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ABSTRACT

We propose a statistical benchmark for diffusion posterior sampling (DPS) al-
gorithms in linear inverse problems. Our test signals are discretized Lévy pro-
cesses whose posteriors admit efficient Gibbs methods. These Gibbs methods
provide gold-standard posterior samples for direct, distribution-level comparisons
with DPS algorithms. They also serve as oracle denoisers in the reverse diffu-
sion, which enables the isolation of the error that arises from the approximations
to the likelihood score. We instantiate the benchmark with the minimum-mean-
squared-error optimality gap and posterior coverage tests and evaluate popular
algorithms on the inverse problems of denoising, deconvolution, imputation, and re-
construction from partial Fourier measurements. We release the benchmark code at
https://github.com/emblem-saying/dps-benchmark. The reposi-
tory exposes simple plug-in interfaces, reference scripts, and config-driven runs so
that new algorithms can be added and evaluated with minimal effort. We invite the
community to contribute and report results.

1 INTRODUCTION

Diffusion models are among the leading generative models in imaging (Rombach et al., 2022),
visual computing (Po et al., 2024), finance and time-series analysis (Huang et al., 2024; Rasul et al.,
2021), de novo protein and drug design (Watson et al., 2023; Alakhdar et al., 2024), natural language
processing (Li et al., 2022), and other domains. Their ability to model complex distributions has
motivated their use as priors in the Bayesian resolution of inverse problems. In fact, reconstruction
methods that leverage diffusion models are competitive or state-of-the-art in, e.g., deconvolution (Ren
et al., 2023), phase retrieval (Xue et al., 2025), magnetic resonance imaging and computed tomog-
raphy reconstruction (Chung & Ye, 2022; Liu et al., 2023), weather-artifact removal (Ozdenizci &
Legenstein, 2023), task-conditioned protein design (Bogensperger et al., 2025), audio bandwidth
extension and dereverberation (Lemercier et al., 2024), and denoising of financial time-series (Wang
& Ventre, 2024).

This empirical success has come despite diffusion models lacking a natural mechanism for condition-
ing on measurements and active research explores how to incorporate the likelihood (Yismaw et al.,
2025; Erbach et al., 2025). Currently, conditioning strategies are evaluated in one of two ways. (i) With
respect to downstream applications: As an example, evaluations with respect to perceptual metrics
such as the structural similarity (Wang et al., 2004), the Fréchet inception distance (Heusel et al.,
2017), or the learned perceptual image patch similarity (Zhang et al., 2018) are common in the imag-
ing sciences. However, as pointed out by Pierret & Galerne (2025b), these metrics are ill-suited for the
statistical evaluation of posterior-sampling algorithms. (ii) In overly simplistic settings: A common
fallback is to evaluate conditioning strategies in synthetic settings with (finite-component) Gaussian
mixture priors. Such mixtures remain light-tailed with the tail decreasing exponentially like the widest
component and, consequently, they cannot reproduce power-law-like extremes that are common in,
e.g., asset returns (Blattberg & Gonedes, 1974; Cont, 2001) and statistics of images (Wainwright
& Simoncelli, 1999). Benchmarks built on such priors can therefore overstate posterior quality. A
proper statistical evaluation in realistic settings is critical in high-stakes applications such as medical
imaging, remote sensing, and finance, where decisions based on reconstructions and their associated
uncertainties may have significant consequences.
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1.1 CONTRIBUTIONS

We propose such a statistical benchmark for diffusion posterior sampling (DPS) algorithms for linear
inverse problems. We consider a setting similar to Bohra et al. (2023) in which test signals are obtained
from discretized sparse Lévy-process priors that admit efficient posterior-sampling algorithms. Indeed,
they admit efficient Gibbs methods with exact conditionals that provide gold-standard posterior
samples. The framework supports general posterior-level comparisons—e.g., (sliced) Wasserstein or
energy distances or calibration via coverage and posterior predictive checks—by furnishing matched
samples obtained from the DPS algorithms and the gold-standard Gibbs methods.

We introduce a new template for DPS algorithms, where each update step utilizes samples from the
denoising posterior—as opposed to only the minimum-mean-squared error (MMSE) point estimate—
and we show how several popular DPS algorithms can be re-expressed within this template. This
template arises naturally in our framework because the Gibbs methods can provide these denoising-
posterior samples. This construction enables the isolation of the error that is attributable to the
likelihood-score approximation by replacing the learned denoiser with an oracle MMSE denoiser
computed from Gibbs samples at each reverse-diffusion step. Finally, we instantiate the framework
with the MMSE optimality gap and highest posterior density coverage checks across the inverse prob-
lems of denoising, deconvolution, imputation, and reconstruction from partial Fourier measurements.
The benchmark code is available in an online repository that contains efficient implementations of
sampling routines and a containerized runtime that allows novel algorithms to be benchmarked easily.

1.2 RELATED WORK

For unconditional sampling, many works derive theoretical bounds on various distances between
a target distribution and the distribution obtained by (approximations of) the reverse stochastic
differential equation (SDE) (see section 2). For example, Gao et al. (2025) bound the Wasserstein-2
distance with respect to the discretization error of the SDE under the assumption that the target
distribution is smooth and log-concave. This directly bounds the number of reverse-diffusion steps
that are needed to obtain a desired accuracy. Under absolute continuity of the target with respect to a
Gaussian, Strasman et al. (2025) bound the Kullback—Leibler divergence with respect to properties of
the noise schedule. Additional results in other distances can be found in the references cited therein.

A common assumption that simplifies the analysis is that of a Gaussian target. In that case, many
objects in the forward and reverse SDE admit closed forms, which facilitates the computation of
various bounds. For example, Hurault et al. (2025) analyze the error due to the finite number of prior
samples used in the estimation of the prior score (which is affine in this case) and track its propagation
through the iterations of the reverse-SDE solver. Pierret & Galerne (2025b) derive explicit solutions
to the SDE and use those to derive bounds on the Wasserstein-2 distance to the distributions that are
obtained via Euler—-Maruyama discretizations.

Works that consider conditional generation and are closest to the present paper are Pierret & Galerne
(2025a) and Crafts & Villa (2025). Pierret & Galerne (2025a) derive expressions for the Wasserstein-
2 distances between the conditional forward marginals and the distributions induced by specific
likelihood approximations in the reverse SDE under the assumption of a Gaussian prior. In contrast,
our framework handles a broader set of priors (discretized Lévy processes) and accommodates a
broader set of algorithms than those that rely on specific likelihood approximations. Moreover,
deriving explicit expressions for new algorithms often requires a substantial amount of nontrivial
mathematics. In contrast, our benchmark is deliberately designed for a plug-and-play evaluation of
novel algorithms. Crafts & Villa (2025) evaluate DPS algorithms under the assumption of a (finite-
component) Gaussian mixture prior numerically. Similar to the present work, they provide reference
objects to the DPS algorithms to ensure a fair evaluation. However, they only consider Gaussian
mixture priors, which cannot reproduce power-law-like extremes and can overstate posterior quality.

Beyond diffusion-specific theory, Thong et al. (2024) evaluate posterior calibration by checking
the coverage of credible regions produced by different Bayesian recovery strategies. They find
that recovery strategies that utilize diffusion models often under-report uncertainty. A shortcoming
of their approach is that they use an empirical distribution of images as a surrogate for the prior
distribution. Our framework, by contrast, relies on known priors from which infinitely many signals
and corresponding measurements can be generated. It isolates algorithmic errors without resorting to
surrogate priors and supports fair, repeatable comparisons across tasks and algorithms.
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2 BACKGROUND

Bayesian Linear Inverse Problems We seck to estimate a signal x € R? from the measurements

y =Ax+n, (D
where the forward operator A € R™*? models the noiseless linear measurement acquisition and
n € R™ is additive noise. In the Bayesian resolution of this problem (see, e.g., Stuart (2010)), the
signals are modeled as a random variable, denoted X, with values in R and distribution px, referred

to as the prior. Given any measurement y, the ultimate goal is to analyze the posterior pxy—, which
is related to the likelihood py|x—x and the prior px via Bayes’ rule, which states that

pX|Y:y(X) X pY\X:x(Y)pX(X)- 2
In contrast to classical variational methods (see, e.g., Scherzer et al. (2008)), the posterior distribution
provides natural means to quantify uncertainty and can be summarized by various point estimators.
We provide a precise description of point estimators that are relevant in this work in appendix A.

For a given signal x, the likelihood py|x—x is determined by the distribution of the noise. A common
assumption on the noise is that it is a vector of independent and identically distributed (i.i.d.) Gaussian
random variables with mean zero and variance o2." In this case, the likelihood is given by

Py x=x(¥) eXP(—ﬁHAX - Y||2)~ G

Thus, once the forward model and the noise distribution are specified, the remaining modeling choice
is the prior. Diffusion models are good candidates due to their ability to encode complex distributions.

Diffusion Models Diffusion models were introduced by Song et al. (2021) by unifying the discrete
approaches from Song & Ermon (2019) and Ho et al. (2020) in a continuous theory based on
SDEs (Klenke, 2020, Chapters 25 and 26). We denote the (diffusion) SDE with drift coefficient
f: R x R>o — R? and diffusion coefficient g : R>o — Ras

with some suitable initial condition X, where W, is the standard Wiener process. In our setup,
the initial condition is the random variable that describes the signal, thus Xy = X. Under suitable
choices for f and g, the forward process admits a limiting marginal X, as ¢ — co. Sampling from
DX, can then proceed by simulating the SDE (4) in reverse with initial condition X .. By Anderson’s
theorem (Anderson, 1982), the reverse SDE that reproduces the forward marginals satisfies

dX, = (F(Xy,t) — g*(t)Viogpx, (X¢)) dt + g(t) AWy, (5)
where px, denotes the density of X; defined by the forward process, and d¢ is negative.

The primary challenge in this approach lies in the computation of the scores V log px, for all t > 0.
A fundamental relation known as Tweedie’s formula connects the score with the MMSE denoiser: As
we derive rigorously in appendix B, for f(x,t) = —@x and g(t) = \/B(t),> we have that

Vlogpx, (x) = —U(t)_2 (X —a()E[Xy | Xy = x])7 6)

where a(t) = exp(—1 [ B(s)ds) and o2(t) = 1 — a(t). This yields a practical way of computing
V log px, (x) through the resolution of the MMSE denoising problem of finding E[X, | X; = x].
In standard applications where the goal is the generation of new signals, this is typically tackled by
approximating the map (x,t) — E[X, | X; = x] with a neural network that is learned in an off-line
step. In our benchmark, we can instead obtain oracle MMSE denoisers via Gibbs methods and thereby
eliminate approximation errors from a learned surrogate to isolate errors in DPS algorithms.

Implementing the reverse SDE for generation requires its time discretization, for instance with Euler—
Maruyama techniques (Higham, 2001). In practice, researchers typically use the alternative denoising
diffusion probabilistic model (DDPM) backward process (starting from Gauss(0, I))

Xio1 = o (Xo + BV log px, (X0)) + v/ BiZe, ™

that originates from the discrete-time Markov chain that was initially proposed by Sohl-Dickstein
et al. (2015) and revisited and popularized by Ho et al. (2020). We relate it to the Euler-Maruyama
discretization of the reverse SDE through Taylor expansions in appendix B.1.

'Our framework supports more general (possibly non-Gaussian) likelihoods, see section 3.
The variance-preserving (VP) formulation (Song et al., 2021, Section 3.4) with standard normal limiting
marginal, where 5 : R>o — R controls the speed of the contraction to zero and how much noise is injected.
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Figure 1: Unconditional reverse-diffusion trajectories obtained by DDPM using the oracle denoiser.
Rows: Increment distributions. Columns: Diffusion times. Line styles: Different random states.

We show trajectories of signals generated by this ‘ ‘ ‘

backward process using the oracle MMSE de- Leamed |
noiser in fig. 1 and motivate the oracle denoiser
by showing the histograms of increments ob-
tained by the learned denoiser versus the oracle
denoiser for a St(1) increment target in fig. 2.
The construction of the signals and the oracle
denoiser are described in section 3 and our no- g -
tations of various distributions are summarized
in appendix C.2. The signals generated by using Increments

the oracle denoiser follow the increment distri- ) ) )
bution almost perfectly. Residual errors are due Figure 2: Histogram of increments of signals ob-
to the discretization error of the reverse diffusion tained by DDPM with the oracle and learned de-
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Diffusion Posterior Sampling The reverse-diffusion sampler from the previous section can be
adapted to sample from a posterior by replacing the prior score V log px, with the posterior score

Viogpx,|y=y = Vlogpx, + V(x = log py x,—x(¥)) (®)
for some given measurement y, obtained by Bayes’ theorem. Although the dependence between Y
and X is known through (1) and the likelihood is explicitly modeled via (3), it is generally challenging
to relate Y and X for any ¢ > 0. To overcome this, the conditioning on the measurements is usually
done in one of two ways. (i) A learned component models the conditional posterior score and also
gets the measurements as input. This strategy is pursued by, e.g., Liu et al. (2023); Ozdenizci &
Legenstein (2023); Bogensperger et al. (2025); Saharia et al. (2023), and is advantageous when the
measurement process is unknown, difficult to model, or prohibitively expensive to evaluate. However,
reconstructions obtained by this strategy typically degrade under shifts in measurement conditions,
since the learned components cannot adapt to the new measurement conditions. (ii) The Bayesian
separation that is described in (8) is pursued and the likelihood score is approximated. This is done
by, e.g., Chung & Ye (2022); Xue et al. (2025) and the methods reviewed by Lemercier et al. (2024),
and is advantageous when the measurement process is known, relatively inexpensive to evaluate,
and subject to change, but prior knowledge should be reused, which is frequently the case in, e.g.,
imaging or remote sensing applications. However, this requires approximations to the likelihood
score V(x + log py|x,—x(y)) forall t > 0.

Our benchmark can evaluate either strategy (and any other method that claims to sample from a
posterior distribution). The first approach, however, relies on black-box learning of the conditional
posterior score and its performance heavily depends on various implementation details. Thus, we
primarily focus on the second approach that necessitates approximations of the likelihood score (and
more general DPS algorithms with explicit conditioning, see our proposed generalization in section 3).
Our framework can supply reference objects—posterior samples and oracle denoisers via Gibbs
methods—to isolate and quantify the impact of these approximations.
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3  PROPOSED FRAMEWORK

The prior distributions in our framework will be that of signals of length d obtained by regularly
spaced samples of processes with independent, stationary increments (Lévy processes, described
in appendix C). Let s be such a process and let the unit-step increments be uy, = s(k) — s(k — 1)
for k = 1,...,d. Independence and stationarity imply that the distribution of uy, the increment
distribution py, does not depend on k. The increment vector is related to the signal x via u = Dx,
where D is a finite-difference matrix with an initial condition that allows us to write x = D~ 'u
where D! is a lower-triangular matrix of ones. This gives a convenient way to synthesize signals
once u is drawn. The independence of the increments implies that the density of the discrete signal is

d
px(x) = [ [ pu ((Dx)). ©)
k=1

We consider four increment distributions that are commonly used in sparse-process models: Gaussian,
Laplace, Student-t, and Bernoulli-Laplace (spike-and-slab). Such increment distributions are sparse or
heavy-tailed according to the taxonomy in (Unser & Tafti, 2014) and are relevant in signal and image
processing, finance, and other fields (Schoutens, 2003). A precise definition of Lévy processes, the
matrix D, the increment distributions and their notation along with a discussion about extensions to
higher-dimensional signals or signals with more complicated graph structure are given in appendix C.

Efficient Posterior Sampling With the prior distribution specified in (9) and the assumption of
Gaussian noise, the posterior associated to the inverse problem (1) is

d

Pxjy=y(x) o< xp(— g0z | Ax = y[*)px (%) = exp(— 5oz [Ax = y|*) [[ po ((Dx)r). (10)
k=1

Unless py is a Gaussian (the simplified setting in Pierret & Galerne (2025b)), this posterior is not
conjugate, so neither closed-form sampling nor direct evaluation of moments is available. Nevertheless,
for the increment distributions used in this paper, the posterior distributions admit efficient Gibbs
methods via standard latent-variable augmentations. Motivation and more details about the Gibbs
methods, such as the burn-in period B and the number of samples S, are provided in appendix D.

The Gaussian, Laplace, and Student—t' dis- Algorithm 1 GLM Gibbs method.
tributions admit latent representations
as infinite-component Gaussian mixtures, Require: x, € R? K € R™*?, conditional latent dis-
which makes them suitable for the Gaus- tributions {pz,| x }7-, and maps {y;, o7 }7,
sian latent machine (GLM) framework that 1 fors=1,...,B+Sdo

was recently introduced by Kuric et al. 2 L Draw z; ~ pz,|x=(Kx,_,); > paralleloveri
(2025). The GLM framework is generally ~ 3: Draw x5 ~ Gauss(u(z), X(z))

applicable to distributions of the form 4: return {xp ,}5_,

p(x) o [ o ((Kx)x) (11)
k=1
where K € R™*¢ and all distributions ¢y, ¢, . .., ¢, : R — R have a latent representation
Pr(t) = /Rguk(z),ai(z)(t)fk(z) dz, (12)

where the latent distribution f; and the latent maps p;,o? : R — R depend on the distribution ¢;,
and g, ,2 is the density of a one-dimensional Gaussian distribution with mean y and variance o2.
The posterior distribution in (10) can be cast into this framework by rewriting it as

m m+d

d
pxy=y(¥) & [ ] gy..02 (Ax)i) [] v (Dx)1) = ] o ((Kx)) (13)
k=1 k=1 k=1

by setting K = [A; D], ¢, = gy, o2 fork=1,...,m,and ¢, = py fork =m+1,...,m+d. We
summarize the GLM sampling in algorithm 1. Importantly, non-Gaussian likelihoods can be handled
by adapting the first m distributions appropriately.
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The introduction of an appropriate n-dimensional random variable Z with non-trivial distribution
(see the details in Kuric et al. (2025)) enables the efficient sampling from the conditionals: Sampling
X | Z = z amounts to sampling a Gaussian with covariance and mean

%(2) = (K" Zo(2)"'K) " and p1(z) = S(2)K" Zo(2) " o (2), (14)

respectively, where 3(z) = diag(0}(z1),...,02(2y)) and po(z) = (11(21), - - -, fin(2y)). Sam-
pling Z | X = x amounts to sampling n independent one-dimensional conditional latent distributions
PZ|X=(Kx)1» - - - » PZ,| X=(Kx), thatdepend on the distributions ¢1, ..., ¢, and are given in table 3
in the appendix along with the corresponding latent distributions and latent maps.

For the Bernoulli-Laplace distribution, we adapt the algorithm proposed by Bohra et al. (2023) that
introduces two d-dimensional latent variables: A Bernoulli indicator (“on”/“off”’) and a Laplace-
distributed increment height. For a self-contained exposition, we rigorously derive the resulting Gibbs
method in appendix D.1.

The Gibbs methods that we just described are suitable for the generation of the gold-standard samples
from the posterior that corresponds to the initial inverse problem (1) as well as the generation of
samples from the denoising posteriors in the DPS algorithms. In the latter case, the forward operator
A is the identity, the measurements are the noisy intermediate reconstructions x;, and the noise
variance 02 = o7 follows the schedule at timestep ¢. When these Gibbs methods are embedded
within the reverse-diffusion loop, an efficient implementation is paramount to achieve acceptable
runtimes. This is especially true for Bernoulli-Laplace increments, where the sequential drawing of
the binary support vector occurs inside the outer Gibbs loop, which in turn may be nested within
the reverse-diffusion loop. Accordingly, we deliberately tailored our implementation—which we
regard as a substantial contribution—to modern, highly parallel compute units and optimized several
components, including custom CUDA- and Triton-compiled sampling routines and incremental
updates based on the Woodbury—Sherman—Morrison identities (see appendix D.2).

A Generalized DPS Template Widely used methods such as diffusion plug-and-play (DPnP) (Xu
& Chi, 2024), fall outside the pattern described in section 2—approximating the likelihood score
inside the reverse diffusion. We therefore introduce a simple template that is natural in our setting
and accommodates a broader set of DPS algorithms.

We characterize DPS algorithms as an iteration Algorithm 2 Template for DPS algorithms.
rule that can be summarized into a two-stage

process: Given an iterate x; with associated Require: Initial point x7,y, A, A

noise variance o2, the computation of the next ~ !: fort =T,...,1 go > Diffusion process
iterate x,_; is done by (i) drawing S samples L Sample {Xs}5_1 ~ Pxox,=x,

denoted {x,}5_, from the denoising posterior ~ 3: Updflt? X1 = S(xe, {11, ¥, A A )
PXo[Ximx, X eXp(_Tif |- - XtHQ)pXO( -), 4 return x*8 = xq > Posterior sample
and (ii) computing the next iterate x;_; through

an update step S that may utilize the current iterate x;, the samples {X,}5_;, the measurements
y, the forward operator A, and possibly other algorithm-internal parameters such as a scalar that
weights likelihood and prior terms or parameters that define the noise schedule. This template is
summarized in algorithm 2 and specialized instances for the step S that correspond to the three
popular algorithms Chung diffusion posterior sampling (C-DPS) (Chung et al., 2023), diffusion
models for plug-and-play image restoration (DiffPIR) (Zhu et al., 2023), and DPnP (Xu & Chi,
2024) are given in appendix E.2. We have absorbed the (variance-preserving) scaling into the step
S since this template is not fundamentally limited to diffusion processes but supports any (also not
monotonically decreasing) noise schedules. In addition, noise variances {o;}7_, are usually derived
from the algorithm-internal parameters A that may include a noise schedule.

Through this construction, DPS algorithms can use any statistic 2 of the samples {is}le in
their update steps. Most methods use the mean R(X1,...,Xg) = %Zle Xs = 1, which is
the Monte Carlo estimate of E[Xy | X; = x;|. An example of a DPS algorithm that utilizes
additional statistics is C-DPS, which requires the Jacobian of x; — E[Xy | X; = x¢|. As we
show in appendix E.1, this Jacobian equals (up to the known VP scaling) the conditional covari-
ance of Xo | X; = x;, an unbiased estimator of which can be obtained through the statistic

R(Xi,...,Xs) = g7 Sooy (X — ) (Xs — )T An example of a DPS algorithm that utilizes an al-
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ternative statistic is the DPnP algorithm that alternately samples from px,|x,—x, and a data-proximal
problem. There, R(X1,...,Xs) = X; is used to obtain one sample from DPXo|Xy=x: -

4 NUMERICAL EXPERIMENTS

We consider four inverse problems that are frequently encountered in various estimation tasks
throughout the natural sciences: denoising, deconvolution, imputation, and reconstruction from
partial Fourier measurements. Details about the operators are provided in appendix F.1 and precise
descriptions of the benchmarking pipeline (e.g., the number of training, validation, and test signals,
and the number of iterations in the Gibbs methods) in appendix F.2.

4.1 RECONSTRUCTION ALGORITHMS

The model-based methods and the DPS algorithms require the tuning of some hyperparameters.
These were found by grid search on validation data independently for each algorithm, increment
distribution, and forward operator. The precise setup for this grid search is given in appendix F.5.
Importantly, the hyperparameters for the DPS algorithms were tuned to the learned denoiser due to
resource constraints and we view full oracle-tuning as a community task. Parameters obtained with
this procedure are later denoted with a star in the superscript.

Model-Based Methods As baseline reconstruction algorithms we consider the model-based meth-
ods

%% (y, \) =arg$iin(%||AX—yH2+A||DXH2)7 (15)
xe
and
X (y, A) :argmdin(%llAX*yHQ+AIIDXH1), (16)
xER

which coincide with the maximum-a-posteriori (MAP) estimators of Lévy processes associated with
Gaussian and Laplace increment distributions, respectively.

Diffusion Posterior Sampling Algorithms We consider three DPS algorithms that are popular
in the literature. First, the C-DPS algorithm due to Chung et al. (2023), which was one of the first
algorithms that was proposed for the resolution of general noisy inverse problems with diffusion
priors. Second, the DiffPIR algorithm due to Zhu et al. (2023) that can be regarded as an extension of
the C-DPS algorithm and typically reports superior results in standard perception-based evaluations.
Third, the DPnP algorithm due to Xu & Chi (2024) that alternates between sampling the denoising
subproblem and a data-proximal subproblem. We include the DPnP algorithm to showcase the broad
applicability of our framework to nonstandard setups that utilize various statistics of the denoising
posterior.

For each DPS algorithm, we benchmark two variants: One where the denoising posterior is sampled
with the gold-standard Gibbs methods (“oracle” denoiser) and statistics are computed from those
samples, and one where the sampling (or the direct estimation of any point estimate) is done with
learned components. For the former, we ensured that the Monte Carlo error (in the estimation of
the denoising-posterior expectation) is significantly below the error of the learned denoisers with a
rigorous protocol that is described in appendix F.4. For the latter, learning details are provided in
section appendix F.3.

Gold-Standard Gibbs Methods The Gibbs methods are used to obtain gold-standard samples from
the posterior. As described in section 3, the Gibbs methods are parameter- and bias-free and efficient
and, consequently, well-suited for this purpose. Chain lengths, diagnostics, and implementation details
are given in appendix F.2; we reuse the same settings across operators and increment families.

4.2 RESULTS

Before advancing, we introduce some notation. For any given measurement y, any DPS algorithm
alg that depends on any parameters A produces samples denoted {fczlg(y, )\)}kle‘“"l“. We denote
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Table 1: MMSE optimality gap in decibel (mean =+ standard deviation; lower is better; 0 is a perfect
reconstruction) of various estimation methods over the test set. Bold: best among DPS algorithms.

Gauss(0,0.25)  Laplace(1) BL(0.1,1) St(1) St(2) St(3)
C-DPS 0.12 +0.18 0.12+0.20 2.22 +£2.26 3.26 £1.01 0.28 £0.30 0.10£0.18
DiffPIR 0.16 £0.21 0.09 + 0.16 0.72 +1.10 0.93+1.06 0.07+0.14 0.15+0.21
Denoising DPnP 0.24 £0.25 0.11+0.17 1.33 +£2.12 1.19+1.38 0.10+0.17 0.10 £0.17
4 0.15£0.21 0.06 £0.12 3.44+£238 0.38 £0.43 0.14 £0.19 0.11+£0.18
Ly 0.00 £+ 0.01 0.16 £0.21 8.61 £ 3.10 3.25 £0.99 0.74 £ 0.83 0.25 £0.33
C-DPS 0.12£0.20 0.12+0.23 4.30 £ 3.87 18.30 £ 5.28 0.46 £ 1.40 0.17£0.53

DiffPIR  0.07 £0.17  0.07 £ 0.19 1.09£2.22 1045+6.10 0.09+0.57 0.08 £ 0.26
Deconvolution DPnP 0.10£0.18 0.13 £0.22 1.71+£2.49 7.84 +5.66 0.35+1.39 0.14 £0.41

o 1.65 4 0.84 1.38 +0.86 1.86 & 3.14 1.87+£4.01 1.10+£1.19 1.28 +0.94
Ly 0.00 £ 0.01 0.07+0.23 6.11 £4.49 21.50 + 4.46 1.444+2.85 0.36 = 1.09
C-DPS 0.15£0.29 0.18 £0.39 2.99 £2.82 23.33 £8.69 0.50 £ 1.09 0.14 4+ 0.57

DiffPIR  0.09 £ 0.23  0.08 + 0.24 0.24 +1.14 0.88 +£3.50 0.11+0.62 0.08 £ 0.42
Imputation DPnP 0.14 £0.32 0.17 £0.36 0.50 £1.28 10.89 4 5.92 0.25 £ 0.82 0.27 £ 0.58
£y 1.74 £1.12 1.77+1.35 1.25 £2.78 13.32 £ 5.32 1.37 & 2.56 1.55 4+ 1.58
Ly 0.00 £0.01 0.01 £0.05 1.10+1.88 0.42 £0.95 0.06 £ 0.34 0.02£0.28

C-DPS 0.15 £ 0.36 0.26 £ 0.65 5.90 £4.41 4.2945.78 0.53 £0.83 0.354+0.77
DiffPIR  0.11 £0.29 0.08 + 0.31 0.83 +1.44 3194437 0.114+0.39 0.12 +0.37

Fourier DPnP 0.11£0.35 0.20 £ 0.51 1.88 +£2.47 2.45 +4.83  0.39+0.89 0.24 £ 0.64
0 1.50 £ 1.59 0.73 £0.94 3.57+£2.82 1.07 +2.98 0.71 £0.99 0.78 £0.97
Ly 0.00 £ 0.02 0.36 £0.73 12.22 4+ 4.53 947 £8.34 2.66 £ 3.57 1.03+1.79
calg — 1 Nsamples galg . . ~est .
Kyivse (s A) Moo 2okt X, (v, A). For an estimation method x**( - ) and data y with

corresponding data-generating signal x we measure the MMSE optimality gap (in decibel) defined by

%= (y) — || )

[ivge (v) — |12

1010g10< (17)

where X°(y) = %%1/2(y, \*) for model-based methods and %%/%q (y, \*) for DPS algorithms. A

gap of 0 indicates a perfect recovery of the gold-standard MMSE estimate and the positive nonzero
values show the orders of magnitude of the error relative to the reference error. We found that
Nsamples = 90 provided a good tradeoff between runtime and accuracy by benchmarking the gold-
standard Gibbs method with that number of samples.

We report the mean and standard deviation of the MMSE optimality gap over all signal-measurement
pairs (x,y) in the test set obtained by the model-based methods and the DPS algorithms endowed with
the learned denoiser in table 1. The Gaussian increment distribution validates the implementation:
Since the MMSE and the MAP point estimates coincide, the model-based /5 estimator matches
the Gibbs reference up to the error due to the finite parameter-grid resolution. When the posterior
mean is smooth (e.g., imputation and some deconvolution cases), ¢ is the best model-based choice
and frequently outperforms the DPS algorithms. When the posterior mean is close to piecewise-
constant (typical in denoising of signals with sparse increments), the ¢; estimator is preferred. Among
DPS algorithms, DiffPIR is typically the top performer and often exceeds {5 and ¢; baselines in
deconvolution, imputation, and reconstruction from partial Fourier measurements. For spike-and-slab
settings (Bernoulli-Laplace), DPS algorithms substantially outperform the model-based baselines
across operators. In deconvolution and reconstruction from partial Fourier measurements, DPS
algorithms frequently match or surpass the best model-based estimator.

In addition to the reconstruction performance obtained with the learned denoisers—for which the
parameters of the algorithms were tuned—we inspect the robustness of the algorithms when replacing
the learned denoiser with the oracle denoiser. Here, we discuss general trends; an exhaustive quantita-
tive evaluation is given in appendix G. DPnP is the most robust to swapping the learned denoiser with
the oracle denoiser and significantly benefits from the oracle denoiser in the most challenging cases of
the spike-and-slab and the extremely heavy-tailed St(1) increment distributions. By contrast, C-DPS
and DiffPIR can require retuning when the denoiser changes: scores can deteriorate after replacing
the learned denoiser with the oracle denoiser, whereas a brief hand-tuning of the hyperparameters
on the validation set improves them way beyond the learned denoiser (e.g., for DiffPIR and St(1)
increments, the hand-tuning decreased the optimality gap by almost 10 dB). The differences between
the algorithms are generally greater than the differences between the learned and oracle variants
except for the heavy-tailed cases, which confirms the findings in (Bohra et al., 2023) and indicates
that the research of efficient and robust DPS algorithms is still crucial. Qualitative examples of the
MMSE estimates and the marginal variances obtained by the DPS algorithms and the gold-standard
Gibbs methods are shown in figs. 8 to 15 in the appendix.
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Prototypical samples and the corresponding MMSE estimate obtained from a DPS algorithm (here
DiffPIR for deconvolution of a signal with BL(0.1, 1) increments) are shown in fig. 3. The full
conditional reverse-diffusion trajectory, the data-generating signal, the measurements, and the MMSE
estimated obtained with the gold-standard Gibbs methods are shown in fig. 16 in the appendix. The
figure highlights a key distinction: Posterior samples often preserve high-frequency structure and
reflect prior variability, whereas the MMSE point estimate—obtained by averaging all samples—is
much smoother. This explains why DPS methods tend to score higher on perception-oriented metrics,
while regressors that target the MMSE point estimate (through training with the mean squared
error) excel on distortion metrics like the peak signal-to-noise-ratio (PSNR)). Consistent with this
distinction, Saharia et al. (2023) fairly compare a sampling-based method to an MMSE regressor
and find the expected trade-off: higher PSNR and structural similarity for the regressor and better
perceptual scores for the sampler. We therefore recommend making the Bayesian target explicit—
point estimate versus sample quality—and using evaluation protocols that are aligned to that target.
Our framework supports this by offering gold-standard posterior samples and oracle denoisers.

In addition to the evaluation of the MMSE opti- T

I
()

mality gap, which is on the point-estimator level, ~ 0|y —— %" () | —— Xyuse

we analyze the highest-posterior-density cover- —— x5 IR (y)

age of the algorithms. Specifically, for any mea- 2| 10 N
surement y and any k = 1,..., Ngamples, de-

note Ui (y) = log pxjy—y (X35, (v, A))?
where P is the permutation that ensures that ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Ih(y) > l2(y) > -+ > IN,umpe. (¥) and define 0 20 40 60 0 20 40 60
the empirical highest-posterior-density thresh-
old at « € [0,1] as lran,, . 0.1(Y). We de-
clare the data-generating signal x covered if
log pxy=y(X) > l[aN,umpe1(y) and define
the coverage of a method as the fraction of signal-measurement pairs (x,y) in the test set for
which x is covered by the threshold lf, .., ....1(¥)- The coverage of a calibrated posterior-sampling
method will be o up to Monte Carlo error. A coverage result that is significantly less than « indicates
that the samples obtained by the method concentrate too heavily around the mode; a coverage result
that is greater than « indicates that the samples are too spread out. We again discuss general trends
here and present an exhaustive quantitative evaluation in appendix G. The coverages obtained by the
DPS algorithms are generally much smaller than a, which indicates that they are uncalibrated and is
in line with what is reported by Thong et al. (2024). For C-DPS and DiffPIR, the reported coverage
values are almost always 0 except for BL(0.1,1) and St(1) increments, where the coverages are
usually (close to) 1 for C-DPS and inconsistent for DiffPIR. For almost all increment distributions
and forward operators, DPnP reports coverage values that are closest to but typically smaller than a.

Figure 3: Conditional generation for deconvolution
of a signal with BL(0.1, 1) increments with Diff-
PIR. The shaded area indicates the variance.

5 CONCLUSION

We introduced a statistical benchmark for diffusion posterior sampling algorithms for linear inverse
problems. The framework proceeds by constructing signals with a known distribution, simulating the
measurement process, and subsequently generating samples from the posterior distribution that arises
through the combination of the known prior and the known likelihood. Gold-standard samples from
this distribution are obtained via efficient Gibbs methods, and these samples are then compared to
those obtained by the diffusion posterior sampling algorithms. In addition, the Gibbs methods can
serve as oracle MMSE denoisers within the denoising posteriors encountered in each iteration of
the reverse SDE. Consequently, the framework also enables the isolation and quantification of the
error attributable to the likelihood approximations in the conditional reverse diffusion. We provided
numerical results for three common diffusion posterior sampling algorithms applied to four common
inverse problems. A consistent theme across all tested algorithms is that they are not calibrated,
which demonstrates that research into algorithms that perform better in this respect remains crucial.
We invite other researchers to benchmark their algorithms on our open implementation, which is
deliberately designed so that novel DPS algorithms can be evaluated in a plug-and-play manner.

3With slight abuse of notation, log px |y =y is the unnormalized ground-truth log-posterior (10); the additive
constant is the same across all methods so ranking is valid.
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Reproducibility Statement We release an online repository with complete algorithm implemen-
tations and step-by-step instructions to reproduce all results. A containerized runtime enables one-
command setup and fully automated execution via the provided scripts. Each algorithm is specified at a
level that supports independent reimplementation: the main text precisely details GLM sampling, and
the appendix presents the Bernoulli-Laplace Gibbs method using implementation-aligned notation, to-
gether with practical optimizations required for acceptable runtimes. The appendix also enumerates all
experimental settings, including the numbers of training/validation/test signals, the samples-per-datum
for each sampler, and the exact grid-search procedure used to select hyperparameters.

Usage of Large Language Models We used large language models to adapt passages of already-
written text for readability and conciseness.

REFERENCES

Amira Alakhdar, Barnabas Poczos, and Newell Washburn. Diffusion models in de novo drug design.
Journal of Chemical Information and Modeling, 64(19):7238-7256, September 2024. ISSN 1549-
960X. doi: 10.1021/acs.jcim.4c01107. URL http://dx.doi.org/10.1021/acs. jcim.
4c01107.

Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313-326, 1982. ISSN 0304-4149. doi: 10.1016/0304-4149(82)90051-5.

Robert Bassett and Julio Deride. Maximum a posteriori estimators as a limit of Bayes estimators.
Mathematical Programming, 174(1-2):129-144, January 2018. ISSN 1436-4646. doi: 10.1007/
s10107-018-1241-0. URL http://dx.doi.org/10.1007/s10107-018-1241-0.

Robert C. Blattberg and Nicholas J. Gonedes. A comparison of the stable and student distributions as
statistical models for stock prices. The Journal of Business, 47(2):244-280, 1974. ISSN 00219398,
15375374. URL http://www. jstor.org/stable/2353383.

Lea Bogensperger, Dominik Narnhofer, Ahmed Allam, Konrad Schindler, and Michael Krauthammer.
A variational perspective on generative protein fitness optimization. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
fINjgBMnTS.

Pakshal Bohra, Pol del Aguila Pla, Jean-Frangois Giovannelli, and Michael Unser. A statistical
framework to investigate the optimality of signal-reconstruction methods. IEEE Transactions on
Signal Processing, 71:2043-2055, 2023. doi: 10.1109/TSP.2023.3282062.

George Casella and Edward I. George. Explaining the Gibbs sampler. The American Statistician,
46(3):167-174, August 1992. ISSN 1537-2731. doi: 10.1080/00031305.1992.10475878. URL
http://dx.doi.org/10.1080/00031305.1992.10475878.

Hyungjin Chung and Jong Chul Ye. Score-based diffusion models for accelerated MRI. Medi-
cal Image Analysis, 80:102479, 2022. ISSN 1361-8415. doi: https://doi.org/10.1016/j.media.
2022.102479. URL https://www.sciencedirect.com/science/article/pii/
S51361841522001268.

Hyungjin Chung, Jeongsol Kim, Michael Thompson McCann, Marc Louis Klasky, and Jong Chul Ye.
Diffusion posterior sampling for general noisy inverse problems. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
1d=0OnD9zGAGTOKk.

Christian Clason, Tapio Helin, Remo Kretschmann, and Petteri Piiroinen. Generalized modes in
bayesian inverse problems. SIAM/ASA Journal on Uncertainty Quantification, 7(2):652-684, 2019.
doi: 10.1137/18M1191804. URL https://doi.org/10.1137/18M1191804.

R. Cont. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative

Finance, 1(2):223-236, 2001. doi: 10.1080/713665670. URL https://doi.org/10.1080/
713665670.

10


http://dx.doi.org/10.1021/acs.jcim.4c01107
http://dx.doi.org/10.1021/acs.jcim.4c01107
http://dx.doi.org/10.1021/acs.jcim.4c01107
http://dx.doi.org/10.1007/s10107-018-1241-0
http://www.jstor.org/stable/2353383
https://openreview.net/forum?id=fINjgBMnTS
https://openreview.net/forum?id=fINjgBMnTS
https://openreview.net/forum?id=fINjgBMnTS
http://dx.doi.org/10.1080/00031305.1992.10475878
https://www.sciencedirect.com/science/article/pii/S1361841522001268
https://www.sciencedirect.com/science/article/pii/S1361841522001268
https://www.sciencedirect.com/science/article/pii/S1361841522001268
https://openreview.net/forum?id=OnD9zGAGT0k
https://openreview.net/forum?id=OnD9zGAGT0k
https://openreview.net/forum?id=OnD9zGAGT0k
https://doi.org/10.1137/18M1191804
https://doi.org/10.1080/713665670
https://doi.org/10.1080/713665670
https://doi.org/10.1080/713665670

441
442
443

444
445
446

447
448
449

451
452

454
455

457

458
459
460

461
462
463
464

465
466
467

468
469
470

471
472
473

474
475
476

477
478
479

480
481
482

483
484

486
487
488

Under review as a conference paper at ICLR 2026

Evan Scope Crafts and Umberto Villa. Benchmarking diffusion annealing-based Bayesian inverse
problem solvers. IEEE Open Journal of Signal Processing, 6:975-991, 2025. doi: 10.1109/0OJSP.
2025.3597867.

Giannis Daras, Alexandros G. Dimakis, and Constantinos Daskalakis. Consistent diffusion meets
Tweedie: Training exact ambient diffusion models with noisy data. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Luc Devroye. Random variate generation for the generalized inverse Gaussian distribution.
Statistics and Computing, 24(2):239-246, December 2012. ISSN 1573-1375. doi: 10.1007/
s11222-012-9367-z. URL http://dx.doi.org/10.1007/s11222-012-9367~z.

Julius Erbach, Dominik Narnhofer, Andreas Dombos, Bernt Schiele, Jan Eric Lenssen, and Konrad
Schindler. Solving inverse problems with FLAIR, 2025. URL https://arxiv.org/abs/
2506.02680. arXiv.

Xuefeng Gao, Hoang M. Nguyen, and Lingjiong Zhu. Wasserstein convergence guarantees for a
general class of score-based generative models. Journal of Machine Learning Research, 26(43):
1-54,2025. URL http://Jmlr.org/papers/v26/24-0902.html.

Crispin W Gardiner. Handbook of stochastic methods: For physics, chemistry and the natural sciences.
Springer, Berlin, Germany, 1990.

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin.
Bayesian Data Analysis. Chapman and Hall/CRC, November 2013. ISBN 9780429113079. doi:
10.1201/b16018. URL http://dx.doi.org/10.1201/b16018.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In Proceedings
of the 31st International Conference on Neural Information Processing Systems, NIPS 17, pp.
6629-6640, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Desmond J. Higham. An algorithmic introduction to numerical simulation of stochastic differential
equations. SIAM Review, 43(3):525-546, 2001. doi: 10.1137/S0036144500378302. URL https:
//doi.org/10.1137/50036144500378302.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, NIPS "20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Hongbin Huang, Minghua Chen, and Xiao Qiao. Generative learning for financial time series
with irregular and scale-invariant patterns. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=CdjnzWsQax.

Samuel Hurault, Matthieu Terris, Thomas Moreau, and Gabriel Peyré. From score matching to
diffusion: A fine-grained error analysis in the Gaussian setting, 2025. URL https://arxiv.
org/abs/2503.11615. arXiv.

Achim Klenke. Probability Theory: A Comprehensive Course. Springer International Publishing,
2020. ISBN 9783030564025. doi: 10.1007/978-3-030-56402-5. URL http://dx.doi.org/
10.1007/978-3-030-56402-5.

Muhamed Kuric, Martin Zach, Andreas Habring, Michael Unser, and Thomas Pock. The Gaussian
latent machine: Efficient prior and posterior sampling for inverse problems, 2025. URL https:
//arxiv.org/abs/2505.12836. arXiv.

Hoang Trieu Vy Le, Marion Foare, Audrey Repetti, and Nelly Pustelnik. Embedding Blake—Zisserman
regularization in unfolded proximal neural networks for enhanced edge detection. /EEE Signal
Processing Letters, 32:1271-1275, 2025. doi: 10.1109/LSP.2025.3547671.

Jean-Marie Lemercier, Julius Richter, Simon Welker, Eloi Moliner, Vesa Vilimiki, and Timo Gerk-
mann. Diffusion models for audio restoration: A review. IEEE Signal Processing Magazine, 41(6):
72-84, 2024. doi: 10.1109/MSP.2024.3445871.

11


http://dx.doi.org/10.1007/s11222-012-9367-z
https://arxiv.org/abs/2506.02680
https://arxiv.org/abs/2506.02680
https://arxiv.org/abs/2506.02680
http://jmlr.org/papers/v26/24-0902.html
http://dx.doi.org/10.1201/b16018
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1137/S0036144500378302
https://openreview.net/forum?id=CdjnzWsQax
https://arxiv.org/abs/2503.11615
https://arxiv.org/abs/2503.11615
https://arxiv.org/abs/2503.11615
http://dx.doi.org/10.1007/978-3-030-56402-5
http://dx.doi.org/10.1007/978-3-030-56402-5
http://dx.doi.org/10.1007/978-3-030-56402-5
https://arxiv.org/abs/2505.12836
https://arxiv.org/abs/2505.12836
https://arxiv.org/abs/2505.12836

489

491
492

493
494
495
496

497
498

500
501
502

503
504
505

506
507

508
509
510
511
512

513
514
515

517
518
519
520

521
522
523

524

526
527
528

529
530
531

532
533

534
535
536

537
538

Under review as a conference paper at ICLR 2026

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=3s9IrEsjLyk.

Jiaming Liu, Rushil Anirudh, Jayaraman J. Thiagarajan, Stewart He, K. Aditya Mohan, Ulugbek S.
Kamilov, and Hyojin Kim. DOLCE: A model-based probabilistic diffusion framework for limited-
angle CT reconstruction. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 10464-10474, 2023. doi: 10.1109/ICCV51070.2023.00963.

Ozan Ozdenizci and Robert Legenstein. Restoring vision in adverse weather conditions with patch-
based denoising diffusion models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp- 1-12,2023. doi: 10.1109/TPAMI.2023.3238179.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In
NIPS-W, 2017.

Emile Pierret and Bruno Galerne. Exact evaluation of the accuracy of diffusion models for inverse
problems with Gaussian data distributions, 2025a. URL https://arxiv.org/abs/2507.
07008. arXiv.

Emile Pierret and Bruno Galerne. Diffusion models for Gaussian distributions: Exact solutions and
Wasserstein errors. In Forty-second International Conference on Machine Learning, 2025b.

R. Po, W. Yifan, V. Golyanik, K. Aberman, J. T. Barron, A. Bermano, E. Chan, T. Dekel, A. Holynski,
A. Kanazawa, C.K. Liu, L. Liu, B. Mildenhall, M. NieBner, B. Ommer, C. Theobalt, P. Wonka,
and G. Wetzstein. State of the art on diffusion models for visual computing. Computer Graphics
Forum, 43(2), April 2024. ISSN 1467-8659. doi: 10.1111/cgf.15063. URL http://dx.doi.
0rg/10.1111/cgf.15063.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In International conference
on Machine Learning, pp. 8857-8868. PMLR, 2021.

Mengwei Ren, Mauricio Delbracio, Hossein Talebi, Guido Gerig, and Peyman Milanfar. Mul-
tiscale structure guided diffusion for image deblurring. In 2023 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 10687-10699, Los Alamitos, CA, USA, Octo-
ber 2023. IEEE Computer Society. doi: 10.1109/ICCV51070.2023.00984. URL https:
//doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.00984.

Severi Rissanen, Markus Heinonen, and Arno Solin. Free hunch: Denoiser covariance estimation
for diffusion models without extra costs. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=4JK2XMGUCS8.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10674—10685. IEEE, June 2022. doi: 10.
1109/cvpr52688.2022.01042. URL http://dx.doi.org/10.1109/CVPR52688.2022.
01042.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):4713-4726, 2023. doi: 10.1109/TPAMI.2022.3204461.

Ken-Iti Sato. Lévy processes and infinitely divisible distributions. Cambridge studies in advanced
mathematics. Cambridge University Press, Cambridge, England, November 1999.

Otmar Scherzer, Markus Grasmair, Harald Grossauer, Markus Haltmeier, and Frank Lenzen. Varia-
tional Methods in Imaging. Applied mathematical sciences. Springer, New York, NY, 2009 edition,
October 2008.

Wim Schoutens. Lévy processes in finance. Wiley Series in Probability and Statistics. John Wiley &
Sons, Chichester, England, March 2003.

12


https://openreview.net/forum?id=3s9IrEsjLyk
https://arxiv.org/abs/2507.07008
https://arxiv.org/abs/2507.07008
https://arxiv.org/abs/2507.07008
http://dx.doi.org/10.1111/cgf.15063
http://dx.doi.org/10.1111/cgf.15063
http://dx.doi.org/10.1111/cgf.15063
https://doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.00984
https://doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.00984
https://doi.ieeecomputersociety.org/10.1109/ICCV51070.2023.00984
https://openreview.net/forum?id=4JK2XMGUc8
http://dx.doi.org/10.1109/CVPR52688.2022.01042
http://dx.doi.org/10.1109/CVPR52688.2022.01042
http://dx.doi.org/10.1109/CVPR52688.2022.01042

539
540
541
542
543

544
545

546
547
548

549
550
551
552

553

555
556
557

558
559

560
561
562

563
564
565
566

567
568
569

570
571
572

574
575
576
577
578
579
580
581

582
583
584

585
586

Under review as a conference paper at ICLR 2026

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.),
Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research, pp. 2256-2265, Lille, France, 7 2015. PMLR. URL
https://proceedings.mlr.press/v37/sohl-dicksteinl5.html.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pp. 11895-11907, 2019.

Yang Song, Jasha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Stanislas Strasman, Antonio Ocello, Claire Boyer, Sylvain Le Corff, and Vincent Lemaire. An
analysis of the noise schedule for score-based generative models. Transactions on Machine
Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/forum?
id=BlYIPaOFx1.

A. M. Stuart. Inverse problems: A bayesian perspective. Acta Numerica, 19:451-559, 2010. doi:
10.1017/50962492910000061.

David Y. W. Thong, Charlesquin Kemajou Mbakam, and Marcelo Pereyra. Do Bayesian imaging
methods report trustworthy probabilities?, 2024. URL https://arxiv.org/abs/2405.
08179. arXiv.

Michael Unser and Pouya D. Tafti. An Introduction to Sparse Stochastic Processes. Cambridge
University Press, 2014.

David A van Dyk and Taeyoung Park. Partially collapsed gibbs samplers. Journal of the American
Statistical Association, 103(482):790-796, 2008. doi: 10.1198/016214508000000409. URL
https://doi.org/10.1198/0162145080000004009.

Martin J Wainwright and Eero Simoncelli. Scale mixtures of Gaussians and the statistics of natural
images. In S. Solla, T. Leen, and K. Miiller (eds.), Advances in Neural Information Processing Sys-
tems, volume 12. MIT Press, 1999. URL https://proceedings.neurips.cc/paper_
files/paper/1999/file/6a5dfacdbel502501489fc0f5a24b667-Paper.pdf.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600-612, 2004.
doi: 10.1109/TIP.2003.819861.

Zhuohan Wang and Carmine Ventre. A financial time series denoiser based on diffusion models. In
Proceedings of the 5th ACM International Conference on Al in Finance, ICAIF ’24, pp. 72-80,
New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400710810. doi:
10.1145/3677052.3698649. URL https://doi.org/10.1145/3677052.36986409.

Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E. Eise-
nach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M. Wicky, Nikita
Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham Venkatesh,
Isaac Sappington, Susana Vazquez Torres, Anna Lauko, Valentin De Bortoli, Emile Mathieu,
Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung Baek, and
David Baker. De novo design of protein structure and function with RFdiffusion. Nature, 620
(7976):1089-1100, July 2023. ISSN 1476-4687. doi: 10.1038/s41586-023-06415-8. URL
http://dx.doi.org/10.1038/s41586-023-06415-8.

Xingyu Xu and Yuejie Chi. Provably robust score-based diffusion posterior sampling for plug-
and-play image reconstruction. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=SLnsoaY4ul.

Duoduo Xue, Wenrui Dai, Ziyang Zheng, Xinyu Peng, Junni Zou, and Hongkai Xiong. Fourier phase
retrieval with diffusion priors guided by failure detection. In 2025 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1-5, 2025. doi: 10.1109/ISCAS56072.2025.11042933.

13


https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=BlYIPa0Fx1
https://openreview.net/forum?id=BlYIPa0Fx1
https://openreview.net/forum?id=BlYIPa0Fx1
https://arxiv.org/abs/2405.08179
https://arxiv.org/abs/2405.08179
https://arxiv.org/abs/2405.08179
https://doi.org/10.1198/016214508000000409
https://proceedings.neurips.cc/paper_files/paper/1999/file/6a5dfac4be1502501489fc0f5a24b667-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6a5dfac4be1502501489fc0f5a24b667-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6a5dfac4be1502501489fc0f5a24b667-Paper.pdf
https://doi.org/10.1145/3677052.3698649
http://dx.doi.org/10.1038/s41586-023-06415-8
https://openreview.net/forum?id=SLnsoaY4u1

588
589
590

591
592
593

594

595

596

597

598
599
600
601

602
603

605

606

608

609

610

611
612

Under review as a conference paper at ICLR 2026

Nebiyou Yismaw, Ulugbek S. Kamilov, and M. Salman Asif. Covariance-corrected diffusion models
for solving inverse problems. In 2025 IEEE Statistical Signal Processing Workshop (SSP), pp.
26-30, 2025. doi: 10.1109/SSP64130.2025.11073300.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 586595, 2018. doi: 10.1109/CVPR.2018.00068.

Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc Van
Gool. Denoising diffusion models for plug-and-play image restoration. In IEEE Conference on
Computer Vision and Pattern Recognition Workshops (NTIRE), 2023.

A BAYES ESTIMATORS

A benefit of the Bayesian approach over classical variational methods (see, e.g., (Scherzer et al.,
2008)) is that different point estimates arise from a fixed prior. For a given measurement y, these point
estimates summarize the posterior distribution px |y —, with respect to a given loss £ : R xR - R
via the optimization problem of finding the point X,(y) that minimizes the posterior risk:

%¢(y) = argmin ( £(%X, %) px|y—y(X) dx) . (18)
%€R4 Rd

In this paper, the Bayes estimator with respect to the mean-squared error (MSE) ¢ = 1| — - ||?

plays a key role due to its close relation to the prior score in the reverse diffusion (see section 2) and

because we quantify the performance of DPS algorithms via the MMSE optimality gap in section 4.

With this choice of ¢, (18) can be written as

v () = argmin ([ 1% xI vy (0 dx) = [ sy () = EIX X =]
R R

%€eR
(19)
which is the expectation of the posterior px|y—y-
Another widely-used estimator arises through the choice
(%, x) = —x(x} (%) (20)
where
1 ifxeA
= ’ 21
Xa(x) {0 else, @h
which leads to the MAP estimator that seeks the mode of the posterior:*
Xmap(y) = arg min (/ —X{x} (%) Px|y=y(X) dX) = arg max pxy—y(X). (22)
XxER? R4 %X€R4
Rewriting (22) as
faap(y) = argmin(— 5L | A% — y||? — log px (%)) (23)

XERE

reveals a close relation to classical variational approaches after identifying the regularizer with
—logpx.

*This definition is informal but sufficient for the purposes of this paper. For continuous posteriors, the strict
0-1 loss Bayes’ rule is ill-posed. A common formalization defines MAP as the limit of Bayes estimators under
shrinking small-ball 01 losses; under additional regularity, this limit agrees with the posterior mode (Bassett &
Deride, 2018; Clason et al., 2019). The MAP estimator may also not be unique.
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B TWEEDIE FORMULA

In the setting of section 2, we now derive an equality that relates V log px, to E[X | X; = - |, i.e.,
the MMSE estimate of X given that X, takes on a certain value. Similar derivations can be found
in, e.g., (Song et al., 2021; Chung et al., 2023; Daras et al., 2024), but we include it to underscore
the relevance of the MMSE estimate in this paper and to facilitate the understanding of its relation
to various objects. Under the variance-preserving choice for f(x, ) = —2 (t) x and g(t) = /B(t)

of the drift and diffusion coefficient, the diffusion SDE (4) simplifies to a time-inhomogeneous
Ornstein—Uhlenbeck SDE (see Klenke (2020, Example 26.5))

dX; = — 20X, dt + \/B(t) AW, (24)
whose pathwise solution
t
t
X, = a(t)Xo + / —a(s) VB AW, (25)
0
where X is an appropriate initial condition and «/(t) = exp( fo ) can be computed with
standard techniques, see, e.g., (Gardiner, 1990, Section 4.4.4). In addmon since
t o (t) 2 t t
/ () B(t)ds = / B(s) exp(—/ B(u) du) ds =1—a?(t) (26)
0 \o(s) 0 s
we can write that
X =a(t)Xo+o(t)N (27)

in distribution, where o2(¢) = 1 — o(t). Consequently, the density of X; is given by the convolution
of px, with a Gaussian with variance o2(t) and appropriate scaling by «(t):

P00 = [ | g0.ea(x = a(t)Rpx, (%) dx e8)
where g,, :(x) = (271')’% =]~ 2 exp(—1|x — p||%_.). Finally, after taking the gradient we see that
Vpx, (x / Vgo,ot)21(x — a(t)X)px, (%) dx
— [ (- x = %) g0.0zcn(x ~ (BRI, () dx
= —=m (prt (x) —af(t) /Rd Xgo,o2(n1(x — a(t)X)px, (X) dk)

= _ﬁ(prt (x) — a(t)px, (X)E[Xo | X; = x])

(29)

Vpx, (%)

such that, after dividing by px, (x) and since ERC = Vlogpx,(x), we find the celebrated

Tweedie identity
Vlogpx, (%) = —o(t) " (x — a()E[X, | X; = x]). (30)

B.1 A CONNECTION BETWEEN THE DISCRETIZED REVERSE SDE AND DDPM

To show the connection between the Euler—Maruyama discretization of the reverse-diffusion SDE
and the DDPM backward process, we start by deriving the latter from the respective forward process.
DDPM was been introduced by Sohl-Dickstein et al. (2015) as a discrete-time Markov chain of length
T with Gaussian transitions:

DX, X, 1=x,_, = Gauss(y/1 — Bix;_1, BeI), (3D
such that the transitions from X to X; are also tractable as
X =varXo+ V1 — aZy, (32)

where oy = 1 — By, &y = HZ=0 as and Zy ~ Gauss(0, I). By definition,

X: = /1 - BiXs1+ VBiZi s (33)
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and a straightforward application of Tweedie’s formula (6) gives that

E[X;-1]X¢] = 70 (Xi + (1 - ay) Vg px, (X)), (34)
which leads to the DDPM backward transitions
Xi-1 = \/%ﬁf (Xt + B Viog px, (X+)) + /By (35)

like they appear in (7) in the main text.

Now, we recall the reverse-diffusion SDE, which under our choice of the drift and diffusion coefficient
is given by

X, = (- 22X, - B(1)Viogpx, (X¢)) dt + v/B(1) AW (36)
A first-order step from ¢ to t — 1 (d¢t = —1) of gives the Euler—Maruyama update
X1 = (1+5)Xs + £V logpx, (Xe) + v/ BiZe, (37)

where (3, := () and Z; ~ Gauss(0,I).

The DDPM reverse process (35) can be related to the the Euler—Maruyama discretization of the
reverse SDE (37) via Taylor expansions since

1 B

_ Pt 2
ﬁ—l—i—Q—kO(ﬁt) (38)
and 5
t _ 2
T =+ O (39)
as 5; — 0.

C LEVY PROCESSES AND INCREMENT DISTRIBUTIONS

The prior distributions in our framework are those of signals obtained by regularly spaced samples of
processes with independent, stationary increments (Lévy processes and their discrete-time counter-
parts). We briefly recall the definition; see Unser & Tafti (2014); Sato (1999) for background and the
link to infinitely divisible laws.

Definition C.1 (Lévy process). A stochastic process s = {s(t) : t > 0} is a Lévy process if

1. s(0) = 0 almost surely;

2. (independent increments) forany N € N\ {0,1} and 0 <t} <13 < --- <ty < 00, the
increments (s(t2)—s(t1)), (s(t3)—s(t2)), ..., (s(tn)—s(tn—1)) are mutually independent;

3. (stationary increments) for any given step h, the increment process up, = {s(t) — s(t — h) :
t > h} is stationary;

4. (stochastic continuity) forany ¢ > O and ¢ > 0
lim, Pr(|s(t+h) — s(t)| > ¢) = 0.

We form discrete signals by sampling s at integer times and stacking the values into x =
(s(1),...,s(d)). Let the unit-step increments be uy = s(k) — s(k — 1) for k = 1,...,d. By
independence and stationarity, the law of uy, does not depend on k and we denote it p;;.> We define
the finite-difference matrix

1 0 0 0
-1 1 0 0
: 0
0 0 -1 1

>For our choices, it always has a density w.r.t. a suitable reference measure.
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Table 2: Summary of univariate distributions used throughout this work. Parameters appear in the
order they are specified in this table, e.g. Gauss(u, 02).

Name Distribution Parameter(s) Supp. Notation

Gaussian 2;02 exp(— (1;5)2> peER0?2€eRyy R Gauss

Exponential Aexp(—Az) A€ Ry R>o  Exp

Laplace o exp(—lib‘) be Ry R Laplace
F(VTH) 2\ "2

Student-t —2 (14 %) v eRsg R St
var ()

Gamma %x“‘l exp(—px) a, B € Ry Rsp Gamma

a 2 . .
Gen. inv. Gaussian L ar T exp(~“5%)  a,beRogpe R Ryg  GIG
Bernoulli-Laplace  A6(z) + (1 — A& exp(—Z) X [0,1,beRsy R BL

I denotes the gamma function defined as I'(x) = [~ t*~* exp(—t) dx for any x € Rxq.
K, denotes the modified Bessel function of the second kind with parameter v.

such that the increment vector satisfies

u=Dx. (4D)
Because s(0) = 0, the finite-difference matrix D has an initial condition which makes it invertible
and D~ is a lower-triangular matrix of ones, which also implies that for all k = 1,2, ...,d,
k
Xp =Y Uy, 42)

n=1

which is a convenient way to synthesize signals once u is drawn. The combination of (41) with the
independence of the increments implies that the density of the discrete signal is

d
px(x) = [ [ v (Dx)). (43)
k=1

C.1 EXTENSIONS

The approach in this paper can be extended to two- or higher-dimensional signals on grids, such
as images or videos, and even more specialized structures like signals defined over trees or more
general graphs. The structure of the signal is effectively encoded through the choice of the matrix D.
For instance, a two-dimensional finite-difference matrix would result in a signal vector that can be
interpreted as a two-dimensional image. The main additional (computational) challenge is sampling
during signal generation: Whenever D is not trivially reducible to a one-dimensional operator, the
resulting model (43) will be overcomplete and, in general, no whitening transformation exists to
decouple increments for independent sampling. The extension to higher-dimensional signals and the
complications that arise in that context are rigorously treated in Kuric et al. (2025).

C.2 LATENT DISTRIBUTIONS AND NOTATION

Some of the distributions that we rely on in this work have multiple competing parametrizations.
To avoid ambiguities, we provide precise definitions of the four increment distributions that we
consider in this work—Gaussian, Laplace, Student-t, and Bernoulli-Laplace (spike-and-slab)—and
our notation of these and other distributions that we use in this work in table 2. Table 3 lists the latent
maps and conditional latent distributions that are needed for the GLM for the distributions in this
work.

D GIBBS METHODS AND SAMPLING EFFICIENCY

Gibbs methods are Markov chain Monte Carlo (MCMC) methods to sample from a joint distribution
DX, Z1,Zs,....Z, Of (n+1) variables that are advantageous when the direct sampling is computationally
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Table 3: Latent variable representations and conditional distributions for common distributions.

Dist. ¢; Latent dist. f; Latent maps Cond. latent dist. pz, | x —(kx);
Gauss(1,0?)  3(0) ni(z) = 1, 02(z) = 02 5(0)
Laplace(b) Exp (ﬁ) pi(zi) =0, 02(z) =2 GIG (b%, (Kx)?, %)

2
St(v) Gamma (%, %) pi(2i) =0, 02(z) = z% Gamma (”7“, 7y+(12{x)i)

Algorithm 3 Latent-variable Gibbs sampling of px z,....zx-

Require: Burn-in period B € N, number of samples S € N, initial point (xq, z1, . .. ZN).
1: fors=1,2,...,B+ Sdo

2: Xs ~ DX|Z1=21,....Zn=2N
3: Z1 ~ Pz, |X=x¢,...ZN=2N
4.

return {xp,}5

bl

difficult but sampling from the conditional distributions px |z, z......z,. » PZ1|X,Zs,...,Zn » - - - 1S €aSY.
Gibbs methods cycle through the conditional distributions with repeated draws, which maintains the
joint distribution invariant (Casella & George, 1992). The naming of the variables X, Zy,Zs, ..., Z,
is deliberately chosen to emphasize that we use latent-variable Gibbs methods that rely on auxiliary
variables that are introduced solely to make the conditionals simple. The steps of a general latent
variable Gibbs sampler are shown in algorithm 3, where the iteration counter in the sampling of the
latent variables is omitted since they need not be stored and previous iterations can immediately be
overwritten.

Kuric et al. (2025) recently showed that such methods are significantly faster than other standard
sampling routines that are commonly used in settings similar to the one in this paper. They report
sampling efficiencies of close to 1, while alternatives, such as the Metropolis-adjusted Langevin
algorithm, achieve sampling efficiencies of around 1 x 10~2.° In addition, Gibbs methods require no
step-size or acceptance-rate tuning and introduce no discretization bias. These properties motivate
our use of Gibbs methods for the fast and robust posterior sampling throughout this work.

Like all MCMC methods, in practice Gibbs methods benefit from discarding some number of initial
samples, the burn-in period, when the initial point is located in low-density regions. After the burn-in
period, it is crucial to tune the number of samples such that the Monte Carlo estimates of various
quantities, such as the MMSE estimate in (19), are sufficiently accurate. We discuss our choice of the
burn-in period and the number of samples for the various problems in appendix F.2.

D.1 A GIBBS METHOD FOR BERNOULLI-LAPLACE INCREMENTS

We start by noting that the Bernoulli—Laplace density
pu(u) = Ad(u) + (1 = A)5 exp(—blul) (44)

with Bernoulli parameter A and scale parameter b, where § is the Dirac distribution, admits the

representation
1

pu(u) _/R<ZPU|V—v,W—w(u)pV(U))pW(w) dw, (45)

v=0
where
pv(v) = A1 =) (46)
for v € {0, 1} is a Bernoulli distribution,
b? b*w
pw(w) = 5 exp <2>XRZO(U)) 47)

SSampling efficiency refers to effective samples per iteration; an efficiency of p means roughly 1/p iterations
per “effective sample” (Gelman et al., 2013, Section 11.5).
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is an exponential distribution, and

Pulv=v,w=w(t) = {é(gl)lss(o, w) gz ; (1)7 “48)
The algorithm relies on the introduction of two latent vectors v, w € R? that satisfy
d
PUV=v,W=w(1) = HpUll/:vk,W:wk (ug) (49)
k=1
such that, as a result, the distribution conditioned on the measurements can be written as
d
pU7V,W|Y:y(u7 vV, W) X eXP(—ﬁl;z]HHu - YHQ) H PUV=vy,W=w, (ug)
k=1 (50)

d d
b2 bQWk
l—Vk 1 _ Vi _ _
XEA (1= EQexp( ’ )

where H = AD™!. (48) and (50) imply that any sample from PU|V=v,W=w,Y—y takes the value
zero at those indices where v is zero, and values from a multivariate Gaussian distribution with
covariance C = (oleHT + diag;(w))f1 and mean o, 2CHy otherwise. Sampling W | U =
u,V = v, Y =y amounts to the independent sampling of d one-dimensional distributions, which
are Exp(2/b?) at those indices where v is zero and GIG(b?, u?, 0.5) those indices k where v is one.
The conditional distribution of the binary support vector is

d
PVIW=w,Y=y(V) X ‘B(V,W)|_% exp(—%yTB(v,W)_ly) H ATVE(D = A)VE, (51)
k=1

where B(v, w) = 021 + Hdiag(v ® w)HT.7 The standard way to sample from this distribution is
to use a coordinate-wise Gibbs sampler that updates v, ~ Bernoulli(py) with

pr = (1 +exp(=Ag)) ™" (52)
where the log-odds increment

Aj, = log 152 — L (log [B(vi—1, )| — log |B(vi—o,W)]) (53)
- %(yTB(Vk::h W)_ly - yTB<Vk:O7 W)_l)y)7

where vi—. = (V1,...,Vk_1, *, Vkit1,. .., Vq) is the difference between the log-posterior when the
bit is on and when it is off. The resulting algorithm that is summarized in algorithm 4 can be interpreted
as (d + 2)-variable (i.e., dimension-dependent) Gibbs method® and an efficient implementation is
crucial.

D.2 PRACTICAL GIBBS IMPLEMENTATIONS

Sampling X | Z in the GLM and U | V, WY for the Bernoulli-Laplace case reduces to drawing
from a high-dimensional Gaussian, which is a well-studied problem. For settings that necessitate a
matrix-free implementation such as those that are commonly encountered in imaging applications,
Kuric et al. (2025) advocate a Perturb-and-MAP sampler with preconditioned conjugate gradient
solvers. For our moderate-dimensional problems with d = 64, a standard implementation based on
the Cholesky factorization of the covariance matrix offered significantly faster (approximately one
order of magnitude) sampling. The sampling of the different latent variables necessitates the sampling
of the one-dimensional conditional latent distributions. All the conditional latent distributions that

"This is a different but equivalent formulation to what is presented by Bohra et al. (2023), who explicitly
“slice” the matrices H and diag(w) with the indices where v is one. We stick to this formulation since it requires
less notation and emphasizes that implementations need not build variable-sized matrices, which is crucial for an
efficient implementation on modern compute units that utilize highly parallelized computations.

8This is not strictly correct since the density violates the classical positivity conditions that are needed for
Gibbs methods. It is a partially collapsed Gibbs method, see (Bohra et al., 2023; van Dyk & Park, 2008).
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Algorithm 4 Bernoulli-Laplace Gibbs sampler.

Require: Initial increments uy € R”
1: fors=1,...,B+ Sdo
2 Draw w; ~ pw|v=(u,_1):,V=v; > parallel over 1
3 fork=1,...,ddo
4: |  Draw vy, ~ Bernoulli(pg)
5 Draw us ~ py|v=v,w=w,y=y
6: return {D " 'up 15,

are relevant in this paper admit efficient samplers that are readily available in standard scientific
computing packages or can be implemented with little effort. We reuse the CUDA implementation
of the generalized inverse Gaussian sampler from (Kuric et al., 2025) that implements the method
proposed in (Devroye, 2012) and rely on pytorch (Paszke et al., 2017) for all others. Wherever
possible, latent updates are parallelized.

In the Gibbs methods for the Bernoulli—Laplace increments, the sequential drawing of the binary
support vector V is embedded in the outer Gibbs loop, which, in turn, may be embedded in the
reverse-diffusion loop. This makes it crucial to minimize the use of heavy linear algebra operations
to achieve acceptable runtimes. Writing B(v, w) = ¢2I + Hdiag(v © w)HT, we recognize that
flipping the kth bit of v adds or removes a rank-one term wj Hy, Hg, where Hy, is the kth column of
H. Using the matrix determinant lemma and Woodbury—Sherman—Morrison, we update

log |B(vi=1,w)| = log|B(Vi=o, W)| + log(1 + wj%) (54)

and

1 wi(HI B(vi—o, W) 1y)?

Y B(vie1, W)y = y'B(vioo, W)y — (55)

)

1+ wiTk

where 7, = HIB(vi—o, w) 'Hy. Thus, an efficient implementation factors B(v, w) once per
latent state, obtains the needed scalars via triangular solves, and performs rank-one updates as bits
flip.

E DPS UPDATE STEPS

E.1 COVARIANCE IN C-DPS
C-DPS (Chung et al., 2023) uses the approximation of the likelihood

PY X, =x(¥) = Py |Xo=E[Xo|X,=x] (¥)- (56)

When the noise in the inverse problem is Gaussian, the likelihood score
V (x 5 1og py|x,=E[X,|x,=x] (¥)) necessitates the computation of

V(x = 3 [AEX [ X; =x] - y[*), (57)

which is
J (x> E[Xo | Xy = x]) (1) AT(AE[Xo | X; = -] ~y) (58)
after an application of the chain rule. The Jacobian J (x — E[X, | X; = x]) is typically computed
with automatic differentiation when (x,t) — E[X, | X; = x] is approximated with a neural network.

In our framework, we use the connection with the covariance matrix Cov[Xy | X; = -]. Indeed, as
also shown in, e.g., (Rissanen et al., 2025), if Xy and X verify (32), then

%@COV[XO | X; =x]| = O% (I+(1—ay)*Vilogpx, (x)). (59)
This identity combined with the derivative of (6) yields
e}
J(x—EXg | X, =x])(x) = %COV[XO | X, = x]. (60)
— 0y
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E.2 EXPLICIT UPDATE STEPS

We define the instantiations of the update steps S(x;, {Xs}5_1,y, A, A, t) with parameters X for
C-DPS, DiffPIR, and DPnP that are used in algorithm 2. Each z is a d-dimensional random vector
with i.i.d. standard Gaussian entries.

C-DPS The input parameters X\ are composed of the following. &; is the variance-preserving scaling
weight as in (32), (3, is the variance of the diffusion transitions as in (35), and  parametrizes the
likelihood-guidance strength. The diffusion noise level that corresponds to the denoising posterior is
denoted oy = (1 — &;)/+/@;, which is used to compute the samples {%,}2_;.

Xs

=1 (61)
X:tfl _ \/57517*&5? I)Xt + \/lllt—altﬁf“_‘_atz
Xp—1 =Xy — m 1\/:, CT'AT(Ap—y)

Xt—1 = it—l/\/ Qi1

DiffPIR The input parameters are similar to the ones of C-DPS. &; and o are defined in the same
way as in C-DPS, and ( parametrizes the likelihood-guidance strength. It also uses the noise level of
the inverse problem o, and a balance hyperparamater ~y.

1S
_ gz
4’2‘

io:argmdin(%“AX—YHQ+%HX—QHQ) (62)
x€R

€= \/117707,,()% — \/@tio)
it_l = \/a;_1Xg + \/1 — 5[15_1(\/1 — ’)/é + \/T}/Z)
Xi-1=Xe1/v/ 01

DPnP The diffusion noise level that corresponds to the denoising posterior is denoted 7;, which is
used to compute the sample X,—;. This same 7, defines the likelihood-guidance strength.

Xp =X1
xi—1 ~ exp(—3I1A - =y = 3% - —xoll?)

The DPS template that is summarized in algorithm 2 is illustrated with a one-dimensional toy-example
in fig. 4.

(63)

F NUMERICAL EXPERIMENTS

F.1 FORWARD OPERATORS

We consider four forward operators in our experiments. First, the identity A = I € R*9, This choice
is motivated by the fundamental role that denoising algorithms currently play in many restoration
algorithms and even labeling problems such as edge detection (Le et al., 2025). Second, a convolution
operator A € R?*9 that implements the convolution with a kernel that consists of the 13 central
samples of a truncated Gaussian with variance 2 and is normalized to unit sum. We adopt circular
boundary conditions to enable a fast computation of the proximal map that arises in the update step
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Sampling of denoising posterior Denoising step Likelihood step

——  PXq|Xi=x¢ V log px, ~ Vlogpy|x,=- (¥)

[= - - Gauss(xy, {rf

L o -

l
f qpepe a2 1 = 1 | .

. x .
{Zr}ti=1 ~ PXg|Xp=x¢ *

X+
Step S of a DPS algorithm
Pxg PY|Xq

Figure 4: Illustration of the proposed template for DPS algorithms. The benchmarked posterior
sampler targets Xg ~ px,|y—y Vvia a diffusion process. At each diffusion time ¢, first the samples

{Xk}le ~ PX,o|X;=x, are drawn from the denoising posterior. Then, the step S updates the iterate
typically through a prior-guided update from the samples and a likelihood-guided update from the
data. The likelihood guidance term is intractable and must be approximated, which constitutes the
primary source of sampling error.

of DiffPIR (see appendix E.2) via the fast Fourier transform. Deconvolution is a relevant problem
with applications in, e.g., microscopy and astronomy. Third, a sampling operator A € R™*¢ that
returns m < d entries of its argument unchanged. This operator is also relevant in many fields such
as image reconstruction and time-series forecasting. In particular, a forecasting or prediction problem
can be modeled by returning the first m known entries recovering the remaining (d — m) entries
through the resolution of the inverse problem. In our experiments, each entry has an independent
chance of 40 % being kept. Fourth, an operator A = MF € R™*¢ where F € R2(L4/2]+1)xd j5 the
matrix representation of the “real” one-dimensional discrete Fourier transform with separated real and
imaginary components, and M € R”*2(L4/2]+1) j5 a sampling operator. Such operators are relevant
in, e.g., medical imaging and astronomy. The sampling operator is constructed such that the 5 lowest
frequencies (including the DC term) are acquired, and the remaining frequencies independently have
a 40 % chance of being kept.

For all operators, the noise variance o2 is chosen such that the median measurement signal-to-noise

ratio (SNR) is around 25 dB. We set Nipain = 1 X 108, Nyy = 1 x 103, and Niegy = 1 x 103.

F.2 BENCHMARK IMPLEMENTATION DETAILS

The benchmarking pipeline starts with the generation of Nyeg test signals denoted {x}* ,1;/;1“ per
increment distribution, each of which is independently synthesized by first drawing i.i.d. increments
from the respective increment distribution and forming the signals via (42). It then proceeds to
synthesize the N5 measurements (i.e. we use one noise instance per signal) denoted {yzeSt fcvjft
according to (1) and, for each of the measurements, computes the gold-standard posterior samples
of the various inverse problems via the Gibbs methods described in section 3. This stage is off-line
(no reverse-diffusion loop) and trivially parallel across the measurements, which allows us to run
long chains with burn-in periods of 1 x 10° iterations and obtain 2 x 10° draws from the posterior
distribution. This far exceeds any values reported in (Kuric et al., 2025) or (Bohra et al., 2023) and
results in precise MMSE estimates.

The dataset generation stage also involves the generation of Ny, training signals {xrai

Nyal

kJY;rlain and
Ny, validation signals (mutualljz disjoint from the test signals) {x}gal} 1~y and the corresponding
val

validation measurements {y%al} w— - The training signals are used for the learning of a neural score
function like those that are used for the resolution of inverse problems when the prior is unknown or
too expensive to evaluate. Training details are provided in appendix F.3 The validation signals are used
to monitor the performance of the neural score function on unseen signals during the training stage
and to tune the regularization parameters for the model-based approaches as well as the parameters
of the DPS algorithms, see section 4.1 and section 4.1.

Unlike for the computation of the gold-standard MMSE estimate of the initial inverse problem, the
denoising posteriors are sampled 7" times per trajectory (we use 7' = 1000). To ensure acceptable
runtimes in this setting, we therefore pick the smallest burn-in period and sample count that still yield
accurate estimates of the required statistics. We determine these settings with a rigorous protocol that
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is detailed in appendix F.4. Ultimately, this protocol resulted in the choice of a burn-in period of 100
iterations and a sample count of 300.

F.3 LEARNING DETAILS

For learned-based denoisers, a noise-conditional neural network with UNet architecture (305 761
learnable parameters) is trained in an off-line step on the Ni,,;, training signals in a standard setup
(Adam optimizer with learning rate 1 x 10~* with exponential decay with factor 0.9999, 100 000
parameter updates, batch size 10 000). The noise schedule in C-DPS and DiffPIR is defined by the
two endpoints 3y = 1 x 10~% and S = 2 x 102 with linear equidistant samples in-between. The
learned variant of DPnP is the “DDS-DDPM” variant (Xu & Chi, 2024, Algorithms 1 and 3) that
contains an inner denoising-sampling loop. The oracle variant does not require an inner loop at all
(except for the burn-in period), which makes the oracle variant the faster one for this case.

F.4 A PROTOCOL TO DETERMINE THE BURN-IN PERIOD AND THE NUMBER OF SAMPLES

As discussed in appendix F.2, the burn-in period and the number of samples of the Gibbs samplers
needs to be chosen appropriately to ensure an acceptable runtimes and a sufficiently small Monte
Carlo error when they serve as the gold-standard samplers of the denoising posteriors that are
encountered in the DPS algorithms. We determine the burn-in period and the number of samples
through the following protocol that is run in an off-line stage prior to running the benchmark. We
synthesize x; = x( + o;n where o is in the range defined by the noise schedule 3, xg is constructed
via (42) for all four considered increment distrbutions, and n is some unknown but fixed vector of
standard Gaussian noise. For each of the synthesized signals, we then launch C' = 1000 parallel
Gibbs chains on the corresponding denoising posterior and run those chains for Ngyfhicient iterations,
where Ngufficient 1 @ sufficiently large natural number that guarantees that the chains are stationary
for at least IV, (Which is also relatively large) iterations and that, consequently, we can compute
precise estimates of various statistics of the posterior distribution from the iterates from the last Vo
iterations across all C' chains.

To determine the burn-in period, we then pro- F \ T
ceed to calculate a statistic that we can mon-

] 2 -
itor throughout the iterations and that we can 2 U B
compare against the reference statistic. Specif- 2 a 1
ically, denoting with X the random variable of S wp E
the Gibbs sampler, we compute the empirical E i :
distribution of the increments at index 32, that 2 |0 | a
is, X33 — X39. The distribution of differences 2 F E
that is obtained by taking the last Ny iterations § - 1

across all C chains is considered the reference 107!
distribution. Then, we compute the Wasserstein-

1 distance of that distribution to the one obtained

by taking the average across IV, iterations and

all C in a sliding-window starting from the first Figure 5: Wasserstein-1 distance of intermediate
Gibbs iterations. This allows us to gauge the marginal distributions to that of the final sample.
burn-in period through a visual inspection of the

Wasserstein-1 distance through the Gibbs iterations. In particular, we expect the Wasserstein-1 dis-
tance to be large for a number of initial samples where the Gibbs sampler is not stationary and then to
oscillate around a small but nonzero value. The value will be nonzero due to the finite sample size.
The Wasserstein-1 distance between the reference distribution and the one obtained through the Gibbs
iterations is shown in fig. 5 (for the exemplary case of a St(1) distribution and a selection of noise
variances). We observe that the empirical distribution of increments converges rapidly to the reference
one. The Wasserstein-1 distance reaches the noise level after a single-digit number of iterations,
which is in line with the analysis provided in (Kuric et al., 2025). Based on these findings, we chose
the burn-in period as B = 100 iterations for all our experiments, which is more than sufficient to
reach stationarity and has acceptable runtime.

0 100 200 300

Gibbs iterations

To determine the number of samples that are needed for a sufficiently accurate computation of various
statistics that any DPS algorithm may utilize in their update steps, we compute a precise estimation
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—O— Laplace(1) —0— St(1) —— BL(1,0.1) —O— Laplace(1) —0— St(1) —— BL(1,0.1)
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Figure 6: Left: Mean squared error normalized by the noise variance during the training of the
learned denoiser. Right: Mean squared error between Monte Carlo estimates of the MMSE (with
varying window lengths) and the long-run MMSE, normalized by the noise variance. In both plots,
the dotted line indicates the agreed precision threshold that is reached at around 300 Gibbs iterations.
To avoid clutter, we omit the curves for Gauss(0, 0.25), St(2), and St(3) that are qualitatively and
quantitatively similar to the ones that are shown.

of the MMSE estimate of the denoising posterior by averaging the last N, iterations across all C
chains. Then, we pick one arbitrary chain and grow a window from iteration (Naye — 1) to the left,
average the samples in that window, and compute the MSE from the MMSE estimates obtained in
the one-chain window to the precise estimate obtained by averaging the C' chains and the last N,
iterations. Motivated by the training loss of the neural denoisers, we pick a tolerance of 1 x 1072
and monitor at which window length the MSE falls below that tolerance. The results in fig. 6 show
that this tolerance is consistently reached when the averaging window is 300 samples long, which
motivates our choice of using S = 300 samples for all our experiments.

F.5 ALGORITHM PARAMETER IDENTIFICATION

The adjustable regularization parameter for the method est = ¢, /1 was found by

Nyal
1 .
AT = argmin —— 3 % (v, ) - x|, (64)
AEA val =1
where A is the loglinear grid A = {A1, A2, ..., An,, } where

(b—a)

A = 1090 DR (65)

with @ = —5 and b = 5. Since the model-based methods are very fast, we can use the relatively high
N = 1000.

The adjustable hyperparameters of the DPS methods were found by

Nya1

1 ale
At = argmin 73 GIGse (v A) - i (66)
€Oals va k=1

where the grid ©!# is method-dependent. Note that this tuning is specifically tailored towards the
evaluation with respect to the MMSE optimality gap. Due to resource constraints, the parameters
are tuned for the learned denoiser. We use Ngamples = 10 for the grid search on the validation set.
We define a modest number of Ng,s = 40 grid-points and found the extreme points of the grid
(i.e. values of the parameters that clearly lead to worse results) by hand. For C-DPS and DiffPIR,
we fix the diffusion schedule to standard choices (8p = 1 x 104, 87 = 0.02). In addition to the
diffusion schedule, C-DPS has one tunable parameter v that we tune on 40 loglinear grid points
(izla"'aNdpS) (b )

a+(i—1) g

10 ape T (67)
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where ¢ = —3 and b = 1. DiffPIR has two tunable parameters «y and ¢, although ~ is typically
considered not so critical. Thus, we split the 40 grid points into a two-dimensional grid @PfPIR —

{0.3,0.7} x ©¢, i.e., 2 points for - and 20 points for ¢ given by O¢ = {05, ..., 95\!@5/2} where

@g _ 10a+(i—1)(1\;{$;% (68)

with @ = —4 and b = 1. The DPnP algorithm only has the schedule {n;}7_, to tune. In this case,
since DPnP is asymptotically correct, the schedule is a practical vehicle that enables to trade off
between speed and accuracy. Therefore, we use a schedule that is similar to the one that was proposed
in the original publication (Xu & Chi, 2024): We fix a small ng,, = 0.15, and linearly decrease eta
from some 7initial 10 Naina) after K /5 initial iterations with npigial:

Tinitial ifi=1,...,K/5
W=\ s 255 i (69)
Tinea /7 Minitial ifi=K/5+1,...,K
We treat 7initial @S a tunable parameter and search over QDPPrP — {m1,m2,...,n40} where for
i=1,...,40,
my = 107400 i (70)
with @ = —1 and b = 4. Like in the original publication, we use the comparatively small K = 40.

The MSE over the validation data depending on the value of the adjustable regularization parameter
of the /5 and /; estimators and the adjustable hyperparameters of C-DPS, DiffPIR, and DPnP is
shown in fig. 7. Since the -y parameter of DiffPIR is considered not so critical, we only show the
values of the MSE for various choices of ¢ where 7 is set to the value of the optimal (v, ) pair.

G ADDITIONAL RESULTS

An exhaustive quantitative evaluation of the change in the optimality gap when substituting the
learned denoiser for the oracle denoiser is provided in table 4. The table also reports for which
cases the oracle denoiser reports significantly better results than the learned denoiser according to
a Wilcoxon signed-rank test (p = 0.05, Nyest pairs, two-sided test with the winner determined by
the median of differences). We attribute a better performance of the learned denoiser to the fact that
the algorithms are fine-tuned using the learned component or to the cases where the likelihood score
approximation is compensated by the one of the learned component.

We show uncurated qualitative results of the MMSE estimate obtained by the DPS algorithms and the
gold-standard Gibbs methods in figs. 8 to 15. The figures alternate between the oracle denoiser and
the learned denoiser and show the results for deconvolution, denoising, imputation, and reconstruction
from partial Fourier samples in that order. Each figure contains results for BL(0.1, 1), St(1), St(2),
and Laplace(1).

The coverage results for « = 0.9 are presented in table 5. The Gibbs row again validates the
implementation; for all forward operators, they achieve coverages that are very close to 0.9. In
contrast, the coverage values obtained by the DPS algorithms are generally much smaller than 0.9.
For C-DPS and DiffPIR, the reported coverage values are almost always 0 except for BL(0.1, 1)
and St(1) increments, where the coverages are usually (close to) 1 for C-DPS and inconsistent for
DiffPIR. For almost all increment distributions and forward operators, DPnP reports coverage values
that are closest to but typically smaller than 0.9. Note that a coverage of 1 can be considered the worst
case even at a target of 0.9. For instance, it is achieved by setting all samples to a constant vector with
extremely large (i.e. “unlikely”) entries.
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—0— BL(0.1, 1) —3— Laplace(1) —A— St(2) —0— St(3) —+— St (1) —— Gauss(0, 0.25)
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Deblurring

Fourier

109

10°

102

Figure 7: Grid search diagnostics (logarithm of the MSE over the validation data set) for the model-
based methods and the DPS algorithms. Rows: ¢5; ¢1; C-DPS; DiffPIR; DPnP. Columns: Denoising;
deconvolution; imputation; reconstruction from partial Fourier measurements. For better visualization,
each curve has had its minimum subtracted. To avoid clutter, marks are placed only at every 10th grid

point.
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Table 4: Change in MMSE optimality gap (mean =+ standard deviation) after substituting the learned
denoiser with the oracle denoiser. An asterisk indicates a significant changes according to a Wilcoxon
signed-rank test (p = 0.05). Negative number with asterisk: MMSE estimates obtained with the
oracle denoiser are significantly better. Positive number with asterisk: MMSE estimates obtained

with the learned denoiser are significantly better.

Gauss(0.25) Laplace(1) BL(0.1,1) St(1) St(2) St(3)

C-DPS  0.00+0.11 0.00+0.16  —0.46+ 1.16" 0.00 = 0.01 0.02+0.79° —0.01+0.14

Denoising DiffPIR  0.004+0.13  0.00+0.17 —0.05+0.78° —0.41+0.80" 0.004+020  0.00+0.15
DPnP 0.04+£0.27° —0.01£022 —055+131" —0.774+131" 0.004£024  0.004+0.23

C-DPS  —0.01+£0.24 0.00 +0.26 0.09 +0.97" 6.64+3.21"7 —0.12+£1.11" —0.03+0.43

Deconvolution  DiffPIR  —0.01+0.23  0.00+0.23  0.04+1.12 1356 £9.90° —0.014+047  0.00+0.31
DPnP 0.00+025 —0.01+£027" —0.024+1.20 —498+386" 0.06+077 —0.02+0.34

CDPS  0.004+030 0014035  0.41+1.51° 34144.99° —0.12+1.01" —0.01+0.57

Imputation DiffPIR ~ 0.004+0.29  0.00+033  0.03+1.05 —020+3.05"  0.03+0.71 0.00 = 0.47
DPnP 0.00+£0.35 —0.02+£0.38 —0.02+1.02 —1046+570" 0.02+0.67 —0.01+0.48

C-DPS  —0.02+043 —0.01+£0.49  0.80+1.43" 0.094+5.63° —0.03+0.79"  0.01+0.49

Fourier DiffPIR  —0.014+0.39  0.00+£040  0.124£083°  —0.64+1.70" —0.034+042° —0.02+0.38
DPnP —0.01+£043  0.00+£045 —033+1.13" —13243.18"  0.00+054  0.01+0.46

Table 5: Posterior coverage of various estimation methods at o = 0.9.

Gauss(0,0.25) Laplace(1) BL(0.1,1) St(1) St(2) St(3)

Learned Oracle

Learned Oracle Learned Oracle

Learned Oracle

Learned Oracle Learned Oracle

Gibbs — 0.90 — 0.91 — 0.91 — 0.89 — 0.91 — 0.89
Denoising CTDPS 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
DiffPIR  0.00 0.00 0.00 0.00 1.00 1.00 0.28 0.02 0.00 0.00 0.00 0.00
DPnP 0.58 0.67 0.11 0.11 1.00 0.41 0.53 0.08 0.09 0.09 0.09 0.10
Gibbs — 0.89 — 0.90 — 0.90 — 0.91 — 0.91 — 0.91
Deconvolution CTDPS 0.00 0.00 0.01 0.00 1.00 1.00 1.00 0.83 0.01 0.00 0.00 0.00
DiffPIR ~ 0.00 0.00 0.00 0.00 1.00 1.00 0.97 0.92 0.00 0.00 0.00 0.00
DPnP 0.12 0.12 0.06 0.07 1.00 0.31 0.50 0.06 0.06 0.06 0.07 0.06
Gibbs — 0.89 — 0.90 — 0.86 — 0.91 — 0.91 — 0.91
Imputation CTDPS 0.00 0.00 0.00 0.00 1.00 1.00 0.94 0.78 0.15 0.15 0.00 0.00
DiffPIR  0.00 0.00 0.00 0.00 1.00 1.00 0.72 0.32 0.00 0.00 0.00 0.00
DPnP 0.28 0.31 0.09 0.08 1.00 0.41 0.56 0.07 0.14 0.13 0.12 0.13
Gibbs — 0.91 — 0.90 — 0.90 — 0.91 — 0.92 — 0.91
Fourier CTDPS 0.00 0.00 0.00 0.00 1.00 1.00 0.96 0.74 0.01 0.01 0.00 0.00
DiffPIR  0.00 0.00 0.00 0.00 1.00 1.00 0.92 0.65 0.00 0.01 0.00 0.00
DPnP 0.19 0.19 0.08 0.06 1.00 0.32 0.50 0.06 0.07 0.07 0.07 0.06
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Figure 8: Qualitative results for deconvolution using the oracle denoising sampler. Rows: increment
distributions. For each increment distribution, the MMSE estimates obtained by the different DPS
algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-wise
marginal variances. Columns: Different measurements.
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Figure 9: Qualitative results for deconvolution using the learned denoiser. Rows: increment distribu-
tions. For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 10: Qualitative results for denoising using the oracle MMSE denoiser. Rows: increment
distributions. For each increment distribution, the MMSE estimates obtained by the different DPS
algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-wise
marginal variances. Columns: Different measurements.
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Figure 11: Qualitative results for denoising using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.

31



Under review as a conference paper at ICLR 2026

I
07 —
4 5L
=
= ol |
2 1 7
3 2
as]
—4 |- |
07 —
0
! ! ! ! ! ! ! ! ! ! !
T T T T T T T 2 FT T T I
1 1 2 1.5 (- |
0.5 |- -4 1 L N
0.5 —
0 A I\ 0 ! N 0 i L
T T T T T T T T T T T
200 |- - 400
ol N
200
= o N
=
n
0 500 |- .
—200 - -
200
! ! ! ! ! ! ! ! ! ! !
108 -108 109
4T T T ] T T T 8 1 T T T
3 4 6 - |
1| /W{\Mi ’ A/\NA /\ 2| /\ /\ .
1 — 2 —
o da ANILJ\M o m/\m J\L/\ 2L J\N\. NI
T T T T T T T T T T T
ol N
20 |- 1 o B
—~ —10 |- —
R -5 B
e
0 10 |- -
—10 | —20 |- N
0 bl ! ! [ U | ! ! ! !
1 8 [ T T T
6
14
-] 2 A
0
T T T T
- 10 | N
5 N
0+ N
! ! ! !
) 3 T T ]
2 |l N
4 0 |
0 I
0 20 40

20 40

60

Figure 12: Qualitative results for imputation using the oracle sampler. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 13: Qualitative results for imputation using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms and the
gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal variances.
Columns: Different measurements.
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Figure 14: Qualitative results for reconstruction from partial Fourier measurements using the oracle
denoiser. Rows: increment distributions. For each increment distribution, the MMSE estimates
obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown on top of
the corresponding index-wise marginal variances. Columns: Different measurements.
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Figure 15: Qualitative results for reconstruction from partial Fourier measurements using the learned
denoiser. Rows: increment distributions. For each increment distribution, the MMSE estimates
obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown on top of
the corresponding index-wise marginal variances. Columns: Different measurements.
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Figure 16: Conditional generation for deconvolution of a signal with BL(0.1, 1) increments with
DiffPIR. Top: Prototypical sampling trajectory at times ¢t = 999, 600, 200, 0. Bottom: From left to
right: MMSE estimate obtained by averaging all DiffPIR samples; gold-standard MMSE estimate
obtained by the Gibbs method; the data-generating signal; the data.
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