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ABSTRACT

We propose a statistical benchmark for diffusion posterior sampling (DPS) al-1

gorithms in linear inverse problems. Our test signals are discretized Lévy pro-2

cesses whose posteriors admit efficient Gibbs methods. These Gibbs methods3

provide gold-standard posterior samples for direct, distribution-level comparisons4

with DPS algorithms. They also serve as oracle denoisers in the reverse diffu-5

sion, which enables the isolation of the error that arises from the approximations6

to the likelihood score. We instantiate the benchmark with the minimum-mean-7

squared-error optimality gap and posterior coverage tests and evaluate popular8

algorithms on the inverse problems of denoising, deconvolution, imputation, and re-9

construction from partial Fourier measurements. We release the benchmark code at10

https://github.com/emblem-saying/dps-benchmark. The reposi-11

tory exposes simple plug-in interfaces, reference scripts, and config-driven runs so12

that new algorithms can be added and evaluated with minimal effort. We invite the13

community to contribute and report results.14

1 INTRODUCTION15

Diffusion models are among the leading generative models in imaging (Rombach et al., 2022),16

visual computing (Po et al., 2024), finance and time-series analysis (Huang et al., 2024; Rasul et al.,17

2021), de novo protein and drug design (Watson et al., 2023; Alakhdar et al., 2024), natural language18

processing (Li et al., 2022), and other domains. Their ability to model complex distributions has19

motivated their use as priors in the Bayesian resolution of inverse problems. In fact, reconstruction20

methods that leverage diffusion models are competitive or state-of-the-art in, e.g., deconvolution (Ren21

et al., 2023), phase retrieval (Xue et al., 2025), magnetic resonance imaging and computed tomog-22

raphy reconstruction (Chung & Ye, 2022; Liu et al., 2023), weather-artifact removal (Özdenizci &23

Legenstein, 2023), task-conditioned protein design (Bogensperger et al., 2025), audio bandwidth24

extension and dereverberation (Lemercier et al., 2024), and denoising of financial time-series (Wang25

& Ventre, 2024).26

This empirical success has come despite diffusion models lacking a natural mechanism for condition-27

ing on measurements and active research explores how to incorporate the likelihood (Yismaw et al.,28

2025; Erbach et al., 2025). Currently, conditioning strategies are evaluated in one of two ways. (i) With29

respect to downstream applications: As an example, evaluations with respect to perceptual metrics30

such as the structural similarity (Wang et al., 2004), the Fréchet inception distance (Heusel et al.,31

2017), or the learned perceptual image patch similarity (Zhang et al., 2018) are common in the imag-32

ing sciences. However, as pointed out by Pierret & Galerne (2025b), these metrics are ill-suited for the33

statistical evaluation of posterior-sampling algorithms. (ii) In overly simplistic settings: A common34

fallback is to evaluate conditioning strategies in synthetic settings with (finite-component) Gaussian35

mixture priors. Such mixtures remain light-tailed with the tail decreasing exponentially like the widest36

component and, consequently, they cannot reproduce power-law-like extremes that are common in,37

e.g., asset returns (Blattberg & Gonedes, 1974; Cont, 2001) and statistics of images (Wainwright38

& Simoncelli, 1999). Benchmarks built on such priors can therefore overstate posterior quality. A39

proper statistical evaluation in realistic settings is critical in high-stakes applications such as medical40

imaging, remote sensing, and finance, where decisions based on reconstructions and their associated41

uncertainties may have significant consequences.42
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1.1 CONTRIBUTIONS43

We propose such a statistical benchmark for diffusion posterior sampling (DPS) algorithms for linear44

inverse problems. We consider a setting similar to Bohra et al. (2023) in which test signals are obtained45

from discretized sparse Lévy-process priors that admit efficient posterior-sampling algorithms. Indeed,46

they admit efficient Gibbs methods with exact conditionals that provide gold-standard posterior47

samples. The framework supports general posterior-level comparisons—e.g., (sliced) Wasserstein or48

energy distances or calibration via coverage and posterior predictive checks—by furnishing matched49

samples obtained from the DPS algorithms and the gold-standard Gibbs methods.50

We introduce a new template for DPS algorithms, where each update step utilizes samples from the51

denoising posterior—as opposed to only the minimum-mean-squared error (MMSE) point estimate—52

and we show how several popular DPS algorithms can be re-expressed within this template. This53

template arises naturally in our framework because the Gibbs methods can provide these denoising-54

posterior samples. This construction enables the isolation of the error that is attributable to the55

likelihood-score approximation by replacing the learned denoiser with an oracle MMSE denoiser56

computed from Gibbs samples at each reverse-diffusion step. Finally, we instantiate the framework57

with the MMSE optimality gap and highest posterior density coverage checks across the inverse prob-58

lems of denoising, deconvolution, imputation, and reconstruction from partial Fourier measurements.59

The benchmark code is available in an online repository that contains efficient implementations of60

sampling routines and a containerized runtime that allows novel algorithms to be benchmarked easily.61

1.2 RELATED WORK62

For unconditional sampling, many works derive theoretical bounds on various distances between63

a target distribution and the distribution obtained by (approximations of) the reverse stochastic64

differential equation (SDE) (see section 2). For example, Gao et al. (2025) bound the Wasserstein-265

distance with respect to the discretization error of the SDE under the assumption that the target66

distribution is smooth and log-concave. This directly bounds the number of reverse-diffusion steps67

that are needed to obtain a desired accuracy. Under absolute continuity of the target with respect to a68

Gaussian, Strasman et al. (2025) bound the Kullback–Leibler divergence with respect to properties of69

the noise schedule. Additional results in other distances can be found in the references cited therein.70

A common assumption that simplifies the analysis is that of a Gaussian target. In that case, many71

objects in the forward and reverse SDE admit closed forms, which facilitates the computation of72

various bounds. For example, Hurault et al. (2025) analyze the error due to the finite number of prior73

samples used in the estimation of the prior score (which is affine in this case) and track its propagation74

through the iterations of the reverse-SDE solver. Pierret & Galerne (2025b) derive explicit solutions75

to the SDE and use those to derive bounds on the Wasserstein-2 distance to the distributions that are76

obtained via Euler–Maruyama discretizations.77

Works that consider conditional generation and are closest to the present paper are Pierret & Galerne78

(2025a) and Crafts & Villa (2025). Pierret & Galerne (2025a) derive expressions for the Wasserstein-79

2 distances between the conditional forward marginals and the distributions induced by specific80

likelihood approximations in the reverse SDE under the assumption of a Gaussian prior. In contrast,81

our framework handles a broader set of priors (discretized Lévy processes) and accommodates a82

broader set of algorithms than those that rely on specific likelihood approximations. Moreover,83

deriving explicit expressions for new algorithms often requires a substantial amount of nontrivial84

mathematics. In contrast, our benchmark is deliberately designed for a plug-and-play evaluation of85

novel algorithms. Crafts & Villa (2025) evaluate DPS algorithms under the assumption of a (finite-86

component) Gaussian mixture prior numerically. Similar to the present work, they provide reference87

objects to the DPS algorithms to ensure a fair evaluation. However, they only consider Gaussian88

mixture priors, which cannot reproduce power-law-like extremes and can overstate posterior quality.89

Beyond diffusion-specific theory, Thong et al. (2024) evaluate posterior calibration by checking90

the coverage of credible regions produced by different Bayesian recovery strategies. They find91

that recovery strategies that utilize diffusion models often under-report uncertainty. A shortcoming92

of their approach is that they use an empirical distribution of images as a surrogate for the prior93

distribution. Our framework, by contrast, relies on known priors from which infinitely many signals94

and corresponding measurements can be generated. It isolates algorithmic errors without resorting to95

surrogate priors and supports fair, repeatable comparisons across tasks and algorithms.96
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2 BACKGROUND97

Bayesian Linear Inverse Problems We seek to estimate a signal x ∈ Rd from the measurements98

y = Ax+ n, (1)
where the forward operator A ∈ Rm×d models the noiseless linear measurement acquisition and99

n ∈ Rm is additive noise. In the Bayesian resolution of this problem (see, e.g., Stuart (2010)), the100

signals are modeled as a random variable, denoted X, with values in Rd and distribution pX, referred101

to as the prior. Given any measurement y, the ultimate goal is to analyze the posterior pX|Y=y which102

is related to the likelihood pY|X=x and the prior pX via Bayes’ rule, which states that103

pX|Y=y(x) ∝ pY|X=x(y)pX(x). (2)
In contrast to classical variational methods (see, e.g., Scherzer et al. (2008)), the posterior distribution104

provides natural means to quantify uncertainty and can be summarized by various point estimators.105

We provide a precise description of point estimators that are relevant in this work in appendix A.106

For a given signal x, the likelihood pY|X=x is determined by the distribution of the noise. A common107

assumption on the noise is that it is a vector of independent and identically distributed (i.i.d.) Gaussian108

random variables with mean zero and variance σ2
n.1 In this case, the likelihood is given by109

pY|X=x(y) ∝ exp
(
− 1

2σ2
n
∥Ax− y∥2

)
. (3)

Thus, once the forward model and the noise distribution are specified, the remaining modeling choice110

is the prior. Diffusion models are good candidates due to their ability to encode complex distributions.111

Diffusion Models Diffusion models were introduced by Song et al. (2021) by unifying the discrete112

approaches from Song & Ermon (2019) and Ho et al. (2020) in a continuous theory based on113

SDEs (Klenke, 2020, Chapters 25 and 26). We denote the (diffusion) SDE with drift coefficient114

f : Rd × R≥0 → Rd and diffusion coefficient g : R≥0 → R as115

dXt = f(Xt, t) dt+ g(t) dWt (4)
with some suitable initial condition X0, where Wt is the standard Wiener process. In our setup,116

the initial condition is the random variable that describes the signal, thus X0 = X. Under suitable117

choices for f and g, the forward process admits a limiting marginal X∞ as t → ∞. Sampling from118

pX0
can then proceed by simulating the SDE (4) in reverse with initial condition X∞. By Anderson’s119

theorem (Anderson, 1982), the reverse SDE that reproduces the forward marginals satisfies120

dXt =
(
f(Xt, t)− g2(t)∇ log pXt

(Xt)
)
dt+ g(t) dWt, (5)

where pXt
denotes the density of Xt defined by the forward process, and dt is negative.121

The primary challenge in this approach lies in the computation of the scores ∇ log pXt
for all t > 0.122

A fundamental relation known as Tweedie’s formula connects the score with the MMSE denoiser: As123

we derive rigorously in appendix B, for f(x, t) = −β(t)
2 x and g(t) =

√
β(t),2 we have that124

∇ log pXt(x) = −σ(t)−2
(
x− α(t)E[X0 | Xt = x]

)
, (6)

where α(t) = exp(− 1
2

∫ t

0
β(s)ds) and σ2(t) = 1− α2(t). This yields a practical way of computing125

∇ log pXt
(x) through the resolution of the MMSE denoising problem of finding E[X0 | Xt = x].126

In standard applications where the goal is the generation of new signals, this is typically tackled by127

approximating the map (x, t) 7→ E[X0 | Xt = x] with a neural network that is learned in an off-line128

step. In our benchmark, we can instead obtain oracle MMSE denoisers via Gibbs methods and thereby129

eliminate approximation errors from a learned surrogate to isolate errors in DPS algorithms.130

Implementing the reverse SDE for generation requires its time discretization, for instance with Euler–131

Maruyama techniques (Higham, 2001). In practice, researchers typically use the alternative denoising132

diffusion probabilistic model (DDPM) backward process (starting from Gauss(0, I))133

Xt−1 = 1√
1−βt

(Xt + βt∇ log pXt(Xt)) +
√

βtZt, (7)

that originates from the discrete-time Markov chain that was initially proposed by Sohl-Dickstein134

et al. (2015) and revisited and popularized by Ho et al. (2020). We relate it to the Euler–Maruyama135

discretization of the reverse SDE through Taylor expansions in appendix B.1.136

1Our framework supports more general (possibly non-Gaussian) likelihoods, see section 3.
2The variance-preserving (VP) formulation (Song et al., 2021, Section 3.4) with standard normal limiting

marginal, where β : R≥0 → R≥0 controls the speed of the contraction to zero and how much noise is injected.
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Figure 1: Unconditional reverse-diffusion trajectories obtained by DDPM using the oracle denoiser.
Rows: Increment distributions. Columns: Diffusion times. Line styles: Different random states.
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Figure 2: Histogram of increments of signals ob-
tained by DDPM with the oracle and learned de-
noiser.

We show trajectories of signals generated by this137

backward process using the oracle MMSE de-138

noiser in fig. 1 and motivate the oracle denoiser139

by showing the histograms of increments ob-140

tained by the learned denoiser versus the oracle141

denoiser for a St(1) increment target in fig. 2.142

The construction of the signals and the oracle143

denoiser are described in section 3 and our no-144

tations of various distributions are summarized145

in appendix C.2. The signals generated by using146

the oracle denoiser follow the increment distri-147

bution almost perfectly. Residual errors are due148

to the discretization error of the reverse diffusion149

and Monte Carlo error of the oracle.150

Diffusion Posterior Sampling The reverse-diffusion sampler from the previous section can be151

adapted to sample from a posterior by replacing the prior score ∇ log pXt
with the posterior score152

∇ log pXt|Y=y = ∇ log pXt
+∇

(
x 7→ log pY|Xt=x(y)

)
(8)

for some given measurement y, obtained by Bayes’ theorem. Although the dependence between Y153

andX0 is known through (1) and the likelihood is explicitly modeled via (3), it is generally challenging154

to relate Y and Xt for any t > 0. To overcome this, the conditioning on the measurements is usually155

done in one of two ways. (i) A learned component models the conditional posterior score and also156

gets the measurements as input. This strategy is pursued by, e.g., Liu et al. (2023); Özdenizci &157

Legenstein (2023); Bogensperger et al. (2025); Saharia et al. (2023), and is advantageous when the158

measurement process is unknown, difficult to model, or prohibitively expensive to evaluate. However,159

reconstructions obtained by this strategy typically degrade under shifts in measurement conditions,160

since the learned components cannot adapt to the new measurement conditions. (ii) The Bayesian161

separation that is described in (8) is pursued and the likelihood score is approximated. This is done162

by, e.g., Chung & Ye (2022); Xue et al. (2025) and the methods reviewed by Lemercier et al. (2024),163

and is advantageous when the measurement process is known, relatively inexpensive to evaluate,164

and subject to change, but prior knowledge should be reused, which is frequently the case in, e.g.,165

imaging or remote sensing applications. However, this requires approximations to the likelihood166

score ∇(x 7→ log pY|Xt=x(y)) for all t > 0.167

Our benchmark can evaluate either strategy (and any other method that claims to sample from a168

posterior distribution). The first approach, however, relies on black-box learning of the conditional169

posterior score and its performance heavily depends on various implementation details. Thus, we170

primarily focus on the second approach that necessitates approximations of the likelihood score (and171

more general DPS algorithms with explicit conditioning, see our proposed generalization in section 3).172

Our framework can supply reference objects—posterior samples and oracle denoisers via Gibbs173

methods—to isolate and quantify the impact of these approximations.174
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3 PROPOSED FRAMEWORK175

The prior distributions in our framework will be that of signals of length d obtained by regularly176

spaced samples of processes with independent, stationary increments (Lévy processes, described177

in appendix C). Let s be such a process and let the unit-step increments be uk = s(k) − s(k − 1)178

for k = 1, . . . , d. Independence and stationarity imply that the distribution of uk, the increment179

distribution pU , does not depend on k. The increment vector is related to the signal x via u = Dx,180

where D is a finite-difference matrix with an initial condition that allows us to write x = D−1u181

where D−1 is a lower-triangular matrix of ones. This gives a convenient way to synthesize signals182

once u is drawn. The independence of the increments implies that the density of the discrete signal is183

pX(x) =

d∏
k=1

pU
(
(Dx)k

)
. (9)

We consider four increment distributions that are commonly used in sparse-process models: Gaussian,184

Laplace, Student-t, and Bernoulli–Laplace (spike-and-slab). Such increment distributions are sparse or185

heavy-tailed according to the taxonomy in (Unser & Tafti, 2014) and are relevant in signal and image186

processing, finance, and other fields (Schoutens, 2003). A precise definition of Lévy processes, the187

matrix D, the increment distributions and their notation along with a discussion about extensions to188

higher-dimensional signals or signals with more complicated graph structure are given in appendix C.189

Efficient Posterior Sampling With the prior distribution specified in (9) and the assumption of190

Gaussian noise, the posterior associated to the inverse problem (1) is191

pX|Y=y(x) ∝ exp
(
− 1

2σ2
n
∥Ax− y∥2

)
pX(x) = exp

(
− 1

2σ2
n
∥Ax− y∥2

) d∏
k=1

pU
(
(Dx)k

)
. (10)

Unless pU is a Gaussian (the simplified setting in Pierret & Galerne (2025b)), this posterior is not192

conjugate, so neither closed-form sampling nor direct evaluation of moments is available. Nevertheless,193

for the increment distributions used in this paper, the posterior distributions admit efficient Gibbs194

methods via standard latent-variable augmentations. Motivation and more details about the Gibbs195

methods, such as the burn-in period B and the number of samples S, are provided in appendix D.196

Algorithm 1 GLM Gibbs method.

Require: x0 ∈ Rd, K ∈ Rn×d, conditional latent dis-
tributions {pZi|X}ni=1 and maps {µi, σ

2
i }ni=1

1: for s = 1, . . . , B + S do
2: Draw zi ∼ pZi|X=(Kxs−1)i ▷ parallel over i
3: Draw xs ∼ Gauss(µ(z),Σ(z))
4: return {xB+s}Ss=1

The Gaussian, Laplace, and Student-t dis-197

tributions admit latent representations198

as infinite-component Gaussian mixtures,199

which makes them suitable for the Gaus-200

sian latent machine (GLM) framework that201

was recently introduced by Kuric et al.202

(2025). The GLM framework is generally203

applicable to distributions of the form204

p(x) ∝
n∏

k=1

ϕk

(
(Kx)k

)
(11)

where K ∈ Rn×d and all distributions ϕ1, ϕ2, . . . , ϕn : R → R have a latent representation205

ϕk(t) =

∫
R
gµk(z),σ2

k(z)
(t)fk(z) dz, (12)

where the latent distribution fi and the latent maps µi, σ
2
i : R → R depend on the distribution ϕi,206

and gµ,σ2 is the density of a one-dimensional Gaussian distribution with mean µ and variance σ2.207

The posterior distribution in (10) can be cast into this framework by rewriting it as208

pX|Y=y(x) ∝
m∏

k=1

gyk,σ2
n

(
(Ax)k

) d∏
k=1

pU
(
(Dx)k

)
=

m+d∏
k=1

ϕk

(
(Kx)k

)
(13)

by setting K = [A;D], ϕk = gyk,σ2
n

for k = 1, . . . ,m, and ϕk = pU for k = m+1, . . . ,m+ d. We209

summarize the GLM sampling in algorithm 1. Importantly, non-Gaussian likelihoods can be handled210

by adapting the first m distributions appropriately.211
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The introduction of an appropriate n-dimensional random variable Z with non-trivial distribution212

(see the details in Kuric et al. (2025)) enables the efficient sampling from the conditionals: Sampling213

X | Z = z amounts to sampling a Gaussian with covariance and mean214

Σ(z) = (KTΣ0(z)
−1K)−1 and µ(z) = Σ(z)KTΣ0(z)

−1µ0(z), (14)

respectively, where Σ0(z) = diag
(
σ2
1(z1), . . . , σ

2
n(zn)

)
and µ0(z) =

(
µ1(z1), . . . , µn(zn)

)
. Sam-215

pling Z | X = x amounts to sampling n independent one-dimensional conditional latent distributions216

pZ1|X=(Kx)1 , . . . , pZn|X=(Kx)n that depend on the distributions ϕ1, . . . , ϕn and are given in table 3217

in the appendix along with the corresponding latent distributions and latent maps.218

For the Bernoulli–Laplace distribution, we adapt the algorithm proposed by Bohra et al. (2023) that219

introduces two d-dimensional latent variables: A Bernoulli indicator (“on”/“off”) and a Laplace-220

distributed increment height. For a self-contained exposition, we rigorously derive the resulting Gibbs221

method in appendix D.1.222

The Gibbs methods that we just described are suitable for the generation of the gold-standard samples223

from the posterior that corresponds to the initial inverse problem (1) as well as the generation of224

samples from the denoising posteriors in the DPS algorithms. In the latter case, the forward operator225

A is the identity, the measurements are the noisy intermediate reconstructions xt, and the noise226

variance σ2
n = σ2

t follows the schedule at timestep t. When these Gibbs methods are embedded227

within the reverse-diffusion loop, an efficient implementation is paramount to achieve acceptable228

runtimes. This is especially true for Bernoulli–Laplace increments, where the sequential drawing of229

the binary support vector occurs inside the outer Gibbs loop, which in turn may be nested within230

the reverse-diffusion loop. Accordingly, we deliberately tailored our implementation—which we231

regard as a substantial contribution—to modern, highly parallel compute units and optimized several232

components, including custom CUDA- and Triton-compiled sampling routines and incremental233

updates based on the Woodbury–Sherman–Morrison identities (see appendix D.2).234

A Generalized DPS Template Widely used methods such as diffusion plug-and-play (DPnP) (Xu235

& Chi, 2024), fall outside the pattern described in section 2—approximating the likelihood score236

inside the reverse diffusion. We therefore introduce a simple template that is natural in our setting237

and accommodates a broader set of DPS algorithms.238

Algorithm 2 Template for DPS algorithms.

Require: Initial point xT , y, A, λ
1: for t = T, . . . , 1 do ▷ Diffusion process
2: Sample {x̄s}Ss=1 ∼ pX0|Xt=xt

3: Update xt−1 = S(xt, {x̄s}Ss=1,y,A,λ, t)
4: return x̂alg = x0 ▷ Posterior sample

We characterize DPS algorithms as an iteration239

rule that can be summarized into a two-stage240

process: Given an iterate xt with associated241

noise variance σ2
t , the computation of the next242

iterate xt−1 is done by (i) drawing S samples243

denoted {x̄s}Ss=1 from the denoising posterior244

pX0|Xt=xt
∝ exp

(
− 1

2σ2
t
∥ · − xt∥2

)
pX0

( · ),245

and (ii) computing the next iterate xt−1 through246

an update step S that may utilize the current iterate xt, the samples {x̄s}Ss=1, the measurements247

y, the forward operator A, and possibly other algorithm-internal parameters such as a scalar that248

weights likelihood and prior terms or parameters that define the noise schedule. This template is249

summarized in algorithm 2 and specialized instances for the step S that correspond to the three250

popular algorithms Chung diffusion posterior sampling (C-DPS) (Chung et al., 2023), diffusion251

models for plug-and-play image restoration (DiffPIR) (Zhu et al., 2023), and DPnP (Xu & Chi,252

2024) are given in appendix E.2. We have absorbed the (variance-preserving) scaling into the step253

S since this template is not fundamentally limited to diffusion processes but supports any (also not254

monotonically decreasing) noise schedules. In addition, noise variances {σt}Tt=1 are usually derived255

from the algorithm-internal parameters λ that may include a noise schedule.256

Through this construction, DPS algorithms can use any statistic R of the samples {x̄s}Ss=1 in257

their update steps. Most methods use the mean R(x̄1, . . . , x̄S) = 1
S

∑S
s=1 x̄s := µ̄, which is258

the Monte Carlo estimate of E[X0 | Xt = xt]. An example of a DPS algorithm that utilizes259

additional statistics is C-DPS, which requires the Jacobian of xt 7→ E[X0 | Xt = xt]. As we260

show in appendix E.1, this Jacobian equals (up to the known VP scaling) the conditional covari-261

ance of X0 | Xt = xt, an unbiased estimator of which can be obtained through the statistic262

R(x̄1, . . . , x̄S) =
1

S−1

∑S
s=1(x̄s − µ̄)(x̄s − µ̄)T . An example of a DPS algorithm that utilizes an al-263
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ternative statistic is the DPnP algorithm that alternately samples from pX0|Xt=xt
and a data-proximal264

problem. There, R(x̄1, . . . , x̄S) = x̄1 is used to obtain one sample from pX0|Xt=xt
.265

4 NUMERICAL EXPERIMENTS266

We consider four inverse problems that are frequently encountered in various estimation tasks267

throughout the natural sciences: denoising, deconvolution, imputation, and reconstruction from268

partial Fourier measurements. Details about the operators are provided in appendix F.1 and precise269

descriptions of the benchmarking pipeline (e.g., the number of training, validation, and test signals,270

and the number of iterations in the Gibbs methods) in appendix F.2.271

4.1 RECONSTRUCTION ALGORITHMS272

The model-based methods and the DPS algorithms require the tuning of some hyperparameters.273

These were found by grid search on validation data independently for each algorithm, increment274

distribution, and forward operator. The precise setup for this grid search is given in appendix F.5.275

Importantly, the hyperparameters for the DPS algorithms were tuned to the learned denoiser due to276

resource constraints and we view full oracle-tuning as a community task. Parameters obtained with277

this procedure are later denoted with a star in the superscript.278

Model-Based Methods As baseline reconstruction algorithms we consider the model-based meth-279

ods280

x̂ℓ2(y, λ) = argmin
x∈Rd

(
1
2∥Ax− y∥2 + λ∥Dx∥2

)
, (15)

and281

x̂ℓ1(y, λ) = argmin
x∈Rd

(
1
2∥Ax− y∥2 + λ∥Dx∥1

)
, (16)

which coincide with the maximum-a-posteriori (MAP) estimators of Lévy processes associated with282

Gaussian and Laplace increment distributions, respectively.283

Diffusion Posterior Sampling Algorithms We consider three DPS algorithms that are popular284

in the literature. First, the C-DPS algorithm due to Chung et al. (2023), which was one of the first285

algorithms that was proposed for the resolution of general noisy inverse problems with diffusion286

priors. Second, the DiffPIR algorithm due to Zhu et al. (2023) that can be regarded as an extension of287

the C-DPS algorithm and typically reports superior results in standard perception-based evaluations.288

Third, the DPnP algorithm due to Xu & Chi (2024) that alternates between sampling the denoising289

subproblem and a data-proximal subproblem. We include the DPnP algorithm to showcase the broad290

applicability of our framework to nonstandard setups that utilize various statistics of the denoising291

posterior.292

For each DPS algorithm, we benchmark two variants: One where the denoising posterior is sampled293

with the gold-standard Gibbs methods (“oracle” denoiser) and statistics are computed from those294

samples, and one where the sampling (or the direct estimation of any point estimate) is done with295

learned components. For the former, we ensured that the Monte Carlo error (in the estimation of296

the denoising-posterior expectation) is significantly below the error of the learned denoisers with a297

rigorous protocol that is described in appendix F.4. For the latter, learning details are provided in298

section appendix F.3.299

Gold-Standard Gibbs Methods The Gibbs methods are used to obtain gold-standard samples from300

the posterior. As described in section 3, the Gibbs methods are parameter- and bias-free and efficient301

and, consequently, well-suited for this purpose. Chain lengths, diagnostics, and implementation details302

are given in appendix F.2; we reuse the same settings across operators and increment families.303

4.2 RESULTS304

Before advancing, we introduce some notation. For any given measurement y, any DPS algorithm305

alg that depends on any parameters λ produces samples denoted {x̂alg
k (y,λ)}Nsamples

k=1 . We denote306
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Table 1: MMSE optimality gap in decibel (mean ± standard deviation; lower is better; 0 is a perfect
reconstruction) of various estimation methods over the test set. Bold: best among DPS algorithms.

Gauss(0, 0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Denoising

C-DPS 0.12 ± 0.18 0.12± 0.20 2.22± 2.26 3.26± 1.01 0.28± 0.30 0.10± 0.18
DiffPIR 0.16± 0.21 0.09 ± 0.16 0.72 ± 1.10 0.93 ± 1.06 0.07 ± 0.14 0.15± 0.21
DPnP 0.24± 0.25 0.11± 0.17 1.33± 2.12 1.19± 1.38 0.10± 0.17 0.10 ± 0.17
ℓ1 0.15± 0.21 0.06± 0.12 3.44± 2.38 0.38± 0.43 0.14± 0.19 0.11± 0.18
ℓ2 0.00± 0.01 0.16± 0.21 8.61± 3.10 3.25± 0.99 0.74± 0.83 0.25± 0.33

Deconvolution

C-DPS 0.12± 0.20 0.12± 0.23 4.30± 3.87 18.30± 5.28 0.46± 1.40 0.17± 0.53
DiffPIR 0.07 ± 0.17 0.07 ± 0.19 1.09 ± 2.22 10.45± 6.10 0.09 ± 0.57 0.08 ± 0.26
DPnP 0.10± 0.18 0.13± 0.22 1.71± 2.49 7.84 ± 5.66 0.35± 1.39 0.14± 0.41
ℓ1 1.65± 0.84 1.38± 0.86 1.86± 3.14 1.87± 4.01 1.10± 1.19 1.28± 0.94
ℓ2 0.00± 0.01 0.07± 0.23 6.11± 4.49 21.50± 4.46 1.44± 2.85 0.36± 1.09

Imputation

C-DPS 0.15± 0.29 0.18± 0.39 2.99± 2.82 23.33± 8.69 0.50± 1.09 0.14± 0.57
DiffPIR 0.09 ± 0.23 0.08 ± 0.24 0.24 ± 1.14 0.88 ± 3.50 0.11 ± 0.62 0.08 ± 0.42
DPnP 0.14± 0.32 0.17± 0.36 0.50± 1.28 10.89± 5.92 0.25± 0.82 0.27± 0.58
ℓ1 1.74± 1.12 1.77± 1.35 1.25± 2.78 13.32± 5.32 1.37± 2.56 1.55± 1.58
ℓ2 0.00± 0.01 0.01± 0.05 1.10± 1.88 0.42± 0.95 0.06± 0.34 0.02± 0.28

Fourier

C-DPS 0.15± 0.36 0.26± 0.65 5.90± 4.41 4.29± 5.78 0.53± 0.83 0.35± 0.77
DiffPIR 0.11 ± 0.29 0.08 ± 0.31 0.83 ± 1.44 3.19± 4.37 0.11 ± 0.39 0.12 ± 0.37
DPnP 0.11± 0.35 0.20± 0.51 1.88± 2.47 2.45 ± 4.83 0.39± 0.89 0.24± 0.64
ℓ1 1.50± 1.59 0.73± 0.94 3.57± 2.82 1.07± 2.98 0.71± 0.99 0.78± 0.97
ℓ2 0.00± 0.02 0.36± 0.73 12.22± 4.53 9.47± 8.34 2.66± 3.57 1.03± 1.79

x̂alg
MMSE(y,λ) :=

1
Nsamples

∑Nsamples

k=1 x̂alg
k (y,λ). For an estimation method x̂est( · ) and data y with307

corresponding data-generating signal x we measure the MMSE optimality gap (in decibel) defined by308

10 log10

(
∥x̂est(y)− x∥2

∥x̂Gibbs
MMSE(y)− x∥2

)
, (17)

where x̂est(y) = x̂ℓ1/2(y, λ⋆) for model-based methods and x̂alg
MMSE(y,λ

⋆) for DPS algorithms. A309

gap of 0 indicates a perfect recovery of the gold-standard MMSE estimate and the positive nonzero310

values show the orders of magnitude of the error relative to the reference error. We found that311

Nsamples = 50 provided a good tradeoff between runtime and accuracy by benchmarking the gold-312

standard Gibbs method with that number of samples.313

We report the mean and standard deviation of the MMSE optimality gap over all signal-measurement314

pairs (x,y) in the test set obtained by the model-based methods and the DPS algorithms endowed with315

the learned denoiser in table 1. The Gaussian increment distribution validates the implementation:316

Since the MMSE and the MAP point estimates coincide, the model-based ℓ2 estimator matches317

the Gibbs reference up to the error due to the finite parameter-grid resolution. When the posterior318

mean is smooth (e.g., imputation and some deconvolution cases), ℓ2 is the best model-based choice319

and frequently outperforms the DPS algorithms. When the posterior mean is close to piecewise-320

constant (typical in denoising of signals with sparse increments), the ℓ1 estimator is preferred. Among321

DPS algorithms, DiffPIR is typically the top performer and often exceeds ℓ2 and ℓ1 baselines in322

deconvolution, imputation, and reconstruction from partial Fourier measurements. For spike-and-slab323

settings (Bernoulli–Laplace), DPS algorithms substantially outperform the model-based baselines324

across operators. In deconvolution and reconstruction from partial Fourier measurements, DPS325

algorithms frequently match or surpass the best model-based estimator.326

In addition to the reconstruction performance obtained with the learned denoisers—for which the327

parameters of the algorithms were tuned—we inspect the robustness of the algorithms when replacing328

the learned denoiser with the oracle denoiser. Here, we discuss general trends; an exhaustive quantita-329

tive evaluation is given in appendix G. DPnP is the most robust to swapping the learned denoiser with330

the oracle denoiser and significantly benefits from the oracle denoiser in the most challenging cases of331

the spike-and-slab and the extremely heavy-tailed St(1) increment distributions. By contrast, C-DPS332

and DiffPIR can require retuning when the denoiser changes: scores can deteriorate after replacing333

the learned denoiser with the oracle denoiser, whereas a brief hand-tuning of the hyperparameters334

on the validation set improves them way beyond the learned denoiser (e.g., for DiffPIR and St(1)335

increments, the hand-tuning decreased the optimality gap by almost 10 dB). The differences between336

the algorithms are generally greater than the differences between the learned and oracle variants337

except for the heavy-tailed cases, which confirms the findings in (Bohra et al., 2023) and indicates338

that the research of efficient and robust DPS algorithms is still crucial. Qualitative examples of the339

MMSE estimates and the marginal variances obtained by the DPS algorithms and the gold-standard340

Gibbs methods are shown in figs. 8 to 15 in the appendix.341
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Prototypical samples and the corresponding MMSE estimate obtained from a DPS algorithm (here342

DiffPIR for deconvolution of a signal with BL(0.1, 1) increments) are shown in fig. 3. The full343

conditional reverse-diffusion trajectory, the data-generating signal, the measurements, and the MMSE344

estimated obtained with the gold-standard Gibbs methods are shown in fig. 16 in the appendix. The345

figure highlights a key distinction: Posterior samples often preserve high-frequency structure and346

reflect prior variability, whereas the MMSE point estimate—obtained by averaging all samples—is347

much smoother. This explains why DPS methods tend to score higher on perception-oriented metrics,348

while regressors that target the MMSE point estimate (through training with the mean squared349

error) excel on distortion metrics like the peak signal-to-noise-ratio (PSNR)). Consistent with this350

distinction, Saharia et al. (2023) fairly compare a sampling-based method to an MMSE regressor351

and find the expected trade-off: higher PSNR and structural similarity for the regressor and better352

perceptual scores for the sampler. We therefore recommend making the Bayesian target explicit—353

point estimate versus sample quality—and using evaluation protocols that are aligned to that target.354

Our framework supports this by offering gold-standard posterior samples and oracle denoisers.355

0 20 40 60

−4

−2

0 x̂DiffPIR
1 (y)

x̂DiffPIR
2 (y)

0 20 40 60

x̂DiffPIR
MMSE (y)

Figure 3: Conditional generation for deconvolution
of a signal with BL(0.1, 1) increments with Diff-
PIR. The shaded area indicates the variance.

In addition to the evaluation of the MMSE opti-356

mality gap, which is on the point-estimator level,357

we analyze the highest-posterior-density cover-358

age of the algorithms. Specifically, for any mea-359

surement y and any k = 1, . . . , Nsamples, de-360

note lk(y) := log pX|Y=y(x̂
alg
P (k)(y,λ

alg,⋆))3361

where P is the permutation that ensures that362

l1(y) ≥ l2(y) ≥ · · · ≥ lNsamples
(y) and define363

the empirical highest-posterior-density thresh-364

old at α ∈ [0, 1] as l⌈αNsamples⌉(y). We de-365

clare the data-generating signal x covered if366

log pX|Y=y(x) ≥ l⌈αNsamples⌉(y) and define367

the coverage of a method as the fraction of signal-measurement pairs (x,y) in the test set for368

which x is covered by the threshold l⌈αNsamples⌉(y). The coverage of a calibrated posterior-sampling369

method will be α up to Monte Carlo error. A coverage result that is significantly less than α indicates370

that the samples obtained by the method concentrate too heavily around the mode; a coverage result371

that is greater than α indicates that the samples are too spread out. We again discuss general trends372

here and present an exhaustive quantitative evaluation in appendix G. The coverages obtained by the373

DPS algorithms are generally much smaller than α, which indicates that they are uncalibrated and is374

in line with what is reported by Thong et al. (2024). For C-DPS and DiffPIR, the reported coverage375

values are almost always 0 except for BL(0.1, 1) and St(1) increments, where the coverages are376

usually (close to) 1 for C-DPS and inconsistent for DiffPIR. For almost all increment distributions377

and forward operators, DPnP reports coverage values that are closest to but typically smaller than α.378

5 CONCLUSION379

We introduced a statistical benchmark for diffusion posterior sampling algorithms for linear inverse380

problems. The framework proceeds by constructing signals with a known distribution, simulating the381

measurement process, and subsequently generating samples from the posterior distribution that arises382

through the combination of the known prior and the known likelihood. Gold-standard samples from383

this distribution are obtained via efficient Gibbs methods, and these samples are then compared to384

those obtained by the diffusion posterior sampling algorithms. In addition, the Gibbs methods can385

serve as oracle MMSE denoisers within the denoising posteriors encountered in each iteration of386

the reverse SDE. Consequently, the framework also enables the isolation and quantification of the387

error attributable to the likelihood approximations in the conditional reverse diffusion. We provided388

numerical results for three common diffusion posterior sampling algorithms applied to four common389

inverse problems. A consistent theme across all tested algorithms is that they are not calibrated,390

which demonstrates that research into algorithms that perform better in this respect remains crucial.391

We invite other researchers to benchmark their algorithms on our open implementation, which is392

deliberately designed so that novel DPS algorithms can be evaluated in a plug-and-play manner.393

3With slight abuse of notation, log pX|Y=y is the unnormalized ground-truth log-posterior (10); the additive
constant is the same across all methods so ranking is valid.
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Reproducibility Statement We release an online repository with complete algorithm implemen-394

tations and step-by-step instructions to reproduce all results. A containerized runtime enables one-395

command setup and fully automated execution via the provided scripts. Each algorithm is specified at a396

level that supports independent reimplementation: the main text precisely details GLM sampling, and397

the appendix presents the Bernoulli–Laplace Gibbs method using implementation-aligned notation, to-398

gether with practical optimizations required for acceptable runtimes. The appendix also enumerates all399

experimental settings, including the numbers of training/validation/test signals, the samples-per-datum400

for each sampler, and the exact grid-search procedure used to select hyperparameters.401

Usage of Large Language Models We used large language models to adapt passages of already-402

written text for readability and conciseness.403
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A BAYES ESTIMATORS597

A benefit of the Bayesian approach over classical variational methods (see, e.g., (Scherzer et al.,598

2008)) is that different point estimates arise from a fixed prior. For a given measurement y, these point599

estimates summarize the posterior distribution pX|Y=y with respect to a given loss ℓ : Rd ×Rd → R600

via the optimization problem of finding the point x̂ℓ(y) that minimizes the posterior risk:601

x̂ℓ(y) = argmin
x̂∈Rd

(∫
Rd

ℓ(x̂,x) pX|Y=y(x) dx

)
. (18)

In this paper, the Bayes estimator with respect to the mean-squared error (MSE) ℓ = 1
d∥ · − · ∥2602

plays a key role due to its close relation to the prior score in the reverse diffusion (see section 2) and603

because we quantify the performance of DPS algorithms via the MMSE optimality gap in section 4.604

With this choice of ℓ, (18) can be written as605

x̂MMSE(y) = argmin
x̂∈Rd

(∫
Rd

1
d∥x̂−x∥2 pX|Y=y(x) dx

)
=

∫
Rd

xpX|Y=y(x) dx = E[X | Y = y],

(19)
which is the expectation of the posterior pX|Y=y.606

Another widely-used estimator arises through the choice607

ℓ(x̂,x) = −χ{x̂}(x) (20)

where608

χA(x) :=

{
1 if x ∈ A,

0 else,
(21)

which leads to the MAP estimator that seeks the mode of the posterior:4609

x̂MAP(y) = argmin
x̂∈Rd

(∫
Rd

−χ{x̂}(x) pX|Y=y(x) dx

)
= argmax

x̂∈Rd

pX|Y=y(x̂). (22)

Rewriting (22) as610

x̂MAP(y) = argmin
x̂∈Rd

(
− 1

2σ2
n
∥Ax̂− y∥2 − log pX(x̂)

)
, (23)

reveals a close relation to classical variational approaches after identifying the regularizer with611

− log pX.612

4This definition is informal but sufficient for the purposes of this paper. For continuous posteriors, the strict
0–1 loss Bayes’ rule is ill-posed. A common formalization defines MAP as the limit of Bayes estimators under
shrinking small-ball 0–1 losses; under additional regularity, this limit agrees with the posterior mode (Bassett &
Deride, 2018; Clason et al., 2019). The MAP estimator may also not be unique.
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B TWEEDIE FORMULA613

In the setting of section 2, we now derive an equality that relates ∇ log pXt
to E[X0 | Xt = · ], i.e.,614

the MMSE estimate of X0 given that Xt takes on a certain value. Similar derivations can be found615

in, e.g., (Song et al., 2021; Chung et al., 2023; Daras et al., 2024), but we include it to underscore616

the relevance of the MMSE estimate in this paper and to facilitate the understanding of its relation617

to various objects. Under the variance-preserving choice for f(x, t) = −β(t)
2 x and g(t) =

√
β(t)618

of the drift and diffusion coefficient, the diffusion SDE (4) simplifies to a time-inhomogeneous619

Ornstein–Uhlenbeck SDE (see Klenke (2020, Example 26.5))620

dXt = −β(t)
2 Xt dt+

√
β(t) dWt, (24)

whose pathwise solution621

Xt = α(t)X0 +

∫ t

0

α(t)

α(s)

√
β(t) dWs, (25)

where X0 is an appropriate initial condition and α(t) = exp
(
− 1

2

∫ t

0
β(s) ds

)
, can be computed with622

standard techniques, see, e.g., (Gardiner, 1990, Section 4.4.4). In addition, since623 ∫ t

0

(
α(t)

α(s)

)2

β(t) ds =

∫ t

0

β(s) exp
(
−
∫ t

s

β(u) du
)
ds = 1− α2(t) (26)

we can write that624

Xt = α(t)X0 + σ(t)N (27)
in distribution, where σ2(t) = 1−α2(t). Consequently, the density of Xt is given by the convolution625

of pX0
with a Gaussian with variance σ2(t) and appropriate scaling by α(t):626

pXt
(x) =

∫
Rd

g0,σ(t)2I(x− α(t)x̂)pX0
(x̂) dx̂, (28)

where gµ,Σ(x) = (2π)−
d
2 |Σ|− 1

2 exp
(
− 1

2∥x−µ∥2Σ−1

)
. Finally, after taking the gradient we see that627

∇pXt
(x) =

∫
Rd

∇g0,σ(t)2I(x− α(t)x̂)pX0
(x̂) dx̂

=

∫
Rd

(
− 1

σ2(t) (x− α(t)x̂
)
g0,σ2(t)I(x− α(t)x̂)pX0(x̂) dx̂

= − 1
σ2(t)

(
xpXt

(x)− α(t)

∫
Rd

x̂g0,σ2(t)I(x− α(t)x̂)pX0
(x̂) dx̂

)
= − 1

σ(t)2

(
xpXt(x)− α(t)pXt(x)E[X0 | Xt = x]

)
(29)

such that, after dividing by pXt
(x) and since ∇pXt (x)

pXt (x)
= ∇ log pXt

(x), we find the celebrated628

Tweedie identity629

∇ log pXt
(x) = −σ(t)−2

(
x− α(t)E[X0 | Xt = x]

)
. (30)

B.1 A CONNECTION BETWEEN THE DISCRETIZED REVERSE SDE AND DDPM630

To show the connection between the Euler–Maruyama discretization of the reverse-diffusion SDE631

and the DDPM backward process, we start by deriving the latter from the respective forward process.632

DDPM was been introduced by Sohl-Dickstein et al. (2015) as a discrete-time Markov chain of length633

T with Gaussian transitions:634

pXt|Xt−1=xt−1
= Gauss(

√
1− βtxt−1, βtI), (31)

such that the transitions from X0 to Xt are also tractable as635

Xt =
√
ᾱtX0 +

√
1− ᾱtZt, (32)

where αt = 1− βt, ᾱt =
∏t

s=0 αs and Zt ∼ Gauss(0, I). By definition,636

Xt =
√
1− βtXt−1 +

√
βtZt−1 (33)
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and a straightforward application of Tweedie’s formula (6) gives that637

E[Xt−1|Xt] =
1√
αt

(
Xt + (1− αt)∇ log pXt(Xt)

)
, (34)

which leads to the DDPM backward transitions638

Xt−1 = 1√
1−βt

(Xt + βt∇ log pXt(Xt)) +
√

βtZt (35)

like they appear in (7) in the main text.639

Now, we recall the reverse-diffusion SDE, which under our choice of the drift and diffusion coefficient640

is given by641

dXt =
(
−β(t)

2 Xt − β(t)∇ log pXt
(Xt)

)
dt+

√
β(t) dWt. (36)

A first-order step from t to t− 1 (dt = −1) of gives the Euler–Maruyama update642

Xt−1 =
(
1 + βt

2

)
Xt + βt∇ log pXt(Xt) +

√
βtZt, (37)

where βt := β(t) and Zt ∼ Gauss(0, I).643

The DDPM reverse process (35) can be related to the the Euler–Maruyama discretization of the644

reverse SDE (37) via Taylor expansions since645

1√
1− βt

= 1 +
βt

2
+O(β2

t ) (38)

and646
βt√
1− βt

= βt +O(β2
t ) (39)

as βt → 0.647

C LÉVY PROCESSES AND INCREMENT DISTRIBUTIONS648

The prior distributions in our framework are those of signals obtained by regularly spaced samples of649

processes with independent, stationary increments (Lévy processes and their discrete-time counter-650

parts). We briefly recall the definition; see Unser & Tafti (2014); Sato (1999) for background and the651

link to infinitely divisible laws.652

Definition C.1 (Lévy process). A stochastic process s = {s(t) : t ≥ 0} is a Lévy process if653

1. s(0) = 0 almost surely;654

2. (independent increments) for any N ∈ N \ {0, 1} and 0 ≤ t1 < t2 < · · · < tN < ∞, the655

increments (s(t2)−s(t1)), (s(t3)−s(t2)), . . . , (s(tN )−s(tN−1)) are mutually independent;656

3. (stationary increments) for any given step h, the increment process uh = {s(t)− s(t− h) :657

t > h} is stationary;658

4. (stochastic continuity) for any ε > 0 and t ≥ 0659

lim
h→0

Pr
(
|s(t+ h)− s(t)| > ε

)
= 0.

We form discrete signals by sampling s at integer times and stacking the values into x =660

(s(1), . . . , s(d)). Let the unit-step increments be uk = s(k) − s(k − 1) for k = 1, . . . , d. By661

independence and stationarity, the law of uk does not depend on k and we denote it pU .5 We define662

the finite-difference matrix663

D =


1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . . . . . 0

0 0 · · · −1 1

 (40)

5For our choices, it always has a density w.r.t. a suitable reference measure.
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Table 2: Summary of univariate distributions used throughout this work. Parameters appear in the
order they are specified in this table, e.g. Gauss(µ, σ2).

Name Distribution Parameter(s) Supp. Notation

Gaussian 1√
2πσ2

exp
(
− (x−µ)2

σ2

)
µ ∈ R, σ2 ∈ R>0 R Gauss

Exponential λ exp(−λx) λ ∈ R>0 R≥0 Exp

Laplace 1
2b exp

(
− |x|

b

)
b ∈ R>0 R Laplace

Student-t
Γ
(

ν+1
2

)
√
πνΓ

(
ν
2

)(1 + x2

ν

)− ν+1
2 ν ∈ R>0 R St

Gamma βα

Γ(α)x
α−1 exp(−βx) α, β ∈ R>0 R>0 Gamma

Gen. inv. Gaussian ( a
b )

p
2

2Kp(
√
ab)

xp−1 exp
(
−ax+b/x

2

)
a, b ∈ R>0, p ∈ R R>0 GIG

Bernoulli–Laplace λδ(x) + (1− λ) 1
2b exp(−

|x|
b ) λ ∈ [0, 1], b ∈ R>0 R BL

Γ denotes the gamma function defined as Γ(x) =
∫∞
0

tx−1 exp(−t) dx for any x ∈ R>0.
Kν denotes the modified Bessel function of the second kind with parameter ν.

such that the increment vector satisfies664

u = Dx. (41)
Because s(0) = 0, the finite-difference matrix D has an initial condition which makes it invertible665

and D−1 is a lower-triangular matrix of ones, which also implies that for all k = 1, 2, . . . , d,666

xk =

k∑
n=1

un, (42)

which is a convenient way to synthesize signals once u is drawn. The combination of (41) with the667

independence of the increments implies that the density of the discrete signal is668

pX(x) =

d∏
k=1

pU
(
(Dx)k

)
. (43)

C.1 EXTENSIONS669

The approach in this paper can be extended to two- or higher-dimensional signals on grids, such670

as images or videos, and even more specialized structures like signals defined over trees or more671

general graphs. The structure of the signal is effectively encoded through the choice of the matrix D.672

For instance, a two-dimensional finite-difference matrix would result in a signal vector that can be673

interpreted as a two-dimensional image. The main additional (computational) challenge is sampling674

during signal generation: Whenever D is not trivially reducible to a one-dimensional operator, the675

resulting model (43) will be overcomplete and, in general, no whitening transformation exists to676

decouple increments for independent sampling. The extension to higher-dimensional signals and the677

complications that arise in that context are rigorously treated in Kuric et al. (2025).678

C.2 LATENT DISTRIBUTIONS AND NOTATION679

Some of the distributions that we rely on in this work have multiple competing parametrizations.680

To avoid ambiguities, we provide precise definitions of the four increment distributions that we681

consider in this work—Gaussian, Laplace, Student-t, and Bernoulli–Laplace (spike-and-slab)—and682

our notation of these and other distributions that we use in this work in table 2. Table 3 lists the latent683

maps and conditional latent distributions that are needed for the GLM for the distributions in this684

work.685

D GIBBS METHODS AND SAMPLING EFFICIENCY686

Gibbs methods are Markov chain Monte Carlo (MCMC) methods to sample from a joint distribution687

pX,Z1,Z2,...,Zn of (n+1) variables that are advantageous when the direct sampling is computationally688
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Table 3: Latent variable representations and conditional distributions for common distributions.

Dist. ϕi Latent dist. fi Latent maps Cond. latent dist. pZi|X=(Kx)i

Gauss(µ, σ2) δ(0) µi(zi) = µ, σ2
i (z) = σ2 δ(0)

Laplace(b) Exp
(

1
2b2

)
µi(zi) = 0, σ2

i (zi) = zi GIG
(

1
b2 , (Kx)2i ,

1
2

)
St(ν) Gamma

(
ν
2 ,

ν
2

)
µi(zi) = 0, σ2

i (zi) =
1
zi

Gamma
(

ν+1
2 ,

ν+(Kx)2i
2

)
Algorithm 3 Latent-variable Gibbs sampling of pX,Z1,...,ZN

.

Require: Burn-in period B ∈ N, number of samples S ∈ N, initial point (x0, z1, . . . zN ).
1: for s = 1, 2, . . . , B + S do
2: xs ∼ pX|Z1=z1,...,ZN=zN

3: z1 ∼ pZ1|X=xk,...,ZN=zN

4:
...

5: return {xB+s}Ss=1

difficult but sampling from the conditional distributions pX|Z1,Z2,...,Zn
, pZ1|X,Z2,...,Zn

, . . . is easy.689

Gibbs methods cycle through the conditional distributions with repeated draws, which maintains the690

joint distribution invariant (Casella & George, 1992). The naming of the variables X,Z1,Z2, . . . ,Zn691

is deliberately chosen to emphasize that we use latent-variable Gibbs methods that rely on auxiliary692

variables that are introduced solely to make the conditionals simple. The steps of a general latent693

variable Gibbs sampler are shown in algorithm 3, where the iteration counter in the sampling of the694

latent variables is omitted since they need not be stored and previous iterations can immediately be695

overwritten.696

Kuric et al. (2025) recently showed that such methods are significantly faster than other standard697

sampling routines that are commonly used in settings similar to the one in this paper. They report698

sampling efficiencies of close to 1, while alternatives, such as the Metropolis-adjusted Langevin699

algorithm, achieve sampling efficiencies of around 1× 10−3.6 In addition, Gibbs methods require no700

step-size or acceptance-rate tuning and introduce no discretization bias. These properties motivate701

our use of Gibbs methods for the fast and robust posterior sampling throughout this work.702

Like all MCMC methods, in practice Gibbs methods benefit from discarding some number of initial703

samples, the burn-in period, when the initial point is located in low-density regions. After the burn-in704

period, it is crucial to tune the number of samples such that the Monte Carlo estimates of various705

quantities, such as the MMSE estimate in (19), are sufficiently accurate. We discuss our choice of the706

burn-in period and the number of samples for the various problems in appendix F.2.707

D.1 A GIBBS METHOD FOR BERNOULLI–LAPLACE INCREMENTS708

We start by noting that the Bernoulli–Laplace density709

pU (u) = λδ(u) + (1− λ) b2 exp(−b|u|) (44)

with Bernoulli parameter λ and scale parameter b, where δ is the Dirac distribution, admits the710

representation711

pU (u) =

∫
R

( 1∑
v=0

pU |V=v,W=w(u)pV (v)

)
pW (w) dw, (45)

where712

pV (v) = λ1−v(1− λ)v (46)
for v ∈ {0, 1} is a Bernoulli distribution,713

pW (w) =
b2

2
exp

(
−b2w

2

)
χR≥0

(w) (47)

6Sampling efficiency refers to effective samples per iteration; an efficiency of ρ means roughly 1/ρ iterations
per “effective sample” (Gelman et al., 2013, Section 11.5).
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is an exponential distribution, and714

pU |V=v,W=w(u) =

{
δ(u) if v = 0,

Gauss(0, w) if v = 1.
(48)

The algorithm relies on the introduction of two latent vectors v,w ∈ Rd that satisfy715

pU|V=v,W=w(u) =

d∏
k=1

pU |V=vk,W=wk
(uk) (49)

such that, as a result, the distribution conditioned on the measurements can be written as716

pU,V,W|Y=y(u,v,w) ∝ exp
(
− 1

2σ2
n
∥Hu− y∥2

) d∏
k=1

pU |V=vk,W=wk
(uk)

×
d∏

k=1

λ1−vk(1− λ)vk

d∏
k=1

b2

2
exp

(
−b2wk

2

)
,

(50)

where H = AD−1. (48) and (50) imply that any sample from pU|V=v,W=w,Y=y takes the value717

zero at those indices where v is zero, and values from a multivariate Gaussian distribution with718

covariance C =
(
σ2
nHHT + diag(w)

)−1
and mean σ−2

n CHTy otherwise. Sampling W | U =719

u,V = v,Y = y amounts to the independent sampling of d one-dimensional distributions, which720

are Exp(2/b2) at those indices where v is zero and GIG(b2,u2
k, 0.5) those indices k where v is one.721

The conditional distribution of the binary support vector is722

pV|W=w,Y=y(v) ∝ |B(v,w)|− 1
2 exp

(
− 1

2y
TB(v,w)−1y

) d∏
k=1

λ1−vk(1− λ)vk , (51)

where B(v,w) = σ2
nI+Hdiag(v ⊙w)HT .7 The standard way to sample from this distribution is723

to use a coordinate-wise Gibbs sampler that updates vk ∼ Bernoulli(pk) with724

pk = (1 + exp(−∆k))
−1 (52)

where the log-odds increment725

∆k = log 1−λ
λ − 1

2

(
log |B(vk=1,w)| − log |B(vk=0,w)|

)
− 1

2

(
yTB(vk=1,w)−1y − yTB(vk=0,w)−1)y

)
,

(53)

where vk= · := (v1, . . . ,vk−1, · ,vk+1, . . . ,vd) is the difference between the log-posterior when the726

bit is on and when it is off. The resulting algorithm that is summarized in algorithm 4 can be interpreted727

as (d+ 2)-variable (i.e., dimension-dependent) Gibbs method8 and an efficient implementation is728

crucial.729

D.2 PRACTICAL GIBBS IMPLEMENTATIONS730

Sampling X | Z in the GLM and U | V,W,Y for the Bernoulli–Laplace case reduces to drawing731

from a high-dimensional Gaussian, which is a well-studied problem. For settings that necessitate a732

matrix-free implementation such as those that are commonly encountered in imaging applications,733

Kuric et al. (2025) advocate a Perturb-and-MAP sampler with preconditioned conjugate gradient734

solvers. For our moderate-dimensional problems with d = 64, a standard implementation based on735

the Cholesky factorization of the covariance matrix offered significantly faster (approximately one736

order of magnitude) sampling. The sampling of the different latent variables necessitates the sampling737

of the one-dimensional conditional latent distributions. All the conditional latent distributions that738

7This is a different but equivalent formulation to what is presented by Bohra et al. (2023), who explicitly
“slice” the matrices H and diag(w) with the indices where v is one. We stick to this formulation since it requires
less notation and emphasizes that implementations need not build variable-sized matrices, which is crucial for an
efficient implementation on modern compute units that utilize highly parallelized computations.

8This is not strictly correct since the density violates the classical positivity conditions that are needed for
Gibbs methods. It is a partially collapsed Gibbs method, see (Bohra et al., 2023; van Dyk & Park, 2008).
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Algorithm 4 Bernoulli–Laplace Gibbs sampler.

Require: Initial increments u0 ∈ Rn

1: for s = 1, . . . , B + S do
2: Draw wi ∼ pW |U=(us−1)i,V=vi

▷ parallel over i
3: for k = 1, . . . , d do
4: Draw vk ∼ Bernoulli(pk)
5: Draw us ∼ pU|V=v,W=w,Y=y

6: return {D−1uB+s}Ss=1

are relevant in this paper admit efficient samplers that are readily available in standard scientific739

computing packages or can be implemented with little effort. We reuse the CUDA implementation740

of the generalized inverse Gaussian sampler from (Kuric et al., 2025) that implements the method741

proposed in (Devroye, 2012) and rely on pytorch (Paszke et al., 2017) for all others. Wherever742

possible, latent updates are parallelized.743

In the Gibbs methods for the Bernoulli–Laplace increments, the sequential drawing of the binary744

support vector V is embedded in the outer Gibbs loop, which, in turn, may be embedded in the745

reverse-diffusion loop. This makes it crucial to minimize the use of heavy linear algebra operations746

to achieve acceptable runtimes. Writing B(v,w) = σ2
nI+H diag(v ⊙w)HT , we recognize that747

flipping the kth bit of v adds or removes a rank-one term wkHkH
T
k , where Hk is the kth column of748

H. Using the matrix determinant lemma and Woodbury–Sherman–Morrison, we update749

log |B(vk=1,w)| = log |B(vk=0,w)|+ log(1 +wkτk) (54)

and750

yTB(vk=1,w)−1y = yTB(vk=0,w)−1y − wk(H
T
kB(vk=0,w)−1y)2

1 +wkτk
, (55)

where τk = HT
kB(vk=0,w)−1Hk. Thus, an efficient implementation factors B(v,w) once per751

latent state, obtains the needed scalars via triangular solves, and performs rank-one updates as bits752

flip.753

E DPS UPDATE STEPS754

E.1 COVARIANCE IN C-DPS755

C-DPS (Chung et al., 2023) uses the approximation of the likelihood756

pY|Xt=x(y) ≈ pY|X0=E[X0|Xt=x](y). (56)

When the noise in the inverse problem is Gaussian, the likelihood score757

∇
(
x 7→ log pY|X0=E[X0|Xt=x](y)

)
necessitates the computation of758

∇
(
x 7→ 1

2∥AE[X0 | Xt = x]− y∥2
)
, (57)

which is759

J (x 7→ E[X0 | Xt = x]) ( · )AT (AE[X0 | Xt = · ]− y) (58)

after an application of the chain rule. The Jacobian J (x 7→ E[X0 | Xt = x]) is typically computed760

with automatic differentiation when (x, t) 7→ E[X0 | Xt = x] is approximated with a neural network.761

In our framework, we use the connection with the covariance matrix Cov[X0 | Xt = · ]. Indeed, as762

also shown in, e.g., (Rissanen et al., 2025), if X0 and Xt verify (32), then763

1
1−ᾱt

Cov[X0 | Xt = x] = 1
ᾱt

(
I+ (1− ᾱt)

2∇2 log pXt
(x)

)
. (59)

This identity combined with the derivative of (6) yields764

J
(
x 7→ E[X0 | Xt = x]

)
(xt) =

√
ᾱt

1− ᾱt
Cov[X0 | Xt = xt]. (60)
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E.2 EXPLICIT UPDATE STEPS765

We define the instantiations of the update steps S(xt, {x̄s}Ss=1,y,A,λ, t) with parameters λ for766

C-DPS, DiffPIR, and DPnP that are used in algorithm 2. Each z is a d-dimensional random vector767

with i.i.d. standard Gaussian entries.768

C-DPS The input parameters λ are composed of the following. ᾱt is the variance-preserving scaling769

weight as in (32), βt is the variance of the diffusion transitions as in (35), and ζ parametrizes the770

likelihood-guidance strength. The diffusion noise level that corresponds to the denoising posterior is771

denoted σt = (1− ᾱt)/
√
ᾱt, which is used to compute the samples {x̄s}Ss=1.772

µ̄ =
1

S

S∑
s=1

x̄s

C =
1

S

S∑
s=1

(x̄s − µ̄)(x̄s − µ̄)T

x′
t−1 =

√
ᾱt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
µ̄+ σtz

x̃t−1 = x′
t−1 −

ζ
∥Aµ̄−y∥

√
ᾱt

1−ᾱt
CTAT (Aµ̄− y)

xt−1 = x̃t−1/
√
ᾱt−1

(61)

DiffPIR The input parameters are similar to the ones of C-DPS. ᾱt and σt are defined in the same773

way as in C-DPS, and ζ parametrizes the likelihood-guidance strength. It also uses the noise level of774

the inverse problem σn and a balance hyperparamater γ.775

µ̄ =
1

S

S∑
s=1

x̄s

ρt = ζ
σ2
n

σ2
t

x̄0 = argmin
x∈Rd

(
1
2∥Ax− y∥2 + ρt

2 ∥x− µ̄∥2
)

ϵ̂ = 1√
1−ᾱt

(
xt −

√
ᾱtx̄0

)
x̃t−1 =

√
ᾱt−1x̄0 +

√
1− ᾱt−1(

√
1− γϵ̂+

√
γz)

xt−1 = x̃t−1/
√
ᾱt−1

(62)

DPnP The diffusion noise level that corresponds to the denoising posterior is denoted ηt, which is776

used to compute the sample x̄s=1. This same ηt defines the likelihood-guidance strength.777

x0 = x̄1

xt−1 ∼ exp
(
− 1

2∥A · −y∥2 − 1
2η2

t
∥ · −x0∥2

) (63)

The DPS template that is summarized in algorithm 2 is illustrated with a one-dimensional toy-example778

in fig. 4.779

F NUMERICAL EXPERIMENTS780

F.1 FORWARD OPERATORS781

We consider four forward operators in our experiments. First, the identity A = I ∈ Rd×d. This choice782

is motivated by the fundamental role that denoising algorithms currently play in many restoration783

algorithms and even labeling problems such as edge detection (Le et al., 2025). Second, a convolution784

operator A ∈ Rd×d that implements the convolution with a kernel that consists of the 13 central785

samples of a truncated Gaussian with variance 2 and is normalized to unit sum. We adopt circular786

boundary conditions to enable a fast computation of the proximal map that arises in the update step787
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Diffusion step t = T, . . . , 1

pX0|Y=y

pXt|Y=y

Sampling of denoising posterior

pX0|Xt=xt

Gauss(xt, σ
2
t )

Denoising step Likelihood step

xt {x̄k}S
k=1 ∼ pX0|Xt=xt

xtxt−1/2 xt−1/2xt−1

∇ log pXt ≈ ∇ log pY|Xt= · (y)

?

Step S of a DPS algorithm
pX0

pY|X0

Figure 4: Illustration of the proposed template for DPS algorithms. The benchmarked posterior
sampler targets x0 ∼ pX0|Y=y via a diffusion process. At each diffusion time t, first the samples
{x̄k}Sk=1 ∼ pX0|Xt=xt

are drawn from the denoising posterior. Then, the step S updates the iterate
typically through a prior-guided update from the samples and a likelihood-guided update from the
data. The likelihood guidance term is intractable and must be approximated, which constitutes the
primary source of sampling error.

of DiffPIR (see appendix E.2) via the fast Fourier transform. Deconvolution is a relevant problem788

with applications in, e.g., microscopy and astronomy. Third, a sampling operator A ∈ Rm×d that789

returns m < d entries of its argument unchanged. This operator is also relevant in many fields such790

as image reconstruction and time-series forecasting. In particular, a forecasting or prediction problem791

can be modeled by returning the first m known entries recovering the remaining (d − m) entries792

through the resolution of the inverse problem. In our experiments, each entry has an independent793

chance of 40% being kept. Fourth, an operator A = MF ∈ Rm×d where F ∈ R2(⌊d/2⌋+1)×d is the794

matrix representation of the “real” one-dimensional discrete Fourier transform with separated real and795

imaginary components, and M ∈ Rm×2(⌊d/2⌋+1) is a sampling operator. Such operators are relevant796

in, e.g., medical imaging and astronomy. The sampling operator is constructed such that the 5 lowest797

frequencies (including the DC term) are acquired, and the remaining frequencies independently have798

a 40% chance of being kept.799

For all operators, the noise variance σ2
n is chosen such that the median measurement signal-to-noise800

ratio (SNR) is around 25 dB. We set Ntrain = 1× 106, Nval = 1× 103, and Ntest = 1× 103.801

F.2 BENCHMARK IMPLEMENTATION DETAILS802

The benchmarking pipeline starts with the generation of Ntest test signals denoted {xtest
k }Ntest

k=1 per803

increment distribution, each of which is independently synthesized by first drawing i.i.d. increments804

from the respective increment distribution and forming the signals via (42). It then proceeds to805

synthesize the Ntest measurements (i.e. we use one noise instance per signal) denoted {ytest
k }Ntest

k=1806

according to (1) and, for each of the measurements, computes the gold-standard posterior samples807

of the various inverse problems via the Gibbs methods described in section 3. This stage is off-line808

(no reverse-diffusion loop) and trivially parallel across the measurements, which allows us to run809

long chains with burn-in periods of 1× 105 iterations and obtain 2× 105 draws from the posterior810

distribution. This far exceeds any values reported in (Kuric et al., 2025) or (Bohra et al., 2023) and811

results in precise MMSE estimates.812

The dataset generation stage also involves the generation of Ntrain training signals {xtrain
k }Ntrain

k=1 and813

Nval validation signals (mutually disjoint from the test signals) {xval
k }Nval

k=1 and the corresponding814

validation measurements {yval
k }Nval

k=1 . The training signals are used for the learning of a neural score815

function like those that are used for the resolution of inverse problems when the prior is unknown or816

too expensive to evaluate. Training details are provided in appendix F.3 The validation signals are used817

to monitor the performance of the neural score function on unseen signals during the training stage818

and to tune the regularization parameters for the model-based approaches as well as the parameters819

of the DPS algorithms, see section 4.1 and section 4.1.820

Unlike for the computation of the gold-standard MMSE estimate of the initial inverse problem, the821

denoising posteriors are sampled T times per trajectory (we use T = 1000). To ensure acceptable822

runtimes in this setting, we therefore pick the smallest burn-in period and sample count that still yield823

accurate estimates of the required statistics. We determine these settings with a rigorous protocol that824
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is detailed in appendix F.4. Ultimately, this protocol resulted in the choice of a burn-in period of 100825

iterations and a sample count of 300.826

F.3 LEARNING DETAILS827

For learned-based denoisers, a noise-conditional neural network with UNet architecture (305 761828

learnable parameters) is trained in an off-line step on the Ntrain training signals in a standard setup829

(Adam optimizer with learning rate 1 × 10−4 with exponential decay with factor 0.9999, 100 000830

parameter updates, batch size 10 000). The noise schedule in C-DPS and DiffPIR is defined by the831

two endpoints β0 = 1× 10−4 and βT = 2× 10−2 with linear equidistant samples in-between. The832

learned variant of DPnP is the “DDS-DDPM” variant (Xu & Chi, 2024, Algorithms 1 and 3) that833

contains an inner denoising-sampling loop. The oracle variant does not require an inner loop at all834

(except for the burn-in period), which makes the oracle variant the faster one for this case.835

F.4 A PROTOCOL TO DETERMINE THE BURN-IN PERIOD AND THE NUMBER OF SAMPLES836

As discussed in appendix F.2, the burn-in period and the number of samples of the Gibbs samplers837

needs to be chosen appropriately to ensure an acceptable runtimes and a sufficiently small Monte838

Carlo error when they serve as the gold-standard samplers of the denoising posteriors that are839

encountered in the DPS algorithms. We determine the burn-in period and the number of samples840

through the following protocol that is run in an off-line stage prior to running the benchmark. We841

synthesize xt = x0 + σtn where σt is in the range defined by the noise schedule β, x0 is constructed842

via (42) for all four considered increment distrbutions, and n is some unknown but fixed vector of843

standard Gaussian noise. For each of the synthesized signals, we then launch C = 1000 parallel844

Gibbs chains on the corresponding denoising posterior and run those chains for Nsufficient iterations,845

where Nsufficient is a sufficiently large natural number that guarantees that the chains are stationary846

for at least Navg (which is also relatively large) iterations and that, consequently, we can compute847

precise estimates of various statistics of the posterior distribution from the iterates from the last Navg848

iterations across all C chains.849
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Figure 5: Wasserstein-1 distance of intermediate
marginal distributions to that of the final sample.

To determine the burn-in period, we then pro-850

ceed to calculate a statistic that we can mon-851

itor throughout the iterations and that we can852

compare against the reference statistic. Specif-853

ically, denoting with X the random variable of854

the Gibbs sampler, we compute the empirical855

distribution of the increments at index 32, that856

is, X33 −X32. The distribution of differences857

that is obtained by taking the last Navg iterations858

across all C chains is considered the reference859

distribution. Then, we compute the Wasserstein-860

1 distance of that distribution to the one obtained861

by taking the average across Navg iterations and862

all C in a sliding-window starting from the first863

Gibbs iterations. This allows us to gauge the864

burn-in period through a visual inspection of the865

Wasserstein-1 distance through the Gibbs iterations. In particular, we expect the Wasserstein-1 dis-866

tance to be large for a number of initial samples where the Gibbs sampler is not stationary and then to867

oscillate around a small but nonzero value. The value will be nonzero due to the finite sample size.868

The Wasserstein-1 distance between the reference distribution and the one obtained through the Gibbs869

iterations is shown in fig. 5 (for the exemplary case of a St(1) distribution and a selection of noise870

variances). We observe that the empirical distribution of increments converges rapidly to the reference871

one. The Wasserstein-1 distance reaches the noise level after a single-digit number of iterations,872

which is in line with the analysis provided in (Kuric et al., 2025). Based on these findings, we chose873

the burn-in period as B = 100 iterations for all our experiments, which is more than sufficient to874

reach stationarity and has acceptable runtime.875

To determine the number of samples that are needed for a sufficiently accurate computation of various876

statistics that any DPS algorithm may utilize in their update steps, we compute a precise estimation877
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Figure 6: Left: Mean squared error normalized by the noise variance during the training of the
learned denoiser. Right: Mean squared error between Monte Carlo estimates of the MMSE (with
varying window lengths) and the long-run MMSE, normalized by the noise variance. In both plots,
the dotted line indicates the agreed precision threshold that is reached at around 300 Gibbs iterations.
To avoid clutter, we omit the curves for Gauss(0, 0.25), St(2), and St(3) that are qualitatively and
quantitatively similar to the ones that are shown.

of the MMSE estimate of the denoising posterior by averaging the last Navg iterations across all C878

chains. Then, we pick one arbitrary chain and grow a window from iteration (Navg − 1) to the left,879

average the samples in that window, and compute the MSE from the MMSE estimates obtained in880

the one-chain window to the precise estimate obtained by averaging the C chains and the last Navg881

iterations. Motivated by the training loss of the neural denoisers, we pick a tolerance of 1 × 10−2882

and monitor at which window length the MSE falls below that tolerance. The results in fig. 6 show883

that this tolerance is consistently reached when the averaging window is 300 samples long, which884

motivates our choice of using S = 300 samples for all our experiments.885

F.5 ALGORITHM PARAMETER IDENTIFICATION886

The adjustable regularization parameter for the method est = ℓ2, ℓ1 was found by887

λest,⋆ = argmin
λ∈Λ

1

Nval

Nval∑
k=1

1
d∥x̂

est(yval
k , λ)− xval

k ∥2, (64)

where Λ is the loglinear grid Λ = {λ1, λ2, . . . , λNmb
} where888

λi = 10
a+(i−1)

(b−a)
Nmb−1 (65)

with a = −5 and b = 5. Since the model-based methods are very fast, we can use the relatively high889

Nmb = 1000.890

The adjustable hyperparameters of the DPS methods were found by891

λalg,⋆ = argmin
λ∈Θalg

1

Nval

Nval∑
k=1

1
d∥x̂

alg
MMSE(y

val
k ,λ)− xval

k ∥2 (66)

where the grid Θalg is method-dependent. Note that this tuning is specifically tailored towards the892

evaluation with respect to the MMSE optimality gap. Due to resource constraints, the parameters893

are tuned for the learned denoiser. We use Nsamples = 10 for the grid search on the validation set.894

We define a modest number of Ndps = 40 grid-points and found the extreme points of the grid895

(i.e. values of the parameters that clearly lead to worse results) by hand. For C-DPS and DiffPIR,896

we fix the diffusion schedule to standard choices (β0 = 1 × 10−4, βT = 0.02). In addition to the897

diffusion schedule, C-DPS has one tunable parameter γ that we tune on 40 loglinear grid points898

(i = 1, . . . , Ndps)899

10
a+(i−1)

(b−a)
Ndps−1 , (67)
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where a = −3 and b = 1. DiffPIR has two tunable parameters γ and ζ, although γ is typically900

considered not so critical. Thus, we split the 40 grid points into a two-dimensional grid ΘDiffPIR =901

{0.3, 0.7} ×Θζ , i.e., 2 points for γ and 20 points for ζ given by Θζ = {Θζ
1, . . . ,Θ

ζ
Ndps/2

} where902

Θζ
1 = 10

a+(i−1)
(b−a)

(Ndps/2)−1 (68)

with a = −4 and b = 1. The DPnP algorithm only has the schedule {ηt}Tt=1 to tune. In this case,903

since DPnP is asymptotically correct, the schedule is a practical vehicle that enables to trade off904

between speed and accuracy. Therefore, we use a schedule that is similar to the one that was proposed905

in the original publication (Xu & Chi, 2024): We fix a small ηfinal = 0.15, and linearly decrease eta906

from some ηinitial to ηfinal after K/5 initial iterations with ηinitial:907

ηi =

{
ηinitial ifi = 1, . . . ,K/5
ηfinal

ηinitial

i−K/5
K−K/5 ηinitial ifi = K/5 + 1, . . . ,K

(69)

We treat ηinitial as a tunable parameter and search over ΘDPnP = {η1, η2, . . . , η40} where for908

i = 1, . . . , 40,909

ηi = 10a+(i−1)
(b−a)
40−1 (70)

with a = −1 and b = 4. Like in the original publication, we use the comparatively small K = 40.910

The MSE over the validation data depending on the value of the adjustable regularization parameter911

of the ℓ2 and ℓ1 estimators and the adjustable hyperparameters of C-DPS, DiffPIR, and DPnP is912

shown in fig. 7. Since the γ parameter of DiffPIR is considered not so critical, we only show the913

values of the MSE for various choices of ζ where γ is set to the value of the optimal (γ, ζ) pair.914

G ADDITIONAL RESULTS915

An exhaustive quantitative evaluation of the change in the optimality gap when substituting the916

learned denoiser for the oracle denoiser is provided in table 4. The table also reports for which917

cases the oracle denoiser reports significantly better results than the learned denoiser according to918

a Wilcoxon signed-rank test (p = 0.05, Ntest pairs, two-sided test with the winner determined by919

the median of differences). We attribute a better performance of the learned denoiser to the fact that920

the algorithms are fine-tuned using the learned component or to the cases where the likelihood score921

approximation is compensated by the one of the learned component.922

We show uncurated qualitative results of the MMSE estimate obtained by the DPS algorithms and the923

gold-standard Gibbs methods in figs. 8 to 15. The figures alternate between the oracle denoiser and924

the learned denoiser and show the results for deconvolution, denoising, imputation, and reconstruction925

from partial Fourier samples in that order. Each figure contains results for BL(0.1, 1), St(1), St(2),926

and Laplace(1).927

The coverage results for α = 0.9 are presented in table 5. The Gibbs row again validates the928

implementation; for all forward operators, they achieve coverages that are very close to 0.9. In929

contrast, the coverage values obtained by the DPS algorithms are generally much smaller than 0.9.930

For C-DPS and DiffPIR, the reported coverage values are almost always 0 except for BL(0.1, 1)931

and St(1) increments, where the coverages are usually (close to) 1 for C-DPS and inconsistent for932

DiffPIR. For almost all increment distributions and forward operators, DPnP reports coverage values933

that are closest to but typically smaller than 0.9. Note that a coverage of 1 can be considered the worst934

case even at a target of 0.9. For instance, it is achieved by setting all samples to a constant vector with935

extremely large (i.e. “unlikely”) entries.936
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Figure 7: Grid search diagnostics (logarithm of the MSE over the validation data set) for the model-
based methods and the DPS algorithms. Rows: ℓ2; ℓ1; C-DPS; DiffPIR; DPnP. Columns: Denoising;
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Table 4: Change in MMSE optimality gap (mean ± standard deviation) after substituting the learned
denoiser with the oracle denoiser. An asterisk indicates a significant changes according to a Wilcoxon
signed-rank test (p = 0.05). Negative number with asterisk: MMSE estimates obtained with the
oracle denoiser are significantly better. Positive number with asterisk: MMSE estimates obtained
with the learned denoiser are significantly better.

Gauss(0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Denoising
C-DPS 0.00± 0.11 0.00± 0.16 −0.46± 1.16* 0.00± 0.01 0.02± 0.79* −0.01± 0.14
DiffPIR 0.00± 0.13 0.00± 0.17 −0.05± 0.78* −0.41± 0.80* 0.00± 0.20 0.00± 0.15
DPnP 0.04± 0.27* −0.01± 0.22 −0.55± 1.31* −0.77± 1.31* 0.00± 0.24 0.00± 0.23

Deconvolution
C-DPS −0.01± 0.24 0.00± 0.26 0.09± 0.97* 6.64± 3.21* −0.12± 1.11* −0.03± 0.43
DiffPIR −0.01± 0.23 0.00± 0.23 0.04± 1.12 13.56± 9.90* −0.01± 0.47 0.00± 0.31
DPnP 0.00± 0.25 −0.01± 0.27* −0.02± 1.20 −4.98± 3.86* 0.06± 0.77 −0.02± 0.34

Imputation
C-DPS 0.00± 0.30 0.01± 0.35 0.41± 1.51* 3.41± 4.99* −0.12± 1.01* −0.01± 0.57
DiffPIR 0.00± 0.29 0.00± 0.33 0.03± 1.05 −0.20± 3.05* 0.03± 0.71 0.00± 0.47
DPnP 0.00± 0.35 −0.02± 0.38 −0.02± 1.02 −10.46± 5.70* 0.02± 0.67 −0.01± 0.48

Fourier
C-DPS −0.02± 0.43 −0.01± 0.49 0.80± 1.43* 0.09± 5.63* −0.03± 0.79* 0.01± 0.49
DiffPIR −0.01± 0.39 0.00± 0.40 0.12± 0.83* −0.64± 1.70* −0.03± 0.42* −0.02± 0.38
DPnP −0.01± 0.43 0.00± 0.45 −0.33± 1.13* −1.32± 3.18* 0.00± 0.54 0.01± 0.46

Table 5: Posterior coverage of various estimation methods at α = 0.9.
Gauss(0, 0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Learned Oracle Learned Oracle Learned Oracle Learned Oracle Learned Oracle Learned Oracle

Denoising

Gibbs — 0.90 — 0.91 — 0.91 — 0.89 — 0.91 — 0.89
C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.28 0.02 0.00 0.00 0.00 0.00
DPnP 0.58 0.67 0.11 0.11 1.00 0.41 0.53 0.08 0.09 0.09 0.09 0.10

Deconvolution

Gibbs — 0.89 — 0.90 — 0.90 — 0.91 — 0.91 — 0.91
C-DPS 0.00 0.00 0.01 0.00 1.00 1.00 1.00 0.83 0.01 0.00 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.97 0.92 0.00 0.00 0.00 0.00
DPnP 0.12 0.12 0.06 0.07 1.00 0.31 0.50 0.06 0.06 0.06 0.07 0.06

Imputation

Gibbs — 0.89 — 0.90 — 0.86 — 0.91 — 0.91 — 0.91
C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 0.94 0.78 0.15 0.15 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.72 0.32 0.00 0.00 0.00 0.00
DPnP 0.28 0.31 0.09 0.08 1.00 0.41 0.56 0.07 0.14 0.13 0.12 0.13

Fourier

Gibbs — 0.91 — 0.90 — 0.90 — 0.91 — 0.92 — 0.91
C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 0.96 0.74 0.01 0.01 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.92 0.65 0.00 0.01 0.00 0.00
DPnP 0.19 0.19 0.08 0.06 1.00 0.32 0.50 0.06 0.07 0.07 0.07 0.06
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Figure 8: Qualitative results for deconvolution using the oracle denoising sampler. Rows: increment
distributions. For each increment distribution, the MMSE estimates obtained by the different DPS
algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-wise
marginal variances. Columns: Different measurements.
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Figure 9: Qualitative results for deconvolution using the learned denoiser. Rows: increment distribu-
tions. For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 10: Qualitative results for denoising using the oracle MMSE denoiser. Rows: increment
distributions. For each increment distribution, the MMSE estimates obtained by the different DPS
algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-wise
marginal variances. Columns: Different measurements.

30



Under review as a conference paper at ICLR 2026

−4

−2

0

0

2

4

0

1

2

C-DPS
DiffPIR
DPnP
Gibbs

0
5 · 10−2

0.1

0.15

0

0.2

0.4

0

1

2

3
·10−2

−40

−20

0

20

0

20

40

−300

−200

−100

0

0

5

10

0

5

10

0

5

10

0

10

20

−15

−10

−5

0

5

−20

−10

0

0

0.1

0.2

0.3

0

0.2

0.4

0
0.1
0.2
0.3
0.4

−10

−5

0

5

−10

0

0

5

10

0 20 40 60
0

5 · 10−2

0.1

0.15

0 20 40 60
0

5 · 10−2

0.1

0.15

0 20 40 60
0

5 · 10−2

0.1

0.15

B
L
(0

.1
,
1
)

S
t(
1
)

S
t(
2
)

L
a
p
la
c
e
(1

)

Figure 11: Qualitative results for denoising using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 12: Qualitative results for imputation using the oracle sampler. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 13: Qualitative results for imputation using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms and the
gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal variances.
Columns: Different measurements.
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Figure 14: Qualitative results for reconstruction from partial Fourier measurements using the oracle
denoiser. Rows: increment distributions. For each increment distribution, the MMSE estimates
obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown on top of
the corresponding index-wise marginal variances. Columns: Different measurements.
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Figure 15: Qualitative results for reconstruction from partial Fourier measurements using the learned
denoiser. Rows: increment distributions. For each increment distribution, the MMSE estimates
obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown on top of
the corresponding index-wise marginal variances. Columns: Different measurements.
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Figure 16: Conditional generation for deconvolution of a signal with BL(0.1, 1) increments with
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