p||%_.). Finally, after taking the gradient, we see
that

Vpx, (x) = / Vgo.0(y1(x — a(t)R)px, (%) A&
]Rd

_ /R (= A alt)R)go.s2 o (x — a(B)R)px, (X) d%

(29)

le(t) (prt (x) — a(?) /Rd Xgo,02(1)1(X — a(t)X)px, (X) dfg)
= _ﬁ(xpxt (X) - Oé(t)pxt (X)]E[XO | X = X])

Finallysueh-that, after dividing by px, (x) and since Vpixit(}(:)‘) = V log px, (x), we find the celebrated

Tweedie identity
Vlog px, (x) = —o(t) 7 (x — a(t)E[Xy | X; = x]). (30)

B.1 A CONNECTION BETWEEN THE DISCRETIZED REVERSE SDE AND DDPM

To show the connection between the Euler—Maruyama discretization of the reverse-diffusion SDE
and the DDPM backward process, we start by deriving the latter from the respective forward process.
DDPM haswas been introduced by Sohl-Dickstein et al. (2015) as a discrete-time Markov chain of
length T" with Gaussian transitions:

DX, X1 =x,_, = Gauss(\/1 — Bix; 1, BiI), (31)
such that the transitions from X to X; are also tractable as
Xt =vVarXo + V19— aZy, (32)

where ay = (1 — f34), &y = HZ:O a, and Z; ~ Gauss(0, I). By definition,

Xy = /1= B X1+ BiZi (33)

and a straightforward application of Tweedie’s formula (6) gives that

E[X;-1]X¢] = 7 (Xi + (1 - ay) Vg px, (X)), (34)
which leads to the DDPM backward transitions
Xio1 = o (Ko + BV logpx, (X0)) + V/BiZ (35)

like they appear in (7)-in-the-main-text.

Now, we recall the reverse-diffusion SDE; which, under our choice of the drift and diffusion coefficient,
is given by

X, = (- 52X, - B(1)Vlogpx, (X¢)) dt + v/B(1) AW, (36)
A first-order step from ¢ to (¢ — 1) (dt = —1) of gives the Euler-Maruyama update
Xio1 = (1+ 3) X, + 5V log px, (Xe) + VB Ze, (37)
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where (3, := () and Z; ~ Gauss(0,I).

The DDPM reverse process (35) can be related to the the Euler—Maruyama discretization of the
reverse SDE (37) via Taylor expansions, since

1 B

_ Pt 2
=g =l o) (38)
and 5
t _ 2
S =t OBY) (39)
as 5; — 0.

C LEVY PROCESSES AND INCREMENT DISTRIBUTIONS

The prior distributions in our framework are those of signals obtained by regularly spaced samples of
processes with independent, stationary increments (Lévy processes and their discrete-time counter-
parts). We briefly recall the definition; see Unser & Tafti (2014); Sato (1999) for background and the
link to infinitely divisible laws.

Definition C.1 (Lévy process). A stochastic process s = {s(t) : ¢t > 0} is a Lévy process if
1. (anchor at the origin) It holds that s(0) = 0 almost surely;

2. (independent increments) forany N € N\ {0,1} and 0 < t; < 3 < -+ < ty < 00, the
increments (s(t2)—s(t1)), (s(t3)—s(t2)), ..., (s(tn)—s(tn—1)) are mutually independent;

3. (stationary increments) for any given step h, the increment process uy, = {s(t) — s(t — h) :
t > h} is stationary;

4. (stochastic continuity) for any € > 0 and ¢t > 0,
lim P t+h)—s(t =0.
Jim r(|s(t+h) —s(t)| >¢e) =0
We form discrete and finite-length signals by sampling s at integer times and stacking the values
into x = (s(1),5(2), ...,s(d)). Let the unit-step increments be [u],u; = (s(k) — s(k — 1)) for
k=1,2,...,d. By independence and stationarity, the law® of [u];, uy, does not depend on k and we

denote it pyy. We define the finite-difference matrix

1 0 0 0
-1 1 0 0
: 0
0 0 -1 1
such that the increment vector satisfies
u = Dx. 41

Because s(0) = 0, the finite-difference matrix D has an initial condition thatwhich makes it invertible
and D! is a lower-triangular matrix of ones. This;whieh also implies that for all k = 1,2, ... ,d,

k
Xkxe =Y [u]u, (42)
n=1

which is a convenient way to synthesize signals once u is drawn. The combination of (41) with the
independence of the increments implies that the density of the discrete signal is

d
px(x) = ] pu (Dx]1(Dx),). 43)
k=1
SFor our choices, it always has a density w.r.t. a suitable reference measure.
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Table 2: USummary-of-univariate distributions used throughout this work. Parameters appear in the
order they are specified in this table, e.g. Gauss(u, 02).

Name Distribution Parameter(s) Supp. Notation
Gaussian 2;02 exp(— (1;5)2> peER0?2€eRyy R Gauss
Exponential Aexp(—Ax) A€ Ry R>o  Exp
Laplace o exp(—lib‘) be Ry R Laplace
F(VTH) o
Student-t —2 (14 %) v e R R St
var ()
Gamma %x“‘l exp(—px) a, € Ry Rso Gamma
a 2 . .
Gen. inv. Gaussian L ar T exp(~25%)  a,beRogpe R Rog  GIG
Bernoulli-Laplace  A6(z) + (1 — )& exp(~Z)  Xe[0,1,beRsy R BL
Moreover,F-denetes the gamma function is defined as I'(z) = [t exp(—t) dtz for any
S R>O.
T/ —denotes-the modified Bessel function of the second kind with parameter v is denoted by
K,.

Table 3: Latent variable representations and conditional distributions for common distributions.

Dist. ¢p; Latent dist. f;;  Latent maps Cond. latent dist. p(zj, Z;| X =[Kx]), (Kx);
Gauss(,0%)  0(0) Ha(z) = 1, 0%, (z) = 0% 3(0)
Laplace(b) Exp (=) tri(zi) =0, 0]2@(22) =z GIG (blz, [Kx];(Kx)2, 1

St(v) Gamma (¥, %) puri(z) =0, 0]2@(21-,) =1  Gamma (”2“, —_—

783 C.1 EXTENSIONS

784 The approach in this paper can be extended to two- or higher-dimensional signals on grids, such as
785 images or videos, and even to more specialized structures like signals defined over trees or moere
786 general graphs. The structure of the signal is effectively encoded through the choice of the matrix D.
787 For instance, a two-dimensional finite-difference matrix would result in a signal vector that can be
788 interpreted as a two-dimensional image. The main additional (computational) challenge is sampling
789 during signal generation: Whenever D is not trivially reducible to a one-dimensional operator, the
790 resulting model (43) will be overcomplete and, in general, no whitening transformation exists to
791 decouple increments for independent sampling. The extension to higher-dimensional signals and the
792 complications that arise in that context are rigorously treated in Kuric et al. (2025).

793 C.2 LATENT DISTRIBUTIONS AND NOTATION

794 Some of the distributions that we rely on in this work have multiple competing parametrizations. To
795 avoid ambiguities, we provide precise definitions of the four increment distributions that we consider
796 in this work:— Gaussian;; Laplace;; Student-t;; and Bernoulli-Laplace (spike-and-slab).— We give
797 in Table 2and our notations of these and other distributions that we use in this workin-Table2. We list
798 in Table 3 hsts the latent maps and conditional latent distributions that are needed for the GLM for
799  the distributions in this work.

goo D GIBBS METHODS AND SAMPLING EFFICIENCY

go1  Gibbs methods are Markov chain Monte Carlo (MCMC) methods to sample from a joint distribution
802 DX,Z,.Zs,....Z, Of (n+1) blocks of variables that are advantageous when the direct sampling is compu-
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Algorithm 3 Latent-variable Gibbs sampling of px z, ...z, -

Require: Burn-in period B € N, number of samples S € N, initial point (xq, z1, ... Z,n).
1: forks=1,2,...,B+ Sdo
2 Xps ~ PX|Zi=21,. B n =2 x

3: Z1 ~ DZy | X=xp,.... Dy n =20 > Latent blocks do not need to be stored

AN

return {XB+k:§}£§:1

tationally difficult but sampling from the conditional distributions px|z,.z,.....z, s PZ1|X,Z2,....Zn s - - -
is easy. Gibbs methods cycle through the conditional distributions with repeated draws, which
maintains the joint distribution invariant (Casella & George, 1992). The naming of the variables
X,Zy,2Z,,...,7Z, is deliberately chosen to emphasize that we use latent-variable Gibbs methods
that rely on auxiliary variables that are introduced solely to make the conditionals simple. The steps
of a general latent variable Gibbs sampler are shown in Algorithm 3, where the iteration counter in
the sampling of the latent variables is omitted since they need not be stored and previous iterations
can immediately be overwritten.

Kuric et al. (2025) recently showed that such methods are significantly faster than other standard
sampling routines that are commonly used in settings similar to the one in this paper. They report
sampling efficiencies of close to 1, while alternatives, such as the Metropolis-adjusted Langevin
algorithm, achieve sampling efficiencies’ of around 1 x 1073, In addition, Gibbs methods require no
step-size or acceptance-rate tuning and introduce no discretization bias. These properties motivate
our use of Gibbs methods for the fast and robust posterior sampling throughout this work.

Like all MCMC methods, in practice Gibbs methods benefit from the discarding of some number of
initial samples (sthe burn-in period); when the initial point is located in low-density regions. After
the burn-in period, the quality of the Monte Carlo estimate of any object depends on the number of

%ample% one uses 1n thelr eqtlmatlon tfﬂ—efuem}%eﬁﬂeﬁeﬂtﬂﬂbefe#%amp}e%wehﬂayfha{

aeeuﬁtt% We dlscuss our ch01ce of the burn-in penod and the number of samples for the various
problems in Appendix F.2.

D.1 A GIBBS METHOD FOR BERNOULLI-LAPLACE INCREMENTS

Let § be the Dirac distribution. Then, letting A be the Bernoulli parameter and b the scale parameter,
we noteWe-start-by-neting that the Bernoulli-Laplace density

pu(u) = Ad(u) + (1 — )\)% exp(—b

ul) (44)

W admits the
representation
1
o) = [ (3 movmsswmn(pe ) Joww) au, @s)
R v=0
where
pv(v) = A1 =N (46)
for v € {0, 1} is a Bernoulli distribution,
b2 b2w
) = g exp( =57 ) xa, (w) @)

is an exponential distribution, and
5(u) ifv =0,

4
Gauss(0,w) ifv=1. (48)

PUIV =0, W=w(U) = {

"Sampling efficiency refers to effective samples per iteration; an efficiency of p means roughly 1/p iterations
per “effective sample” (Gelman et al., 2013, Section 11.5).
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The algorithm relies on the introduction of two latent vectors v, w € R? that satisfy

d
PUV=v,W=w () = HpU|V=[v],\,.&,W=[w]kwk([u}kuk) (49)
k=1

such that, as a result, the distribution conditioned on the measurements can be written as

d
pU,V,W\Y:y(ua vV, W) X eXP(—ﬁg”Hu - Y||2) H pU|V:[v]kQ,W:[W]kﬂ([U]k%)
k=1
(50)
41 Vlvs Veve (3 b2 b2[wh’&
A “(1-=-X) — -
<11 (1-X k1:I12exp( )

where H = AD~!. Equations (48) and (50) imply that any sample from PUV=v,W=w,Y—y takes
the value zero at those indices where Vv is zero, and values from a multivariate Gaussian distribution

T -
with covariance C = (aﬁHH T+ diagdiag(w)) " and mean o 2CH"y otherwise. Sampling

W | U =u,V =v,Y =y amounts to the independent sampling of d one-dimensional distributions,
which are Exp(2/b?) at these indices where v is zero and GIG(b?, [u],u;2,0.5) those indices k

where v is one. The conditional distribution of the binary support vector is

T lkvi V]kvie

4 1 Vevi
Bv,w) ) [[A -
k=1

(S
T
where® B(v, w) = o2I+Hdiagdiag(vow)H . The standard way to sample from this distribution

_1
PViw=w,Y=y(V)  |B(v,w)|"2 exp(—%y

is to use a coordinate-wise Gibbs sampler that updates [v];v; ~ Bernoulli(py(v)) with

pe(v) = (1 +exp(=Ax(v)) ! (52)
where the log-odds increment
Ar(v) = log 152 — 1 (log [B(vi1, w)| — log[B(vi—o, w)|)
T _ T _
- %(y B(Vk:hW) 1y_y B(Vk:O,W) l)y)u

where vi—. = (V1,...,Vg_1, -, Vkt1,-- ., Vq) is the difference between the log-posterior when
the bit is on and when it is off. The resulting algorithm that is summarized in Algorithm 4 and can
be interpreted’ as (d + 2)-blockvariable (i.e., dimension-dependent) Gibbs methodand-an-efficient
. o il

(53)

D.2 PRACTICAL GIBBS IMPLEMENTATIONS

Sampling the Gaussians The sSampling of X | Z in the GLM and of U | V, WY for the
Bernoulli-Laplace case reduces to drawing from a high-dimensional Gaussian, which is a well-
studied problem. For settings that necessitate a matrix-free implementation such as those that are
commonly encountered in imaging applications, Kuric et al. (2025) advocate a Perturb-and-MAP
sampler with preconditioned conjugate-gradient solvers. We report the runtime of the Gibbs method
as a function of signal dimension for a Laplace(1) increment distribution in Figure 6. A standard
implementation based on a Cholesky factorization of the covariance matrix—which requires explicitly

8This is-a-different but-equivalent formulation is equivalent to the onete-whatis presented by Bohra et al.
(2023), who explicitly “slice” the matrices H and diagdiag(w) with the indices where v is one. We stick to

this formulation since it requires less notation and emphasizes that implementations need not build variable-sized
matrices, which is crucial for an efficient implementation on modern compute units that utilize highly parallelized
computations.

This is only an interpretation becausenotstriethy-eorreet-sinee the density violates the classical positivity
conditions that are needed for Gibbs methods. It is a partially collapsed Gibbs method, see (Bohra et al., 2023;
van Dyk & Park, 2008).
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Algorithm 4 Bernoulli—Laplace Gibbs sampler.

dn
Require: Initial increments uy € R ~, initial support vector v € RY
1: fors=1,2,...,B+ Sdo
Draw [W]iWi ~ Pw(U=[u. 1]s(u. )i, V=[v]ev:
3 fork=1,2,...,ddo
4: t Draw [v]kﬁ ~ Bernoulli(pg(v))
5
6

»

> parallel over ki

Draw us ~ pyjv=v w=w,y=y
. -1 S
: return {D uB+k§}k§:1

—O— Cholesky —3— Perturb-and-MAP

o = 0.025 o=2.5 o =25 o = 250

102 I mi - I mi - I ull= =
3
=
=}
3

Z 100 Sl 1h S :
o
E
[_1

1072 [ \ i \ i \ o - \ -

0 4000 8000 0 4000 8000 0 4000 8000 0 4000 8000

d d d d

Figure 6: Runtimes needed to perform 20 Gibbs iterations on a denoising posterior (Laplace(1)
increment distribution, 10 parallel chains) depending on the dimensionality of the signal. Missing
entries are due to excessive memory requirements.

instantiating the matrices A and D in memory—is faster than the Perturb-and-MAP sampler with a
conjugate-gradient solver across a broad range of noise variances and dimensions. For our moderate-
dimensional setting with d = 64, the Cholesky-based implementation is approximately an order of
magnitude faster.

However, explicitly storing these matrices becomes infeasible at larger dimensions (in our setup, we
ran out of memory at d = 8096), and the expected cubic scaling is apparent in the figure. In contrast,
the Perturb-and-MAP sampler (convergence criterion: squared residual norm below 1 x 10~%), while
slower than Cholesky at small dimensions, exhibits substantially better scaling with signal dimension.
In particular, it does not require materializing the operators: both the measurement operator A and
the finite-difference operator D can be implemented efficiently in a matrix-free manner. Moreover,
the sublinear runtime observed in this experiment suggests that the corresponding linear systems are
well conditioned.

The sampling accuracy of Perturb-and-MAP depends on the termination criterion used by the
optimization solver, and any finite stopping rule yields approximate samples. A principled refinement
is to incorporate a Metropolis—Hastings correction step to remove bias, and to tune the solver accuracy
to optimize overall runtime; this strategy was proposed by Gilavert et al. (2015), to which we refer for
details. Overall, these results indicate that the Gibbs method scales favorably to higher dimensions.
Combined with the fact that the denoising posteriors are sub-Gaussian, and with the relatively mild
sample-complexity requirements for estimator accuracy in this setting, this suggests that the proposed
framework scales well as the dimension increases.

Sampling the Latent Variables The sampling of the different latent variables necessitates the sam-
pling of the one-dimensional conditional latent distributions. All the conditional latent distributions
that are relevant in this paper admit efficient samplers that are readily available in standard scientific
computing packages or can be implemented with little effort. We reuse the CUDA implementation
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of the generalized inverse Gaussian sampler from Kuric et al. (2025) that implements the method
proposed by Devroye (2012)in-Bevroye; 2024 and rely on PyTorch (Paszke et al., 2017) for all
others. Wherever possible, latent updates are parallelized.

In the Gibbs methods for the Bernoulli—Laplace increments, the sequential drawing of the binary
support vector V is embedded in the outer Gibbs loop; which, in turn, may be embedded in the
reverse-diffusion loop. This makes it crucial to minimize the use of heavy linear-algebra operations

1
to achieve acceptable runtimes. Writing B(v, w) = 021 + Hdiagdiag(v ® w)H ~, we recognize
TT
that the flipping of the kth bit of v adds or removes a rank-one term [w|, w;, HyH, , where Hy, is
the kth column of H. Using the matrix-determinant lemma and Woodbury—Sherman—Morrison, we
update
log [B(vi=1,W)| = log |B(vi=0, W)| + log(1 + [w].wTy) (54)

and

whiwa(H, B(vi_o.w)ly)?

1+ [W]pwgTy

TT

T
y B(viei,w) 'y =y B(vimo,w) 'y — (55)

A
where 7, = H,, B(vj—o, w) 'Hj. Thus, an efficient implementation factors B(v, w) once per
latent state, obtains the needed scalars via triangular solves, and performs rank-one updates as bits
flip. We report our cumulative runtime improvement over a naive implementation in Figure 4.

E DPS UPDATE STEPS

E.1 COVARIANCE IN C-DPS
C-DPS (Chung et al., 2023) uses the approximation of the likelihood

PY X =x(¥) = Py |X0=E[Xo|X,=x] (¥)- (56)

When the noise in the inverse problem is Gaussian, the likelihood score
v (x = 10g Py |x,—E[Xo|X,=x] (y)) necessitates the computation of

V(x5 AEX | X, = x] — ), (57)

which is
3 (= E[Xo | Xy =x)) (A (AE[Xo | X, = -] - y) (59)
after an application of the chain rule. The Jacobian J (x — E[X, | X; = x]) is typically computed

with automatic differentiation when (x,t) — E[X, | X; = x] is approximated with a neural network.

In our framework, we use the connection with the covariance matrix Cov[Xy | X; = -|. Indeed, as
also shown by Rissanen et al. (2025)i St , if X and X verify (32), then

Xo | X =x] = &% (I+(1—a)*V’logpx, (x)). (59)

This identity, combined with the derivative of (6), yields

J(x = E[Xo | X; = x]) (x;) = ~—Cov[X, | X; = x4. (60)

«
11—y

E.2 EXPLICIT UPDATE STEPS

We give thedefine-some instantiations of the update steps S (xf {x,19 ..y, A, \,t) avariety of DPS

algorithms below. -Each z; is a

d-dimensional random vector Wlth 1.1.d. standard Gaussian entrles

24

[tkeZ] Additional
instantiations of
the update step
to showcase the
versatility of our
template.




911
912
913

914

915
916
917

919

920
921
922
923

924
925

Under review as a conference paper at ICLR 2026

Score-ALD (Jalal et al., 2021) The input parameters of this algorithm are composed of the follow-
ing: A noise schedule { /)’t}tT;Ol, the noise level of the inverse problem o,,, and annealing parameters
{n:}=5t and {7}/, The update step goes

(61)

1 S
_ EZ:
( —Xt/ﬁf-,

T
Xi1 =X+ (St + A “(y - AXt)) + V21124

7+2

C-DPS (Chung et al., 2023) The input parameters areX-are-composed-of the foHowing—ais the

variance-preserving scaling weight &, as in (32), S¢is the variance of the diffusion transitions [, as
in (35), and a scalar ¢ that governsparametrizes the likelihood-guidance strength. The diffusion noise
level that corresponds to the denoising posterior is denoted oy = (1 — ay)/+/@, which is used to
compute the samples {X;; }7._,. The update step goes

ks=1
s
1 _ N _\ T

C= 3 Z (Xis — ) (Xps — ),

ks=1 (62)
iy = ) S
5 Tr TT,,
Xi1 = Xpo1 — |\A,f v f/ZtC A (Ap-y),

Xi—1 = X1/ 1.

lefPIR (Zhu et al 2023) The mput parameters are srmrlar to those of C DPS ﬁq—&ﬂf}—ﬁj—&fe

. : : 3 2 ngth: It also
uses the noise level of the inverse problem oy and an addrtronal balance hyperparameter ~. The
update step goes

1 S
lj’:i ik§7
Sk§:1
2

pt_C 1217

_ . . _ (63)
Xy = argrrriln(%HAx — y||2 + Bx — HHQ)-,
xER

€= Jll—iat(xt — \/@t)_(o),
X1 = Var—1%o + /1 — a1 (v/1 — 7€ + \/721).
Xi1 = X¢—1/v/ 1.

IIGDM (Song et al., 2023) The input parameters are the noise schedule {Ut}?:BI, the data-
dependent noise schedule {rt}tT:_Ol, and the DDIM (Song et al., 2020) time-dependent coefficients
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ikg’;

{c?)}fgol and {c§2) T-L. The update step goes
G- L
H= 5
1
C——
S
J =

g=(y-Am “(aa"+ :—%%I)ilAJ)Tf

é= L

\/ﬁ(xt - \/6715[1’)7

Xt 1=\ Qsft + C1Z¢ + C2€ + \/ug,
Xi—1 = X1/ Q1.

(64)

DPnP (Xu & Chi, 2024) The diffusion noise level that corresponds to the denoising posterior is
denoted 1), which is used to compute the sample X,_1. This same 7; defines the likelihood-guidance

strength. The update step goes

X0 = X1,

xi-1 ~ exp(—5IA - —y[? = 2 —xo]2).

(65)

Annealed Plug-and-Play Monte Carlo (PnP and RED variants) (Sun et al., 2024) The diffusion
noise level that corresponds to the denoising posterior is denoted o, which are used to compute the
samples {)’ck}i:l. The parameter 71 denotes the likelihood guidance strength, and x; is an annealing

parameter.

The update step for the PnP variant goes

s = (- x)/0?,
X1 = X¢ + YKeS + /2774,

TT
Xt x¢ — YA T (Ax—y).

The update step for the RED variant goes
1S3
[l’ = g Z xk’§7
ks=1

S:(ﬂ_xt)/o—?a

T
xi-1 =% — V(A T(Ax —y) — Ks) + /272

(66)

(67)

The DPS template that is summarized in Algorithm 2 is illustrated with a one-dimensional toy-example

in Figure 7.

F NUMERICAL EXPERIMENTS

F.1 FORWARD OPERATORS

We consider four forward operators A in our experiments. The first operator isFirst; the identity
A =1 € R% This choice is motivated by the fundamental role that denoising algorithms currently
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Sampling of denoising posterior

Denoising step

Likelihood step

PXglY=y |

T T T
— PXg|Xi=x¢

L. 2
= - - Gauss(x¢, 0} A

i

N
R o

T T T
V log px,

T T T
~ Vg py|x,=- (¥)

Xt 2,15
{%k =1
Pxg PY|Xq

Figure 7: Illustration of the proposed template for DPS algorithms. Fhe-benchmarked-posterior

~PXg|Xp=x

X4
Step S of a DPS algorithm

play in many restoration algorithms and even in labeling problems such as edge detection (Le et al.,
2025). The secondSecond;-a-convelation operator A € R*? that implements the convolution with
a kernel that consists of the 13 central samples of a truncated Gaussian with variance 2 that areand
is normalized to unit sum. We adopt circular boundary conditions to enable a fast computation of
the proximal map that arises in the update step of DiffPIR (see Appendix E.2) via the fast Fourier
transform. Deconvolution is a relevant problem with applications likein;e-g5 microscopy orand
astronomy. The third operator isThiré; a sampling operator A € R™* that returns m < d entries of
its argument unchanged. This operator is alse relevant in many fields such as image reconstruction and
time-series forecasting. In particular, in a forecasting or prediction problem the operator would return
can-be-modeled-byretarning the first m known entries, and the resolution of the inverse problem
estimatesrecovering the remaining (d — m) entries-through-theresolution-of the-inverse-problem. In
our experiments, each entry has an independent chance of 40 % of being kept. The fourth and last
Fourth;-an operator is A = MF € R™*d where F € R2(14/2]+1)%d i the matrix representation of
the “real” one-dimensional discrete Fourier transform with separated real and imaginary components,
and M € R™*2(L4/2]+1) j5 a sampling operator. Such operators are relevant in;-e-g medical imaging
orand astronomy. The sampling operator is constructed such that the 5 lowest frequencies (including
the DC term included) are acquired, whileand the remaining frequencies independently have a 40 %
chance of being kept.

For all operators, the noise variance o2 is chosen such that the median measurement signal-to-noise
ratio (SNR) is around 25 dB. We set Niyain = 1 x 108, Nyyp = 1 x 103, and Niegt = 1 x 103,

F.2 BENCHMARK IMPLEMENTATION-DETAH:S
The benchmarking pipeline starts with the generation of Ny test signals denoted {xtebt ,ICV et per
increment distribution, each of which is independently synthesized by first drawing i.i.d. increments

from the respective increment distribution and forming the signals via (42). It then proceeds to
synthesize the N;.s; measurements (i.e. we use one noise instance per signal) denoted {yteSt N P
according to (1) and, for each of the measurements, computes the gold-standard posterior samples
of the various inverse problems via the Gibbs methods described in Section 3. This stage is off-line
(no reverse-diffusion loop) and trivially parallel across the measurements, which allows us to run
long chains with burn-in periods of 1 x 10° iterations and obtain 2 x 10° draws from the posterior
distribution. This far exceeds any values reported by Kuric et al. (2025)in-Kurie-et-al52025) or
Bohra et al. (2023 )Behraet-al;2023) and results in precise MMSE estimates.

The dataset-generation stage also involves the generation of Ny, training signals {x{r2in kNgf‘“

and N, validation signals (mutually disjoint from the test signals) {x"al},C val along withand the

corresponding validation measurements {y,gal} o3 - The training signals are used for the learning
of a neural score function like those that are used for the resolution of inverse problems when the
prior is unknown or too expensive to evaluate. Training details are provided in Appendix F.3 The
validation signals are used to monitor the performance of the neural score function on unseen signals
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during the training stage and to tune the regularization parameters for the model-based approaches as
well as the parameters of the DPS algorithms, see Section 4.1 and-Seetion4-+.

Unlike for the computation of the gold-standard MMSE estimate of the initial inverse problem, the
denoising posteriors are sampled 7" times per trajectory (we use 7' = 1000). To ensure acceptable
runtimes in this setting, we therefore pick the smallest burn-in period and sample count that still yield
accurate estimates of the required statistics. We determine these settings with a rigorous protocol that
is detailed in Appendix F.4. Ultimately, this protocol resulted in the choice of a burn-in period of 100
iterations and a sample count of 300.

F.3 LEARNING DETAILS

For learned-based denoisers, a noise-conditional neural network with UNet architecture (305 761
learnable parameters) is trained in an off-line step on the N, ,;, training signals in a standard setup
(Adam optimizer with learning rate 1 x 10~* with exponential decay with factor 0.9999, 100 000
parameter updates, batch size 10 000). The noise schedule in C-DPS and DiffPIR is defined by the
two endpoints 3y = 1 x 10~% and S = 2 x 102 with linear equidistant samples in-between. The
learned variant of DPnP is the “DDS-DDPM” variant (Xu & Chi, 2024, Algorithms 1 and 3) that
contains an inner denoising-sampling loop. The arbitrary-precisioneraele variant does not require an
inner loop at all (except for the burn-in period), which makes the arbitrary-precisioneraele variant the
faster one for this case.

F.4 APRoFOCOL-TO-DETERMINE-THE BURN-IN PERIOD AND DENOISER QUALITYFHE
NUMBER-OF-SAMPEES

As discussed in Appendix F.2, the burn-in period and the number of samples of the Gibbs samplers
needs to be chosen appropriately to ensure an acceptable runtimes and a sufficiently small Monte Carlo
EITOr o — e e b e e denoisingposteriors-thata g

i s. We determine the burn-in period and the number of samples through the
following protocol that is run in an off-line stage prior to running the benchmark. We synthesize
X; = Xg + oin where oy is in the range defined by the noise schedule 3, xq is constructed via
(42) for all four considered increment distributions, and n is some unknown but fixed vector of
standard Gaussian noise. For each of the synthesized signals, we then launch C' = 1000 parallel
Gibbs chains on the corresponding denoising posterior and run those chains for Ngufricient iterations,
where Ngufrcient 1S @ sufficiently large natural number that guarantees that the chains are stationary
for at least IV, (which is also relatively large) iterations and that, consequently, we can compute
precise estimates of various statistics of the posterior distribution from the iterates from the last Ny
iterations across all C' chains.

To determine the burn-in period, we then pro- = \ I

ceed to calculate a statistic that we can mon- 102 1 §
itor throughout the iterations and that we can 3 F E
compare against the reference statistic. Specif- £ - 1
ically, denoting with X the random variable of = 10" | E
the Gibbs sampler, we compute the empirical £ B :
distribution of the increments at index 32 like E 100 |- o
FHhatis; (X33 — ng). The distribution of dif- =§ % %
ferences that is obtained by taking the last Nayg I i
iterations across all C' chains is considered the 07 E | | | | E

reference distribution. Then, we compute the
Wasserstein-1 distance of that distribution to the
one obtained by taking the average across Nayg ] ) ) ]
iterations and all C in a sliding-window start- Figure 8: Wasserstein-1 distance of intermediate
ing from the first Gibbs iterations. This allows marginal distributions to that of the final sample.
us to gauge the burn-in period through a visual

inspection of the Wasserstein-1 distance through the Gibbs iterations. In particular, we expect the
Wasserstein-1 distance to be large for a number of initial samples where the Gibbs sampler is not
stationary and then to oscillate around a small but nonzero value. The value will be nonzero due to the
finite sample size. The Wasserstein-1 distance between the reference distribution and the one obtained

Gibbs iterations
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Figure 9: Mean squared error between MMSE estimates and the reference MMSE. Dashed lines:
Learned neural MMSE estimate. Solid lines: Monte Carlo MMSE estimate in terms of the window
length.

through the Gibbs iterations is shown in Figure 8 (for the exemplary case of a St(1) distribution and
a selection of noise variances). We observe that the empirical distribution of increments converges
rapidly to the reference one. The Wasserstein-1 distance reaches the noise level after a single-digit
number of iterations, which is in line with the analysis provided by Kuric et al. (2025)in-(Kurie-et
al52025). Based on these findings, we chose the burn-in period as B = 100 iterations for all our
experiments, which is more than sufficient to reach stationarity and has acceptable runtime.

To determine the number of samples that are needed for a sufficiently accurate computation of various
statistics that any DPS algorithm may utilize in their update steps, we compute a precise estimation
of the MMSE estimate of the denoising posterior by averaging the last N, iterations across all C
chains. Then, we pick one arbitrary chain and grow a window from iteration (Naye — 1) to the left,
average the samples in that window, and compute the MSE from the MMSE estimates obtained in
the one-chain window to the precise estimate obtained by averaging the C chains and the last N,
iterations. We show this error in terms of the window length and the noise variance for all increment
distributions in Figure 9. The quality of the learned denoiser and the Monte Carlo denoiser differ over
the noise variances and the learned denoiser improves relative to the Monte Carlo denoiser as the
noise variance vanishes. Our final choice of S = 300 samples is motivated by the fact that the quality
of the Monte Carlo denoiser, when averaged across all noise variances that appear in the reverse
diffusion, is always strictly better than the learned denoiser. Since it is relevant for the discussion
in Section 4.2, we highlight that for this choice the quality of the Monte Carlo denoiser is superior

to the learned one across all noise variances for the St(1) and BL(0.1, 1) increment distributions.
. . . . . o 72 .
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F.5 ALGORITHM PARAMETERS-IBENTFHICATION

The adjustable regularization parameter for the-method este ={{y, {1} satisfieswasfound-by

Nyal
1
Acst,* — are min Acst val7 ) — Xval 2.‘ (68)
min 3 K030 <
There,where A is the loglinear grid A = {\1, A2, ..., An,, |} withwhere
ni—1) =2
>‘"Z = 10a+( - )Nmb—l (69)

with ¢ = ( — 5) and b = 5. Since the model-based methods are very fast, we can use the relatively
high Ny, = 1000.

The adjustable hyperparameters of the DPS methods were found by
Nval

AT — argmin —— Y IR S A) — x| (70)
Ac@2lg val 1

where the grid ®2!¢ is method-dependent. ThisNete-that-this tuning is speeifieally tailored towards
the evaluation with respect to the MMSE optimality gap. Due to resource constraints, the parameters
are tuned for the learned denoiser. We use Ngamples = 10 for the grid search on the validation set.
We define a modest number of Nq,s = 40 grid-points and found the extreme points of the grid (i.e.,
the values of the parameters that clearly lead to worse results) by hand. For C-DPS and DiffPIR,
we fix the diffusion schedule to standard choices (5 = 1 x 1074, 87 = 0.02). In addition to the
diffusion schedule, C-DPS has one tunable parameter v that we tune on 40 loglinear grid points
(”Li = ]-a ) Ndps)

a+(ni—1 (b ”1
10" TR 1)

Twhere, a = ( — 3) and b = 1. DiffPIR has two tunable parameters v and ¢, withaltheugh ~
beingis typically considered uncriticalnet-se-eritieal. Thus, we split the 40 grid points into a two-
dimensional grid @PH#PIR — £0.3/0.7} x ©¢, withi-e- 2 points for v and 20 points for ¢ given by

0¢ = {65,...,0},. )2} where

o6, - 10" Vi )
with a = ( — 4) and b = 1. The DPnP algorithm only has the schedule {n; }7_; to tune. In this case,
since DPnP is asymptotically correct, the schedule is a practical vehicle that enables to trade off
between speed and accuracy. Therefore, thewe-use-a schedule of this paperthat is similar to the one
that was proposed by (Xu & Chi, 2024 )in-the-original-publication(Xu-&-Chi; 2024): We fix a small

Nfinal = 0.15; and linearly decrease njeta from some 7initial tO Nsina1 after K/5 initial iterations with
Thinitial» like:

Ninitial ifni=1,...,K/5
i = x5 (73)
nnz 77??5::21 KoR7S Minitial if TL@ = K/5 + 17 e 7K
We treat initial s a tunable parameter and search over OPPP = fn) n, . 40}, where for
+(ni—1 (b= a)
i = 10" ==y (74)

There,with a = ( — 1) and b = 4. Like in the original publication, we use the comparatively small
K =40.

The MSE over the validation data depending on the value of the adjustable regularization parameter
of the /5 and ¢; estimators and the adjustable hyperparameters of C-DPS, DiffPIR, and DPnP is
shown in Figure 10. Since the v parameter of DiffPIR is assumed to be uncriticaleensidered-notse
eritieal, we only show the values of the MSE for various choices of (, where 7 is set to the value of
the optimal (v, ¢) pair.
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—o0— BL(0.1, 1) —0— Laplace(1) —&— St(2) —0— St(3) —+— St(1) —<— Gauss(0, 0.25)

Denoising Deblurring Imputation Fourier
a :

Figure 10: Grid-search diagnostics (logarithm of the MSE over the validation data set) for the model-
based methods and the DPS algorithms. Rows: ¢5; ¢1; C-DPS; DiffPIR; DPnP. Columns: Denoising;
deconvolution; imputation; reconstruction from partial Fourier measurements. For better visualization,
each curve has had its minimum subtracted. To limitaveid clutter, marks are spaced ten apartplaced

enly-atevery10th-grid-point.
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Table 4: Change in MMSE optimality gap (mean =+ standard deviation) after substituting the learned
denoiser with the arbitrary-precisioneracle denoiser. An asterisk indicates a significant changes
according to a Wilcoxon signed-rank test (p = 0.05). Negative number with asterisk: MMSE estimates
obtained with the arbitrary-precisioneraele denoiser are significantly better. Positive number with
asterisk: MMSE estimates obtained with the learned denoiser are significantly better.

Gauss(0.25) Laplace(1) BL(0.1,1) St(1) St(2) St(3)
C-DPS 0.00 £0.11 0.00 £0.16 —0.46 £ 1.16" 0.00 £0.01 0.024+0.79°  —0.01£0.14
Denoising DiffPIR 0.00 £0.13 0.00£0.17 —0.05+ 0A78f —0.41 £ 0.80" 0.00 £0.20 0.00 £0.15
DPnP 0.044+0.27°  —0.01 +£0.22 —0.55 +1.31" —0.77 £1.31" 0.00 £0.24 0.00 £0.23

C-DPS  —0.01£0.24 0.00 £ 0.26 0.09 +0.97" 6.64+£3.21" —0.12+£1.11" —0.03+£0.43
Deconvolution  DiffPIR  —0.01 £ 0.23 0.0040.23 0.04£1.12 13.56 £ 9.90°  —0.01 £0.47 0.00 £0.31

DPnP 0.004+0.25 —0.01+0.27" —0.02+1.20 —4.98+3.86"  0.06+£0.77 —0.02+0.34
C-DPS 0.00 4+ 0.30 0.0140.35 0.41 4+ 1.51° 3.4144.99° —0.12+1.01" —0.01+0.57
Imputation DiffPIR  0.00 & 0.29 0.00 £ 0.33 0.03 £ 1.05 —0.20 +£3.05"  0.0340.71 0.00 4 0.47
DPnP 0.00+0.35 —0.02+0.38 —0.02+1.02 —1046+5.70"  0.024+0.67 —0.01=+0.48
C-DPS  —0.02+0.43 —0.0140.49 0.80 + 1.43 0.09+5.63" —0.03£0.79" 0.01 4 0.49
Fourier DiffPIR  —0.01 = 0.39 0.00 £ 0.40 0.12+£0.83"  —0.64+1.70" —0.03+0.42" —0.02+0.38
DPnP —0.01 +0.43 0.00£045 —0.33+1.13" —1.32+3.18"  0.00%0.54 0.01 +0.46

Table 5: Runtime of the benchmark with learned objects.

Gauss(0.25) Laplace(1) BL(0.1,1) St(1) St(2) St(3)

C-DPS 00:04:52 00:04:52 00:02:56  00:04:52  00:04:52  00:04:52
Denoising DiffPIR 00:01:59 00:01:58 00:01:12  00:01:58  00:01:59 00:01:59
DPnP 00:02:33 00:04:58 00:01:15  00:59:33  00:06:13  00:04:58

C-DPS 00:04:52 00:04:53 00:02:57  00:04:53  00:04:53  00:04:52
Deconvolution  DiffPIR 00:01:59 00:01:59 00:01:12  00:01:59  00:01:59  00:01:59

DPnP 00:13:54 00:46:39 00:05:48  00:53:30 00:28:24  00:28:24
C-DPS 00:04:53 00:04:53 00:02:59  00:04:53  00:04:53  00:04:53
Imputation DiffPIR 00:01:59 00:01:59 00:01:13  00:01:59  00:01:59  00:01:59
DPnP 00:04:58 00:16:18 00:18:56  00:51:41  00:39:04 00:32:50
C-DPS 00:04:54 00:04:54 00:02:59  00:04:55 00:04:55 00:04:54
Fourier DiffPIR 00:01:59 00:01:59 00:01:13  00:01:59  00:01:59  00:01:59
DPnP 00:06:13 00:13:53 00:04:42  00:51:41 00:23:39 00:16:18

G ADDITIONAL RESULTS

We provide in Table 4 anA#n exhaustive quantitative evaluation of the change in the optimality gap
afterwhen we substituteing the arbitrary-precision Monte Carlo denoiser for the learned denoiserfoer
theeracle-denoiserisprovided-in-Table4. WeThe-table also reports for which cases the arbitrary-
precisioneraele denoiser enjoysreports significantly better results than the learned denoiser according
to a Wilcoxon signed-rank test (p = 0.05, Niest pairs, two-sided test with the winner determined
by the median of differences). We attribute a better performance of the learned denoiser to the fact
that the algorithms are fine-tuned using the learned component or to the cases where the likelihood
score approximation is compensated by the one of the learned component. Note that this table must
be interpreted with the quality of the denoisers in mind. As we show in Figure 9, for our particular
choice of S' = 300 samples, the Monte Carlo denoiser is strictly better than the learned denoiser over
all noise variances only for signals with BL/(0.1, 1) and St(1) increment distributions.

We show uncurated qualitative results of the MMSE estimate obtained by the DPS algorithms and
the gold-standard Gibbs methods in Figures 11 to 18. The figures alternate between the arbitrary-
precisioneraele denoiser and the learned denoiser and show the results for deconvolution, denoising,
imputation, and reconstruction from partial Fourier samples, in that order. Each figure contains results
for BL(0.1, 1), St(1), St(2), and Laplace(1) increment distributions.

The coverage results for « = 0.9 are presented in Table 7. The Gibbs row again validates the
implementation; for all forward operators, they achieve coverages that are very close to 0.9. In
contrast, the coverage values obtained by the DPS algorithms are generally much smaller than 0.9.
For C-DPS and DiffPIR, the reported coverage values are almost always 0 except for BL(0.1, 1)
and St(1) increments, where the coverages are usually (close to) 1 for C-DPS and inconsistent for
DiffPIR. For almost all increment distributions and forward operators, DPnP reports coverage values
that are closest to, but typically smaller than, 0.9. Note that a coverage of 1 can be considered the
worst case even at a target of 0.9. For instance, it would beis achieved by setting all samples to a
constant vector with extremely large (i.e., “unlikely”) entries.
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Figure 11: Qualitative results for deconvolution using the Monte Carloeracle-denoising-sampler.
Rows: increment distributions. For each increment distribution, the MMSE estimates obtained by the
different DPS algorithms and the gold-standard Gibbs methods are shown on top of the corresponding
index-wise marginal variances. Columns: Different measurements.

33



Under review as a conference paper at ICLR 2026

4 T
ol . —— C-DPS
3| 1 L, —— DiffPIR ||
. DPnP
-2 - ibbs
= L | — Gibbs
= 1 =
=
m_4, o b N
ol ,
ol N
! ! ! ! ! ! ! ! ! ! ! !
0.8 = = T T T T 0.8 [T T T |
0.6 | - o5l 1 o6 .
0.4 - 1 0.4 704*a =
0.2 1= -1 0.2 |- - o2} -
0 0 A L 0 S A
T T T T T T
100 |- B
ol ,
ol ,
. 50 |- B
~—
Z
e
n
ol _|-200 |- ,
—100 |- |
—50 |- N
! ! ! ! ! ! ! ! ! ! ! !
104 104 104
6T T T T 6 1 T T — T T T T
37 —
41 1oab 4 5L |
2 — 27\ — 1 |
0 . N N 0 A . N VAN 0 'y . e N
T T T T T T T T T T T
ol ,
20 |- -1 ol N
B -5 {0 .
=
0 10 [~ —
—10 |- - =20 |- |
0 ! ! [ e X3 el ! [ ! ! ! !
- - 4
s T T 1 3 sl 7
10 -2 1 ol |
5 |- - 1 1 1 =
- — P 0 0
T T T T T T T T
o - ok -0 n
—
=
(o]
—5 |- |
& 5| =
~ —10 |- 4
—10 |- ,
—15 [ N
! ! ! ! ! ! ! ! 0 ! ! !
2 [ 7 3 7
20 o1 1 L |
1 - 1 n
0.5 |- - 1 n
0 0 0

Figure 12: Qualitative results for deconvolution using the learned denoiser. Rows: increment distribu-
tions. For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 13: Qualitative results for denoising using the Monte Carloeracle-MMSE denoiser. Rows:
increment distributions. For each increment distribution, the MMSE estimates obtained by the different
DPS algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-
wise marginal variances. Columns: Different measurements.
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Figure 14: Qualitative results for denoising using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 15: Qualitative results for imputation using the Monte Carlo denoisereracle-sampler. Rows:
increment distributions. For each increment distribution, the MMSE estimates obtained by the different
DPS algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-

wise marginal variances. Columns: Different measurements.
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Figure 16: Qualitative results for imputation using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms and the
gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal variances.
Columns: Different measurements.
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Figure 17: Qualitative results for reconstruction from partial Fourier measurements using the Monte
Carloeraele denoiser. Rows: increment distributions. For each increment distribution, the MMSE
estimates obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown
on top of the corresponding index-wise marginal variances. Columns: Different measurements.
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Figure 18: Qualitative results for reconstruction from partial Fourier measurements using the learned
denoiser. Rows: increment distributions. For each increment distribution, the MMSE estimates
obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown on top of
the corresponding index-wise marginal variances. Columns: Different measurements.
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Table 6: Runtime of the benchmark with Monte Carlo objects.

Gauss(0.25) Laplace(1) BL(0.1,1) St(1) St(2) St(3)
C-DPS 05:52:28 07:23:23 34:07:44  05:52:40 05:34:51 05:31:10

Denoising DiffPIR 05:04:40 06:36:25 33:46:29  05:12:30  05:39:06  05:38:24
DPnP 00:03:04 00:03:57 00:20:36  00:03:23  00:03:08  00:03:10

C-DPS 05:53:40 07:25:17 34:17:12  05:28:38  05:24:12  05:24:00
Deconvolution  DiffPIR 05:28:09 06:55:34 34:16:17  05:31:29  05:32:32  05:22:39
DPnP 00:03:05 00:03:59 00:21:01  00:03:13  00:03:21 00:03:21

C-DPS 05:49:07 07:15:41 34:29:37  05:53:44  05:27:44  05:26:05
Imputation DiffPIR 05:50:15 07:00:13 33:52:26  05:34:00 05:24:16  05:09:56

DPnP 00:03:23 00:04:18 00:20:58  00:03:09  00:03:05  00:03:22
C-DPS 05:49:49 07:09:51 34:30:13  05:49:44  05:49:26  05:49:07
Fourier DiffPIR 05:13:06 06:38:32 34:31:38  05:17:58  06:14:52  05:15:14
DPnP 00:03:04 00:04:12 00:20:59  00:03:05 00:03:19  00:03:32
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Figure 19: Conditional generation for deconvolution of a signal with BL(0.1, 1) increments with
DiffPIR. Top: Prototypical sampling trajectory at times ¢t = 999, 600, 200, 0. Bottom: From left to
right: MMSE estimate obtained by averaging all DiffPIR samples; gold-standard MMSE estimate
obtained by the Gibbs method; the data-generating signal; the data.

Table 7: Posterior coverage of various estimation methods at o = 0.9. MC: Monte Carlo.

[TmEt] Runtimes
of the experiments.

Gauss(0,0.25) Laplace(1) BL(0.1,1) St(1) St(2) St(3)

Learned MCeoracle Learned MCoracle Learned MCoracle Learned MCoracle Learned MCoracle Learned MCoraele
Gibbs — 0.90 — 0.91 — 0.91 — 0.89 — 0.91 — 0.89
Denoisin C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
sing DiffPIR  0.00 0.00 0.00 0.00 1.00 1.00 0.28 0.02 0.00 0.00 0.00 0.00
DPnP 0.58 0.67 0.11 0.11 1.00 0.41 0.53 0.08 0.09 0.09 0.09 0.10
Gibbs — 0.89 — 0.90 — 0.90 — 0.91 — 0.91 — 0.91
Deconvolution C-DPS 0.00 0.00 0.01 0.00 1.00 1.00 1.00 0.83 0.01 0.00 0.00 0.00
DiffPIR  0.00 0.00 0.00 0.00 1.00 1.00 0.97 0.92 0.00 0.00 0.00 0.00
DPnP 0.12 0.12 0.06 0.07 1.00 0.31 0.50 0.06 0.06 0.06 0.07 0.06
Gibbs — 0.89 — 0.90 — 0.86 — 0.91 — 0.91 — 0.91
Imputation C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 0.94 0.78 0.15 0.15 0.00 0.00
P DiffPIR  0.00 0.00 0.00 0.00 1.00 1.00 0.72 0.32 0.00 0.00 0.00 0.00
DPnP 0.28 0.31 0.09 0.08 1.00 0.41 0.56 0.07 0.14 0.13 0.12 0.13
Gibbs — 0.91 — 0.90 — 0.90 — 0.91 — 0.92 — 0.91
Fourier C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 0.96 0.74 0.01 0.01 0.00 0.00
DiffPIR  0.00 0.00 0.00 0.00 1.00 1.00 0.92 0.65 0.00 0.01 0.00 0.00
DPnP 0.19 0.19 0.08 0.06 1.00 0.32 0.50 0.06 0.07 0.07 0.07 0.06
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ABSTRACT

We propose a statistical benchmark for diffusion posterior sampling (DPS) algo-
rithms in linear inverse problems. Our test signals are discretized Lévy processes
whose posteriors admit efficient Gibbs methods. These Gibbs methods provide gold-
standard posterior samples for direct, distribution-level comparisons with DPS algo-
rithms. They can also sample the denoising posteriors in the reverse diffusion, which
enables the arbitrary-precision Monte Carlo estimation of various objects that may
be needed in the DPS algorithms, such as the expectation or the covariance of the
denoising posteriors. In turn, this can be used to isolate algorithmic errors from the
errors due to learned components. We instantiate the benchmark with the minimum-
mean-squared-error optimality gap and posterior-coverage tests and evaluate pop-
ular algorithms on the inverse problems of denoising, deconvolution, imputation,
and reconstruction from partial Fourier measurements. We release the benchmark
code at https://github.com/emblem-saying/dps—benchmark and
invite the community to contribute and report results.

1 INTRODUCTION

Diffusion models are among the leading generative models in imaging (Rombach et al., 2022),
visual computing (Po et al., 2024), finance and time-series analysis (Huang et al., 2024; Rasul et al.,
2021), de novo protein and drug design (Watson et al., 2023; Alakhdar et al., 2024), natural language
processing (Li et al., 2022), and other domains. Their ability to model complex distributions has
motivated their use as priors in the Bayesian resolution of inverse problems. In fact, reconstruction
methods that leverage diffusion models are competitive or state-of-the-art for problems such as
deconvolution (Ren et al., 2023), phase retrieval (Xue et al., 2025), magnetic resonance imaging
and computed tomography reconstruction (Chung & Ye, 2022; Liu et al., 2023), weather-artifact
removal (Ozdenizci & Legenstein, 2023), task-conditioned protein design (Bogensperger et al., 2025),
audio bandwidth extension and dereverberation (Lemercier et al., 2024), and denoising of financial
time-series (Wang & Ventre, 2024).

This empirical success has come in spite of a lack of a natural mechanism for the conditioning on
measurements and active research explores how to incorporate the likelihood (Yismaw et al., 2025;
Erbach et al., 2025). Currently, conditioning strategies are evaluated in one of two ways. (i) With
respect to downstream applications: As an example, evaluations with respect to perceptual metrics
such as the structural similarity (Wang et al., 2004), the Fréchet inception distance (Heusel et al.,
2017), or the learned perceptual image-patch similarity (Zhang et al., 2018) are common in the
imaging sciences. As pointed out by Pierret & Galerne (2025b) and Cardoso et al. (2024), however,
these metrics are ill-suited for the statistical evaluation of posterior-sampling algorithms. (ii) In
overly simplistic settings: A common fallback is to evaluate conditioning strategies in synthetic
settings with (finite-component) Gaussian-mixture priors. Such mixtures remain light-tailed with
the tail decreasing exponentially like the widest component. Consequently, they cannot reproduce
power-law-like extremes that are common in asset returns (Blattberg & Gonedes, 1974; Cont, 2001) or
statistics of images (Wainwright & Simoncelli, 1999). We illustrate signals with such power-law-like
extremes later in Figure 3. Benchmarks built on such priors can therefore overstate posterior quality. A
proper statistical evaluation in realistic settings is critical in high-stakes applications such as medical
imaging, remote sensing, and finance, where decisions based on reconstructions and their associated
uncertainties may have significant consequences.
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1.1 CONTRIBUTIONS

We propose such a statistical benchmark for diffusion posterior sampling (DPS) algorithms' for
linear inverse problems. Our test signals are discretized Lévy processes that admit efficient posterior-
sampling algorithms. Indeed, they admit efficient Gibbs methods with exact conditionals that provide
gold-standard posterior samples. Our framework supports general posterior-level comparisons (e.g.,
(sliced) Wasserstein or energy distances or calibration via coverage and posterior predictive checks)
by furnishing matched samples obtained from the DPS algorithms and the Gibbs methods.

The Gibbs methods are also suited to sample from the denoising posteriors in the reverse diffusion.
This motivates our contribution of a new template for DPS algorithms, in which update steps utilize
samples from the corresponding denoising posterior. These samples can be used for arbitrary-precision
Monte Carlo estimation of various objects that are needed in the update steps of the algorithms, such
as the minimum-mean-squared-error (MMSE) denoiser or its Jacobian, which enables the isolation
of algorithmic errors from approximation errors due to learned components. We show how several
popular DPS algorithms can be re-expressed within our template.

Finally, we instantiate the framework with the MMSE optimality gap and highest-posterior-density
coverage checks across the inverse problems of denoising, deconvolution, imputation, and reconstruc-
tion from partial Fourier measurements. We target the realistic scenario where a learned denoiser is
used and check hyperparameter sensitivity by substituting the arbitrary-precision Monte Carlo counter-
parts for the learned components. The benchmark code—which is another substantial contribution—is
available online. It contains efficient implementations of sampling routines and a containerized run-
time that allows novel algorithms to be easily benchmarked.

1.2 RELATED WORK

For unconditional sampling, many works derive theoretical bounds on distances between a target
distribution and the distribution obtained by (approximations of) the reverse stochastic differential
equation (SDE) (see Section 2). For example, Gao et al. (2025) bound the Wasserstein-2 distance
with respect to the discretization error of the SDE under the assumption that the target distribution is
smooth and log-concave. This directly bounds the number of reverse-diffusion steps needed to obtain
a desired accuracy. Under absolute continuity of the target with respect to a Gaussian, Strasman et al.
(2025) bound the Kullback—Leibler divergence with respect to properties of the noise schedule.

A common assumption that simplifies the analysis and facilitates the computation of various errors and
bounds is that of a Gaussian target. For example, Hurault et al. (2025) analyze the error incurred when
using a finite number of prior samples for the estimation of the prior score and track its propagation
through the iterations of the reverse-SDE solver. Pierret & Galerne (2025b) derive explicit solutions
to the SDE and use them to derive bounds on the Wasserstein-2 distance to the distributions that are
obtained via Euler—-Maruyama discretizations.

For conditional sampling, Pierret & Galerne (2025a) derive expressions for the Wasserstein-2 distances
between the conditional forward marginals and the distributions induced by specific likelihood
approximations in the reverse SDE under the assumption of a Gaussian prior. Crafts & Villa (2025)
systematically evaluate DPS algorithms numerically under the assumption of a (finite-component)
Gaussian-mixture prior and provide reference objects to the DPS algorithms to ensure a fair evaluation.
Cardoso et al. (2024) and Boys et al. (2024) also evaluate their algorithms on Gaussian-mixture
priors. These Gaussian-mixture priors, however, cannot reproduce power-law-like extremes and can
overstate posterior quality.

Beyond diffusion-specific theory, Thong et al. (2024) check the coverage of credible regions produced
by different Bayesian recovery strategies and find that those that utilize diffusion models often
under-report uncertainty. A shortcoming of their approach is that they use an empirical distribution
of images as a surrogate for the prior distribution. Finally, Bohra et al. (2023) also used efficient
Gibbs methods to obtain gold-standard posterior samples. Their main focus was to quantify the
quality of neural MMSE estimators with different number of parameters. Our work extends this to
posterior-level comparisons.

"We use “DPS algorithms” as an umbrella term for posterior-sampling methods with diffusion priors. The
method due to Chung et al. (2023), often called DPS in the literature, will be referred to later as C-DPS.
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2 BACKGROUND

Bayesian Linear Inverse Problems We seck to estimate a signal x € R? from the measurements
y = Ax +n, 1)

where the forward operator A € R™*? models the noiseless linear-measurement acquisition and
n € R™ is additive noise. In the Bayesian resolution of this problem (Stuart, 2010), the signals are
modeled as a random variable, denoted X, with values in R? and distribution px, referred to as the
prior. Given any measurement y, the ultimate goal is to analyze the posterior pxy—y . It is related to
the likelihood py|x—x and the prior px via Bayes’ rule, which states that

PX|Y=y(X) X Py|x=x(¥)rx(X). ()

In contrast to classical variational methods (Scherzer et al., 2008), the posterior distribution provides
natural means to quantify uncertainty and can be summarized by various point estimators. We provide
a precise description of point estimators that are relevant in this work in Appendix A.

For a given signal x, the likelihood py x—x is fully specified by the distribution of the noise. A
common assumption on the noise is that it is a vector of independent and identically distributed (i.i.d.)
Gaussian random variables with mean zero and variance o2.% In this case, the likelihood is given by

pY|x:x(Y) “eXP(_%gHAX—YHZ)' ©)

Thus, once the forward model and the noise distribution are specified, the remaining modeling choice
is the prior. Diffusion models are good candidates due to their ability to encode complex distributions.

Diffusion Models Diffusion models were introduced by Song et al. (2021) by unifying the discrete
approaches proposed by Song & Ermon (2019) and Ho et al. (2020) in a continuous theory based
on SDEs (Klenke, 2020, Chapters 25 and 26). We denote the (diffusion) SDE with drift coefficient
f: RY x R>o — R and diffusion coefficient g : R>o — R as

where W, is the standard Wiener process. In our setup, the initial condition X is the random variable
that describes the signal, thus, Xy = X. Under suitable choices for f and g, the forward process
admits a limiting marginal X, as ¢ — co. Sampling from px, can then proceed by simulating the
SDE (4) in reverse with initial condition X .. By Anderson’s theorem (Anderson, 1982), the reverse
SDE that reproduces the forward marginals satisfies

dX; = (f(X, 1) — g°(1)VIogpx, (X)) dt + g(t) AW, ®)
where px, denotes the density of X, defined by the forward process, and d¢ is negative.

The primary challenge in this approach lies in the computation of the scores V log px, for all ¢ > 0.
A fundamental relation known as Tweedie’s formula connects the score with the MMSE denoiser: As
we derive rigorously in Appendix B, for f(x,t) = (—@)X and g(t) = \/B(t), we have that?

Vg px, (x) = —o(t)(x — a(t)E[X, | X; = x]), (6)

where a(t) = exp(—3 fot B(s)ds) and 0%(t) = (1 — «?(t)). This yields a practical way to compute
V log px, (x) through the resolution of the MMSE denoising problem of finding E[X, | X; = x].
In standard applications where the goal is the generation of new signals, one typically tackles this
by approximating the map (x,t) — E[X( | X; = x| with a neural network that is learned in an
offline step. In our framework, we can instead obtain arbitrary-precision MMSE denoisers via Gibbs
methods and thereby eliminate approximation errors from a learned surrogate and isolate errors in
DPS algorithms themselves.

The implementation of the reverse SDE for generation requires its own time discretization, for instance
with Euler—-Maruyama techniques (Higham, 2001). In this work, we will base our backward processes
on the alternative denoising diffusion probabilistic model (DDPM) backward process (starting from
Gauss(0,1))

Xio1 = g (Xo + BV log px, (X0)) + v/ BiZe, ™)



133
134
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165

Under review as a conference paper at ICLR 2026

t = 200 t=0
= T T = T T \
47 —
— 2
v—i 27 —
—
S 0 0 <4 ol .
-
m —2 | .
—2
=5 ! ! L 4 ! ! [
T T T T T T T T T T T ]
[ - 50 [~ —
10 50 |- l
=
g
@ e 1 of -4 of |
_10 LU \ \ \ \ \ \ \ \ \ \ \
0 20 40 60 0 20 40 60 0 20 40 60

Figure 1: Unconditional reverse-diffusion trajectories obtained by DDPM using the arbitrary-precision
Monte Carlo denoiser. Rows: Increment distributions. Columns: Diffusion times. Line styles: Differ-
ent random states.

that originates from the discrete-time Markov chain that was initially proposed by Sohl-Dickstein
et al. (2015) and revisited and popularized by Ho et al. (2020). We relate it to the Euler—Maruyama
discretization of the reverse SDE through Taylor expansions in Appendix B.1.

Though we defer details on our signals and ‘ ‘

: : Learned
the Gibbs methods that we use to obtain the 0.3 |- 1\;;?: Carlo |
arbitrary-precision MMSE denoiser to Section 3, © -~ Target

e
o

we demonstrate in Figure 1 that our signals can
be generated by coupling the unconditional back-
ward process in (7) with this denoiser. We fur-
ther motivate this arbitrary-precision denoiser
in Figure 2 by comparing histograms of signal 0 ol
increments produced by the learned denoiser
and the arbitrary-precision denoiser for a St(1) . . .
increment target (notations summarized in Ap- Figure 2: Histogram of increments of signals ob-
pendix C.2). The increments of signals gener- tained by DDPM with different denoisers.

ated with the arbitrary-precision denoiser follow the target almost perfectly. Residual errors are due
to the discretization of the reverse diffusion and Monte Carlo error of the arbitrary-precision denoiser.

Frequency

I
=

Increments

Diffusion Posterior Sampling Our reverse-diffusion sampler can be adapted to sample from a
posterior by replacing the prior score V log px, with the posterior score

Vlog px,|y=y = Vlogpx, + V(x — log py|x,=x(¥)) ®)

for some given measurement y, obtained by Bayes’ theorem. Although the dependence between Y and
X is known through (1) and the likelihood is explicitly modeled via (3), it is generally challenging to
relate Y and X forany ¢ > 0. To overcome this, the conditioning on the measurements is usually done
in one of two ways. (i) A learned component models the conditional posterior score and also gets the
measurements as input. This strategy (pursued by Liu et al. (2023); Ozdenizci & Legenstein (2023);
Bogensperger et al. (2025); Saharia et al. (2023)) is advantageous when the measurement process
is unknown, difficult to model, or prohibitively expensive to evaluate. However, its reconstructions
typically degrade under shifts in measurement conditions since the learned components cannot adapt
to the new measurement conditions. (ii) The Bayesian separation that is described in (8) is pursued
and the likelihood score is approximated. This strategy (pursued by Chung & Ye (2022); Xue et al.
(2025) and reviewed by Lemercier et al. (2024)) is advantageous when the measurement process
is known, relatively inexpensive to evaluate, and subject to change, but prior knowledge should be
reused, which is frequently the case in, e.g., imaging or remote-sensing applications. However, this
requires approximations to the likelihood score V(x + log py|x,=x(y)) for all ¢ > 0.

2Qur framework supports more general (possibly non-Gaussian) likelihoods, see Section 3.
3This is the variance-preserving formulation (Song et al., 2021, Section 3.4) with standard normal limiting
marginal, where 3 : R>o — R controls the speed of the contraction to zero and how much noise is injected.
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Figure 3: Examples of signals with heavy-tailed increment distributions. Top: Asset returns. Bottom:
Columns in natural images. Left: Signals. Right: Survival function of absolute increments (no marker:
empirical; markers: best fit to empirical within distribution).

Our benchmark can evaluate either strategy, as well as any other method that would claim to sample
from a posterior distribution like in (2). Approach (i), however, relies on black-box learning of the
conditional posterior score and its performance heavily depends on various implementation details.
Thus, we primarily focus on approach (ii), which necessitates approximations of the likelihood
score (and more general DPS algorithms with explicit conditioning, see our proposed generalization
in Section 3). For those, our framework can supply arbitrary-precision Monte Carlo estimates of
various objects to isolate and quantify the impact of these approximations.

3  PROPOSED FRAMEWORK

The prior distributions in our framework will be that of signals of length d obtained by regularly
spaced samples of processes with independent, stationary increments (Lévy processes, described in
Appendix C). Let s be such a process and let the unit-step increments be [u], = (s(k) — s(k — 1))
fork =1,2,...,d. Independence and stationarity imply that the distribution of [u], the increment
distribution py, does not depend on k. The increment vector is related to the signal x via u = Dx,
where D is a finite-difference matrix with an initial condition that allows us to write x = D~ !u
where D! is a lower-triangular matrix of ones. This gives a convenient way to synthesize signals
once u is drawn. The independence of the increments implies that the density of the discrete signal is

d
px(x) = [ [ pv(Dx]s). ©)
k=1

We consider four increment distributions that are commonly used in sparse-process models: Gaussian;
Laplace; Student-t; and Bernoulli-Laplace (spike-and-slab). Such increment distributions are sparse
or heavy-tailed according to the taxonomy due to Unser & Tafti (2014) and are relevant in signal
and image processing, finance, and other fields (Schoutens, 2003). We show instances signals with
such heavy-tailed increment distributions in Figure 3. A precise definition of Lévy processes, the
matrix D, the increment distributions and their notation along with a discussion about extensions to
higher-dimensional signals or signals with more complicated graph structure are given in Appendix C.

Efficient Posterior Sampling With the prior distribution specified in (9) and the assumption of
Gaussian noise, the posterior associated to the inverse problem intrinsic in (1) is

d

Px|Y=y(X) X exp(—ﬁHAx — y||2)px(x) = exp(—ﬁHAx — y||2) H pU([Dx]k). (10)
k=1

Unless py is a Gaussian (the simplified setting in Pierret & Galerne (2025b)), this posterior is not
conjugate, so neither closed-form sampling nor direct evaluation of moments is available. Nevertheless,
for the increment distributions used in this paper, the posterior distributions admit efficient Gibbs
methods via standard latent-variable augmentations. Motivation and more details about the Gibbs
methods, such as the burn-in period B and the number of samples S, are provided in Appendix D.
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The Gaussian, Laplace, and Student-t dis- Algorithm 1 GLM Gibbs method.
tributions admit latent representations

as infinite-component Gaussian mixtures,
which makes them suitable for the Gaus-
sian latent machine (GLM) that was re-
cently introduced by Kuric et al. (2025).
It is generally applicable to distributions

x) o [ o (KxJx),

k=1
where K € R™*? and all distributions ¢y, ¢, . . .

xp; € R? K € R™*? conditional la-
tent distributions {p(z],|x }—; and maps
{he, 07}
fors=1,...,B+Sdo
Draw [z]i ~ pz], | x=[Kx. 1]
Draw x; ~ Gauss(u(z), 3(z))
return {xXps}o_;

Require:

> par. over k

L

Y

s On
¢k() /guk(z Uk(z)( )fk( )

where the latent distribution fj, and the latent maps jix, o; : R — R depend on the dlstrlbutlon Ok,
and g,, 2 is the density of a one-dimensional Gaussian distribution with mean y and variance % We
can cast the posterior distribution in (10) into this framework by rewriting it as

R — R have a latent representation

12)

m-+d
XY=y ocHgy]wz ([Ax]s HpU (D] Hask (K] (13)
k=1
There, K = [A; D], ¢x = gly],.,02 fork =1,2,...,m,and ¢y, = py fork: =m+1,m+2,...,m+d.

Importantly, non-Gaussian likelihoods can be handled by some appropriate definition of the first m
distributions.

The introduction of an appropriate n-dimensional random variable Z with nontrivial distribution (see
the details in Kuric et al. (2025)) enables the efficient sampling from the conditionals: Sampling
X | Z = z amounts to sampling a Gaussian with covariance and mean

3(z) = (KTZO(Z)*lK)*1 and u(z) = E(z)KTEO(z)*luo(z), (14)

respectively, where 3 (z) = diag(ci([z]1),...,02([z]n)) and po(z) = (p1([z1), - - -, tn([2]n)).
Sampling Z | X = x amounts to sampling n independent one-dimensional conditional latent
distributions p(zj, | x=[Kx]: s P[Z],.|X=[Kx], thatdepend on the distributions ¢1, ..., ¢, and are
given in Table 3 in the appendix along with the corresponding latent distributions and latent maps.
We summarize the GLM sampling in Algorithm 1.

For the Bernoulli-Laplace increment distribution, we adapt the algorithm proposed by Bohra et al.
(2023) that introduces two d-dimensional latent variables: a Bernoulli indicator (“on”/“off””); and
a Laplace-distributed increment height. For a self-contained exposition, we rigorously derive the
resulting Gibbs method in Appendix D.1.

The Gibbs methods that we just described are
suitable for the generation of the gold-standard
samples from the posterior that corresponds to
the initial inverse problem intrinsic in (1) as
well as the generation of samples from the de-

Seconds per Gibbs iteration (NVIDIA V100)

Baseline

+ Parallel CUDA GIG sampler
—54.07

noising posteriors in the DPS algorithms. In the
latter case, the forward operator A is the iden-
tity, the measurements are the noisy intermedi-

+ Parallel samplingof U | V = v, W =w,Y =y
—33.52
+ Woodbury—Sherman-Morrison for sampling V. | W = w,Y = y

ate reconstructions x;, and the noise variance

o2 = o7 follows the schedule at timestep ¢.

When these Gibbs methods are embedded
within the reverse-diffusion loop, an efficient
implementation is paramount to achieve ac-
ceptable runtimes. This is most crucial for the
Bernoulli-Laplace increment distribution, where the sequential drawing of the binary support vector is
nested within the Gibbs loop, which in turn may be nested within the reverse-diffusion loop. Accord-
ingly, we tailored our implementation to modern, highly parallel compute units and optimized several
components, including custom CUDA- and Triton-compiled sampling routines and incremental
updates based on the Woodbury—Sherman—Morrison identities . We achieved a cumulative speedup
of 74.61x over the baseline implementation (illustrated in Figure 4 with details in Appendix D.2).

Final runtime: 1.36 s
Speedup: 74.61 X

+torch.compile

Figure 4: Runtime improvements of the Bernoulli—
Laplace sampler.
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A Generalized DPS Template Widely used Algorithm 2 Template for DPS algorithms.
methods, such as diffusion plug-and-play

(DPnP) (Xu & Chi, 2024), fall outside the pat- Require: Initial point x7, y, A, A

tern described in Section 2, where one approx-  \* fort =T,...,1do > Diffusion process
imates likelihood score inside the reverse dif- = Sample {X’f}k 1™ PXolXi=x,

fusion. We therefore introduce a simple tem- 3 Update Xt—1

plate that is natural in our setting and accom- S(xe (K}, v, A A t)

modates a broader set of DPS algorithms. More ~ 4 return X*& = x; > Posterior sample
precisely, we characterize the iteration rule of

DPS algorithms as a two-stage process: Given an iterate x; with associated noise variance o2, the next
iterate x;_ is computed by (i) drawing S samples denoted {)‘ck}le from the denoising posterior
PXo[Xmx, X exp(—% |- —x¢]?)px, (- ); and (ii) the subsequent computation of an update step

S that may utilize the current iterate x;, the samples {ik}le, the measurements y, the forward
operator A, and, possibly, other algorithm-internal parameters such as a scalar that weights likeli-
hood and prior terms or parameters that define the noise schedule. This template is summarized in
Algorithm 2 and specialized instances for the update step S for a variety of popular algorithms are
given in Appendix E.2. We have absorbed the (variance-preserving) scaling into the step S since this
template is not fundamentally limited to diffusion processes but supports any (also not monotonically
decreasing) noise schedules. In addition, noise variances {o; }7_; are usually derived from the internal
parameters A that may include a noise schedule.

Through this construction, DPS algorithms can use any statistic R of the samples {)‘ck}f 1 in their

update steps. Most methods use the mean R(Xy,...,Xs) = & Zf Xk = [, which is the Monte
Carlo estimate of E[X | X; = x]. An example of a DPS algorithm that utilizes additional statistics is
Chung diffusion posterior sampling (C-DPS), which requires the Jacobian of x; — E[Xq | X; = x¢].
As we show in Appendix E.1, this Jacobian equals (up to the known variance-preserving scaling) the
conditional covariance of X | X; = x4, an unbiased estimator of which can be obtained through
the statistic R(Xy, . ..,Xs) = g Zle(ik — i1)(X, — 1) . An example of a DPS algorithm that
utilizes an alternative statistic is the DPnP algorithm that alternately samples from pxx,—x, and a
data-proximal problem. There, R(X1,...,Xs) = X7 is used to obtain one sample from DPXo|Xy=x: -
This statistic is frequently used in the asymptotically exact and the CSGM-type algorithms (using the
taxonomy due to Daras et al. (2024)). When only a learned MMSE denoiser is available, obtaining this
one sample requires a full reverse diffusion. In contrast, it requires only one iteration (and the burn-in
period) with the Gibbs methods. Thus, these algorithms are typically faster when they are endowed
with the Gibbs methods (see the runtimes in Tables 5 and 6), which enables easy benchmarking.
However, CSGM-type algorithms typically do not aim at posterior sampling and we do not benchmark
them here.

Since the denoising posteriors are always sub-Gaussian, the Monte Carlo estimation of any object
enjoys favorable convergence. For instance, the computational complexity of estimating the covariance
up to a desired precision in the operator norm scales linearly with the dimensionality of the signal
(Vershynin, 2018, Theorem 4.7.1).

Extensions A prerequisite for a quantitative evaluation of posterior-sampling algorithms is the
availability of reasonably efficient samplers that can provide gold-standard samples. The development
of such samplers for posteriors arising from nonlinear measurement models and non-Gaussian noise
is challenging, and existing methods currently address only specific cases (e.g., Wang et al. (2017)
study a nonlinear-Gaussian measurement model with a Laplace prior). Importantly, our framework
is modular: as more general-purpose samplers for these posteriors become available, they can be
plugged into our benchmark directly. The denoising posteriors in the reverse diffusion do not change
with the likelihood and can, therefore, always be efficiently sampled.

When going to higher dimensions, the primary challenge lies in the sampling of the high-dimensional
Gaussian distributions required in the Gibbs methods. Luckily, the structure of the involved operators
in our case is such that the Gaussians can be efficiently sampled with perturb-and-MAP approaches
with matrix-free conjugate gradient implementations; we discuss this in more detail and show how
the runtime of different samplers change with the dimensions in Appendix D.2. Sampling high-
dimensional Gaussians is a well-studied problem and advances in that field can directly be used in
our framework.
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Our gold-standard posterior samples can be compared to samples obtained by any posterior-sampling
algorithm. This includes classical Markov-chain Monte Carlo algorithms, algorithms that utilize
flow-matching priors, and others. In this work, we primarily focus on DPS algorithms because
our framework can supply arbitrary-precision Monte Carlo objects to them. We believe that this
fundamental principle can be extended to other algorithms, in particular those that utilize flow-
matching priors. Such algorithms are frequently evaluated on toy examples based on Gaussian
mixtures (e.g. by Pourya et al. (2025)), that are overly simplistic.

4 NUMERICAL EXPERIMENTS

We consider signals of dimension d = 64 and four inverse problems that are frequently encountered
in various estimation tasks throughout the natural sciences: denoising; deconvolution; imputation; and
reconstruction from partial Fourier measurements. The dimension of the signal is large enough such
that the corresponding operators can be sensibly defined, yet small enough such that the benchmark has
acceptable runtimes. We provide experiments about the runtime with larger signals in Appendix D.2,
details about the operators in Appendix F.1, and precise descriptions of the benchmarking pipeline
(e.g., the number of training, validation, and test signals, and the number of iterations in the Gibbs
methods) in Appendix F.2.

4.1 RECONSTRUCTION ALGORITHMS

Model-Based Methods We consider the model-based methods

x%(y,A) =argfégn(élle—yHZ+A||Dx|\2), (15)
xXE
and
)A(el(y,)\) = arg min (%\|Axfy||2+)\\|Dx||1) (16)
x€R4

as baseline reconstruction algorithms. They coincide with the maximum-a-posteriori (MAP) estima-
tors of Lévy processes associated with Gaussian and Laplace increment distributions, respectively.

Diffusion Posterior Sampling Algorithms We consider C-DPS (Chung et al., 2023), diffusion
models for plug-and-play image restoration (DiffPIR), (Zhu et al., 2023) and DPnP (Xu & Chi,
2024). This selection demonstrates the applicability of the framework to algorithms that require
denoising-posterior samples (DPnP), the MMSE denoiser (DiffPIR), and its Jacobian (C-DPS), which
covers most of the existing DPS algorithms. For each DPS algorithm, we benchmark a variant that
uses learned components (learning details are provided in Appendix F.3) and a variant that uses Gibbs
samples of the denoising posterior. For DPnP, this fully removes approximation errors. For the others,
the learned components and the Monte Carlo estimates of those components have varying quality
for different distributions and noise variances that we systematically investigate in Appendix F.4.
We provide our main results, the MMSE optimality gap, for the learned variant and then investigate
changes when we substitute the Gibbs samples for the learned components.

The model-based methods and the DPS algorithms require the tuning of some hyperparameters.
These were found by grid search on validation data independently for each algorithm, increment
distribution, and forward operator. The precise setup for this grid search is given in Appendix F.5.
The hyperparameters for the DPS algorithms were tuned to the learned denoiser. Parameters obtained
with this procedure are later denoted with a star in the superscript.

Gold-Standard Gibbs Methods The Gibbs methods are used to obtain gold-standard samples from
the posterior. As described in Section 3, the Gibbs methods are parameter- and bias-free and efficient.
Consequently, they are well-suited for our purpose. Chain lengths, diagnostics, and implementation
details are given in Appendix F.2; we reuse the same settings across operators and increment families.

4.2 RESULTS

For any measurement y, some DPS algorithm alg that depends on the parameters A will

o Nsam es A~
produce samples that we denote {%2'8(y, A)},=5""'*. We moreover denote X%\%qp(y,A) =
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Table 1: MMSE optimality gap in decibel (mean =+ standard deviation; lower is better; 0 is a perfect
reconstruction) of various estimation methods over the test set. Bold: best among DPS algorithms.

Gauss(0,0.25)  Laplace(1) BL(0.1,1) St(1) St(2) St(3)
C-DPS 0.12 +0.18 0.12+0.20 2.22+£2.26 3.26 £1.01 0.28 £0.30 0.10£0.18
DiffPIR 0.16 £0.21 0.09 + 0.16 0.72 +1.10 0.93+1.06 0.07+0.14 0.15+0.21
Denoising DPnP 0.24 £0.25 0.11+0.17 1.33 +£2.12 1.19+1.38 0.10+0.17 0.10 £0.17
4 0.15£0.21 0.06 £0.12 3.44+£238 0.38 £0.43 0.14 £0.19 0.11+£0.18
123 0.00 £+ 0.01 0.16 £0.21 8.61 £3.10 3.25 £0.99 0.74 £ 0.83 0.25 £0.33
C-DPS 0.12£0.20 0.12+0.23 4.30 £ 3.87 18.30 £ 5.28 0.46 £ 1.40 0.17£0.53

DiffPIR  0.07 £0.17  0.07 £ 0.19 1.09£2.22 1045+6.10 0.09+0.57 0.08 £ 0.26
Deconvolution  DPnP 0.10£0.18 0.13 £0.22 1.71+£2.49 7.84 +5.66 0.35+1.39 0.14 £0.41

o 1.65 4 0.84 1.38 +0.86 1.86 & 3.14 1.87+£4.01 1.10+£1.19 1.28 +0.94
Ly 0.00 £ 0.01 0.07+£0.23 6.11 £4.49 21.50 + 4.46 1.444+2.85 0.36 = 1.09
C-DPS 0.15£0.29 0.18 £0.39 2.99 £2.82 23.33 £8.69 0.50 £ 1.09 0.14 4+ 0.57

DiffPIR  0.09 £ 0.23  0.08 + 0.24 0.24 +1.14 0.88 +£3.50 0.11+0.62 0.08 £ 0.42
Imputation DPnP 0.14 £0.32 0.17 £0.36 0.50 £1.28 10.89 4 5.92 0.25 £ 0.82 0.27 £0.58
£y 1.74 £1.12 1.77+1.35 1.25 £2.78 13.32 £ 5.32 1.37 & 2.56 1.55 4+ 1.58
Ly 0.00 £0.01 0.01 £0.05 1.10+1.88 0.42£0.95 0.06 £ 0.34 0.02£0.28

C-DPS 0.15 £ 0.36 0.26 £ 0.65 5.90 £4.41 4.2945.78 0.53 £0.83 0.354+0.77
DiffPIR  0.11 £0.29 0.08 + 0.31 0.83 +1.44 3194437 0.114+0.39 0.12 +0.37

Fourier DPnP 0.11+£0.35 0.20 +0.51 1.88 £+ 2.47 2.45 + 4.83 0.39 £0.89 0.24 +£0.64
0y 1.50 £ 1.59 0.73 +0.94 3.57 +2.82 1.07 £ 2.98 0.71 +0.99 0.78 +£0.97
ly 0.00 £ 0.02 0.36 +0.73 12.22 +4.53 9.47 +8.34 2.66 + 3.57 1.03+1.79

1 Nsamples salg

N D X %(¥, A). For an estimation method %°**(-) and data y with corresponding
data-generating signal x we measure the MMSE optimality gap (in decibel) defined by

15 (y) - x]2
10 L - 17
°g1°<||>zﬁﬁ%z<y>x||2 ’ a7

where x°(y) = %/1v2(y, \*) for model-based methods and X (y) = %2 . (y, A*) for DPS
algorithms. A gap of 0 indicates a perfect recovery of the gold-standard MMSE estimate and any
positive values show the orders of magnitude of the error relative to the reference error. We found
that Neamples = D0 provided a good tradeoff between runtime and accuracy by benchmarking the
gold-standard Gibbs method with that number of samples.

We report in Table 1 the mean and standard deviation of the MMSE optimality gap over all signal-
measurement pairs (x,y) in the test set obtained by the model-based methods and the DPS algorithms
endowed with the learned denoiser . The Gaussian increment distribution validates the implementation:
Since the MMSE and the MAP point estimates coincide, the model-based /5 estimator matches the
Gibbs reference up to the error due to the finite parameter-grid resolution. When the posterior
mean is smooth (e.g., imputation and some deconvolution cases), /5 is the best model-based choice
and frequently outperforms the DPS algorithms. When the posterior mean is close to piecewise-
constant (typical in denoising of signals with sparse increments), the ¢; estimator is preferred. Among
DPS algorithms, DiffPIR is typically the top performer and often exceeds ¢2 and ¢; baselines in
deconvolution, imputation, and reconstruction from partial Fourier measurements. For spike-and-slab
settings (Bernoulli—Laplace), DPS algorithms substantially outperform the model-based baselines
across operators. In deconvolution and reconstruction from partial Fourier measurements, DPS
algorithms frequently match or surpass the best model-based estimator.

We now inspect the change in performance after we substitute higher-quality Monte Carlo com-
ponents for the learned components. We do this without retuning of the hyperparameters, which
allows us to see if the performance of the algorithms increases automatically with the quality of
the denoiser. Here, we discuss general trends; an exhaustive quantitative evaluation and a precise
quantification of the quality of the learned and Monte Carlo objects is given in Appendix G. For
the same hyperparameters, the performance of DPnP increases significantly with the quality of the
denoising-posterior samples. For example, the optimality gap decreases by 10.46 dB for imputation
of signals with St(1) increments, and significantly for other measurement operators for signals with
St(1) increments and BL(0.1, 1) increments. By contrast, C-DPS and DiffPIR can require a retuning
when the denoiser changes: Scores can deteriorate after one has substituted a higher-quality Monte
Carlo denoiser for the learned one, but a brief hand-tuning of the hyperparameters on the validation set
improves them way beyond the learned denoiser. For instance, for DiffPIR and imputation of signals
with St(1) increments, reusing the hyperparameters deteriorates the gap by 13.56 dB, whereas a brief
hand-tuning decreased the optimality gap by almost 10 dB over what is reported in Table 1. Qualita-
tive examples of the MMSE estimates and the marginal variances obtained by the DPS algorithms
and the gold-standard Gibbs methods are shown in Figures 11 to 18 in the appendix.
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Prototypical samples and the corresponding ‘  ikPIR,. bR,
MMSE estimate obtained from a DPS algorithm 0 o Sl snise (v)
(here DiffPIR for deconvolution of a signal with

BL(0.1,1) increments) are shown in Figure 5.
(The full conditional reverse-diffusion trajectory,
the data-generating signal, the measurements,
and the MMSE estimated obtained with the gold-
standard Gibbs methods are shown in Figure 19 0 20 40 60 0 20 40 60
in the appendix.) The figure highlights a key dis-
tinction: Posterior samples often preserve high-
frequency structure and reflect prior variability,
whereas the MMSE point estimate—obtained by
averaging all samples—is much smoother. This explains why DPS methods tend to score higher on
perception-oriented metrics, while regressors that target the MMSE point estimate (through training
with the mean squared error) excel on distortion metrics like the peak signal-to-noise-ratio (PSNR).
Consistent with this distinction, Saharia et al. (2023) fairly compare a sampling-based method
to an MMSE regressor and find the expected tradeoff: higher PSNR and structural similarity for
the regressor; and better perceptual scores for the sampler. We therefore recommend to make the
Bayesian target explicit—point estimate versus sample quality—and to use evaluation protocols that
are aligned to that target. Our framework supports this by offering gold-standard posterior samples
and arbitrary-precision Monte Carlo estimates.

s 2DiffPIR(y)

—_—— %

Figure 5: Conditional generation for deconvolution
of a signal with BL(0.1, 1) increments with Diff-
PIR. The shaded area indicates the variance.

In addition to the evaluation of the MMSE optimality gap we analyze the highest-posterior-density
coverage of the algorithms. Specifically, for any measurement y and any £ = 1,2,..., Nsamples>

we define’ I, (y) = log px|Y:y(i?31(gk)(y, A#8*)) where P is the permutation that ensures that

I(y) > l2(y) = -+ 2 IN,smpies (¥) and define the empirical highest-posterior-density threshold at
a € [0,1] as l{a N, 00,1 (¥)- We declare the data-generating signal x covered if log px|y—y (x) >
I[N, ampieo] (¥7) @nd define the coverage of a method as the fraction of signal-measurement pairs (x,y)
in the test set for which x is covered by the threshold /14, . ...1(¥)- The coverage of a calibrated
posterior-sampling method will be «, up to Monte Carlo error. A coverage result that is less than o
indicates that the samples concentrate too heavily around the mode; a coverage result that is greater
than «v indicates that the samples are too spread out. We again discuss general trends here and present
an exhaustive quantitative evaluation in Appendix G. The coverages obtained by the DPS algorithms
are generally much smaller than «, which indicates that they are uncalibrated and is in line with what
is reported by Thong et al. (2024). For C-DPS and DiffPIR, the reported coverage values are almost
always 0 except for BL(0.1, 1) and St(1) increments, where the coverages are usually (close to) 1
for C-DPS and inconsistent for DiffPIR. For almost all increment distributions and forward operators,
DPnP reports coverage values that are closest to but typically smaller than a.

5 CONCLUSION

We have introduced a statistical benchmark for diffusion posterior sampling algorithms for linear
inverse problems. The framework constructs signals with a known distribution, simulates the mea-
surement process, and subsequently generates samples from the posterior distribution that arises
through the combination of the known prior and the known likelihood. Gold-standard samples from
this distribution are obtained via efficient Gibbs methods. These samples are then compared to those
obtained by the diffusion posterior sampling algorithms. In addition, the Gibbs methods can be
used to obtain arbitrary-precision Monte Carlo estimates of objects that are needed in the reverse
stochastic differential equation, such as the minimum-mean-squared-error denoiser or its Jacobian.
Consequently, the framework also enables the isolation and quantification of the error attributable to
the likelihood approximations in the conditional reverse diffusion. We have provided numerical results
for three common diffusion posterior sampling algorithms applied to four common inverse problems.
A consistent theme across all tested algorithms is that they are not calibrated, which demonstrates that
research into algorithms that perform better in this respect remains crucial. We invite other researchers
to benchmark their algorithms on our open implementation.

“With some slight abuse of notation, log Px|y=y is the unnormalized ground-truth log-posterior (10). Since
the additive constant is the same across all methods, this ranking is valid.
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Reproducibility Statement We release an online repository with complete algorithm implemen-
tations and step-by-step instructions to reproduce all results. A containerized runtime enables one-
command setup and fully automated execution via the provided scripts. Each algorithm is specified at
a level that supports independent re-implementation: The main text precisely details Gaussian latent-
machine sampling; and the appendix presents the Bernoulli-Laplace Gibbs method in implementation-
aligned notation, together with practical optimizations required for acceptable runtimes. The appendix
also enumerates all experimental settings, including the numbers of training/validation/test signals,
the samples-per-datum for each sampler, and the exact grid-search procedure used to select hyperpa-
rameters.

Usage of Large Language Models We used large language models to adapt passages of already-
written text for readability and conciseness.
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A BAYES ESTIMATORS

A benefit of the Bayesian approach over classical variational methods (see, e.g., (Scherzer et al.,
2008)) is that different point estimates arise from a fixed prior. For a given measurement y, these point
estimates summarize the posterior distribution px|y—, with respect to a given loss £ : R¢xRY - R
via the optimization problem of finding the point X,(y) that minimizes the posterior risk:

X¢(y) = arg min( £(%X, %) pxjy—y(X) dx) . (18)
%€R4 Rd

In this paper, the Bayes estimator with respect to the mean-squared error (MSE) ¢ = 1| — - ||?

plays a key role due to its close relation to the prior score in the reverse diffusion (see Section 2) and

because we quantify the performance of DPS algorithms via the MMSE optimality gap in Section 4.

With this choice of ¢, (18) can be written as

xMmse(y) = arg min</d L% —x|? pxjv=y(x) dX> = /d xpx|y=y(X)dx =E[X[Y =y],
R4 Ra

XERC

which is the expectation of the posterior px |y —y- 4
Another widely-used estimator arises through the choice
0%, x) = —xqx3 (%) (20)
where
xA(%) = {é o 1)
which leads to the MAP estimator that seeks the mode of the posterior:?
Xnmap(y) = argmin (/ —X{x} (%) Px|jy=y(X) dx) = arg max px|y—y(X). (22)
*€ER Rd *€ER
Rewriting (22) as
Xmap(y) = arﬂgnzin(—ﬁ\\Afc—yHQ —logpx(fc)), (23)

xeR

reveals a close relation to classical variational approaches after identifying the regularizer with
—log px.

5This definition is informal but sufficient for the purposes of this paper. For continuous posteriors, the strict
0-1 loss Bayes’ rule is ill-posed. A common formalization defines MAP as the limit of Bayes estimators under
shrinking small-ball 01 losses; under additional regularity, this limit agrees with the posterior mode (Bassett &
Deride, 2018; Clason et al., 2019). The MAP estimator may also not be unique.
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B TWEEDIE’S FORMULA

In the setting of Section 2, we now derive an equality that relates V log px, to E[X, | X; = - |, i.e.,
the MMSE estimate of X given that X, takes on a certain value. Similar derivations can be found
in, e.g., (Song et al., 2021; Chung et al., 2023; Daras et al., 2024), but we include it to underscore
the relevance of the MMSE estimate in this paper and to facilitate the understanding of its relation

to various objects. Under the variance-preserving choice for f(x,t) = —@x and g(t) = /B(t)

of the drift and diffusion coefficient, the diffusion SDE (4) simplifies to a time-inhomogeneous
Ornstein—Uhlenbeck SDE (see Klenke (2020, Example 26.5))

dX; = 20X, dt + /B(t) AW, (24)
whose pathwise solution
t
t
X =a(Xo + [ 38*/5“) aw., 5)
0

where X is an appropriate initial condition and a(t) = exp(—3 [ 8(s) ds), can be computed with
standard techniques, see, e.g., (Gardiner, 1990, Section 4.4.4). In addition, since

/ot (%)2[3“) o= /Ot Bls)exp(- /: Bu) du) ds = 1~ (1), (26)

we can write that
X =a(t)Xo+o(t)N (27)

in distribution, where 02 (t) = (1—a?(t)). Consequently, the density of X is given by the convolution
of px, with a Gaussian with variance o*(t) and appropriate scaling by «/(t), which we write as

px,(x) = /d 9o,0(21(x — at)X)px, (X) dX, (28)
R
where g, »(x) = (2r)"2|%| "2 exp(—3|x — p||%_.). Finally, after taking the gradient, we see
that

Vpxt (X) = / Vgo,g(t)zl(x — a(t)f()pxo ()2) dx
R

= /Rd _U%(tﬂx - a(t)fc)QO,crz(t)I(X - a(t>§()pX0 ()A() dx

(29)
— iy (3w, (0) — a(t) [ Kgomon(x — a(DRpx, () )
Rd
— b (xpx, (%) — a(tpx, (OE[Xo | X, = x]).
Finally, after dividing by px, (x) and since vpixit(}(:;) = Vlog px, (x), we find the celebrated Tweedie
identity
Viogpx, (x) = —o(t) % (x — a(t)E[Xo | X; = x]). (30)

B.1 A CONNECTION BETWEEN THE DISCRETIZED REVERSE SDE AND DDPM

To show the connection between the Euler—Maruyama discretization of the reverse-diffusion SDE
and the DDPM backward process, we start by deriving the latter from the respective forward process.
DDPM has been introduced by Sohl-Dickstein et al. (2015) as a discrete-time Markov chain of length
T with Gaussian transitions

DX, X 1=x,_, = Gauss(y/1 — Bix; 1, BeI), (31)
such that the transitions from X to X; are also tractable as
X =V Xo + V1 — aZy, (32)

where ay = (1 — ), &y = Hi:o a, and Z; ~ Gauss(0,I). By definition,

X: = /1 - BiXs1+ VBiZi 1 (33)
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and a straightforward application of Tweedie’s formula (6) gives that

E[X;-1]X¢] = 70 (Xi + (1 — ay) Vg px, (X)), (34)
which leads to the DDPM backward transitions

Xi—1= ﬁ (Xt + Bt Viogpx, (Xt)) + /Bt Zy (35)
like they appear in (7).

Now, we recall the reverse-diffusion SDE which, under our choice of the drift and diffusion coefficient,
is given by

dX; = (- 42X, - B(1)V logpx, (X)) dt + /B(t) AW, (36)
A first-order step from ¢ to (¢t — 1) (dt = —1) of gives the Euler-Maruyama update
X1 = (1+ 5) X + 8V log px, (Xi) + V/BiZs, (37)

where (3, == 5(t) and Z; ~ Gauss(0,I).

The DDPM reverse process (35) can be related to the the Euler-Maruyama discretization of the
reverse SDE (37) via Taylor expansions, since

1 B & )
= = 1+ O (38)
and 5
t _ 2
\/17—7@ =6+ O(5;) (39
as 5; — 0.

C LEVY PROCESSES AND INCREMENT DISTRIBUTIONS

The prior distributions in our framework are those of signals obtained by regularly spaced samples of
processes with independent, stationary increments (Lévy processes and their discrete-time counter-
parts). We briefly recall the definition; see Unser & Tafti (2014); Sato (1999) for background and the
link to infinitely divisible laws.

Definition C.1 (Lévy process). A stochastic process s = {s(t) : ¢ > 0} is a Lévy process if

1. (anchor at the origin) It holds that s(0) = 0 almost surely;

2. (independent increments) forany N € N\ {0,1} and 0 < t; < g < -+ < ty < o0, the
increments (s(t2)—s(t1)), (s(ts)—s(t2)),. .., (s(tn)—s(tny—1)) are mutually independent;

3. (stationary increments) for any given step h, the increment process uy, = {s(t) — s(t — h) :
t > h} is stationary;

4. (stochastic continuity) for any € > O and ¢ > 0,
Jim Pr(|s(t 4+ h) — s(t)] > ) = 0.

We form discrete and finite-length signals by sampling s at integer times and stacking the values
into x = (s(1),5(2),...,s(d)). Let the unit-step increments be [u]y = (s(k) — s(k — 1)) for

k =1,2,...,d. By independence and stationarity, the law® of [u]; does not depend on k and we
denote it pyy. We define the finite-difference matrix
1 0 0 0
-1 1 0 0
; 0
0 0 -1 1

SFor our choices, it always has a density w.r.t. a suitable reference measure.
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Table 2: Univariate distributions used throughout this work. Parameters appear in the order they are
specified in this table, e.g. Gauss(p, 02).

Name Distribution Parameter(s) Supp. Notation

Gaussian 2;02 exp(— (1;5)2> peER0?2€eRyy R Gauss

Exponential Aexp(—Ax) A€ Ry R>o  Exp

Laplace o exp(—lib‘) be Ry R Laplace
F(VTH) 2\ "2

Student-t —2 (14 %) v e R R St
var ()

Gamma %x“‘l exp(—px) a, B € Ry Rsp Gamma

a 2 . .
Gen. inv. Gaussian L ar T exp(~25%)  a,beRogpe R Rog  GIG
Bernoulli-Laplace  A6(z) + (1 — )& exp(~Z)  Xe[0,1,beRsy R BL

Moreover, the gamma function is defined as I'(z) = [~ t*~! exp(—t) dt for any € Rsq.
The modified Bessel function of the second kind with parameter v is denoted by K.

such that the increment vector satisfies

u=Dx. (41)
Because s(0) = 0, the finite-difference matrix D has an initial condition that makes it invertible and
D! is a lower-triangular matrix of ones. This also implies that forall k = 1,2, ... ,d,
k
Xk =Y _[uln, (42)
n=1

which is a convenient way to synthesize signals once u is drawn. The combination of (41) with the
independence of the increments implies that the density of the discrete signal is

d
px(x) = [ [ v (Dx]x). (43)
k=1

C.1 EXTENSIONS

The approach in this paper can be extended to two- or higher-dimensional signals on grids, such as
images or videos, and even to more specialized structures like signals defined over trees or graphs.
The structure of the signal is effectively encoded through the choice of the matrix D. For instance, a
two-dimensional finite-difference matrix would result in a signal vector that can be interpreted as a
two-dimensional image. The main additional (computational) challenge is sampling during signal
generation: Whenever D is not trivially reducible to a one-dimensional operator, the model (43)
will be overcomplete and, in general, no whitening transformation exists to decouple increments for
independent sampling. The extension to higher-dimensional signals and the complications that arise
in that context are rigorously treated in Kuric et al. (2025).

C.2 LATENT DISTRIBUTIONS AND NOTATION

Some of the distributions that we rely on in this work have multiple competing parametrizations.
To avoid ambiguities, we provide precise definitions of the four increment distributions that we
consider in this work: Gaussian; Laplace; Student-t; and Bernoulli—Laplace (spike-and-slab). We give
in Table 2 our notations of these and other distributions that we use in this work. We list in Table 3
the latent maps and conditional latent distributions that are needed for the GLM for the distributions
in this work.

D GIBBS METHODS AND SAMPLING EFFICIENCY

Gibbs methods are Markov chain Monte Carlo (MCMC) methods to sample from a joint distribution
DX, Z1.Zs,....Z, Of (n+1) blocks of variables that are advantageous when the direct sampling is compu-
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Table 3: Latent variable representations and conditional distributions for common distributions.

Dist. ¢y, Latent dist. fx Latent maps Cond. latent dist. pzj, |x=[Kx];
Gauss(u,0?)  3(0) 1(z) =, oF(z) = * 3(0)
Laplace(b) Exp (52) pe(z) =0, 0i(z) =z  GIG (3, [Kx]2, 3)
2
St(v) Gamma (5,%)  pr(z) =0, 0f(2) =1  Gamma (“, LF[IQ(X]’“)
Algorithm 3 Latent-variable Gibbs sampling of px 7, ... z...
Require: Burn-in period B € N, number of samples S € N, initial point (xq, 21, . .. Zy).
1: fork=1,2,...,B+ Sdo
2: Xk ~ PX|Zy=21,....Zn=2n
3: Z1 ~ PZy|X=xp,....Zn=2n > Latent blocks do not need to be stored
4:

bl

return {Xp 1 }7_,

tationally difficult but sampling from the conditional distributions px |z, z,.....z,. s PZ,|X,Z2,....Zps - - -
is easy. Gibbs methods cycle through the conditional distributions with repeated draws, which
maintains the joint distribution invariant (Casella & George, 1992). The naming of the variables
X,Z1,Z,,...,7Z, is deliberately chosen to emphasize that we use latent-variable Gibbs methods
that rely on auxiliary variables that are introduced solely to make the conditionals simple. The steps
of a general latent variable Gibbs sampler are shown in Algorithm 3, where the iteration counter in
the sampling of the latent variables is omitted since they need not be stored and previous iterations

can immediately be overwritten.

Kuric et al. (2025) recently showed that such methods are significantly faster than other standard
sampling routines that are commonly used in settings similar to the one in this paper. They report
sampling efficiencies of close to 1, while alternatives, such as the Metropolis-adjusted Langevin
algorithm, achieve sampling efficiencies’ of around 1 x 1073, In addition, Gibbs methods require no
stepsize or acceptance-rate tuning and introduce no discretization bias. These properties motivate our
use of Gibbs methods for the fast and robust posterior sampling throughout this work.

Like all MCMC methods, in practice Gibbs methods benefit from the discarding of some number
of initial samples (the burn-in period) when the initial point is located in low-density regions. After
the burn-in period, the quality of the Monte Carlo estimate of any object depends on the number of
samples one uses in their estimation. We discuss our choice of the burn-in period and the number of
samples for the various problems in Appendix F.2.

D.1 A GIBBS METHOD FOR BERNOULLI-LAPLACE INCREMENTS

Let 0 be the Dirac distribution. Then, letting A be the Bernoulli parameter and b the scale parameter,
we note that the Bernoulli-Laplace density

pu(u) = A6(u) + (1 — A)§ exp(—blul) (44)

admits the representation

pu (u) :/R(ngﬂ/_v,W—w(u)pV(v>>pW<w)dw’ (45)

where
pv(v) =AY (1 = A)Y (46)
for v € {0, 1} is a Bernoulli distribution,
b? b2w
pw(w) = ) exp <—2>XR>0(U}) 47

"Sampling efficiency refers to effective samples per iteration; an efficiency of p means roughly 1/p iterations
per “effective sample” (Gelman et al., 2013, Section 11.5).
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Algorithm 4 Bernoulli-Laplace Gibbs sampler.

Require: Initial increments uy € R?, initial support vector v € R¢
I: fors=1,2,...,B+ Sdo
Draw [W]i, ~ pw|v=(u, 1]x,V=[v] > parallel over k
3 fork=1,2,...,ddo
4 | Draw [v]; ~ Bernoulli(py(v))
5: Draw ug ~ PUIV=v W=w,Y=y
6: return {D " lup i}y,

is an exponential distribution, and

5(u) ifo=0
=v,W=w = . ’ 48
Pujy=o,w=uw(t) {Gauss(O,w) ifo=1. (48)
The algorithm relies on the introduction of two latent vectors v, w € R? that satisfy
d
PUV=v,W=w(1) = HpU|V:[v]k,W:[w]k([u]k) 49)
k=1
such that, as a result, the distribution conditioned on the measurements can be written as
d
PUVWY=y(1,V,W) eXP(—ﬁgHHU - )’H2) H PU IV =[v], W=[wl], ([U]k)

k=1 (50)

d d
bQ bQ[W]k
x JTAMe(@ — )M TT = ex (—),

where H = AD~!. Equations (48) and (50) imply that any sample from PUIV=v,W=w,Y—y lakes
the value zero at those indices where v is zero, and values from a multivariate Gaussian distribution
with covariance C = (c2ZHH' + diag(w))_1 and mean o, 2CHy otherwise. Sampling W |
U =u,V = v, Y = y amounts to the independent sampling of d one-dimensional distributions,
which are Exp(2/b?) at indices where v is zero and GIG(b?, [u]?,0.5) those indices k where v is
one. The conditional distribution of the binary support vector is

d

PVIW=w,Y—y(V) X |B(V,W)‘_% exp(—%yTB(V,w)_ly) H Al_[v]k(l — )\)["]’C, (51)
k=1

where® B(v,w) = 021 + Hdiag(v ©® w)H . The standard way to sample from this distribution is
to use a coordinate-wise Gibbs sampler that updates [v]; ~ Bernoulli(py(v)) with

pe(v) = (14 exp(=Ax(v))) (52)

where the log-odds increment
Ag(v) = log 152 — §(log |B(vi=1,w)| — log [B(v=0, W)|) 53)
—3(y " B(vi=1,w) "'y =y ' B(vi=o, w) y),

where vi—. = (V1,...,Vk_1, ', Vit1, .., Va) is the difference between the log-posterior when
the bit is on and when it is off. The resulting algorithm is summarized in Algorithm 4 and can be
interpreted’ as (d + 2)-block (i.e., dimension-dependent) Gibbs method.

8This formulation is equivalent to the one presented by Bohra et al. (2023), who explicitly “slice” the matrices
H and diag(w) with the indices where v is one. We stick to this formulation since it requires less notation
and emphasizes that implementations need not build variable-sized matrices, which is crucial for an efficient
implementation on modern compute units that utilize highly parallelized computations.

“This is only an interpretation because the density violates the classical positivity conditions that are needed
for Gibbs methods. It is a partially collapsed Gibbs method, see (Bohra et al., 2023; van Dyk & Park, 2008).
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Figure 6: Runtimes needed to perform 20 Gibbs iterations on a denoising posterior (Laplace(1)
increment distribution, 10 parallel chains) depending on the dimensionality of the signal. Missing
entries are due to excessive memory requirements.

D.2 PRACTICAL GIBBS IMPLEMENTATIONS

Sampling the Gaussians The sampling of X | Z in the GLM and of U | V, WY for the
Bernoulli-Laplace case reduces to drawing from a high-dimensional Gaussian, which is a well-
studied problem. For settings that necessitate a matrix-free implementation such as those that are
commonly encountered in imaging applications, Kuric et al. (2025) advocate a Perturb-and-MAP
sampler with preconditioned conjugate-gradient solvers. We report the runtime of the Gibbs method
as a function of signal dimension for a Laplace(1) increment distribution in Figure 6. A standard
implementation based on a Cholesky factorization of the covariance matrix—which requires explicitly
instantiating the matrices A and D in memory—is faster than the Perturb-and-MAP sampler with a
conjugate-gradient solver across a broad range of noise variances and dimensions. For our moderate-
dimensional setting with d = 64, the Cholesky-based implementation is approximately an order of
magnitude faster.

However, explicitly storing these matrices becomes infeasible at larger dimensions (in our setup, we
ran out of memory at d = 8096), and the expected cubic scaling is apparent in the figure. In contrast,
the Perturb-and-MAP sampler (convergence criterion: squared residual norm below 1 x 10~), while
slower than Cholesky at small dimensions, exhibits substantially better scaling with signal dimension.
In particular, it does not require materializing the operators: both the measurement operator A and
the finite-difference operator D can be implemented efficiently in a matrix-free manner. Moreover,
the sublinear runtime observed in this experiment suggests that the corresponding linear systems are
well conditioned.

The sampling accuracy of Perturb-and-MAP depends on the termination criterion used by the
optimization solver, and any finite stopping rule yields approximate samples. A principled refinement
is to incorporate a Metropolis—Hastings correction step to remove bias, and to tune the solver accuracy
to optimize overall runtime; this strategy was proposed by Gilavert et al. (2015), to which we refer for
details. Overall, these results indicate that the Gibbs method scales favorably to higher dimensions.
Combined with the fact that the denoising posteriors are sub-Gaussian, and with the relatively mild
sample-complexity requirements for estimator accuracy in this setting, this suggests that the proposed
framework scales well as the dimension increases.

Sampling the Latent Variables The sampling of the latent variables necessitates the sampling
of the one-dimensional conditional latent distributions. All the conditional latent distributions that
are relevant in this paper admit efficient samplers that are readily available in standard scientific
computing packages or can be implemented with little effort. We reuse the CUDA implementation
of the generalized inverse Gaussian sampler from Kuric et al. (2025) that implements the method
proposed by Devroye (2012) and rely on PyTorch (Paszke et al., 2017) for all others. Wherever
possible, latent updates are parallelized.

In the Gibbs methods for the Bernoulli-Laplace increments, the sequential drawing of the binary
support vector V is embedded in the outer Gibbs loop which, in turn, may be embedded in the
reverse-diffusion loop. This makes it crucial to minimize the use of heavy linear-algebra operations
to achieve acceptable runtimes. Writing B(v, w) = 021 + Hdiag(v ® w)H, we recognize that
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the flipping of the kth bit of v adds or removes a rank-one term [w]kaH,I, where Hy, is the kth
column of H. Using the matrix-determinant lemma and Woodbury—Sherman—Morrison, we update

log |B(vik=1,w)| = log|B(Vi=o, W)| + log(1 + [W]rT%) (54)
and

W]k (H B(Vi=o, W) 'y)’

55
1+[W]k7'k (53)

Y B(vie1, W)y =y B(vimo, W) 'y —

b

where 7, = H] B(vj—0, w) 'Hj. Thus, an efficient implementation factors B(v, w) once per
latent state, obtains the needed scalars via triangular solves, and performs rank-one updates as bits
flip. We report our cumulative runtime improvement over a naive implementation in Figure 4.

E DPS UPDATE STEPS

E.1 COVARIANCE IN C-DPS
C-DPS (Chung et al., 2023) uses the approximation of the likelihood

Py (x,=x(¥) = Dy |Xo=E[Xo|X,=x] (¥)- (56)

When the noise in the inverse problem is Gaussian, the likelihood score
V (x - log py|x,—E[X,[X,=x] (¥)) necessitates the computation of

V(x = 3|AEX, | X, = x] —y]*), (57)
which is
J(x—=EXo|X; =x])(-)AT(AEX, | X, = -] —y) (58)

after an application of the chain rule. The Jacobian J (x — E[X, | X; = x]) is typically computed
with automatic differentiation when (x, t) — E[X, | X; = x] is approximated with a neural network.
In our framework, we use the connection with the covariance matrix Cov[Xy | X; = -]. Indeed, as
also shown by Rissanen et al. (2025), if X, and X, verify (32), then

Xo | X; =x] = 2 (T+ (1 — @)’V logpx, (x)) - (59)

This identity, combined with the derivative of (6), yields

Vo
1—oy

J(x - E[Xo | X; = x])(x) = Cov[Xo | X; = x¢]. (60)

E.2 EXPLICIT UPDATE STEPS

We give the instantiations of the update step S a variety of DPS algorithms below. Each z, is a
d-dimensional random vector with i.i.d. standard Gaussian entries.

Score-ALD (Jalal et al., 2021) The input parameters of this algorithm are composed of the follow-
ing: A noise schedule { 6t}tT:_()1, the noise level of the inverse problem o,,, and annealing parameters
{ne Y= and {v:}/=". The update step goes

S
EZ
( - Xt)/5t27
X1 = X¢ + e (s +

(61)

Tto zAT(y AXt)) 224

C-DPS (Chung et al., 2023) The input parameters are the the variance-preserving scaling weight
@ as in (32), the variance of the diffusion transitions 3; as in (35), and a scalar ( that governs the
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825 likelihood-guidance strength. The diffusion noise level that corresponds to the denoising posterior is
s2s  denoted oy = (1 — ay)/+/@y, which is used to compute the samples {X }7_,. The update step goes

S k=1 (62)
X; 1 = ﬁf__@f“”xt + ?:{tﬁtﬂ + 0124,
~ Y T T —
Xt—1 :ngl — mlﬁc A (JAI,L—}’)7

Xi—1 = Xe—1/v/@r—1.

g2z DiffPIR (Zhu et al., 2023) The input parameters are similar to those of C-DPS. It also uses the
828 noise level of the inverse problem o, and an additional balance hyperparameter . The update step
829 goes

Xo = arg min(z[|Ax — y|* + &)x — al?), (63)
xER?

€= \/ﬁ(xt — \/O_Ztio),

Xi_1 = \/0_1Xg + \/1 — O_lt_l(\/l — ’}/é + \Fyzt),

Xp—1 = Xe—1/V 1.

g0 IIGDM (Song et al., 2023) The input parameters are the noise schedule {at}zﬂ:_ol, the data-
831 dependent noise schedule {rt}tT:_Ol, and the DDIM (Song et al., 2020) time-dependent coefficients

832 {cil)}tT;Ol and {c§2) T-L. The update step goes

1 S
[l‘ = g Zika
k=1
1 S
C= gZ(ik —B)(xXk—R)
s=1
g= Y% ¢ (64)
1—0&,5
g= ((y —Ap)’ (AAT + %§I>_1AJ)T7

>

e V),
Xi—1 = Ot + c12¢ + c2€ + /ou g,
Xp—1 = Xe—1/v/ 1.

833 DPnP (Xu & Chi, 2024) The diffusion noise level that corresponds to the denoising posterior is
834 denoted 7, which is used to compute the sample X;. This same 7, defines the likelihood-guidance
835 strength. The update step goes

Xp = X1,

xi1 ~ exp(—A - —y|2 = oL o

) . (65)
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Sampling of denoising posterior

Denoising step

Likelihood step

— PXg|Xi=x¢

T T
V log px,

=~ Vlogpy|x,=- (¥)

L. . 2
= - - Gauss(x¢, 0} S

! L -

’ M ~ 9 -1

A N
” coepne o i . 1 y | ,

s X+

Xk fp=1 ~ P, =x. - .
{Rk}i=1 XolXg=x¢ Step S of a DPS algorithm
Pxg PY|xq

Figure 7: Illustration of the proposed template for DPS algorithms.

Annealed Plug-and-Play Monte Carlo (PnP and RED variants) (Sun et al., 2024) The diffusion
noise level that corresponds to the denoising posterior is denoted oy, which are used to compute the
samples {ik}le. The parameter n denotes the likelihood guidance strength, and x; is an annealing
parameter.

The update step for the PnP variant goes

k=1

s= (1 —x;)/02, (66)
X¢—1 = X¢ + YKeS + \/%Zn
x; — %X —YAT(Ax —y).
The update step for the RED variant goes
18
= S Zik’
k=1 (67)

s=(—x)/07,
xi—1 =% — V(AT (Ax —y) — k;8) + /2724

The DPS template that is summarized in Algorithm 2 is illustrated with a one-dimensional toy-example
in Figure 7.

F NUMERICAL EXPERIMENTS

F.1 FORWARD OPERATORS

We consider four forward operators A in our experiments. The first operator is the identity A =1 €
R¥*¢_This choice is motivated by the fundamental role that denoising algorithms currently play in
many restoration algorithms and even in labeling problems such as edge detection (Le et al., 2025).
The second operator A € R?*¢ implements the convolution with a kernel that consists of the 13
central samples of a truncated Gaussian with variance 2 that are normalized to unit sum. We adopt
circular boundary conditions to enable a fast computation of the proximal map that arises in the update
step of DiffPIR (see Appendix E.2) via the fast Fourier transform. Deconvolution is a relevant problem
with applications like microscopy or astronomy. The third operator is a sampling operator A € R™*?
that returns m < d entries of its argument unchanged. This operator is relevant in many fields such
as image reconstruction and time-series forecasting. In particular, in a forecasting or prediction
problem the operator would return the first m known entries, and the resolution of the inverse problem
estimates the remaining (d — m) entries. In our experiments, each entry has an independent chance
of 40 % of being kept. The fourth and last operator is A = MF € R"*%, where F € R2(L4/2]+1)xd
is the matrix representation of the “real” one-dimensional discrete Fourier transform with separated
real and imaginary components, and M € R™*2(L4/2]+1) is a sampling operator. Such operators are
relevant in medical imaging or astronomy. The sampling operator is constructed such that the 5 lowest
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frequencies (the DC term included) are acquired, while the remaining frequencies independently have
a 40 % chance of being kept.

For all operators, the noise variance o2 is chosen such that the median measurement signal-to-noise

ratio (SNR) is around 25 dB. We set Nipain = 1 X 108, Ny = 1 x 103, and Niegy = 1 x 103.

F.2 BENCHMARK IMPLEMENTATION

The benchmarking pipeline starts with the generation of N test signals denoted {x',“f“}ivjft per
increment distribution, each of which is independently synthesized by first drawing i.i.d. increments
from the respective increment distribution and forming the signals via (42). It then proceeds to
synthesize the Ny, measurements (i.e. we use one noise instance per signal) denoted {y° kN;ef°
according to (1) and, for each of the measurements, computes the gold-standard posterior samples
of the various inverse problems via the Gibbs methods described in Section 3. This stage is off-line
(no reverse-diffusion loop) and trivially parallel across the measurements, which allows us to run
long chains with burn-in periods of 1 x 10° iterations and obtain 2 x 10° draws from the posterior
distribution. This far exceeds any values reported by Kuric et al. (2025) or Bohra et al. (2023) and
results in precise MMSE estimates.

The dataset-generation stage also involves the generation of Ny;,i, training signals {xffai“}kN;f‘"

and N, validation signals (mutually disjoint from the test signals) {x;al}kNg;, along with the

corresponding validation measurements {y}c’al}kall. The training signals are used for the learning

of a neural score function like those that are used for the resolution of inverse problems when the
prior is unknown or too expensive to evaluate. Training details are provided in Appendix F.3 The
validation signals are used to monitor the performance of the neural score function on unseen signals
during the training stage and to tune the regularization parameters for the model-based approaches as
well as the parameters of the DPS algorithms, see Section 4.1 .

Unlike for the computation of the gold-standard MMSE estimate of the initial inverse problem, the
denoising posteriors are sampled T" times per trajectory (we use 7' = 1000). To ensure acceptable
runtimes in this setting, we therefore pick the smallest burn-in period and sample count that still yield
accurate estimates of the required statistics. We determine these settings with a rigorous protocol that
is detailed in Appendix F.4. Ultimately, this protocol resulted in the choice of a burn-in period of 100
iterations and a sample count of 300.

F.3 LEARNING DETAILS

For learned-based denoisers, a noise-conditional neural network with UNet architecture (305 761
learnable parameters) is trained in an off-line step on the N, ,i, training signals in a standard setup
(Adam optimizer with learning rate 1 x 10~% with exponential decay with factor 0.9999, 100 000
parameter updates, batch size 10 000). The noise schedule in C-DPS and DiffPIR is defined by the
two endpoints 3y = 1 x 107% and Bz = 2 x 10~2 with linear equidistant samples in-between. The
learned variant of DPnP is the “DDS-DDPM” variant (Xu & Chi, 2024, Algorithms 1 and 3) that
contains an inner denoising-sampling loop. The arbitrary-precision variant does not require an inner
loop at all (except for the burn-in period), which makes the arbitrary-precision variant the faster one
for this case.

F.4 BURN-IN PERIOD AND DENOISER QUALITY

As discussed in Appendix F.2, the burn-in period and the number of samples of the Gibbs samplers
needs to be chosen appropriately to ensure an acceptable runtimes and a sufficiently small Monte
Carlo error. We determine the burn-in period and the number of samples through the following
protocol that is run in an off-line stage prior to running the benchmark. We synthesize x; = xg 4+ o:n
where o is in the range defined by the noise schedule /3, x( is constructed via (42) for all four
considered increment distributions, and n is some unknown but fixed vector of standard Gaussian
noise. For each of the synthesized signals, we then launch C' = 1000 parallel Gibbs chains on the
corresponding denoising posterior and run those chains for Ngyicient iterations, where Ngyfricient
is a sufficiently large natural number that guarantees that the chains are stationary for at least N,yg
(which is also relatively large) iterations and that, consequently, we can compute precise estimates of
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Figure 9: Mean squared error between MMSE estimates and the reference MMSE. Dashed lines:
Learned neural MMSE estimate. Solid lines: Monte Carlo MMSE estimate in terms of the window

length.

various statistics of the posterior distribution from the iterates from the last IV, iterations across all

C' chains.

To determine the burn-in period, we then pro-
ceed to calculate a statistic that we can mon-
itor throughout the iterations and that we can
compare against the reference statistic. Specif-
ically, denoting with X the random variable of
the Gibbs sampler, we compute the empirical
distribution of the increments at index 32 like
(X33 — X32). The distribution of differences
that is obtained by taking the last Ny iterations
across all C chains is considered the reference
distribution. Then, we compute the Wasserstein-
1 distance of that distribution to the one obtained
by taking the average across N,y iterations and
all C in a sliding-window starting from the first
Gibbs iterations. This allows us to gauge the
burn-in period through a visual inspection of the

T T T T
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5 = .|
3 = E
] r ]
E - .
%
S 10' =
= = §
£ F ]
z
g 10° E
] = =
= [ N
1071 =
E_| | | I

0 100 200 300

Gibbs iterations

Figure 8: Wasserstein-1 distance of intermediate
marginal distributions to that of the final sample.

Wasserstein-1 distance through the Gibbs iterations. In particular, we expect the Wasserstein-1 dis-
tance to be large for a number of initial samples where the Gibbs sampler is not stationary and then to
oscillate around a small but nonzero value. The value will be nonzero due to the finite sample size.
The Wasserstein-1 distance between the reference distribution and the one obtained through the Gibbs
iterations is shown in Figure 8 (for the exemplary case of a St(1) distribution and a selection of noise
variances). We observe that the empirical distribution of increments converges rapidly to the reference
one. The Wasserstein-1 distance reaches the noise level after a single-digit number of iterations,
which is in line with the analysis provided by Kuric et al. (2025). Based on these findings, we chose
the burn-in period as B = 100 iterations for all our experiments, which is more than sufficient to

reach stationarity and has acceptable runtime.
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To determine the number of samples that are needed for a sufficiently accurate computation of various
statistics that any DPS algorithm may utilize in their update steps, we compute a precise estimation
of the MMSE estimate of the denoising posterior by averaging the last N, iterations across all C
chains. Then, we pick one arbitrary chain and grow a window from iteration (Naye — 1) to the left,
average the samples in that window, and compute the MSE from the MMSE estimates obtained in
the one-chain window to the precise estimate obtained by averaging the C' chains and the last N,y
iterations. We show this error in terms of the window length and the noise variance for all increment
distributions in Figure 9. The quality of the learned denoiser and the Monte Carlo denoiser differ over
the noise variances and the learned denoiser improves relative to the Monte Carlo denoiser as the
noise variance vanishes. Our final choice of S = 300 samples is motivated by the fact that the quality
of the Monte Carlo denoiser, when averaged across all noise variances that appear in the reverse
diffusion, is always strictly better than the learned denoiser. Since it is relevant for the discussion in
Section 4.2, we highlight that for this choice the quality of the Monte Carlo denoiser is superior to
the learned one across all noise variances for the St(1) and BL(0.1, 1) increment distributions.

F.5 ALGORITHM PARAMETERS

The adjustable regularization parameter for est € {{2, ¢ } satisfies

Nval
AT = argmin ——— % (v ) - . (68)
AEA val 1

There, A is the loglinear grid A = {\1, Ao, ..., An,,, } with

(b—a)

Ap = 10T DN (69)

with @ = (—5) and b = 5. Since the model-based methods are very fast, we can use the relatively
high Ny, = 1000.

The adjustable hyperparameters of the DPS methods were found by

Nyal

AU = argmin —— > IR S (yr™, A) — x| (70)
PN val =1

where the grid ®!¢ is method-dependent. This tuning is tailored to the evaluation with respect to
the MMSE optimality gap. Due to resource constraints, the parameters are tuned for the learned
denoiser. We use Ngamples = 10 for the grid search on the validation set. We define a modest number
of Ngps = 40 grid-points and found the extreme points of the grid (i.e., the values of the parameters
that clearly lead to worse results) by hand. For C-DPS and DiffPIR, we fix the diffusion schedule to
standard choices (8y = 1 x 1074, 87 = 0.02). In addition to the diffusion schedule, C-DPS has one
tunable parameter 7y that we tune on 40 loglinear grid points (n = 1, ..., Ngps)

at+(n—1) N(j;::) ,

10 (71)

There, a = (—3) and b = 1. DiffPIR has two tunable parameters v and ¢, with ~ being typically
considered uncritical. Thus, we split the 40 grid points into a two-dimensional grid @PHPIR —

{0.3,0.7} x ©¢, with 2 points for y and 20 points for ¢ given by ©¢ = {@%, cey @fvdps/Q}, where

b—a)

@2 _ 10a+(n—1)m (72)

with @ = (—4) and b = 1. The DPnP algorithm only has the schedule {7;}7_; to tune. In this case,
since DPnP is asymptotically correct, the schedule is a practical vehicle that enables to trade off
between speed and accuracy. Therefore, the schedule of this paper is similar to the one that was
proposed by (Xu & Chi, 2024): We fix a small ng,a1 = 0.15 and linearly decrease 1 from some
Tinitial tO Nanal after K'/5 initial iterations with Mipitial, like

Tinitial ifn=1,...,K/5
=" ntina ;711((/5}, . (73)
mal KRS il ifn = K/5+1,..., K
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Figure 10: Grid-search diagnostics (logarithm of the MSE over the validation data set) for the model-
based methods and the DPS algorithms. Rows: ¢5; ¢1; C-DPS; DiffPIR; DPnP. Columns: Denoising;
deconvolution; imputation; reconstruction from partial Fourier measurements. For better visualization,
each curve has had its minimum subtracted. To limit clutter, marks are spaced ten apart.

(,_)DPnP

We treat ninitial S a tunable parameter and search over ={m,n2,...,M10}, where

b—a)

T = 100D 55=F (74)

There, a = (—1) and b = 4. Like in the original publication, we use the comparatively small K = 40.

The MSE over the validation data depending on the value of the adjustable regularization parameter
of the /5 and ¢; estimators and the adjustable hyperparameters of C-DPS, DiffPIR, and DPnP is
shown in Figure 10. Since the « parameter of DiffPIR is assumed to be uncritical, we only show the
values of the MSE for various choices of ¢, where  is set to the value of the optimal (v, {) pair.
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Table 4: Change in MMSE optimality gap (mean =+ standard deviation) after substituting the learned
denoiser with the arbitrary-precision denoiser. An asterisk indicates a significant changes according
to a Wilcoxon signed-rank test (p = 0.05). Negative number with asterisk: MMSE estimates obtained
with the arbitrary-precision denoiser are significantly better. Positive number with asterisk: MMSE
estimates obtained with the learned denoiser are significantly better.

Gauss(0.25) Laplace(1) BL(0.1,1) St(1) St(2) St(3)
C-DPS 0.00 £ 0.11 0.00+£0.16  —0.46 £ 1.16 0.00 £ 0.01 0.02+0.79"  —0.01+0.14
Denoising DiffPIR  0.00 +0.13 0.00+£0.17  —0.05+0.78"  —0.41+0.80"  0.00 +0.20 0.00 +£0.15
DPnP 0.04+0.27" —0.01+£0.22 —055+1.31" —077+131"  0.00%0.24 0.00 +0.23
C-DPS  —0.01+0.24 0.00 4+ 0.26 0.09 +0.97" 6.64+3.21° —0.12+1.11" —0.03+0.43
Deconvolution  DiffPIR ~ —0.01 + 0.23 0.00 +0.23 0.04 +1.12 13.56 £9.90°  —0.01+0.47 0.00 +0.31
DPnP 0.00+£0.25 —0.01+£0.27" —0.02+1.20 —4.98+3.86"  0.06+£0.77 —0.02+0.34
C-DPS 0.00 +0.30 0.01+0.35 0.41 +1.51° 3.41+4.99" —0.12+1.01" —0.01+0.57
Imputation DiffPIR  0.00 & 0.29 0.00 £ 0.33 0.03 £ 1.05 —0.20 +£3.05"  0.0340.71 0.00 4 0.47
DPnP 0.00+£0.35 —0.02+0.38 —0.02+1.02 —1046+570"  0.02+0.67 —0.01+0.48
C-DPS  —0.02+0.43 —0.0140.49 0.80 + 1.43 0.09+5.63° —0.03£0.79°  0.01 +£0.49
Fourier DiffPIR  —0.01 = 0.39 0.00 £ 0.40 0.12+£0.83"  —0.64+1.70" —0.03+0.42" —0.02+0.38
DPnP —0.01 +0.43 0.00£045 —0.33+1.13" —1.32+3.18"  0.00%0.54 0.01 +0.46

Table 5: Runtime of the benchmark with learned objects.

Gauss(0.25) Laplace(1) BL(0.1,1) St(1) St(2) St(3)

C-DPS 00:04:52 00:04:52 00:02:56  00:04:52  00:04:52  00:04:52
Denoising DiffPIR 00:01:59 00:01:58 00:01:12  00:01:58  00:01:59 00:01:59
DPnP 00:02:33 00:04:58 00:01:15  00:59:33  00:06:13  00:04:58

C-DPS 00:04:52 00:04:53 00:02:57  00:04:53  00:04:53  00:04:52
Deconvolution  DiffPIR 00:01:59 00:01:59 00:01:12  00:01:59  00:01:59  00:01:59

DPnP 00:13:54 00:46:39 00:05:48  00:53:30 00:28:24  00:28:24
C-DPS 00:04:53 00:04:53 00:02:59  00:04:53  00:04:53  00:04:53
Imputation DiffPIR 00:01:59 00:01:59 00:01:13  00:01:59 00:01:59  00:01:59
DPnP 00:04:58 00:16:18 00:18:56  00:51:41  00:39:04 00:32:50
C-DPS 00:04:54 00:04:54 00:02:59  00:04:55 00:04:55 00:04:54
Fourier DiffPIR 00:01:59 00:01:59 00:01:13  00:01:59  00:01:59  00:01:59
DPnP 00:06:13 00:13:53 00:04:42  00:51:41 00:23:39 00:16:18

G ADDITIONAL RESULTS

We provide in Table 4 an exhaustive quantitative evaluation of the change in the optimality gap
after we substitute the arbitrary-precision Monte Carlo denoiser for the learned denoiser. We also
report for which cases the arbitrary-precision denoiser enjoys significantly better results than the
learned denoiser according to a Wilcoxon signed-rank test (p = 0.05, Nieqt pairs, two-sided test
with the winner determined by the median of differences). We attribute a better performance of
the learned denoiser to the fact that the algorithms are fine-tuned using the learned component or
to the cases where the likelihood score approximation is compensated by the one of the learned
component. Note that this table must be interpreted with the quality of the denoisers in mind. As we
show in Figure 9, for our particular choice of S = 300 samples, the Monte Carlo denoiser is strictly
better than the learned denoiser over all noise variances only for signals with BL(0.1, 1) and St(1)
increment distributions.

We show uncurated qualitative results of the MMSE estimate obtained by the DPS algorithms and the
gold-standard Gibbs methods in Figures 11 to 18. The figures alternate between the arbitrary-precision
denoiser and the learned denoiser and show the results for deconvolution, denoising, imputation, and
reconstruction from partial Fourier samples, in that order. Each figure contains results for BL(0.1, 1),
St(1), St(2), and Laplace(1) increment distributions.

The coverage results for « = 0.9 are presented in Table 7. The Gibbs row again validates the
implementation; for all forward operators, they achieve coverages that are very close to 0.9. In
contrast, the coverage values obtained by the DPS algorithms are generally much smaller than 0.9.
For C-DPS and DiffPIR, the reported coverage values are almost always 0 except for BL(0.1, 1)
and St(1) increments, where the coverages are usually (close to) 1 for C-DPS and inconsistent for
DiffPIR. For almost all increment distributions and forward operators, DPnP reports coverage values
that are closest to, but typically smaller than, 0.9. Note that a coverage of 1 can be considered the
worst case even at a target of 0.9. For instance, it would be achieved by setting all samples to a
constant vector with extremely large (i.e., “unlikely”) entries.
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Figure 11: Qualitative results for deconvolution using the Monte Carlo. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 12: Qualitative results for deconvolution using the learned denoiser. Rows: increment distribu-
tions. For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 13: Qualitative results for denoising using the Monte Carlo denoiser. Rows: increment
distributions. For each increment distribution, the MMSE estimates obtained by the different DPS
algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-wise
marginal variances. Columns: Different measurements.

32



Under review as a conference paper at ICLR 2026

ol s
=
= o N
2
3 2
as]
4 - |
ol

| | |

o = (&)

T T T
Qg
TEFS

;VJ
| |

!
102
o015 T T T T o4l T T ] 3T T T ]
. . 5l |
0.1 |- ::a
5-1072 [ | o2 - 1L B
0 A A i Ao 0 L L A L 0 A
T T T T T T T T T T
20 [ — 40 |- B
07 —
or | 20
= =100 |- N
Z
ey
wn
—20 |- N
0 200 |- -
—40 |- |
| | | | | | | | 1300 LI | | [
T T T T T T T T 10 [T T T |
10 1= 1 10 -
5 — 5 - | 5 1
0 0 0l— -
5 T T
o N
20 |~ — 0 |
—~ —10 |- —
R -5 N
e
A g0 |- |
—10 - 1 —20 |- -
—15 |- N
0 LI = | | | | | | | |

| | |
03 T T ™ o.
0.2 1 02|
0.1 [~ —
I T )

=]
IS
T
|

Laplace(1
Lo
o o o
T T T
| | |
o
T
| |
w
T T
| |

|
cooo
O N Wk

T

|

10

—10 |-

0.15 [~ T Houas [ ]
0.1 |~ -1 0.1 .
5.1072 [ “o—2 |- -
o L \ \ \ 0
0 20 40 60

Figure 14: Qualitative results for denoising using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 15: Qualitative results for imputation using the Monte Carlo
distributions. For each increment distribution, the MMSE estimates obtained by the different DPS
algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-wise
marginal variances. Columns: Different measurements.
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Figure 16: Qualitative results for imputation using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms and the
gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal variances.
Columns: Different measurements.
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Figure 17: Qualitative results for reconstruction from partial Fourier measurements using the Monte
Carlo denoiser. Rows: increment distributions. For each increment distribution, the MMSE estimates
obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown on top of
the corresponding index-wise marginal variances. Columns: Different measurements.
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Figure 18: Qualitative results for reconstruction from partial Fourier measurements using the learned
denoiser. Rows: increment distributions. For each increment distribution, the MMSE estimates
obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown on top of
the corresponding index-wise marginal variances. Columns: Different measurements.
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Table 6: Runtime of the benchmark with Monte Carlo objects.

Gauss(0.25) Laplace(1) BL(0.1,1) St(1) St(2) St(3)
C-DPS 05:52:28 07:23:23 34:07:44  05:52:40 05:34:51 05:31:10

Denoising DiffPIR 05:04:40 06:36:25 33:46:29  05:12:30  05:39:06  05:38:24
DPnP 00:03:04 00:03:57 00:20:36  00:03:23  00:03:08  00:03:10

C-DPS 05:53:40 07:25:17 34:17:12  05:28:38  05:24:12  05:24:00
Deconvolution  DiffPIR 05:28:09 06:55:34 34:16:17  05:31:29  05:32:32  05:22:39
DPnP 00:03:05 00:03:59 00:21:01  00:03:13  00:03:21 00:03:21

C-DPS 05:49:07 07:15:41 34:29:37  05:53:44  05:27:44  05:26:05
Imputation DiffPIR 05:50:15 07:00:13 33:52:26  05:34:00 05:24:16  05:09:56

DPnP 00:03:23 00:04:18 00:20:58  00:03:09  00:03:05  00:03:22
C-DPS 05:49:49 07:09:51 34:30:13  05:49:44  05:49:26  05:49:07
Fourier DiffPIR 05:13:06 06:38:32 34:31:38  05:17:58  06:14:52  05:15:14
DPnP 00:03:04 00:04:12 00:20:59  00:03:05 00:03:19  00:03:32
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Figure 19: Conditional generation for deconvolution of a signal with BL(0.1, 1) increments with
DiffPIR. Top: Prototypical sampling trajectory at times ¢t = 999, 600, 200, 0. Bottom: From left to
right: MMSE estimate obtained by averaging all DiffPIR samples; gold-standard MMSE estimate
obtained by the Gibbs method; the data-generating signal; the data.

Table 7: Posterior coverage of various estimation methods at o = 0.9. MC: Monte Carlo.

Gauss(0,0.25)  Laplace(1) BL(0.1,1) St(1) St(2) St(3)
Learned MC Learned MC Learned MC Learned MC Learned MC Learned MC
Gibbs — 0.90 — 0.91 — 0.91 — 0.89 — 0.91 — 0.89

C-DPS 0.00 000 000 0.00 100 100 100 1.00 0.00 0.00 0.00 0.00

Denoising DIffflR  0.00 000 000 000 100 100 028 002 000 000 000 000
DPoP 058 067 011 011 100 041 053 008 009 009 009 0.0

Gibbs — 089 — 090 — 090 — 091 — 0ol — ool

Decomolution CDPS 000 000 001 000 100 100 100 085 001 000 000 000
DiffPIR  0.00 000 000 000 100 100 097 092 000 000 000 0.00

DPoP 002 012 006 007 100 031 050 006 006 006 007 0.06

Gibbs — 089  — 090 — 08 — 091 — 09 — ool

iouation  CDPS 000 000 000 000 100 100 094 078 015 015 000 000
P DIffPIR 000 000 000 000 100 100 072 032 000 000 000 0.00
DPnP 028 031 009 008 100 041 056 007 014 013 012 013

Gibbs — 091 — 090 — 090 — 091 — 092 — oo

Foutier CDPS 000 000 000 000 100 100 096 074 00l 00L 000 0.00

DiffPIR ~ 0.00 0.00 0.00  0.00 1.00 1.00 092  0.65 0.00  0.01 0.00  0.00
DPnP 0.19 0.19 0.08 0.06 1.00 032 050  0.06 0.07  0.07  0.07 0.06
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