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ABSTRACT

We propose a statistical benchmark for diffusion posterior sampling (DPS) al-1

gorithms in linear inverse problems. Our test signals are discretized Lévy pro-2

cesses whose posteriors admit efficient Gibbs methods. These Gibbs methods3

provide gold-standard posterior samples for direct, distribution-level compar-4

isons with DPS algorithms. They can also sample the denoising posteriors in5

the reverse diffusion, which enables the arbitrary-precision Monte Carlo esti-6

mation of various objects that may be needed in the DPS algorithms, such as7

the expectation or the covariance of the denoising posteriors. In turn, this can [tkeZ] Clarifica-
tion of terminol-
ogy and phrasing
regarding our “ora-
cle” objects.

8

be used to isolate algorithmic errors from the errors due to learned compo-9

nents. They also serve as oracle denoisers in the reverse diffusion, which enables10

the isolation of the error that arises from the approximations to the likelihood11

score. We instantiate the benchmark with the minimum-mean-squared-error op-

[tkeZ TmEt]
Rephrase to em-
phasize that isolat-
ing algorithmic er-
rors from learned
approximations is
possible but not
done systemati-
cally.

12

timality gap and posterior-coverage tests and evaluate popular algorithms on13

the inverse problems of denoising, deconvolution, imputation, and reconstruction14

from partial Fourier measurements. We release the benchmark code at https:15

//github.com/emblem-saying/dps-benchmark and . The repository16

exposes simple plug-in interfaces, reference scripts, and config-driven runs so that17

new algorithms can be added and evaluated with minimal effort. We invite the18

community to contribute and report results.19

1 INTRODUCTION20

Diffusion models are among the leading generative models in imaging (Rombach et al., 2022),21

visual computing (Po et al., 2024), finance and time-series analysis (Huang et al., 2024; Rasul et al.,22

2021), de novo protein and drug design (Watson et al., 2023; Alakhdar et al., 2024), natural language23

processing (Li et al., 2022), and other domains. Their ability to model complex distributions has24

motivated their use as priors in the Bayesian resolution of inverse problems. In fact, reconstruction25

methods that leverage diffusion models are competitive or state-of-the-art for problems such asin,26

e.g., deconvolution (Ren et al., 2023), phase retrieval (Xue et al., 2025), magnetic resonance imaging27

and computed tomography reconstruction (Chung & Ye, 2022; Liu et al., 2023), weather-artifact28

removal (Özdenizci & Legenstein, 2023), task-conditioned protein design (Bogensperger et al., 2025),29

audio bandwidth extension and dereverberation (Lemercier et al., 2024), and denoising of financial30

time-series (Wang & Ventre, 2024).31

This empirical success has come in spite of a lack ofdespite diffusion models lacking a natural32

mechanism for the conditioning on measurements and active research explores how to incorporate33

the likelihood (Yismaw et al., 2025; Erbach et al., 2025). Currently, conditioning strategies are34

evaluated in one of two ways. (i) With respect to downstream applications: As an example, evaluations35

with respect to perceptual metrics such as the structural similarity (Wang et al., 2004), the Fréchet36

inception distance (Heusel et al., 2017), or the learned perceptual image-patch similarity (Zhang et al.,37

2018) are common in the imaging sciences. AHowever, as pointed out by Pierret & Galerne (2025b)38

and Cardoso et al. (2024), however, these metrics are ill-suited for the statistical evaluation of posterior-39

sampling algorithms. (ii) In overly simplistic settings: A common fallback is to evaluate conditioning40

strategies in synthetic settings with (finite-component) Gaussian-mixture priors. Such mixtures41

remain light-tailed with the tail decreasing exponentially like the widest component. Consequently42

and, consequently, they cannot reproduce power-law-like extremes that are common in, e.g., asset43

returns (Blattberg & Gonedes, 1974; Cont, 2001) orand statistics of images (Wainwright & Simoncelli,44
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1999). We illustrate signals with such power-law-like extremes later in Figure 3. Benchmarks built45

on such priors can therefore overstate posterior quality. A proper statistical evaluation in realistic46

settings is critical in high-stakes applications such as medical imaging, remote sensing, and finance,47

where decisions based on reconstructions and their associated uncertainties may have significant48

consequences.49

1.1 CONTRIBUTIONS50

We propose such a statistical benchmark for diffusion posterior sampling (DPS) algorithms1 for [tkeZ] Clarifica-
tion of our use of
the DPS acronym.

51

linear inverse problems. OurWe consider a setting similar to Bohra et. al (2023) in which test signals52

are obtained from discretized sparse Lévy- processes priors that admit efficient posterior-sampling53

algorithms. Indeed, they admit efficient Gibbs methods with exact conditionals that provide gold-54

standard posterior samples. OurThe framework supports general posterior-level comparisons (—e.g.,55

(sliced) Wasserstein or energy distances or calibration via coverage and posterior predictive checks)56

— by furnishing matched samples obtained from the DPS algorithms and the gold-standard Gibbs57

methods.58

The Gibbs methods are also suited to sample from the denoising posteriors in the reverse diffusion.59

This motivates our contribution ofWe introduce a new template for DPS algorithms, in which update60

steps utilizewhere each reverse diffusion step utilizes samples from the corresponding denoising61

posterior. These samples can be used for arbitrary-precision Monte Carlo estimation of various ob-62

jects that are needed in the update steps of the algorithms, such as the minimum-mean-squared-error63

(MMSE) denoiser or its Jacobian, which enables the isolation of algorithmic errors from approxima-64

tion errors due to learned components—as opposed to only the MMSE point estimate—. Wand we [tkeZ] Clarifica-
tion of terminol-
ogy and phrasing
regarding the “ora-
cle” objects.

65

show how several popular DPS algorithms can be re-expressed within ourthis template. This template66

arises naturally in our framework because the Gibbs methods can provide these denoising-posterior67

samples. Our construction enables the isolation of algorithmic errors from errors due to learned68

components by replacing those learned components with arbitrary-precision Monte Carlo estimates.

[tkeZ TmEt]
Clearly delineat-
ing isolating algo-
rithmic error from
robustness (for
fixed hyperparame-
ters) w.r.t. denoiser
quality.

69

Finally, we instantiate the framework with the MMSE optimality gap and highest-posterior-density70

coverage checks across the inverse problems of denoising, deconvolution, imputation, and reconstruc-71

tion from partial Fourier measurements. We target the realistic scenario where a learned denoiser is72

used and check hyperparameter sensitivity by substituting the arbitrary-precision Monte Carlo counter-73

parts for the learned components. The benchmark code—which is another substantial contribution—is74

available in an online. Itrepository that contains efficient implementations of sampling routines and a75

containerized runtime that allows novel algorithms to be easily benchmarkedbenchmarked easily.76

1.2 RELATED WORK77

For unconditional sampling, many works derive theoretical bounds on various distances between78

a target distribution and the distribution obtained by (approximations of) the reverse stochastic79

differential equation (SDE) (see Section 2). For example, Gao et al. (2025) bound the Wasserstein-280

distance with respect to the discretization error of the SDE under the assumption that the target81

distribution is smooth and log-concave. This directly bounds the number of reverse-diffusion steps82

that are needed to obtain a desired accuracy. Under absolute continuity of the target with respect to a83

Gaussian, Strasman et al. (2025) bound the Kullback–Leibler divergence with respect to properties of84

the noise schedule. Additional results in other distances can be found in the references cited therein.85

A common assumption that simplifies the analysis and facilitates the computation of various errors86

and bounds is that of a Gaussian target. In that case, many objects in the forward and reverse SDE87

admit closed forms, which facilitates the computation of various bounds. For example, Hurault et al.88

(2025) analyze the error incurred when using adue to the finite number of prior samples used for89

in the estimation of the prior score (which is affine in this case) and track its propagation through90

the iterations of the reverse-SDE solver. Pierret & Galerne (2025b) derive explicit solutions to the91

SDE and use themthose to derive bounds on the Wasserstein-2 distance to the distributions that are92

obtained via Euler–Maruyama discretizations.93

1We use “DPS algorithms” as an umbrella term for posterior-sampling methods with diffusion priors. The
method due to Chung et al. (2023), often called DPS in the literature, will be referred to later as C-DPS.
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ForWorks that consider conditional samplinggeneration, and are closest to the present paper are94

Pierret & Galerne (2025a) and Crafts & Villa (2025) Pierret & Galerne (2025a) derive expressions95

for the Wasserstein-2 distances between the conditional forward marginals and the distributions96

induced by specific likelihood approximations in the reverse SDE under the assumption of a Gaus-97

sian prior. In contrast, our framework handles a broader set of priors (discretized Lévy processes) and98

accommodates a broader set of algorithms than those that rely on specific likelihood approximations.99

Moreover, deriving explicit expressions for new algorithms often requires a substantial amount of100

nontrivial mathematics. In contrast, our benchmark is deliberately designed for a plug-and-play101

evaluation of novel algorithms. Crafts & Villa (2025) systematically evaluate DPS algorithms numer-102

ically under the assumption of a (finite-component) Gaussian-mixture prior numerically and. Similar103

to the present work, they provide reference objects to the DPS algorithms to ensure a fair evaluation. [tkeZ TmEt] Re-
moved passages
that may indicate
that we system-
atically remove
approximation er-
rors.

104

Cardoso et al. (2024) and Boys et al. (2024) also evaluate their algorithms on Gaussian-mixture pri-105

ors. TheseHowever, they only consider Gaussian-mixture priors, however, which cannot reproduce

[bQ8j] Added
relevant references.

106

power-law-like extremes and can overstate posterior quality.107

Beyond diffusion-specific theory, Thong et al. (2024) evaluate posterior calibration by checking the108

coverage of credible regions produced by different Bayesian recovery strategies and. They find that109

thoserecovery strategies that utilize diffusion models often under-report uncertainty. A shortcoming110

of their approach is that they use an empirical distribution of images as a surrogate for the prior111

distribution. Our framework, by contrast, relies on known priors from which infinitely many signals112

and corresponding measurements can be generated. It isolates algorithmic errors without resorting113

to surrogate priors and supports fair, repeatable comparisons across tasks and algorithms. Finally,114

Bohra et al. (2023) also used efficient Gibbs methods to obtain gold-standard posterior samples.115

Their main focus was to quantify the quality of neural MMSE estimators with different number of116

parameters. Our work extends this to posterior-level comparisons.117

2 BACKGROUND118

Bayesian Linear Inverse Problems We seek to estimate a signal x → Rd from the measurements119

y = Ax+ n, (1)

where the forward operator A → Rm→d models the noiseless linear-measurement acquisition and120

n → Rm is additive noise. In the Bayesian resolution of this problem (Stuart, 2010)(see, e.g., Stuart121

(2010)), the signals are modeled as a random variable, denoted X, with values in Rd and distribution122

pX, referred to as the prior. Given any measurement y, the ultimate goal is to analyze the posterior123

pX|Y=y. It which is related to the likelihood pY|X=x and the prior pX via Bayes’ rule, which states124

that125

pX|Y=y(x) ↑ pY|X=x(y)pX(x). (2)
In contrast to classical variational methods (Scherzer et al., 2008)(see, e.g., Scherzer et. al (2008)),126

the posterior distribution provides natural means to quantify uncertainty and can be summarized by127

various point estimators. We provide a precise description of point estimators that are relevant in this128

work in Appendix A.129

For a given signal x, the likelihood pY|X=x is fully specifieddetermined by the distribution of the130

noise. A common assumption on the noise is that it is a vector of independent and identically131

distributed (i.i.d.) Gaussian random variables with mean zero and variance ω2
n.2 In this case, the132

likelihood is given by133

pY|X=x(y) ↑ exp
(
↓

1
2ω2

n
↔Ax↓ y↔

2
)
. (3)

Thus, once the forward model and the noise distribution are specified, the remaining modeling choice134

is the prior. Diffusion models are good candidates due to their ability to encode complex distributions.135

Diffusion Models Diffusion models were introduced by Song et al. (2021) by unifying the discrete136

approaches proposed byfrom Song & Ermon (2019) and Ho et al. (2020) in a continuous theory based137

on SDEs (Klenke, 2020, Chapters 25 and 26). We denote the (diffusion) SDE with drift coefficient138

f : Rd
↗ R↑0 ↘ Rd and diffusion coefficient g : R↑0 ↘ R as139

dXt = f(Xt, t) dt+ g(t) dWt, (4)
2Our framework supports more general (possibly non-Gaussian) likelihoods, see Section 3.
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Figure 1: Unconditional reverse-diffusion trajectories obtained by DDPM using the arbitrary-precision
Monte Carlooracle denoiser. Rows: Increment distributions. Columns: Diffusion times. Line styles:
Different random states.

with some suitable initial condition X0, where Wt is the standard Wiener process. In our setup, the140

initial condition X0 is the random variable that describes the signal, thus, X0 = X. Under suitable141

choices for f and g, the forward process admits a limiting marginal X↓ as t ↘ ≃. Sampling from142

pX0 can then proceed by simulating the SDE (4) in reverse with initial condition X↓. By Anderson’s143

theorem (Anderson, 1982), the reverse SDE that reproduces the forward marginals satisfies144

dXt =
(
f(Xt, t)↓ g2(t)⇐ log pXt(Xt)

)
dt+ g(t) dWt, (5)

where pXt denotes the density of Xt defined by the forward process, and dt is negative.145

The primary challenge in this approach lies in the computation of the scores ⇐ log pXt for all t > 0.146

A fundamental relation known as Tweedie’s formula connects the score with the MMSE denoiser: As147

we derive rigorously in Appendix B, for f(x, t) =
(
↓

ε(t)
2

)
x and g(t) =

√
ε(t), we have that3148

⇐ log pXt(x) = ↓ω(t)↔2
(
x↓ ϑ(t)E[X0 | Xt = x]

)
, (6)

where ϑ(t) = exp(↓ 1
2

∫ t
0 ε(s)ds) and ω2(t) = (1↓ ϑ2(t)). This yields a practical way to compute149

of computing ⇐ log pXt(x) through the resolution of the MMSE denoising problem of finding150

E[X0 | Xt = x]. In standard applications where the goal is the generation of new signals, onethis is151

typically tacklesd this by approximating the map (x, t) ⇒↘ E[X0 | Xt = x] with a neural network that152

is learned in an off-line step. In our frameworkbenchmark, we can instead obtain arbitrary-precision153

oracle MMSE denoisers via Gibbs methods and thereby eliminate approximation errors from a154

learned surrogate andto isolate errors in DPS algorithms themselves.155

The implementation ofImplementing the reverse SDE for generation requires its own time discretiza-156

tion, for instance with Euler–Maruyama techniques (Higham, 2001). In this work, we will base157

our backward processes onIn practice, researchers typically use the alternative denoising diffusion [tkeZ] Rephrasing
of “researchers
typically use”.

158

probabilistic model (DDPM) backward process (starting from Gauss(0, I))159

Xt↔1 = 1↗
1↔εt

(Xt + εt⇐ log pXt(Xt)) +
√

εtZt, (7)

that originates from the discrete-time Markov chain that was initially proposed by Sohl-Dickstein160

et al. (2015) and revisited and popularized by Ho et al. (2020). We relate it to the Euler–Maruyama161

discretization of the reverse SDE through Taylor expansions in Appendix B.1.162

Though we defer details on our signals and the Gibbs methods that we use to obtain the arbitrary-163

precision MMSE denoiser to Section 3, we demonstrate in Figure 1 that our signals can be generated by164

coupling the unconditional backward process in (7) with this denoiser.We show trajectories of signals165

generated by this backward process using the oracle MMSE denoiser in Figure 1 We furtherand [tkeZ bQ8j] Im-
provement of the
structure (bQ8j)
and clarification
of the purpose of
Figure 1 (tkeZ).

166

3This is theThe variance-preserving (VP) formulation (Song et al., 2021, Section 3.4) with standard normal
limiting marginal, where ω : R→0 → R→0 controls the speed of the contraction to zero and how much noise is
injected.
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motivate this arbitrary-precisionthe oracle denoiser in Figure 2 by comparingshowing the histograms167

of signal increments producedobtained by the learned denoiser andversus the arbitrary-precision168

oracle denoiser for a St(1) increment targetin figure 2 (notations summarized in Appendix C.2). The169

construction of the signals and the oracle denoiser are described in Section 3 and our notations of170

various distributions are summarized in Appendix C.2. The increments of signals generated withby [bQ8j] Improve-
ment of the struc-
ture.

171

using the arbitrary-precisionoracle denoiser follow the targetincrement almost perfectly. Residual172

errors are due to the discretization error of the reverse diffusion and Monte Carlo error of the173

arbitrary-precisionoracle denoiser.174

→10 0 10
0

0.1

0.2

0.3

Increments

Fr
eq

ue
nc

y

Learned
Monte Carlo
Target

Figure 2: Histogram of increments of signals ob-
tained by DDPM with different denoisers.

Diffusion Posterior Sampling Our The175

reverse-diffusion sampler from the previous176

section can be adapted to sample from a177

posterior by replacing the prior score ⇐ log pXt178

with the posterior score179

⇐ log pXt|Y=y = ⇐ log pXt+⇐
(
x ⇒↘ log pY|Xt=x(y)

)

(8)
for some given measurement y, obtained by180

Bayes’ theorem. Although the dependence be-181

tween Y and X0 is known through (1) and the182

likelihood is explicitly modeled via (3), it is gen-183

erally challenging to relate Y and Xt for any t > 0. To overcome this, the conditioning on the184

measurements is usually done in one of two ways. (i) A learned component models the conditional185

posterior score and also gets the measurements as input. This strategy is(pursued by, e.g., Liu et al.186

(2023); Özdenizci & Legenstein (2023); Bogensperger et al. (2025); Saharia et al. (2023)), and is187

advantageous when the measurement process is unknown, difficult to model, or prohibitively expen-188

sive to evaluate. However, its reconstructions obtained by this strategy typically degrade under shifts189

in measurement conditions, since the learned components cannot adapt to the new measurement190

conditions. (ii) The Bayesian separation that is described in (8) is pursued and the likelihood score is191

approximated. This strategy (pursued byis done by, e.g., Chung & Ye (2022); Xue et al. (2025) and the192

methods reviewed by Lemercier et al. (2024)), and is advantageous when the measurement process193

is known, relatively inexpensive to evaluate, and subject to change, but prior knowledge should be194

reused, which is frequently the case in, e.g., imaging or remote-sensing applications. However, this195

requires approximations to the likelihood score ⇐(x ⇒↘ log pY|Xt=x(y)) for all t > 0.196

Our benchmark can evaluate either strategy, as well as(and any other method that would claims to197

sample from a posterior distribution like in (2)). Approach (i)The first approach, however, relies [tkeZ] Clarifica-
tion on the type of
algorithms that can
be evaluated.

198

on black-box learning of the conditional posterior score and its performance heavily depends on199

various implementation details. Thus, we primarily focus on approach (ii)the second approach, which200

that necessitates approximations of the likelihood score (and more general DPS algorithms with201

explicit conditioning, see our proposed generalization in Section 3). For those, our framework can202

supply arbitrary-precision Monte Carlo estimates of variousreference objects —posterior samples203

and arbitrary-precisionoracle denoisers via Gibbs methods—to isolate and quantify the impact of204

these approximations.205

3 PROPOSED FRAMEWORK206

The prior distributions in our framework will be that of signals of length d obtained by regularly207

spaced samples of processes with independent, stationary increments (Lévy processes, described in208

Appendix C). Let s be such a process and let the unit-step increments be [u]k = (s(k)↓ s(k ↓ 1))209

for k = 1, 2, . . . , d. Independence and stationarity imply that the distribution of [u]k, the increment210

distribution pU , does not depend on k. The increment vector is related to the signal x via u = Dx,211

where D is a finite-difference matrix with an initial condition that allows us to write x = D
↔1

u212

where D
↔1 is a lower-triangular matrix of ones. This gives a convenient way to synthesize signals213

once u is drawn. The independence of the increments implies that the density of the discrete signal is214

pX(x) =
d∏

k=1

pU
(
[Dx]k(Dx)k

)
. (9)

5
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Figure 3: Examples of signals with heavy-tailed increment distributions. Top: Asset returns. Bottom:
Columns in natural images. Left: Signals. Right: Survival function of absolute increments (no marker:
empirical; markers: best fit to empirical within distribution). [TmEt pM9c] Ad-

dition of examples
of real signals with
heavy-tailed incre-
ment distributions.

We consider four increment distributions that are commonly used in sparse-process models: Gaussian;,215

Laplace;, Student-t;, and Bernoulli–Laplace (spike-and-slab). Such increment distributions are sparse216

or heavy-tailed according to the taxonomy due to Unser & Tafti (2014)in (Unser & Tafti, 2014) and217

are relevant in signal and image processing, finance, and other fields (Schoutens, 2003). We show218

instances signals with such heavy-tailed increment distributions in Figure 3. A precise definition of [TmEt pM9c] Ad-
dition of examples
of real signals with
heavy-tailed incre-
ment distribution.

219

Lévy processes, the matrix D, the increment distributions and their notation along with a discussion220

about extensions to higher-dimensional signals or signals with more complicated graph structure are221

given in Appendix C.222

Efficient Posterior Sampling With the prior distribution specified in (9) and the assumption of223

Gaussian noise, the posterior associated to the inverse problem intrinsic in (1) is224

pX|Y=y(x) ↑ exp
(
↓

1
2ω2

n
↔Ax↓ y↔

2
)
pX(x) = exp

(
↓

1
2ω2

n
↔Ax↓ y↔

2
) d∏

k=1

pU
(
[Dx]k(Dx)k

)
.

(10)
Unless pU is a Gaussian (the simplified setting in Pierret & Galerne (2025b)), this posterior is not225

conjugate, so neither closed-form sampling nor direct evaluation of moments is available. Nevertheless,226

for the increment distributions used in this paper, the posterior distributions admit efficient Gibbs227

methods via standard latent-variable augmentations. Motivation and more details about the Gibbs228

methods, such as the burn-in period B and the number of samples S, are provided in Appendix D.229

Algorithm 1 GLM Gibbs method.

Require: x0 → Rd, K → Rn→d, conditional la-
tent distributions {p[Z]kZi|X}

n
ki=1 and maps

{µki,ω2
ki}

n
ki=1

1: for s = 1, . . . , B + S do
2: Draw [z]kzi ⇑ p[Z]kZi|X=[Kxs→1]k(Kxs→1)i ϖ par.

allel over ki
3: Draw xs ⇑ Gauss(µ(z),!(z))
4: return {xB+s}

S
s=1

The Gaussian, Laplace, and Student-t dis-230

tributions admit latent representations231

as infinite-component Gaussian mixtures,232

which makes them suitable for the Gaus-233

sian latent machine (GLM) framework that234

was recently introduced by Kuric et al.235

(2025). ItThe GLM framework is generally236

applicable to distributions of the form237

p(x) ↑
n∏

k=1

ϱk

(
[Kx]k(Kx)k

)
, (11)

where K → Rn→d and all distributions238

ϱ1,ϱ2, . . . ,ϱn : R ↘ R have a latent rep-239

resentation240

ϱk(t) =

∫

R
gµk(z),ω2

k(z)
(t)fk(z) dz, (12)

where the latent distribution fki and the latent maps µki,ω2
ki : R ↘ R depend on the distribution241

ϱki, and gµ,ω2 is the density of a one-dimensional Gaussian distribution with mean µ and variance242

6
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ω2. We can cast tThe posterior distribution in (10) can be cast into this framework by rewriting it as243

pX|Y=y(x) ↑
m∏

k=1

g[y]kyk,ω2
n

(
[Ax]k(Ax)k

) d∏

k=1

pU
(
[Dx]k(Dx)k

)
=

m+d∏

k=1

ϱk

(
[Kx]k(Kx)k

)
.

(13)
There,by setting K = [A;D], ϱk = g[y]kyk,ω2

n
for k = 1, 2, . . . ,m, and ϱk = pU for k = [tkeZ] Clari-

fication of the
derivation of (13)
through the intro-
duction of new
“indexing” nota-
tion.

244

m + 1,m+ 2, . . . ,m + d. We summarize the GLM sampling in algorithm 1. Importantly, non-245

Gaussian likelihoods can be handled by some appropriate definition ofadapting the first m distribu-246

tions appropriately.247

The introduction of an appropriate n-dimensional random variable Z with non-trivial distribution248

(see the details in Kuric et al. (2025)) enables the efficient sampling from the conditionals: Sampling249

X | Z = z amounts to sampling a Gaussian with covariance and mean250

!(z) = (K
↘T

!0(z)
↔1

K)↔1 and µ(z) = !(z)K
↘T

!0(z)
↔1µ0(z), (14)

respectively, where !0(z) = diagdiag
(
ω2
1([z]1z1), . . . ,ω

2
n([z]nzn)

)
and µ0(z) =251

(
µ1([z]1z1), . . . , µn([z]nzn)

)
. Sampling Z | X = x amounts to sampling n independent252

one-dimensional conditional latent distributions p[Z]1Z1|X=[Kx]1(Kx)1 , . . . , p[Z]nZn|X=[Kx]n(Kx)n253

that depend on the distributions ϱ1, . . . ,ϱn and are given in Table 3 in the appendix along with the254

corresponding latent distributions and latent maps. We summarize the GLM sampling in Algorithm 1.255

For the Bernoulli–Laplace increment distribution, we adapt the algorithm proposed by Bohra et al.256

(2023) that introduces two d-dimensional latent variables: aA Bernoulli indicator (“on”/“off”); and257

a Laplace-distributed increment height. For a self-contained exposition, we rigorously derive the258

resulting Gibbs method in Appendix D.1.259

101.48

Baseline

+ Parallel CUDAGIG sampler

→54.07

+ Parallel sampling of U | V = v,W = w,Y = y

→33.52

+ Woodbury–Sherman–Morrison for sampling V | W = w,Y = y

→11.71

+ torch.compile

Seconds per Gibbs iteration (NVIDIA V100)

Final runtime: 1.36 s
Speedup: 74.61↑

Figure 4: Runtime improvements of the Bernoulli–
Laplace sampler. [pM9c] Quantifica-

tion of the speedup
that we achieved
with our implemen-
tation.

The Gibbs methods that we just described are260

suitable for the generation of the gold-standard261

samples from the posterior that corresponds to262

the initial inverse problem intrinsic in (1) as263

well as the generation of samples from the de-264

noising posteriors in the DPS algorithms. In the265

latter case, the forward operator A is the iden-266

tity, the measurements are the noisy intermedi-267

ate reconstructions xt, and the noise variance268

ω2
n = ω2

t follows the schedule at timestep t.269

When these Gibbs methods are embedded270

within the reverse-diffusion loop, an efficient271

implementation is paramount to achieve accept-272

able runtimes. This is most crucialespecially273

true for the Bernoulli–Laplace increment distributions, where the sequential drawing of the binary274

support vector is nested within theoccurs inside the outer Gibbs loop, which in turn may be nested275

within the reverse-diffusion loop. Accordingly, we deliberately tailored our implementation—which276

we regard as a substantial contribution— to modern, highly parallel compute units and optimized sev-277

eral components, including custom CUDA- and Triton-compiled sampling routines and incremental278

updates based on the Woodbury–Sherman–Morrison identities (see Appendix D.2). We achieved a279

cumulative speedup of 74.61↗ over the baseline implementation (illustrated in Figure 4 with details280

in Appendix D.2). [pM9c] Quantifica-
tion of the speedup
that we achieved
with our implemen-
tation.

281

A Generalized DPS Template Widely used methods, such as diffusion plug-and-play (DPnP) (Xu282

& Chi, 2024), fall outside the pattern described in Section 2, where one approximates—approximating283

the likelihood score inside the reverse diffusion. We therefore introduce a simple template that is284

natural in our setting and accommodates a broader set of DPS algorithms. More precisely, we285

characterize the iteration rule of DPS algorithms as an iteration rule that can be summarized into286

a two-stage process: Given an iterate xt with associated noise variance ω2
t , the computation of287

the next iterate xt↔1 is computeddone by (i) drawing S samples denoted {x̄ks}
S
ks=1 from the288
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denoising posterior pX0|Xt=xt
↑ exp

(
↓

1
2ω2

t
↔ · ↓ xt↔

2
)
pX0( · );, and (ii) the subsequent com-289

putation ofcomputing the next iterate xt↔1 through an update step S that may utilize the cur-290

rent iterate xt, the samples {x̄ks}
S
ks=1, the measurements y, the forward operator A, and, pos-291

sibly, other algorithm-internal parameters such as a scalar that weights likelihood and prior terms292

or parameters that define the noise schedule. This template is summarized in Algorithm 2 and293

specialized instances for the update step S for a variety of popular algorithmsthat correspond294

to the three popular algorithms Chung diffusion posterior sampling (C-DPS) (Chung et al., 2023),295

diffusion models for plug-and-play image restoration (DiffPIR) (Zhu et al., 2023), and DPnP (Zhu296

et al., 2023) are given in Appendix E.2. We have absorbed the (variance-preserving) scaling into [tkeZ] Showcase
the broad applica-
bility and general-
ity of our template.

297

the step S since this template is not fundamentally limited to diffusion processes but supports any298

(also not monotonically decreasing) noise schedules. In addition, noise variances {ωt}
T
t=1 are usually299

derived from the algorithm-internal parameters ω that may include a noise schedule.300

Algorithm 2 Template for DPS algorithms.
Require: Initial point xT , y, A, ω

1: for t = T, . . . , 1 do ϖ Diffusion process
2: Sample {x̄ks}

S
ks=1 ⇑ pX0|Xt=xt

3: Update xt↔1 =
S(xt, {x̄ks}

S
ks=1,y,A,ω, t)

4: return x̂
alg = x0 ϖ Posterior sample

Through this construction, DPS algorithms can301

use any statistic R of the samples {x̄ks}
S
ks=1302

in their update steps. Most methods use the303

mean R(x̄1, . . . , x̄S) = 1
S

∑S
ks=1 x̄ks := µ̄,304

which is the Monte Carlo estimate of E[X0 |305

Xt = xt]. An example of a DPS algorithm306

that utilizes additional statistics is C-DPS,307

which requires the Jacobian of xt ⇒↘ E[X0 |308

Xt = xt]. As we show in Appendix E.1, this309

Jacobian equals (up to the known variance-310

preserving scaling) the conditional covariance311

of X0 | Xt = xt, an unbiased estimator of which can be obtained through the statistic312

R(x̄1, . . . , x̄S) =
1

S↔1

∑S
ks=1(x̄ks ↓ µ̄)(x̄ks ↓ µ̄)

↘T
. An example of a DPS algorithm that uti-313

lizes an alternative statistic is the DPnP algorithm that alternately samples from pX0|Xt=xt
and a314

data-proximal problem. There, R(x̄1, . . . , x̄S) = x̄1 is used to obtain one sample from pX0|Xt=xt
.315

This statistic is frequently used in the asymptotically exact and the CSGM-type algorithms (using the316

taxonomy due to Daras et al. (2024)). When only a learned MMSE denoiser is available, obtaining this317

one sample requires a full reverse diffusion. In contrast, it requires only one iteration (and the burn-in318

period) with the Gibbs methods. Thus, these algorithms are typically faster when they are endowed319

with the Gibbs methods (see the runtimes in Tables 5 and 6), which enables easy benchmarking.320

However, CSGM-type algorithms typically do not aim at posterior sampling and we do not benchmark321

them here. [tkeZ] Signifi-
cance of S = 1 in
DPnP and relation
to optimization-
based and CSGM-
type methods.

322

Since the denoising posteriors are always sub-Gaussian, the Monte Carlo estimation of any object323

enjoys favorable convergence. For instance, the computational complexity of estimating the covariance324

up to a desired precision in the operator norm scales linearly with the dimensionality of the signal325

(Vershynin, 2018, Theorem 4.7.1).

[tkeZ] Computa-
tional complexity
of covariance esti-
mation.

326

Extensions A prerequisite for a quantitative evaluation of posterior-sampling algorithms is the327

availability of reasonably efficient samplers that can provide gold-standard samples. The development328

of such samplers for posteriors arising from nonlinear measurement models and non-Gaussian noise329

is challenging, and existing methods currently address only specific cases (e.g., Wang et al. (2017)330

study a nonlinear-Gaussian measurement model with a Laplace prior). Importantly, our framework331

is modular: as more general-purpose samplers for these posteriors become available, they can be332

plugged into our benchmark directly. The denoising posteriors in the reverse diffusion do not change333

with the likelihood and can, therefore, always be efficiently sampled. [tkeZ TmEt
pM9c] Extensions
to nonlinear prob-
lems, higher dimen-
sions, and other
posterior solvers.

334

When going to higher dimensions, the primary challenge lies in the sampling of the high-dimensional335

Gaussian distributions required in the Gibbs methods. Luckily, the structure of the involved operators336

in our case is such that the Gaussians can be efficiently sampled with perturb-and-MAP approaches337

with matrix-free conjugate gradient implementations; we discuss this in more detail and show how338

the runtime of different samplers change with the dimensions in Appendix D.2. Sampling high-339

dimensional Gaussians is a well-studied problem and advances in that field can directly be used in340

our framework.341
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Our gold-standard posterior samples can be compared to samples obtained by any posterior-sampling342

algorithm. This includes classical Markov-chain Monte Carlo algorithms, algorithms that utilize343

flow-matching priors, and others. In this work, we primarily focus on DPS algorithms because344

our framework can supply arbitrary-precision Monte Carlo objects to them. We believe that this345

fundamental principle can be extended to other algorithms, in particular those that utilize flow-346

matching priors. Such algorithms are frequently evaluated on toy examples based on Gaussian347

mixtures (e.g. by Pourya et al. (2025)), that are overly simplistic.348

4 NUMERICAL EXPERIMENTS349

We consider signals of dimension d = 64 and four inverse problems that are frequently encountered in [pM9c] Informa-
tion and motivation
about the dimen-
sionality of our
setup.

350

various estimation tasks throughout the natural sciences: denoising;, deconvolution;, imputation;, and351

reconstruction from partial Fourier measurements. The dimension of the signal is large enough such352

that the corresponding operators can be sensibly defined, yet small enough such that the benchmark has353

acceptable runtimes. We provide experiments about the runtime with larger signals in Appendix D.2,354

details Details about the operators are provided in Appendix F.1, and precise descriptions of the355

benchmarking pipeline (e.g., the number of training, validation, and test signals, and the number of356

iterations in the Gibbs methods) in Appendix F.2.357

4.1 RECONSTRUCTION ALGORITHMS358

The model-based methods and the DPS algorithms require the tuning of some hyperparameters.359

These were found by grid search on validation data independently for each algorithm, increment360

distribution, and forward operator. The precise setup for this grid search is given in Appendix F.5.361

Importantly, the hyperparameters for the DPS algorithms were tuned to the learned denoiser due to362

resource constraints and we view full oracle-tuning as a community task. Parameters obtained with363

this procedure are later denoted with a star in the superscript.364

Model-Based Methods WAs baseline reconstruction algorithms we consider the model-based365

methods366

x̂
ϑ2(y,ς) = argmin

x≃Rd

(
1
2↔Ax↓ y↔

2 + ς↔Dx↔
2
)
, (15)

and367

x̂
ϑ1(y,ς) = argmin

x≃Rd

(
1
2↔Ax↓ y↔

2 + ς↔Dx↔1

)
, (16)

as baseline reconstruction algorithms. Theywhich coincide with the maximum-a-posteriori (MAP)368

estimators of Lévy processes associated with Gaussian and Laplace increment distributions, respec-369

tively.370

Diffusion Posterior Sampling Algorithms We consider three DPS algorithms that are popular371

in the literature. First, the C-DPS algorithm due to (Chung et al., 2023), which was one of the first372

algorithms that was proposed for the resolution of general noisy inverse problems with diffusion373

priors. Second, the DiffPIR, algorithm due to (Zhu et al., 2023) that can be regarded as an extension of374

the C-DPS algorithm and typically reports superior results in standard perception-based evaluations. [tkeZ] Removed
ambiguous descrip-
tion of the relation
between C-DPS
and DiffPIR.

375

and Third, the DPnP algorithm due to (Xu & Chi, 2024)that alternates between sampling the376

denoising subproblem and a data-proximal subproblem. This selection demonstrates the applica-377

bility of the framework to algorithms that require denoising-posterior samples (DPnP), the MMSE378

denoiser (DiffPIR), and its Jacobian (C-DPS), which covers most of the existing DPS algorithms. We379

include the DPnP algorithm to showcase the broad applicability of our framework to nonstandard380

setups that utilize various statistics of the denoising posterior. For each DPS algorithm, we benchmark [tkeZ TmEt] Ex-
planation on the
isolation of al-
gorithmic errors;
clarification of our
experimental setup;
MCMC terminol-
ogy.

381

a variant that uses learned components (learning details are provided in Appendix F.3) and a variant382

that uses Gibbs samples of the denoising posterior. For DPnP, this fully removes approximation383

errors. For the others, the learned components and the Monte Carlo estimates of those components384

have varying quality for different distributions and noise variances that we systematically investigate385

in Appendix F.4. We provide our main results, the MMSE optimality gap, for the learned variant386

and then investigate changes when we substitute the Gibbs samples for the learned components.387

two variants: One where the denoising posterior is sampled with the gold-standard Gibbs methods388

(oracle denoiser) and statistics are computed from those samples, and one where the sampling (or the389
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direct estimation of any point estimate) is done with learned components. For the former, we ensured390

that the Monte Carlo error (in the estimation of the denoising-posterior expectation) is significantly391

below the error of the learned denoisers with a rigorous protocol that is described in Appendix F.4.392

For the latter, learning details are provided in Appendix F.3.393

The model-based methods and the DPS algorithms require the tuning of some hyperparameters.394

These were found by grid search on validation data independently for each algorithm, increment395

distribution, and forward operator. The precise setup for this grid search is given in Appendix F.5.396

The hyperparameters for the DPS algorithms were tuned to the learned denoiser. Parameters obtained397

with this procedure are later denoted with a star in the superscript.398

Gold-Standard Gibbs Methods The Gibbs methods are used to obtain gold-standard samples399

from the posterior. As described in Section 3, the Gibbs methods are parameter- and bias-free and400

efficient. Cand, consequently, they are well-suited for ourthis purpose. Chain lengths, diagnostics,401

and implementation details are given in Appendix F.2; we reuse the same settings across operators402

and increment families.403

4.2 RESULTS404

Before advancing, we introduce some notation. For any given measurement y, someany DPS405

algorithm alg that depends on theany parameters ω will produces samples that we denoted406

{x̂
alg
k (y,ω)}

Nsamples

k=1 . We moreover denote x̂
alg
MMSE(y,ω) :=

1
Nsamples

∑Nsamples

k=1 x̂
alg
k (y,ω). For an407

estimation method x̂
est( · ) and data y with corresponding data-generating signal x we measure the408

MMSE optimality gap (in decibel) defined by409

10 log10

(
↔x̂

est(y)↓ x↔
2

↔x̂Gibbs
MMSE(y)↓ x↔2

)
, (17)

where x̂
est(y) = x̂

ϑ1↑/2

(y,ςϖ) for model-based methods and x̂
est(y) = x̂

alg
MMSE(y,ω

ϖ) for DPS410

algorithms. A gap of 0 indicates a perfect recovery of the gold-standard MMSE estimate and anythe411

positive nonzero values show the orders of magnitude of the error relative to the reference error. We412

found that Nsamples = 50 provided a good tradeoff between runtime and accuracy by benchmarking413

the gold-standard Gibbs method with that number of samples.414

We report in Table 1 the mean and standard deviation of the MMSE optimality gap over all signal-415

measurement pairs (x,y) in the test set obtained by the model-based methods and the DPS algorithms416

endowed with the learned denoiser in Table 1. The Gaussian increment distribution validates the417

implementation: Since the MMSE and the MAP point estimates coincide, the model-based φ2 esti-418

mator matches the Gibbs reference up to the error due to the finite parameter-grid resolution. When419

the posterior mean is smooth (e.g., imputation and some deconvolution cases), φ2 is the best model-420

based choice and frequently outperforms the DPS algorithms. When the posterior mean is close421

to piecewise-constant (typical in denoising of signals with sparse increments), the φ1 estimator is422

preferred. Among DPS algorithms, DiffPIR is typically the top performer and often exceeds φ2423

and φ1 baselines in deconvolution, imputation, and reconstruction from partial Fourier measure-424

ments. For spike-and-slab settings (Bernoulli–Laplace), DPS algorithms substantially outperform the425

model-based baselines across operators. In deconvolution and reconstruction from partial Fourier426

measurements, DPS algorithms frequently match or surpass the best model-based estimator.427

We now inspect the change in performance after we substitute higher-quality Monte Carlo com-428

ponents for the learned components. We do this without retuning of the hyperparameters, which429

allows us to see if the performance of the algorithms increases automatically with the quality of430

the denoiser. In addition to the reconstruction performance obtained with the learned denoisers—for431

which the parameters of the algorithms were tuned—we inspect the robustness of the algorithms432

when replacing the learned denoiser with the oracle denoiser. Here, we discuss general trends; an [tkeZ TmEt] Clar-
ification of our
experimental setup;
MCMC terminol-
ogy.

433

exhaustive quantitative evaluation and a precise quantification of the quality of the learned and Monte434

Carlo objects is given in Appendix G. For the same hyperparameters, the performance of DPnP435

increases significantly with the quality of the denoising-posterior samples. For example, the optimality436

gap decreases by 10.46 dB for imputation of signals with St(1) increments, and significantly for437

other measurement operators for signals with St(1) increments and BL(0.1, 1) increments. DPnP438

is the most robust to swapping the learned denoiser with the arbitrary-precisionoracle denoiser and439
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Table 1: MMSE optimality gap in decibel (mean ± standard deviation; lower is better; 0 is a perfect
reconstruction) of various estimation methods over the test set. Bold: best among DPS algorithms.

Gauss(0, 0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Denoising

C-DPS 0.12 ± 0.18 0.12± 0.20 2.22± 2.26 3.26± 1.01 0.28± 0.30 0.10± 0.18
DiffPIR 0.16± 0.21 0.09 ± 0.16 0.72 ± 1.10 0.93 ± 1.06 0.07 ± 0.14 0.15± 0.21
DPnP 0.24± 0.25 0.11± 0.17 1.33± 2.12 1.19± 1.38 0.10± 0.17 0.10 ± 0.17
φ1 0.15± 0.21 0.06± 0.12 3.44± 2.38 0.38± 0.43 0.14± 0.19 0.11± 0.18
φ2 0.00± 0.01 0.16± 0.21 8.61± 3.10 3.25± 0.99 0.74± 0.83 0.25± 0.33

Deconvolution

C-DPS 0.12± 0.20 0.12± 0.23 4.30± 3.87 18.30± 5.28 0.46± 1.40 0.17± 0.53
DiffPIR 0.07 ± 0.17 0.07 ± 0.19 1.09 ± 2.22 10.45± 6.10 0.09 ± 0.57 0.08 ± 0.26
DPnP 0.10± 0.18 0.13± 0.22 1.71± 2.49 7.84 ± 5.66 0.35± 1.39 0.14± 0.41
φ1 1.65± 0.84 1.38± 0.86 1.86± 3.14 1.87± 4.01 1.10± 1.19 1.28± 0.94
φ2 0.00± 0.01 0.07± 0.23 6.11± 4.49 21.50± 4.46 1.44± 2.85 0.36± 1.09

Imputation

C-DPS 0.15± 0.29 0.18± 0.39 2.99± 2.82 23.33± 8.69 0.50± 1.09 0.14± 0.57
DiffPIR 0.09 ± 0.23 0.08 ± 0.24 0.24 ± 1.14 0.88 ± 3.50 0.11 ± 0.62 0.08 ± 0.42
DPnP 0.14± 0.32 0.17± 0.36 0.50± 1.28 10.89± 5.92 0.25± 0.82 0.27± 0.58
φ1 1.74± 1.12 1.77± 1.35 1.25± 2.78 13.32± 5.32 1.37± 2.56 1.55± 1.58
φ2 0.00± 0.01 0.01± 0.05 1.10± 1.88 0.42± 0.95 0.06± 0.34 0.02± 0.28

Fourier

C-DPS 0.15± 0.36 0.26± 0.65 5.90± 4.41 4.29± 5.78 0.53± 0.83 0.35± 0.77
DiffPIR 0.11 ± 0.29 0.08 ± 0.31 0.83 ± 1.44 3.19± 4.37 0.11 ± 0.39 0.12 ± 0.37
DPnP 0.11± 0.35 0.20± 0.51 1.88± 2.47 2.45 ± 4.83 0.39± 0.89 0.24± 0.64
φ1 1.50± 1.59 0.73± 0.94 3.57± 2.82 1.07± 2.98 0.71± 0.99 0.78± 0.97
φ2 0.00± 0.02 0.36± 0.73 12.22± 4.53 9.47± 8.34 2.66± 3.57 1.03± 1.79

significantly benefits from the arbitrary-precisionoracle denoiser in the most challenging cases of the440

spike-and-slab and the extremely heavy-tailed St(1) increment distributions. By contrast, C-DPS441

and DiffPIR can require a retuning when the denoiser changes: Sscores can deteriorate after one has442

substituted a higher-quality Monte Carlo denoiser for the learned onereplacing the learned denoiser443

with the oracle denoiser, butwhereas a brief hand-tuning of the hyperparameters on the validation set444

improves them way beyond the learned denoiser. For instance, for DiffPIR and imputation of signals445

with St(1) increments, reusing the hyperparameters deteriorates the gap by 13.56 dB, whereas a446

brief hand-tuning decreased the optimality gap by almost 10 dB over what is reported in Table 1447

(e.g., for DiffPIR and St(1) increments, the hand-tuning decreased the optimality gap by almost 10448

dB). The differences between the algorithms are generally greater than the differences between the449

learned and oracle variants except for the heavy-tailed cases, which confirms the findings in (Bohra450

et al., 2023) and indicates that the research of efficient and robust DPS algorithms is still crucial.451

Qualitative examples of the MMSE estimates and the marginal variances obtained by the DPS452

algorithms and the gold-standard Gibbs methods are shown in Figures 11 to 18 in the appendix.453

0 20 40 60

→4

→2

0 x̂DiffPIR
1 (y)

x̂DiffPIR
2 (y)

0 20 40 60

x̂DiffPIR
MMSE (y)

Figure 5: Conditional generation for deconvolution
of a signal with BL(0.1, 1) increments with Diff-
PIR. The shaded area indicates the variance.

Prototypical samples and the corresponding454

MMSE estimate obtained from a DPS algorithm455

(here DiffPIR for deconvolution of a signal with456

BL(0.1, 1) increments) are shown in Figure 5.457

(The full conditional reverse-diffusion trajectory,458

the data-generating signal, the measurements,459

and the MMSE estimated obtained with the gold-460

standard Gibbs methods are shown in Figure 19461

in the appendix.) The figure highlights a key dis-462

tinction: Posterior samples often preserve high-463

frequency structure and reflect prior variability,464

whereas the MMSE point estimate—obtained by465

averaging all samples—is much smoother. This466

explains why DPS methods tend to score higher on perception-oriented metrics, while regressors that467

target the MMSE point estimate (through training with the mean squared error) excel on distortion468

metrics like the peak signal-to-noise-ratio (PSNR)). Consistent with this distinction, Saharia et al.469

(2023) fairly compare a sampling-based method to an MMSE regressor and find the expected trade-off:470

higher PSNR and structural similarity for the regressor; and better perceptual scores for the sampler.471

We therefore recommend to makemaking the Bayesian target explicit—point estimate versus sample472

quality—and to useusing evaluation protocols that are aligned to that target. Our framework supports473

this by offering gold-standard posterior samples and arbitrary-precision Monte Carlo estimatesoracle474

denoisers.475

In addition to the evaluation of the MMSE optimality gap, which is on the point-estimator level, we476

analyze the highest-posterior-density coverage of the algorithms. Specifically, for any measurement477
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y and any k = 1, 2, . . . , Nsamples, we definedenote4 lk(y) := log pX|Y=y(x̂
alg
P (k)(y,ω

alg,ϖ)) where478

P is the permutation that ensures that l1(y) ⇓ l2(y) ⇓ · · · ⇓ lNsamples(y) and define the empirical479

highest-posterior-density threshold at ϑ → [0, 1] as l⇐ϱNsamples⇒(y). We declare the data-generating480

signal x covered if log pX|Y=y(x) ⇓ l⇐ϱNsamples⇒(y) and define the coverage of a method as the481

fraction of signal-measurement pairs (x,y) in the test set for which x is covered by the threshold482

l⇐ϱNsamples⇒(y). The coverage of a calibrated posterior-sampling method will be ϑ, up to Monte Carlo483

error. A coverage result that is significantly less than ϑ indicates that the samples obtained by the484

method concentrate too heavily around the mode; a coverage result that is greater than ϑ indicates485

that the samples are too spread out. We again discuss general trends here and present an exhaustive486

quantitative evaluation in Appendix G. The coverages obtained by the DPS algorithms are generally487

much smaller than ϑ, which indicates that they are uncalibrated and is in line with what is reported488

by Thong et al. (2024). For C-DPS and DiffPIR, the reported coverage values are almost always 0489

except for BL(0.1, 1) and St(1) increments, where the coverages are usually (close to) 1 for C-DPS490

and inconsistent for DiffPIR. For almost all increment distributions and forward operators, DPnP491

reports coverage values that are closest to but typically smaller than ϑ.492

5 CONCLUSION493

We have introduced a statistical benchmark for diffusion posterior sampling algorithms for linear494

inverse problems. The framework proceeds by constructsing signals with a known distribution,495

simulatesing the measurement process, and subsequently generatesing samples from the posterior496

distribution that arises through the combination of the known prior and the known likelihood. Gold-497

standard samples from this distribution are obtained via efficient Gibbs methods. T, and these498

samples are then compared to those obtained by the diffusion posterior sampling algorithms. In499

addition, the Gibbs methods can be used to obtain arbitrary-precision Monte Carlo estimates of500

objects that are needed in the reverse stochastic differential equation, such as the minimum-mean-501

squared-error denoiser or its Jacobianserve as oracle MMSE denoisers within the denoising posteriors502

encountered in each iteration of the reverse SDE. Consequently, the framework also enables the [tkeZ] Clarifica-
tion of terminol-
ogy and phrasing
regarding our “ora-
cle” objects.

503

isolation and quantification of the error attributable to the likelihood approximations in the conditional504

reverse diffusion. We have provided numerical results for three common diffusion posterior sampling505

algorithms applied to four common inverse problems. A consistent theme across all tested algorithms506

is that they are not calibrated, which demonstrates that research into algorithms that perform better in507

this respect remains crucial. We invite other researchers to benchmark their algorithms on our open508

implementation, which is deliberately designed so that novel DPS algorithms can be evaluated in a509

plug-and-play manner.510

Reproducibility Statement We release an online repository with complete algorithm implemen-511

tations and step-by-step instructions to reproduce all results. A containerized runtime enables one-512

command setup and fully automated execution via the provided scripts. Each algorithm is specified513

at a level that supports independent re-implementation: Tthe main text precisely details Gaussian514

latent-machineGLM sampling;, and the appendix presents the Bernoulli–Laplace Gibbs method in515

using implementation-aligned notation, together with practical optimizations required for accept-516

able runtimes. The appendix also enumerates all experimental settings, including the numbers of517

training/validation/test signals, the samples-per-datum for each sampler, and the exact grid-search518

procedure used to select hyperparameters.519

Usage of Large Language Models We used large language models to adapt passages of already-520

written text for readability and conciseness.521
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A BAYES ESTIMATORS710

A benefit of the Bayesian approach over classical variational methods (see, e.g., (Scherzer et al.,711

2008)) is that different point estimates arise from a fixed prior. For a given measurement y, these point712

estimates summarize the posterior distribution pX|Y=y with respect to a given loss φ : Rd
↗Rd

↘ R713

via the optimization problem of finding the point x̂ϑ(y) that minimizes the posterior risk:714

x̂ϑ(y) = argmin
x̂≃Rd

(∫

Rd

φ(x̂,x) pX|Y=y(x) dx

)
. (18)

In this paper, the Bayes estimator with respect to the mean-squared error (MSE) φ = 1
d↔ · ↓ · ↔

2715

plays a key role due to its close relation to the prior score in the reverse diffusion (see Section 2) and716

because we quantify the performance of DPS algorithms via the MMSE optimality gap in Section 4.717

With this choice of φ, (18) can be written as718

x̂MMSE(y) = argmin
x̂≃Rd

(∫

Rd

1
d↔x̂↓x↔

2 pX|Y=y(x) dx

)
=

∫

Rd

xpX|Y=y(x) dx = E[X | Y = y],

(19)
which is the expectation of the posterior pX|Y=y.719

Another widely-used estimator arises through the choice720

φ(x̂,x) = ↓↼{x̂}(x) (20)

where721

↼A(x) :=

{
1 if x → A,
0 else,

(21)

which leads to the MAP estimator that seeks the mode of the posterior:5722

x̂MAP(y) = argmin
x̂≃Rd

(∫

Rd

↓↼{x̂}(x) pX|Y=y(x) dx

)
= argmax

x̂≃Rd

pX|Y=y(x̂). (22)

Rewriting (22) as723

x̂MAP(y) = argmin
x̂≃Rd

(
↓

1
2ω2

n
↔Ax̂↓ y↔

2
↓ log pX(x̂)

)
, (23)

reveals a close relation to classical variational approaches after identifying the regularizer with724

↓ log pX.725

B TWEEDIE’S FORMULA726

In the setting of Section 2, we now derive an equality that relates ⇐ log pXt to E[X0 | Xt = · ], i.e.,727

the MMSE estimate of X0 given that Xt takes on a certain value. Similar derivations can be found728

in, e.g., (Song et al., 2021; Chung et al., 2023; Daras et al., 2024), but we include it to underscore729

the relevance of the MMSE estimate in this paper and to facilitate the understanding of its relation730

to various objects. Under the variance-preserving choice for f(x, t) = ↓
ε(t)
2 x and g(t) =

√
ε(t)731

of the drift and diffusion coefficient, the diffusion SDE (4) simplifies to a time-inhomogeneous732

Ornstein–Uhlenbeck SDE (see Klenke (2020, Example 26.5))733

dXt = ↓
ε(t)
2 Xt dt+

√
ε(t) dWt, (24)

whose pathwise solution734

Xt = ϑ(t)X0 +

∫ t

0

ϑ(t)

ϑ(s)

√
ε(t) dWs, (25)

5This definition is informal but sufficient for the purposes of this paper. For continuous posteriors, the strict
0–1 loss Bayes’ rule is ill-posed. A common formalization defines MAP as the limit of Bayes estimators under
shrinking small-ball 0–1 losses; under additional regularity, this limit agrees with the posterior mode (Bassett &
Deride, 2018; Clason et al., 2019). The MAP estimator may also not be unique.

17



Under review as a conference paper at ICLR 2026

where X0 is an appropriate initial condition and ϑ(t) = exp
(
↓

1
2

∫ t
0 ε(s) ds

)
, can be computed with735

standard techniques, see, e.g., (Gardiner, 1990, Section 4.4.4). In addition, since736

∫ t

0

(
ϑ(t)

ϑ(s)

)2

ε(t) ds =

∫ t

0
ε(s) exp

(
↓

∫ t

s
ε(u) du

)
ds = 1↓ ϑ2(t), (26)

we can write that737

Xt = ϑ(t)X0 + ω(t)N (27)
in distribution, where ω2(t) = (1↓ϑ2(t)). Consequently, the density of Xt is given by the convolution738

of pX0 with a Gaussian with variance ω2(t) and appropriate scaling by ϑ(t), which we write as:739

pXt(x) =

∫

Rd

g0,ω(t)2I(x↓ ϑ(t)x̂)pX0(x̂) dx̂, (28)

where gµ,!(x) = (2↽)↔
d
2 |!|

↔ 1
2 exp

(
↓

1
2↔x ↓ µ↔2!→1

)
. Finally, after taking the gradient, we see740

that741

⇐pXt(x) =

∫

Rd

⇐g0,ω(t)2I(x↓ ϑ(t)x̂)pX0(x̂) dx̂

=

∫

Rd

(
↓

1
ω2(t) (x↓ ϑ(t)x̂

)
g0,ω2(t)I(x↓ ϑ(t)x̂)pX0(x̂) dx̂

= ↓
1

ω2(t)

(
xpXt(x)↓ ϑ(t)

∫

Rd

x̂g0,ω2(t)I(x↓ ϑ(t)x̂)pX0(x̂) dx̂
)

= ↓
1

ω(t)2

(
xpXt(x)↓ ϑ(t)pXt(x)E[X0 | Xt = x]

)
.

(29)

Finallysuch that, after dividing by pXt(x) and since ⇑pXt (x)
pXt (x)

= ⇐ log pXt(x), we find the celebrated742

Tweedie identity743

⇐ log pXt(x) = ↓ω(t)↔2
(
x↓ ϑ(t)E[X0 | Xt = x]

)
. (30)

B.1 A CONNECTION BETWEEN THE DISCRETIZED REVERSE SDE AND DDPM744

To show the connection between the Euler–Maruyama discretization of the reverse-diffusion SDE745

and the DDPM backward process, we start by deriving the latter from the respective forward process.746

DDPM haswas been introduced by Sohl-Dickstein et al. (2015) as a discrete-time Markov chain of747

length T with Gaussian transitions:748

pXt|Xt→1=xt→1
= Gauss(

√
1↓ εtxt↔1,εtI), (31)

such that the transitions from X0 to Xt are also tractable as749

Xt =
⇔
ϑ̄tX0 +

⇔
1↓ ϑ̄tZt, (32)

where ϑt = (1↓ εt), ϑ̄t =
∏t

s=0 ϑs, and Zt ⇑ Gauss(0, I). By definition,750

Xt =
√
1↓ εtXt↔1 +

√
εtZt↔1 (33)

and a straightforward application of Tweedie’s formula (6) gives that751

E[Xt↔1|Xt] =
1↗
ϱt

(
Xt + (1↓ ϑt)⇐ log pXt(Xt)

)
, (34)

which leads to the DDPM backward transitions752

Xt↔1 = 1↗
1↔εt

(Xt + εt⇐ log pXt(Xt)) +
√
εtZt (35)

like they appear in (7) in the main text.753

Now, we recall the reverse-diffusion SDE, which, under our choice of the drift and diffusion coefficient,754

is given by755

dXt =
(
↓

ε(t)
2 Xt ↓ ε(t)⇐ log pXt(Xt)

)
dt+

√
ε(t) dWt. (36)

A first-order step from t to (t↓ 1) (dt = ↓1) of gives the Euler–Maruyama update756

Xt↔1 =
(
1 + εt

2

)
Xt + εt⇐ log pXt(Xt) +

√
εtZt, (37)
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where εt := ε(t) and Zt ⇑ Gauss(0, I).757

The DDPM reverse process (35) can be related to the the Euler–Maruyama discretization of the758

reverse SDE (37) via Taylor expansions, since759

1
⇔
1↓ εt

= 1 +
εt

2
+O(ε2

t ) (38)

and760
εt

⇔
1↓ εt

= εt +O(ε2
t ) (39)

as εt ↘ 0.761

C LÉVY PROCESSES AND INCREMENT DISTRIBUTIONS762

The prior distributions in our framework are those of signals obtained by regularly spaced samples of763

processes with independent, stationary increments (Lévy processes and their discrete-time counter-764

parts). We briefly recall the definition; see Unser & Tafti (2014); Sato (1999) for background and the765

link to infinitely divisible laws.766

Definition C.1 (Lévy process). A stochastic process s = {s(t) : t ⇓ 0} is a Lévy process if767

1. (anchor at the origin) It holds that s(0) = 0 almost surely;768

2. (independent increments) for any N → N \ {0, 1} and 0 ↖ t1 < t2 < · · · < tN < ≃, the769

increments (s(t2)↓s(t1)), (s(t3)↓s(t2)), . . . , (s(tN )↓s(tN↔1)) are mutually independent;770

3. (stationary increments) for any given step h, the increment process uh = {s(t)↓ s(t↓ h) :771

t > h} is stationary;772

4. (stochastic continuity) for any ⇀ > 0 and t ⇓ 0,773

lim
h⇓0

Pr
(
|s(t+ h)↓ s(t)| > ⇀

)
= 0.

We form discrete and finite-length signals by sampling s at integer times and stacking the values774

into x = (s(1), s(2), . . . , s(d)). Let the unit-step increments be [u]kuk = (s(k) ↓ s(k ↓ 1)) for775

k = 1, 2, . . . , d. By independence and stationarity, the law6 of [u]kuk does not depend on k and we776

denote it pU . We define the finite-difference matrix777

D =





1 0 0 · · · 0
↓1 1 0 · · · 0
0 ↓1 1 · · · 0
...

...
. . . . . . 0

0 0 · · · ↓1 1




(40)

such that the increment vector satisfies778

u = Dx. (41)
Because s(0) = 0, the finite-difference matrix D has an initial condition thatwhich makes it invertible779

and D
↔1 is a lower-triangular matrix of ones. This, which also implies that for all k = 1, 2, . . . , d,780

[x]kxk =
k

n=1

[u]nun, (42)

which is a convenient way to synthesize signals once u is drawn. The combination of (41) with the781

independence of the increments implies that the density of the discrete signal is782

pX(x) =
d∏

k=1

pU
(
[Dx]k(Dx)k

)
. (43)

6For our choices, it always has a density w.r.t. a suitable reference measure.
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Table 2: USummary of univariate distributions used throughout this work. Parameters appear in the
order they are specified in this table, e.g. Gauss(µ,ω2).

Name Distribution Parameter(s) Supp. Notation

Gaussian 1↗
2ςω2

exp
(
↓

(x↔µ)2

ω2

)
µ → R,ω2

→ R>0 R Gauss

Exponential ς exp(↓ςx) ς → R>0 R↑0 Exp

Laplace 1
2b exp

(
↓

|x|
b

)
b → R>0 R Laplace

Student-t
!
(

ω+1
2

)
↗
ςφ!

(
ω
2

)(1 + x2

φ

)↔ ω+1
2 ⇁ → R>0 R St

Gamma εε

!(ϱ)x
ϱ↔1 exp(↓εx) ϑ,ε → R>0 R>0 Gamma

Gen. inv. Gaussian ( a
b )

p
2

2Kp(
↗
ab)

xp↔1 exp
(
↓

ax+b/x
2

)
a, b → R>0, p → R R>0 GIG

Bernoulli–Laplace ςδ(x) + (1↓ ς) 1
2b exp(↓

|x|
b ) ς → [0, 1], b → R>0 R BL

Moreover,! denotes the gamma function is defined as !(x) =
∫↓
0 tx↔1 exp(↓t) dtx for any

x → R>0.
TKφ denotes the modified Bessel function of the second kind with parameter ⇁ is denoted by
Kφ .

Table 3: Latent variable representations and conditional distributions for common distributions.

Dist. ϱki Latent dist. fki Latent maps Cond. latent dist. p[Z]kZi|X=[Kx]k(Kx)i

Gauss(µ,ω2) δ(0) µki(zi) = µ, ω2
ki(z) = ω2 δ(0)

Laplace(b) Exp
(

1
2b2

)
µki(zi) = 0, ω2

ki(zi) = zi GIG

(
1
b2 , [Kx]k(Kx)i2,

1
2

)

St(⇁) Gamma
(
φ
2 ,

φ
2

)
µki(zi) = 0, ω2

ki(zi) =
1
zi

Gamma


φ+1
2 ,

φ+[Kx]k(Kx)i
2

2



C.1 EXTENSIONS783

The approach in this paper can be extended to two- or higher-dimensional signals on grids, such as784

images or videos, and even to more specialized structures like signals defined over trees or more785

general graphs. The structure of the signal is effectively encoded through the choice of the matrix D.786

For instance, a two-dimensional finite-difference matrix would result in a signal vector that can be787

interpreted as a two-dimensional image. The main additional (computational) challenge is sampling788

during signal generation: Whenever D is not trivially reducible to a one-dimensional operator, the789

resulting model (43) will be overcomplete and, in general, no whitening transformation exists to790

decouple increments for independent sampling. The extension to higher-dimensional signals and the791

complications that arise in that context are rigorously treated in Kuric et al. (2025).792

C.2 LATENT DISTRIBUTIONS AND NOTATION793

Some of the distributions that we rely on in this work have multiple competing parametrizations. To794

avoid ambiguities, we provide precise definitions of the four increment distributions that we consider795

in this work:— Gaussian;, Laplace;, Student-t;, and Bernoulli–Laplace (spike-and-slab).— We give796

in Table 2and our notations of these and other distributions that we use in this workin Table 2. We list797

in Table 3 lists the latent maps and conditional latent distributions that are needed for the GLM for798

the distributions in this work.799

D GIBBS METHODS AND SAMPLING EFFICIENCY800

Gibbs methods are Markov chain Monte Carlo (MCMC) methods to sample from a joint distribution801

pX,Z1,Z2,...,Zn of (n+1) blocks of variables that are advantageous when the direct sampling is compu-802
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Algorithm 3 Latent-variable Gibbs sampling of pX,Z1,...,ZnN .

Require: Burn-in period B → N, number of samples S → N, initial point (x0, z1, . . . znN ).

1: for ks = 1, 2, . . . , B + S do
2: xks ⇑ pX|Z1=z1,...,ZnN=znN

3: z1 ⇑ pZ1|X=xk,...,ZnN=znN
ϖ Latent blocks do not need to be stored

4:
...

5: return {xB+ks}
S
ks=1

tationally difficult but sampling from the conditional distributions pX|Z1,Z2,...,Zn
, pZ1|X,Z2,...,Zn

, . . .803

is easy. Gibbs methods cycle through the conditional distributions with repeated draws, which804

maintains the joint distribution invariant (Casella & George, 1992). The naming of the variables805

X,Z1,Z2, . . . ,Zn is deliberately chosen to emphasize that we use latent-variable Gibbs methods806

that rely on auxiliary variables that are introduced solely to make the conditionals simple. The steps807

of a general latent variable Gibbs sampler are shown in Algorithm 3, where the iteration counter in808

the sampling of the latent variables is omitted since they need not be stored and previous iterations809

can immediately be overwritten.810

Kuric et al. (2025) recently showed that such methods are significantly faster than other standard811

sampling routines that are commonly used in settings similar to the one in this paper. They report812

sampling efficiencies of close to 1, while alternatives, such as the Metropolis-adjusted Langevin813

algorithm, achieve sampling efficiencies7 of around 1↗ 10↔3. In addition, Gibbs methods require no814

step-size or acceptance-rate tuning and introduce no discretization bias. These properties motivate815

our use of Gibbs methods for the fast and robust posterior sampling throughout this work.816

Like all MCMC methods, in practice Gibbs methods benefit from the discarding of some number of817

initial samples (, the burn-in period), when the initial point is located in low-density regions. After818

the burn-in period, the quality of the Monte Carlo estimate of any object depends on the number of819

samples one uses in their estimation. it is crucial to tune the number of samples in such a way that820

the Monte Carlo estimates of various quantities, such as the MMSE estimate in (19), are sufficiently821

accurate. We discuss our choice of the burn-in period and the number of samples for the various [tkeZ TmEt] Clar-
ification of our
experimental setup.

822

problems in Appendix F.2.823

D.1 A GIBBS METHOD FOR BERNOULLI–LAPLACE INCREMENTS824

Let δ be the Dirac distribution. Then, letting ς be the Bernoulli parameter and b the scale parameter,825

we noteWe start by noting that the Bernoulli–Laplace density826

pU (u) = ςδ(u) + (1↓ ς) b2 exp(↓b|u|) (44)
with Bernoulli parameter ς and scale parameter b, where δ is the Dirac distribution, admits the827

representation828

pU (u) =

∫

R

( 1

v=0

pU |V=v,W=w(u)pV (v)

)
pW (w) dw, (45)

where829

pV (v) = ς1↔v(1↓ ς)v (46)
for v → {0, 1} is a Bernoulli distribution,830

pW (w) =
b2

2
exp

(
↓
b2w

2

)
↼R↓0

(w) (47)

is an exponential distribution, and831

pU |V=v,W=w(u) =

{
δ(u) if v = 0,
Gauss(0, w) if v = 1.

(48)

7Sampling efficiency refers to effective samples per iteration; an efficiency of ε means roughly 1/ε iterations
per “effective sample” (Gelman et al., 2013, Section 11.5).
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The algorithm relies on the introduction of two latent vectors v,w → Rd that satisfy832

pU|V=v,W=w(u) =
d∏

k=1

pU |V=[v]kvk,W=[w]kwk
([u]kuk) (49)

such that, as a result, the distribution conditioned on the measurements can be written as833

pU,V,W|Y=y(u,v,w) ↑ exp
(
↓

1
2ω2

n
↔Hu↓ y↔

2
) d∏

k=1

pU |V=[v]kvk,W=[w]kwk
([u]kuk)

↗

d∏

k=1

ς
1↔[v]kvk

(1↓ ς)
[v]kvk

d∏

k=1

b2

2
exp

(
↓

b2[w]kwk

2

)
,

(50)

where H = AD
↔1. Equations (48) and (50) imply that any sample from pU|V=v,W=w,Y=y takes834

the value zero at those indices where v is zero, and values from a multivariate Gaussian distribution835

with covariance C =
(
ω2
nHH

↘T
+ diagdiag(w)

)↔1 and mean ω↔2
n CH

T
y otherwise. Sampling836

W | U = u,V = v,Y = y amounts to the independent sampling of d one-dimensional distributions,837

which are Exp(2/b2) at those indices where v is zero and GIG(b2, [u]kuk
2, 0.5) those indices k838

where v is one. The conditional distribution of the binary support vector is839

pV|W=w,Y=y(v) ↑ |B(v,w)|↔
1
2 exp

(
↓

1
2y

↘T
B(v,w)↔1

y
) d∏

k=1

ς
1↔[v]kvk

(1↓ ς)
[v]kvk

,

(51)
where8

B(v,w) = ω2
nI+Hdiagdiag(v↙w)H

↘T
. The standard way to sample from this distribution840

is to use a coordinate-wise Gibbs sampler that updates [v]kvk ⇑ Bernoulli(pk(v)) with841

pk(v) = (1 + exp(↓”k(v)))
↔1 (52)

where the log-odds increment842

”k(v) = log 1↔↼
↼ ↓

1
2

(
log |B(vk=1,w)|↓ log |B(vk=0,w)|

)

↓
1
2

(
y
↘T

B(vk=1,w)↔1
y ↓ y

↘T
B(vk=0,w)↔1)y

)
,

(53)

where vk= · := (v1, . . . ,vk↔1, · ,vk+1, . . . ,vd) is the difference between the log-posterior when843

the bit is on and when it is off. The resulting algorithm that is summarized in Algorithm 4 and can844

be interpreted9 as (d+ 2)-blockvariable (i.e., dimension-dependent) Gibbs methodand an efficient845

implementation is crucial.846

D.2 PRACTICAL GIBBS IMPLEMENTATIONS847

Sampling the Gaussians The sSampling of X | Z in the GLM and of U | V,W,Y for the848

Bernoulli–Laplace case reduces to drawing from a high-dimensional Gaussian, which is a well-849

studied problem. For settings that necessitate a matrix-free implementation such as those that are850

commonly encountered in imaging applications, Kuric et al. (2025) advocate a Perturb-and-MAP851

sampler with preconditioned conjugate-gradient solvers. We report the runtime of the Gibbs method852

as a function of signal dimension for a Laplace(1) increment distribution in Figure 6. A standard853

implementation based on a Cholesky factorization of the covariance matrix—which requires explicitly854

8This is a different but equivalent formulation is equivalent to the oneto what is presented by Bohra et al.
(2023), who explicitly “slice” the matrices H and diagdiag(w) with the indices where v is one. We stick to

this formulation since it requires less notation and emphasizes that implementations need not build variable-sized
matrices, which is crucial for an efficient implementation on modern compute units that utilize highly parallelized
computations.

9This is only an interpretation becausenot strictly correct since the density violates the classical positivity
conditions that are needed for Gibbs methods. It is a partially collapsed Gibbs method, see (Bohra et al., 2023;
van Dyk & Park, 2008).
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Algorithm 4 Bernoulli–Laplace Gibbs sampler.

Require: Initial increments u0 → R
dn

, initial support vector v → Rd

1: for s = 1, 2, . . . , B + S do
2: Draw [w]kwi ⇑ pW |U=[us→1]k(us→1)i,V=[v]kvi

ϖ parallel over ki

3: for k = 1, 2, . . . , d do
4: Draw [v]kvk ⇑ Bernoulli(pk(v))

5: Draw us ⇑ pU|V=v,W=w,Y=y

6: return {D
↔1

uB+ks}
S
ks=1
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Figure 6: Runtimes needed to perform 20 Gibbs iterations on a denoising posterior (Laplace(1)
increment distribution, 10 parallel chains) depending on the dimensionality of the signal. Missing
entries are due to excessive memory requirements. [TmEt] Scalability

to higher dimen-
sions.

instantiating the matrices A and D in memory—is faster than the Perturb-and-MAP sampler with a855

conjugate-gradient solver across a broad range of noise variances and dimensions. For our moderate-856

dimensional setting with d = 64, the Cholesky-based implementation is approximately an order of857

magnitude faster. [TmEt] Scalability
to higher dimen-
sions.

858

For our moderate-dimensional problems with d = 64, a standard implementation based on the859

Cholesky factorization of the covariance matrix offered a significantly faster (approximately one860

order of magnitude) sampling.861

However, explicitly storing these matrices becomes infeasible at larger dimensions (in our setup, we862

ran out of memory at d = 8096), and the expected cubic scaling is apparent in the figure. In contrast,863

the Perturb-and-MAP sampler (convergence criterion: squared residual norm below 1↗ 10↔6), while864

slower than Cholesky at small dimensions, exhibits substantially better scaling with signal dimension.865

In particular, it does not require materializing the operators: both the measurement operator A and866

the finite-difference operator D can be implemented efficiently in a matrix-free manner. Moreover,867

the sublinear runtime observed in this experiment suggests that the corresponding linear systems are868

well conditioned.869

The sampling accuracy of Perturb-and-MAP depends on the termination criterion used by the870

optimization solver, and any finite stopping rule yields approximate samples. A principled refinement871

is to incorporate a Metropolis–Hastings correction step to remove bias, and to tune the solver accuracy872

to optimize overall runtime; this strategy was proposed by Gilavert et al. (2015), to which we refer for873

details. Overall, these results indicate that the Gibbs method scales favorably to higher dimensions.874

Combined with the fact that the denoising posteriors are sub-Gaussian, and with the relatively mild875

sample-complexity requirements for estimator accuracy in this setting, this suggests that the proposed876

framework scales well as the dimension increases.877

Sampling the Latent Variables The sampling of the different latent variables necessitates the sam-878

pling of the one-dimensional conditional latent distributions. All the conditional latent distributions879

that are relevant in this paper admit efficient samplers that are readily available in standard scientific880

computing packages or can be implemented with little effort. We reuse the CUDA implementation881
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of the generalized inverse Gaussian sampler from Kuric et al. (2025) that implements the method882

proposed by Devroye (2012)in (Devroye, 2021) and rely on PyTorch (Paszke et al., 2017) for all883

others. Wherever possible, latent updates are parallelized.884

In the Gibbs methods for the Bernoulli–Laplace increments, the sequential drawing of the binary885

support vector V is embedded in the outer Gibbs loop, which, in turn, may be embedded in the886

reverse-diffusion loop. This makes it crucial to minimize the use of heavy linear-algebra operations887

to achieve acceptable runtimes. Writing B(v,w) = ω2
nI+Hdiagdiag(v ↙w)H

↘T
, we recognize888

that the flipping of the kth bit of v adds or removes a rank-one term [w]kwkHkH

↘T

k , where Hk is889

the kth column of H. Using the matrix-determinant lemma and Woodbury–Sherman–Morrison, we890

update891

log |B(vk=1,w)| = log |B(vk=0,w)|+ log(1 + [w]kwkτk) (54)

and892

y
↘T

B(vk=1,w)↔1
y = y

↘T
B(vk=0,w)↔1

y ↓

[w]kwk(H
↘T

k B(vk=0,w)↔1
y)2

1 + [w]kwkτk
, (55)

where τk = H

↘T

k B(vk=0,w)↔1
Hk. Thus, an efficient implementation factors B(v,w) once per893

latent state, obtains the needed scalars via triangular solves, and performs rank-one updates as bits894

flip. We report our cumulative runtime improvement over a naive implementation in Figure 4.895

E DPS UPDATE STEPS896

E.1 COVARIANCE IN C-DPS897

C-DPS (Chung et al., 2023) uses the approximation of the likelihood898

pY|Xt=x(y) ∝ pY|X0=E[X0|Xt=x](y). (56)

When the noise in the inverse problem is Gaussian, the likelihood score899

⇐
(
x ⇒↘ log pY|X0=E[X0|Xt=x](y)

)
necessitates the computation of900

⇐
(
x ⇒↘

1
2↔AE[X0 | Xt = x]↓ y↔

2
)
, (57)

which is901

J (x ⇒↘ E[X0 | Xt = x]) ( · )A
↘T

(AE[X0 | Xt = · ]↓ y) (58)

after an application of the chain rule. The Jacobian J (x ⇒↘ E[X0 | Xt = x]) is typically computed902

with automatic differentiation when (x, t) ⇒↘ E[X0 | Xt = x] is approximated with a neural network.903

In our framework, we use the connection with the covariance matrix Cov[X0 | Xt = · ]. Indeed, as904

also shown by Rissanen et al. (2025)in, e.g., Rissanen et al., 2025, if X0 and Xt verify (32), then905

1
1↔ϱ̄t

Cov[X0 | Xt = x] = 1
ϱ̄t

(
I+ (1↓ ϑ̄t)

2
⇐

2 log pXt(x)
)
. (59)

This identity, combined with the derivative of (6), yields906

J
(
x ⇒↘ E[X0 | Xt = x]

)
(xt) =

⇔
ϑ̄t

1↓ ϑ̄t
Cov[X0 | Xt = xt]. (60)

E.2 EXPLICIT UPDATE STEPS907

We give thedefine some instantiations of the update steps S(xt, {x̄s}
S
s=1,y,A,ω, t) a variety of DPS [tkeZ] Additional

instantiations of
the update step
to showcase the
versatility of our
template.

908

algorithms below.of a non exhaustive list of DPS algorithms: C-DPS, DiffPIR, DPnP. Each zt is a909

d-dimensional random vector with i.i.d. standard Gaussian entries.910
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Score-ALD (Jalal et al., 2021) The input parameters of this algorithm are composed of the follow-911

ing: A noise schedule {εt}
T↔1
t=0 , the noise level of the inverse problem ωn, and annealing parameters912

{▷t}
T↔1
t=0 and {◁t}

T↔1
t=0 . The update step goes913

µ̄ =
1

S

S

s=1

x̄s,

st = (µ̄↓ xt)/ε
2
t ,

xt↔1 = xt + ▷t
(
st +

1
↽2
t +ω2

n
A

↘T
(y ↓Axt)

)
+

√
2▷tzt.

(61)

914

C-DPS (Chung et al., 2023) The input parameters areω are composed of the following. ϑ̄t is the915

variance-preserving scaling weight ϑ̄t as in (32), εt is the variance of the diffusion transitions εt as916

in (35), and a scalar 0 that governsparametrizes the likelihood-guidance strength. The diffusion noise917

level that corresponds to the denoising posterior is denoted ωt = (1 ↓ ϑ̄t)/
⇔
ϑ̄t, which is used to918

compute the samples {x̄ks}
S
ks=1. The update step goes919

µ̄ =
1

S

S

ks=1

x̄s,

C =
1

S

S

ks=1

(x̄ks ↓ µ̄)(x̄ks ↓ µ̄)
↘T

,

x
⇔
t↔1 =

↗
ϱ̄t(1↔ϱ̄t→1)

1↔ϱ̄t
xt +

↗
ϱ̄t→1εt

1↔ϱ̄t
µ̄+ ωtzt,

x̃t↔1 = x
⇔
t↔1 ↓

⇀
↖Aµ̄↔y↖

↗
ϱ̄t

1↔ϱ̄t
C

↘T
A

↘T
(Aµ̄↓ y),

xt↔1 = x̃t↔1/
⇔
ϑ̄t↔1.

(62)

DiffPIR (Zhu et al., 2023) The input parameters are similar to those of C-DPS. ϑ̄t and ωt are920

defined in the same way as in C-DPS, and 0 parameterizes the likelihood-guidance strength. It also921

uses the noise level of the inverse problem ωn and an additional balance hyperparameter ◁. The922

update step goes923

µ̄ =
1

S

S

ks=1

x̄ks,

1t = 0
ω2
n

ω2
t

,

x̄0 = argmin
x≃Rd

(
1
2↔Ax↓ y↔

2 + ⇁t

2 ↔x↓ µ̄↔2
)
,

2̂ = 1↗
1↔ϱ̄t

(
xt ↓

⇔
ϑ̄tx̄0

)
,

x̃t↔1 =
⇔
ϑ̄t↔1x̄0 +

√
1↓ ϑ̄t↔1(

√
1↓ ◁2̂+

⇔
◁zt),

xt↔1 = x̃t↔1/
⇔
ϑ̄t↔1.

(63)

”GDM (Song et al., 2023) The input parameters are the noise schedule {ωt}
T↔1
t=0 , the data-924

dependent noise schedule {rt}
T↔1
t=0 , and the DDIM (Song et al., 2020) time-dependent coefficients925
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{c(1)t }
T↔1
t=0 and {c(2)t }

T↔1
t=0 . The update step goes926

µ̄ =
1

S

S

ks=1

x̄ks,

C =
1

S

S

s=1

(x̄ks ↓ µ̄)(x̄ks ↓ µ̄)
↘T

,

J =

⇔
ϑ̄t

1↓ ϑ̄t
C,

g =
(
(y ↓Aµ̄)

↘T(
AA

↘T
+ ω2

n

r2t
I

)↔1
AJ

)↘T
,

2̂ = 1↗
1↔ϱ̄t

(
xt ↓

⇔
ϑ̄tµ̄

)
,

x̃t↔1 =
⇔
ϑsµ̄+ c1zt + c22̂+

⇔
ϑtg,

xt↔1 = x̃t↔1/
⇔
ϑ̄t↔1.

(64)

927

DPnP (Xu & Chi, 2024) The diffusion noise level that corresponds to the denoising posterior is928

denoted ▷t, which is used to compute the sample x̄s=1. This same ▷t defines the likelihood-guidance929

strength. The update step goes930

x0 = x̄1,

xt↔1 ⇑ exp
(
↓

1
2↔A ·↓y↔

2
↓

1
2η2

t
↔ ·↓x0↔

2
)
.

(65)

Annealed Plug-and-Play Monte Carlo (PnP and RED variants) (Sun et al., 2024) The diffusion931

noise level that corresponds to the denoising posterior is denoted ωt, which are used to compute the932

samples {x̄k}
S
k=1. The parameter ▷ denotes the likelihood guidance strength, and 3t is an annealing933

parameter.934

The update step for the PnP variant goes935

µ̄ =
1

S

S

ks=1

x̄ks,

s = (µ̄↓ xt)/ω
2
t ,

xt↔1 = xt + ◁3ts+
√

2◁zt,

xt ′ xt ↓ ◁A
↘T

(Ax↓ y).

(66)

The update step for the RED variant goes936

µ̄ =
1

S

S

ks=1

x̄ks,

s = (µ̄↓ xt)/ω
2
t ,

xt↔1 = xt ↓ ◁
(
A

↘T
(Ax↓ y)↓ 3ts

)
+
√

2◁zt.

(67)

937

The DPS template that is summarized in Algorithm 2 is illustrated with a one-dimensional toy-example938

in Figure 7.939

F NUMERICAL EXPERIMENTS940

F.1 FORWARD OPERATORS941

We consider four forward operators A in our experiments. The first operator isFirst, the identity942

A = I → Rd→d. This choice is motivated by the fundamental role that denoising algorithms currently943
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Diffusion step t = T, . . . , 1

pX0|Y=y

pXt|Y=y

Sampling of denoising posterior

pX0|Xt=xt

Gauss(xt,ω
2
t )

Denoising step Likelihood step

xt {x̄k}S
k=1 → pX0|Xt=xt

xtxt→1/2 xt→1/2xt→1

↑ log pXt ↓ ↑ log pY|Xt= · (y)

?

Step S of a DPS algorithm
pX0

pY|X0

Figure 7: Illustration of the proposed template for DPS algorithms. The benchmarked posterior
sampler targets x0 ⇑ pX0|Y=y via a diffusion process. At each diffusion time t, first the samples
{x̄k}

S
k=1 ⇑ pX0|Xt=xt

are drawn from the denoising posterior. Then, the step S updates the iterate
typically through a prior-guided update from the samples and a likelihood-guided update from the
data. The likelihood guidance term is intractable and must be approximated, which constitutes the
primary source of sampling error.

play in many restoration algorithms and even in labeling problems such as edge detection (Le et al.,944

2025). The secondSecond, a convolution operator A → Rd→d that implements the convolution with945

a kernel that consists of the 13 central samples of a truncated Gaussian with variance 2 that areand946

is normalized to unit sum. We adopt circular boundary conditions to enable a fast computation of947

the proximal map that arises in the update step of DiffPIR (see Appendix E.2) via the fast Fourier948

transform. Deconvolution is a relevant problem with applications likein, e.g., microscopy orand949

astronomy. The third operator isThird, a sampling operator A → Rm→d that returns m < d entries of950

its argument unchanged. This operator is also relevant in many fields such as image reconstruction and951

time-series forecasting. In particular, in a forecasting or prediction problem the operator would return952

can be modeled by returning the first m known entries, and the resolution of the inverse problem953

estimatesrecovering the remaining (d↓m) entries through the resolution of the inverse problem. In954

our experiments, each entry has an independent chance of 40% of being kept. The fourth and last955

Fourth, an operator is A = MF → Rm→d, where F → R2(↙d/2∝+1)→d is the matrix representation of956

the “real” one-dimensional discrete Fourier transform with separated real and imaginary components,957

and M → Rm→2(↙d/2∝+1) is a sampling operator. Such operators are relevant in, e.g., medical imaging958

orand astronomy. The sampling operator is constructed such that the 5 lowest frequencies (including959

the DC term included) are acquired, whileand the remaining frequencies independently have a 40%960

chance of being kept.961

For all operators, the noise variance ω2
n is chosen such that the median measurement signal-to-noise962

ratio (SNR) is around 25 dB. We set Ntrain = 1↗ 106, Nval = 1↗ 103, and Ntest = 1↗ 103.963

F.2 BENCHMARK IMPLEMENTATION DETAILS964

The benchmarking pipeline starts with the generation of Ntest test signals denoted {x
test
k }

Ntest
k=1 per965

increment distribution, each of which is independently synthesized by first drawing i.i.d. increments966

from the respective increment distribution and forming the signals via (42). It then proceeds to967

synthesize the Ntest measurements (i.e. we use one noise instance per signal) denoted {y
test
k }

Ntest
k=1968

according to (1) and, for each of the measurements, computes the gold-standard posterior samples969

of the various inverse problems via the Gibbs methods described in Section 3. This stage is off-line970

(no reverse-diffusion loop) and trivially parallel across the measurements, which allows us to run971

long chains with burn-in periods of 1↗ 105 iterations and obtain 2↗ 105 draws from the posterior972

distribution. This far exceeds any values reported by Kuric et al. (2025)in (Kuric et al., 2025) or973

Bohra et al. (2023)(Bohra et al., 2023) and results in precise MMSE estimates.974

The dataset-generation stage also involves the generation of Ntrain training signals {xtrain
k }

Ntrain
k=1975

and Nval validation signals (mutually disjoint from the test signals) {xval
k }

Nval
k=1 , along withand the976

corresponding validation measurements {yval
k }

Nval
k=1 . The training signals are used for the learning977

of a neural score function like those that are used for the resolution of inverse problems when the978

prior is unknown or too expensive to evaluate. Training details are provided in Appendix F.3 The979

validation signals are used to monitor the performance of the neural score function on unseen signals980
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during the training stage and to tune the regularization parameters for the model-based approaches as981

well as the parameters of the DPS algorithms, see Section 4.1 and Section 4.1.982

Unlike for the computation of the gold-standard MMSE estimate of the initial inverse problem, the983

denoising posteriors are sampled T times per trajectory (we use T = 1000). To ensure acceptable984

runtimes in this setting, we therefore pick the smallest burn-in period and sample count that still yield985

accurate estimates of the required statistics. We determine these settings with a rigorous protocol that986

is detailed in Appendix F.4. Ultimately, this protocol resulted in the choice of a burn-in period of 100987

iterations and a sample count of 300.988

F.3 LEARNING DETAILS989

For learned-based denoisers, a noise-conditional neural network with UNet architecture (305 761990

learnable parameters) is trained in an off-line step on the Ntrain training signals in a standard setup991

(Adam optimizer with learning rate 1 ↗ 10↔4 with exponential decay with factor 0.9999, 100 000992

parameter updates, batch size 10 000). The noise schedule in C-DPS and DiffPIR is defined by the993

two endpoints ε0 = 1↗ 10↔4 and εT = 2↗ 10↔2 with linear equidistant samples in-between. The994

learned variant of DPnP is the “DDS-DDPM” variant (Xu & Chi, 2024, Algorithms 1 and 3) that995

contains an inner denoising-sampling loop. The arbitrary-precisionoracle variant does not require an996

inner loop at all (except for the burn-in period), which makes the arbitrary-precisionoracle variant the997

faster one for this case.998

F.4 A PROTOCOL TO DETERMINE THE BURN-IN PERIOD AND DENOISER QUALITYTHE999

NUMBER OF SAMPLES1000

As discussed in Appendix F.2, the burn-in period and the number of samples of the Gibbs samplers1001

needs to be chosen appropriately to ensure an acceptable runtimes and a sufficiently small Monte Carlo1002

errorwhen they serve as the gold-standard samplers of the denoising posteriors that are encountered1003

in the DPS algorithms. We determine the burn-in period and the number of samples through the1004

following protocol that is run in an off-line stage prior to running the benchmark. We synthesize1005

xt = x0 + ωtn where ωt is in the range defined by the noise schedule ε, x0 is constructed via1006

(42) for all four considered increment distributions, and n is some unknown but fixed vector of1007

standard Gaussian noise. For each of the synthesized signals, we then launch C = 1000 parallel1008

Gibbs chains on the corresponding denoising posterior and run those chains for Nsu”cient iterations,1009

where Nsu”cient is a sufficiently large natural number that guarantees that the chains are stationary1010

for at least Navg (which is also relatively large) iterations and that, consequently, we can compute1011

precise estimates of various statistics of the posterior distribution from the iterates from the last Navg1012

iterations across all C chains.1013
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Figure 8: Wasserstein-1 distance of intermediate
marginal distributions to that of the final sample.

To determine the burn-in period, we then pro-1014

ceed to calculate a statistic that we can mon-1015

itor throughout the iterations and that we can1016

compare against the reference statistic. Specif-1017

ically, denoting with X the random variable of1018

the Gibbs sampler, we compute the empirical1019

distribution of the increments at index 32 like1020

, that is, (X33 ↓ X32). The distribution of dif-1021

ferences that is obtained by taking the last Navg1022

iterations across all C chains is considered the1023

reference distribution. Then, we compute the1024

Wasserstein-1 distance of that distribution to the1025

one obtained by taking the average across Navg1026

iterations and all C in a sliding-window start-1027

ing from the first Gibbs iterations. This allows1028

us to gauge the burn-in period through a visual1029

inspection of the Wasserstein-1 distance through the Gibbs iterations. In particular, we expect the1030

Wasserstein-1 distance to be large for a number of initial samples where the Gibbs sampler is not1031

stationary and then to oscillate around a small but nonzero value. The value will be nonzero due to the1032

finite sample size. The Wasserstein-1 distance between the reference distribution and the one obtained1033
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length.

through the Gibbs iterations is shown in Figure 8 (for the exemplary case of a St(1) distribution and1034

a selection of noise variances). We observe that the empirical distribution of increments converges1035

rapidly to the reference one. The Wasserstein-1 distance reaches the noise level after a single-digit1036

number of iterations, which is in line with the analysis provided by Kuric et al. (2025)in (Kuric et1037

al., 2025). Based on these findings, we chose the burn-in period as B = 100 iterations for all our1038

experiments, which is more than sufficient to reach stationarity and has acceptable runtime.1039

To determine the number of samples that are needed for a sufficiently accurate computation of various1040

statistics that any DPS algorithm may utilize in their update steps, we compute a precise estimation1041

of the MMSE estimate of the denoising posterior by averaging the last Navg iterations across all C1042

chains. Then, we pick one arbitrary chain and grow a window from iteration (Navg ↓ 1) to the left,1043

average the samples in that window, and compute the MSE from the MMSE estimates obtained in1044

the one-chain window to the precise estimate obtained by averaging the C chains and the last Navg1045

iterations. We show this error in terms of the window length and the noise variance for all increment1046

distributions in Figure 9. The quality of the learned denoiser and the Monte Carlo denoiser differ over1047

the noise variances and the learned denoiser improves relative to the Monte Carlo denoiser as the1048

noise variance vanishes. Our final choice of S = 300 samples is motivated by the fact that the quality1049

of the Monte Carlo denoiser, when averaged across all noise variances that appear in the reverse1050

diffusion, is always strictly better than the learned denoiser. Since it is relevant for the discussion1051

in Section 4.2, we highlight that for this choice the quality of the Monte Carlo denoiser is superior1052

to the learned one across all noise variances for the St(1) and BL(0.1, 1) increment distributions.1053

Motivated by the training loss of the neural denoisers, we pick a tolerance of 1↗ 10↔2 and monitor1054

at which window length the MSE falls below that tolerance. The results in Figure 8 show that this1055

tolerance is consistently reached when the averaging window is 300 samples long, which motivates1056

our choice of using S = 300 samples for all our experiments. [tkeZ TmEt] Nu-
anced inspection
of the Monte Carlo
denoiser.

1057
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F.5 ALGORITHM PARAMETERS IDENTIFICATION1058

The adjustable regularization parameter for the method est→ ={φ2, φ1} satisfieswas found by1059

ςest,ϖ = argmin
↼≃#

1

Nval

Nval

k=1

1
d↔x̂

est(yval
k ,ς)↓ x

val
k ↔

2., (68)

There,where # is the loglinear grid # = {ς1,ς2, . . . ,ςNmb} withwhere1060

ςni = 10
a+(ni↔1) (b→a)

Nmb→1 (69)

with a = (↓ 5) and b = 5. Since the model-based methods are very fast, we can use the relatively1061

high Nmb = 1000.1062

The adjustable hyperparameters of the DPS methods were found by1063

ωalg,ϖ = argmin
ω≃”alg

1

Nval

Nval

k=1

1
d↔x̂

alg
MMSE(y

val
k ,ω)↓ x

val
k ↔

2 (70)

where the grid #
alg is method-dependent. ThisNote that this tuning is specifically tailored towards1064

the evaluation with respect to the MMSE optimality gap. Due to resource constraints, the parameters1065

are tuned for the learned denoiser. We use Nsamples = 10 for the grid search on the validation set.1066

We define a modest number of Ndps = 40 grid-points and found the extreme points of the grid (i.e.,1067

the values of the parameters that clearly lead to worse results) by hand. For C-DPS and DiffPIR,1068

we fix the diffusion schedule to standard choices (ε0 = 1 ↗ 10↔4,εT = 0.02). In addition to the1069

diffusion schedule, C-DPS has one tunable parameter ◁ that we tune on 40 loglinear grid points1070

(ni = 1, . . . , Ndps)1071

10
a+(ni↔1) (b→a)

Ndps→1 ., (71)

Twhere, a = ( ↓ 3) and b = 1. DiffPIR has two tunable parameters ◁ and 0, withalthough ◁1072

beingis typically considered uncriticalnot so critical. Thus, we split the 40 grid points into a two-1073

dimensional grid $Di$PIR = {0.3, 0.7}↗$⇀ , withi.e., 2 points for ◁ and 20 points for 0 given by1074

$⇀ = {$⇀
1, . . . ,$

⇀
Ndps/2

}, where1075

$⇀
n1 = 10

a+(ni↔1) (b→a)
(Ndps/2)→1 (72)

with a = (↓ 4) and b = 1. The DPnP algorithm only has the schedule {▷t}Tt=1 to tune. In this case,1076

since DPnP is asymptotically correct, the schedule is a practical vehicle that enables to trade off1077

between speed and accuracy. Therefore, thewe use a schedule of this paperthat is similar to the one1078

that was proposed by (Xu & Chi, 2024)in the original publication (Xu & Chi, 2024): We fix a small1079

▷final = 0.15, and linearly decrease ▷eta from some ▷initial to ▷final after K/5 initial iterations with1080

▷initial, like:1081

▷ni =






▷initial if ni = 1, . . . ,K/5

ηfinal

ηinitial

i→K/5
K→K/5 ▷initial if ni = K/5 + 1, . . . ,K

(73)

We treat ▷initial as a tunable parameter and search over $DPnP = {▷1, ▷2, . . . , ▷40}, where for1082

i = 1, . . . , 40,1083

▷ni = 10
a+(ni↔1) (b→a)

40→1 . (74)

There,with a = (↓ 1) and b = 4. Like in the original publication, we use the comparatively small1084

K = 40.1085

The MSE over the validation data depending on the value of the adjustable regularization parameter1086

of the φ2 and φ1 estimators and the adjustable hyperparameters of C-DPS, DiffPIR, and DPnP is1087

shown in Figure 10. Since the ◁ parameter of DiffPIR is assumed to be uncriticalconsidered not so1088

critical, we only show the values of the MSE for various choices of 0, where ◁ is set to the value of1089

the optimal (◁, 0) pair.1090
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Table 4: Change in MMSE optimality gap (mean ± standard deviation) after substituting the learned
denoiser with the arbitrary-precisionoracle denoiser. An asterisk indicates a significant changes
according to a Wilcoxon signed-rank test (p = 0.05). Negative number with asterisk: MMSE estimates
obtained with the arbitrary-precisionoracle denoiser are significantly better. Positive number with
asterisk: MMSE estimates obtained with the learned denoiser are significantly better.

Gauss(0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Denoising
C-DPS 0.00± 0.11 0.00± 0.16 ↓0.46± 1.16* 0.00± 0.01 0.02± 0.79*

↓0.01± 0.14
DiffPIR 0.00± 0.13 0.00± 0.17 ↓0.05± 0.78*

↓0.41± 0.80* 0.00± 0.20 0.00± 0.15
DPnP 0.04± 0.27*

↓0.01± 0.22 ↓0.55± 1.31*
↓0.77± 1.31* 0.00± 0.24 0.00± 0.23

Deconvolution
C-DPS ↓0.01± 0.24 0.00± 0.26 0.09± 0.97* 6.64± 3.21*

↓0.12± 1.11*
↓0.03± 0.43

DiffPIR ↓0.01± 0.23 0.00± 0.23 0.04± 1.12 13.56± 9.90*
↓0.01± 0.47 0.00± 0.31

DPnP 0.00± 0.25 ↓0.01± 0.27*
↓0.02± 1.20 ↓4.98± 3.86* 0.06± 0.77 ↓0.02± 0.34

Imputation
C-DPS 0.00± 0.30 0.01± 0.35 0.41± 1.51* 3.41± 4.99*

↓0.12± 1.01*
↓0.01± 0.57

DiffPIR 0.00± 0.29 0.00± 0.33 0.03± 1.05 ↓0.20± 3.05* 0.03± 0.71 0.00± 0.47
DPnP 0.00± 0.35 ↓0.02± 0.38 ↓0.02± 1.02 ↓10.46± 5.70* 0.02± 0.67 ↓0.01± 0.48

Fourier
C-DPS ↓0.02± 0.43 ↓0.01± 0.49 0.80± 1.43* 0.09± 5.63*

↓0.03± 0.79* 0.01± 0.49
DiffPIR ↓0.01± 0.39 0.00± 0.40 0.12± 0.83*

↓0.64± 1.70*
↓0.03± 0.42*

↓0.02± 0.38
DPnP ↓0.01± 0.43 0.00± 0.45 ↓0.33± 1.13*

↓1.32± 3.18* 0.00± 0.54 0.01± 0.46

Table 5: Runtime of the benchmark with learned objects. [TmEt] Runtimes
of the experiments.Gauss(0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Denoising
C-DPS 00:04:52 00:04:52 00:02:56 00:04:52 00:04:52 00:04:52
DiffPIR 00:01:59 00:01:58 00:01:12 00:01:58 00:01:59 00:01:59
DPnP 00:02:33 00:04:58 00:01:15 00:59:33 00:06:13 00:04:58

Deconvolution
C-DPS 00:04:52 00:04:53 00:02:57 00:04:53 00:04:53 00:04:52
DiffPIR 00:01:59 00:01:59 00:01:12 00:01:59 00:01:59 00:01:59
DPnP 00:13:54 00:46:39 00:05:48 00:53:30 00:28:24 00:28:24

Imputation
C-DPS 00:04:53 00:04:53 00:02:59 00:04:53 00:04:53 00:04:53
DiffPIR 00:01:59 00:01:59 00:01:13 00:01:59 00:01:59 00:01:59
DPnP 00:04:58 00:16:18 00:18:56 00:51:41 00:39:04 00:32:50

Fourier
C-DPS 00:04:54 00:04:54 00:02:59 00:04:55 00:04:55 00:04:54
DiffPIR 00:01:59 00:01:59 00:01:13 00:01:59 00:01:59 00:01:59
DPnP 00:06:13 00:13:53 00:04:42 00:51:41 00:23:39 00:16:18

G ADDITIONAL RESULTS1091

We provide in Table 4 anAn exhaustive quantitative evaluation of the change in the optimality gap1092

afterwhen we substituteing the arbitrary-precision Monte Carlo denoiser for the learned denoiserfor1093

theoracle denoiser is provided in Table 4. WeThe table also reports for which cases the arbitrary-1094

precisionoracle denoiser enjoysreports significantly better results than the learned denoiser according1095

to a Wilcoxon signed-rank test (p = 0.05, Ntest pairs, two-sided test with the winner determined1096

by the median of differences). We attribute a better performance of the learned denoiser to the fact1097

that the algorithms are fine-tuned using the learned component or to the cases where the likelihood1098

score approximation is compensated by the one of the learned component. Note that this table must1099

be interpreted with the quality of the denoisers in mind. As we show in Figure 9, for our particular1100

choice of S = 300 samples, the Monte Carlo denoiser is strictly better than the learned denoiser over1101

all noise variances only for signals with BL(0.1, 1) and St(1) increment distributions. [tkeZ TmEt] Nu-
anced inspection
of the Monte Carlo
denoiser.

1102

We show uncurated qualitative results of the MMSE estimate obtained by the DPS algorithms and1103

the gold-standard Gibbs methods in Figures 11 to 18. The figures alternate between the arbitrary-1104

precisionoracle denoiser and the learned denoiser and show the results for deconvolution, denoising,1105

imputation, and reconstruction from partial Fourier samples, in that order. Each figure contains results1106

for BL(0.1, 1), St(1), St(2), and Laplace(1) increment distributions.1107

The coverage results for ϑ = 0.9 are presented in Table 7. The Gibbs row again validates the1108

implementation; for all forward operators, they achieve coverages that are very close to 0.9. In1109

contrast, the coverage values obtained by the DPS algorithms are generally much smaller than 0.9.1110

For C-DPS and DiffPIR, the reported coverage values are almost always 0 except for BL(0.1, 1)1111

and St(1) increments, where the coverages are usually (close to) 1 for C-DPS and inconsistent for1112

DiffPIR. For almost all increment distributions and forward operators, DPnP reports coverage values1113

that are closest to, but typically smaller than, 0.9. Note that a coverage of 1 can be considered the1114

worst case even at a target of 0.9. For instance, it would beis achieved by setting all samples to a1115

constant vector with extremely large (i.e., “unlikely”) entries.1116
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Figure 11: Qualitative results for deconvolution using the Monte Carlooracle denoising sampler.
Rows: increment distributions. For each increment distribution, the MMSE estimates obtained by the
different DPS algorithms and the gold-standard Gibbs methods are shown on top of the corresponding
index-wise marginal variances. Columns: Different measurements.
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Figure 12: Qualitative results for deconvolution using the learned denoiser. Rows: increment distribu-
tions. For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 13: Qualitative results for denoising using the Monte Carlooracle MMSE denoiser. Rows:
increment distributions. For each increment distribution, the MMSE estimates obtained by the different
DPS algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-
wise marginal variances. Columns: Different measurements.
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Figure 14: Qualitative results for denoising using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 15: Qualitative results for imputation using the Monte Carlo denoiseroracle sampler. Rows:
increment distributions. For each increment distribution, the MMSE estimates obtained by the different
DPS algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-
wise marginal variances. Columns: Different measurements.
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Figure 16: Qualitative results for imputation using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms and the
gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal variances.
Columns: Different measurements.
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Figure 17: Qualitative results for reconstruction from partial Fourier measurements using the Monte
Carlooracle denoiser. Rows: increment distributions. For each increment distribution, the MMSE
estimates obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown
on top of the corresponding index-wise marginal variances. Columns: Different measurements.
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Figure 18: Qualitative results for reconstruction from partial Fourier measurements using the learned
denoiser. Rows: increment distributions. For each increment distribution, the MMSE estimates
obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown on top of
the corresponding index-wise marginal variances. Columns: Different measurements.
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Table 6: Runtime of the benchmark with Monte Carlo objects. [TmEt] Runtimes
of the experiments.Gauss(0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Denoising
C-DPS 05:52:28 07:23:23 34:07:44 05:52:40 05:34:51 05:31:10
DiffPIR 05:04:40 06:36:25 33:46:29 05:12:30 05:39:06 05:38:24
DPnP 00:03:04 00:03:57 00:20:36 00:03:23 00:03:08 00:03:10

Deconvolution
C-DPS 05:53:40 07:25:17 34:17:12 05:28:38 05:24:12 05:24:00
DiffPIR 05:28:09 06:55:34 34:16:17 05:31:29 05:32:32 05:22:39
DPnP 00:03:05 00:03:59 00:21:01 00:03:13 00:03:21 00:03:21

Imputation
C-DPS 05:49:07 07:15:41 34:29:37 05:53:44 05:27:44 05:26:05
DiffPIR 05:50:15 07:00:13 33:52:26 05:34:00 05:24:16 05:09:56
DPnP 00:03:23 00:04:18 00:20:58 00:03:09 00:03:05 00:03:22

Fourier
C-DPS 05:49:49 07:09:51 34:30:13 05:49:44 05:49:26 05:49:07
DiffPIR 05:13:06 06:38:32 34:31:38 05:17:58 06:14:52 05:15:14
DPnP 00:03:04 00:04:12 00:20:59 00:03:05 00:03:19 00:03:32
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Figure 19: Conditional generation for deconvolution of a signal with BL(0.1, 1) increments with
DiffPIR. Top: Prototypical sampling trajectory at times t = 999, 600, 200, 0. Bottom: From left to
right: MMSE estimate obtained by averaging all DiffPIR samples; gold-standard MMSE estimate
obtained by the Gibbs method; the data-generating signal; the data.

Table 7: Posterior coverage of various estimation methods at ϑ = 0.9. MC: Monte Carlo.
Gauss(0, 0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Learned MCoracle Learned MCoracle Learned MCoracle Learned MCoracle Learned MCoracle Learned MCoracle

Denoising

Gibbs — 0.90 — 0.91 — 0.91 — 0.89 — 0.91 — 0.89
C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.28 0.02 0.00 0.00 0.00 0.00
DPnP 0.58 0.67 0.11 0.11 1.00 0.41 0.53 0.08 0.09 0.09 0.09 0.10

Deconvolution

Gibbs — 0.89 — 0.90 — 0.90 — 0.91 — 0.91 — 0.91
C-DPS 0.00 0.00 0.01 0.00 1.00 1.00 1.00 0.83 0.01 0.00 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.97 0.92 0.00 0.00 0.00 0.00
DPnP 0.12 0.12 0.06 0.07 1.00 0.31 0.50 0.06 0.06 0.06 0.07 0.06

Imputation

Gibbs — 0.89 — 0.90 — 0.86 — 0.91 — 0.91 — 0.91
C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 0.94 0.78 0.15 0.15 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.72 0.32 0.00 0.00 0.00 0.00
DPnP 0.28 0.31 0.09 0.08 1.00 0.41 0.56 0.07 0.14 0.13 0.12 0.13

Fourier

Gibbs — 0.91 — 0.90 — 0.90 — 0.91 — 0.92 — 0.91
C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 0.96 0.74 0.01 0.01 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.92 0.65 0.00 0.01 0.00 0.00
DPnP 0.19 0.19 0.08 0.06 1.00 0.32 0.50 0.06 0.07 0.07 0.07 0.06
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ABSTRACT

We propose a statistical benchmark for diffusion posterior sampling (DPS) algo-1

rithms in linear inverse problems. Our test signals are discretized Lévy processes2

whose posteriors admit efficient Gibbs methods. These Gibbs methods provide gold-3

standard posterior samples for direct, distribution-level comparisons with DPS algo-4

rithms. They can also sample the denoising posteriors in the reverse diffusion, which5

enables the arbitrary-precision Monte Carlo estimation of various objects that may6

be needed in the DPS algorithms, such as the expectation or the covariance of the7

denoising posteriors. In turn, this can be used to isolate algorithmic errors from the8

errors due to learned components. We instantiate the benchmark with the minimum-9

mean-squared-error optimality gap and posterior-coverage tests and evaluate pop-10

ular algorithms on the inverse problems of denoising, deconvolution, imputation,11

and reconstruction from partial Fourier measurements. We release the benchmark12

code at https://github.com/emblem-saying/dps-benchmark and13

invite the community to contribute and report results.14

1 INTRODUCTION15

Diffusion models are among the leading generative models in imaging (Rombach et al., 2022),16

visual computing (Po et al., 2024), finance and time-series analysis (Huang et al., 2024; Rasul et al.,17

2021), de novo protein and drug design (Watson et al., 2023; Alakhdar et al., 2024), natural language18

processing (Li et al., 2022), and other domains. Their ability to model complex distributions has19

motivated their use as priors in the Bayesian resolution of inverse problems. In fact, reconstruction20

methods that leverage diffusion models are competitive or state-of-the-art for problems such as21

deconvolution (Ren et al., 2023), phase retrieval (Xue et al., 2025), magnetic resonance imaging22

and computed tomography reconstruction (Chung & Ye, 2022; Liu et al., 2023), weather-artifact23

removal (Özdenizci & Legenstein, 2023), task-conditioned protein design (Bogensperger et al., 2025),24

audio bandwidth extension and dereverberation (Lemercier et al., 2024), and denoising of financial25

time-series (Wang & Ventre, 2024).26

This empirical success has come in spite of a lack of a natural mechanism for the conditioning on27

measurements and active research explores how to incorporate the likelihood (Yismaw et al., 2025;28

Erbach et al., 2025). Currently, conditioning strategies are evaluated in one of two ways. (i) With29

respect to downstream applications: As an example, evaluations with respect to perceptual metrics30

such as the structural similarity (Wang et al., 2004), the Fréchet inception distance (Heusel et al.,31

2017), or the learned perceptual image-patch similarity (Zhang et al., 2018) are common in the32

imaging sciences. As pointed out by Pierret & Galerne (2025b) and Cardoso et al. (2024), however,33

these metrics are ill-suited for the statistical evaluation of posterior-sampling algorithms. (ii) In34

overly simplistic settings: A common fallback is to evaluate conditioning strategies in synthetic35

settings with (finite-component) Gaussian-mixture priors. Such mixtures remain light-tailed with36

the tail decreasing exponentially like the widest component. Consequently, they cannot reproduce37

power-law-like extremes that are common in asset returns (Blattberg & Gonedes, 1974; Cont, 2001) or38

statistics of images (Wainwright & Simoncelli, 1999). We illustrate signals with such power-law-like39

extremes later in Figure 3. Benchmarks built on such priors can therefore overstate posterior quality. A40

proper statistical evaluation in realistic settings is critical in high-stakes applications such as medical41

imaging, remote sensing, and finance, where decisions based on reconstructions and their associated42

uncertainties may have significant consequences.43

1
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1.1 CONTRIBUTIONS44

We propose such a statistical benchmark for diffusion posterior sampling (DPS) algorithms1 for45

linear inverse problems. Our test signals are discretized Lévy processes that admit efficient posterior-46

sampling algorithms. Indeed, they admit efficient Gibbs methods with exact conditionals that provide47

gold-standard posterior samples. Our framework supports general posterior-level comparisons (e.g.,48

(sliced) Wasserstein or energy distances or calibration via coverage and posterior predictive checks)49

by furnishing matched samples obtained from the DPS algorithms and the Gibbs methods.50

The Gibbs methods are also suited to sample from the denoising posteriors in the reverse diffusion.51

This motivates our contribution of a new template for DPS algorithms, in which update steps utilize52

samples from the corresponding denoising posterior. These samples can be used for arbitrary-precision53

Monte Carlo estimation of various objects that are needed in the update steps of the algorithms, such54

as the minimum-mean-squared-error (MMSE) denoiser or its Jacobian, which enables the isolation55

of algorithmic errors from approximation errors due to learned components. We show how several56

popular DPS algorithms can be re-expressed within our template.57

Finally, we instantiate the framework with the MMSE optimality gap and highest-posterior-density58

coverage checks across the inverse problems of denoising, deconvolution, imputation, and reconstruc-59

tion from partial Fourier measurements. We target the realistic scenario where a learned denoiser is60

used and check hyperparameter sensitivity by substituting the arbitrary-precision Monte Carlo counter-61

parts for the learned components. The benchmark code—which is another substantial contribution—is62

available online. It contains efficient implementations of sampling routines and a containerized run-63

time that allows novel algorithms to be easily benchmarked.64

1.2 RELATED WORK65

For unconditional sampling, many works derive theoretical bounds on distances between a target66

distribution and the distribution obtained by (approximations of) the reverse stochastic differential67

equation (SDE) (see Section 2). For example, Gao et al. (2025) bound the Wasserstein-2 distance68

with respect to the discretization error of the SDE under the assumption that the target distribution is69

smooth and log-concave. This directly bounds the number of reverse-diffusion steps needed to obtain70

a desired accuracy. Under absolute continuity of the target with respect to a Gaussian, Strasman et al.71

(2025) bound the Kullback–Leibler divergence with respect to properties of the noise schedule.72

A common assumption that simplifies the analysis and facilitates the computation of various errors and73

bounds is that of a Gaussian target. For example, Hurault et al. (2025) analyze the error incurred when74

using a finite number of prior samples for the estimation of the prior score and track its propagation75

through the iterations of the reverse-SDE solver. Pierret & Galerne (2025b) derive explicit solutions76

to the SDE and use them to derive bounds on the Wasserstein-2 distance to the distributions that are77

obtained via Euler–Maruyama discretizations.78

For conditional sampling, Pierret & Galerne (2025a) derive expressions for the Wasserstein-2 distances79

between the conditional forward marginals and the distributions induced by specific likelihood80

approximations in the reverse SDE under the assumption of a Gaussian prior. Crafts & Villa (2025)81

systematically evaluate DPS algorithms numerically under the assumption of a (finite-component)82

Gaussian-mixture prior and provide reference objects to the DPS algorithms to ensure a fair evaluation.83

Cardoso et al. (2024) and Boys et al. (2024) also evaluate their algorithms on Gaussian-mixture84

priors. These Gaussian-mixture priors, however, cannot reproduce power-law-like extremes and can85

overstate posterior quality.86

Beyond diffusion-specific theory, Thong et al. (2024) check the coverage of credible regions produced87

by different Bayesian recovery strategies and find that those that utilize diffusion models often88

under-report uncertainty. A shortcoming of their approach is that they use an empirical distribution89

of images as a surrogate for the prior distribution. Finally, Bohra et al. (2023) also used efficient90

Gibbs methods to obtain gold-standard posterior samples. Their main focus was to quantify the91

quality of neural MMSE estimators with different number of parameters. Our work extends this to92

posterior-level comparisons.93

1We use “DPS algorithms” as an umbrella term for posterior-sampling methods with diffusion priors. The
method due to Chung et al. (2023), often called DPS in the literature, will be referred to later as C-DPS.
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2 BACKGROUND94

Bayesian Linear Inverse Problems We seek to estimate a signal x → Rd from the measurements95

y = Ax+ n, (1)

where the forward operator A → Rm→d models the noiseless linear-measurement acquisition and96

n → Rm is additive noise. In the Bayesian resolution of this problem (Stuart, 2010), the signals are97

modeled as a random variable, denoted X, with values in Rd and distribution pX, referred to as the98

prior. Given any measurement y, the ultimate goal is to analyze the posterior pX|Y=y. It is related to99

the likelihood pY|X=x and the prior pX via Bayes’ rule, which states that100

pX|Y=y(x) ↑ pY|X=x(y)pX(x). (2)

In contrast to classical variational methods (Scherzer et al., 2008), the posterior distribution provides101

natural means to quantify uncertainty and can be summarized by various point estimators. We provide102

a precise description of point estimators that are relevant in this work in Appendix A.103

For a given signal x, the likelihood pY|X=x is fully specified by the distribution of the noise. A104

common assumption on the noise is that it is a vector of independent and identically distributed (i.i.d.)105

Gaussian random variables with mean zero and variance ω2
n.2 In this case, the likelihood is given by106

pY|X=x(y) ↑ exp
(
↓

1
2ω2

n
↔Ax↓ y↔

2
)
. (3)

Thus, once the forward model and the noise distribution are specified, the remaining modeling choice107

is the prior. Diffusion models are good candidates due to their ability to encode complex distributions.108

Diffusion Models Diffusion models were introduced by Song et al. (2021) by unifying the discrete109

approaches proposed by Song & Ermon (2019) and Ho et al. (2020) in a continuous theory based110

on SDEs (Klenke, 2020, Chapters 25 and 26). We denote the (diffusion) SDE with drift coefficient111

f : Rd
↗ R↑0 ↘ Rd and diffusion coefficient g : R↑0 ↘ R as112

dXt = f(Xt, t) dt+ g(t) dWt, (4)

where Wt is the standard Wiener process. In our setup, the initial condition X0 is the random variable113

that describes the signal, thus, X0 = X. Under suitable choices for f and g, the forward process114

admits a limiting marginal X↓ as t ↘ ≃. Sampling from pX0 can then proceed by simulating the115

SDE (4) in reverse with initial condition X↓. By Anderson’s theorem (Anderson, 1982), the reverse116

SDE that reproduces the forward marginals satisfies117

dXt =
(
f(Xt, t)↓ g2(t)⇐ log pXt(Xt)

)
dt+ g(t) dWt, (5)

where pXt denotes the density of Xt defined by the forward process, and dt is negative.118

The primary challenge in this approach lies in the computation of the scores ⇐ log pXt for all t > 0.119

A fundamental relation known as Tweedie’s formula connects the score with the MMSE denoiser: As120

we derive rigorously in Appendix B, for f(x, t) =
(
↓

ε(t)
2

)
x and g(t) =

√
ε(t), we have that3121

⇐ log pXt(x) = ↓ω(t)↔2
(
x↓ ϑ(t)E[X0 | Xt = x]

)
, (6)

where ϑ(t) = exp(↓ 1
2

∫ t
0 ε(s)ds) and ω2(t) = (1↓ ϑ2(t)). This yields a practical way to compute122

⇐ log pXt(x) through the resolution of the MMSE denoising problem of finding E[X0 | Xt = x].123

In standard applications where the goal is the generation of new signals, one typically tackles this124

by approximating the map (x, t) ⇒↘ E[X0 | Xt = x] with a neural network that is learned in an125

offline step. In our framework, we can instead obtain arbitrary-precision MMSE denoisers via Gibbs126

methods and thereby eliminate approximation errors from a learned surrogate and isolate errors in127

DPS algorithms themselves.128

The implementation of the reverse SDE for generation requires its own time discretization, for instance129

with Euler–Maruyama techniques (Higham, 2001). In this work, we will base our backward processes130

on the alternative denoising diffusion probabilistic model (DDPM) backward process (starting from131

Gauss(0, I))132

Xt↔1 = 1↗
1↔εt

(Xt + εt⇐ log pXt(Xt)) +
√

εtZt, (7)
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Figure 1: Unconditional reverse-diffusion trajectories obtained by DDPM using the arbitrary-precision
Monte Carlo denoiser. Rows: Increment distributions. Columns: Diffusion times. Line styles: Differ-
ent random states.

that originates from the discrete-time Markov chain that was initially proposed by Sohl-Dickstein133

et al. (2015) and revisited and popularized by Ho et al. (2020). We relate it to the Euler–Maruyama134

discretization of the reverse SDE through Taylor expansions in Appendix B.1.135
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Figure 2: Histogram of increments of signals ob-
tained by DDPM with different denoisers.

Though we defer details on our signals and136

the Gibbs methods that we use to obtain the137

arbitrary-precision MMSE denoiser to Section 3,138

we demonstrate in Figure 1 that our signals can139

be generated by coupling the unconditional back-140

ward process in (7) with this denoiser. We fur-141

ther motivate this arbitrary-precision denoiser142

in Figure 2 by comparing histograms of signal143

increments produced by the learned denoiser144

and the arbitrary-precision denoiser for a St(1)145

increment target (notations summarized in Ap-146

pendix C.2). The increments of signals gener-147

ated with the arbitrary-precision denoiser follow the target almost perfectly. Residual errors are due148

to the discretization of the reverse diffusion and Monte Carlo error of the arbitrary-precision denoiser.149

Diffusion Posterior Sampling Our reverse-diffusion sampler can be adapted to sample from a150

posterior by replacing the prior score ⇐ log pXt with the posterior score151

⇐ log pXt|Y=y = ⇐ log pXt +⇐
(
x ⇒↘ log pY|Xt=x(y)

)
(8)

for some given measurement y, obtained by Bayes’ theorem. Although the dependence between Y and152

X0 is known through (1) and the likelihood is explicitly modeled via (3), it is generally challenging to153

relate Y andXt for any t > 0. To overcome this, the conditioning on the measurements is usually done154

in one of two ways. (i) A learned component models the conditional posterior score and also gets the155

measurements as input. This strategy (pursued by Liu et al. (2023); Özdenizci & Legenstein (2023);156

Bogensperger et al. (2025); Saharia et al. (2023)) is advantageous when the measurement process157

is unknown, difficult to model, or prohibitively expensive to evaluate. However, its reconstructions158

typically degrade under shifts in measurement conditions since the learned components cannot adapt159

to the new measurement conditions. (ii) The Bayesian separation that is described in (8) is pursued160

and the likelihood score is approximated. This strategy (pursued by Chung & Ye (2022); Xue et al.161

(2025) and reviewed by Lemercier et al. (2024)) is advantageous when the measurement process162

is known, relatively inexpensive to evaluate, and subject to change, but prior knowledge should be163

reused, which is frequently the case in, e.g., imaging or remote-sensing applications. However, this164

requires approximations to the likelihood score ⇐(x ⇒↘ log pY|Xt=x(y)) for all t > 0.165

2Our framework supports more general (possibly non-Gaussian) likelihoods, see Section 3.
3This is the variance-preserving formulation (Song et al., 2021, Section 3.4) with standard normal limiting

marginal, where ω : R→0 → R→0 controls the speed of the contraction to zero and how much noise is injected.
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Figure 3: Examples of signals with heavy-tailed increment distributions. Top: Asset returns. Bottom:
Columns in natural images. Left: Signals. Right: Survival function of absolute increments (no marker:
empirical; markers: best fit to empirical within distribution).

Our benchmark can evaluate either strategy, as well as any other method that would claim to sample166

from a posterior distribution like in (2). Approach (i), however, relies on black-box learning of the167

conditional posterior score and its performance heavily depends on various implementation details.168

Thus, we primarily focus on approach (ii), which necessitates approximations of the likelihood169

score (and more general DPS algorithms with explicit conditioning, see our proposed generalization170

in Section 3). For those, our framework can supply arbitrary-precision Monte Carlo estimates of171

various objects to isolate and quantify the impact of these approximations.172

3 PROPOSED FRAMEWORK173

The prior distributions in our framework will be that of signals of length d obtained by regularly174

spaced samples of processes with independent, stationary increments (Lévy processes, described in175

Appendix C). Let s be such a process and let the unit-step increments be [u]k = (s(k)↓ s(k ↓ 1))176

for k = 1, 2, . . . , d. Independence and stationarity imply that the distribution of [u]k, the increment177

distribution pU , does not depend on k. The increment vector is related to the signal x via u = Dx,178

where D is a finite-difference matrix with an initial condition that allows us to write x = D
↔1

u179

where D
↔1 is a lower-triangular matrix of ones. This gives a convenient way to synthesize signals180

once u is drawn. The independence of the increments implies that the density of the discrete signal is181

pX(x) =
d∏

k=1

pU
(
[Dx]k

)
. (9)

We consider four increment distributions that are commonly used in sparse-process models: Gaussian;182

Laplace; Student-t; and Bernoulli–Laplace (spike-and-slab). Such increment distributions are sparse183

or heavy-tailed according to the taxonomy due to Unser & Tafti (2014) and are relevant in signal184

and image processing, finance, and other fields (Schoutens, 2003). We show instances signals with185

such heavy-tailed increment distributions in Figure 3. A precise definition of Lévy processes, the186

matrix D, the increment distributions and their notation along with a discussion about extensions to187

higher-dimensional signals or signals with more complicated graph structure are given in Appendix C.188

Efficient Posterior Sampling With the prior distribution specified in (9) and the assumption of189

Gaussian noise, the posterior associated to the inverse problem intrinsic in (1) is190

pX|Y=y(x) ↑ exp
(
↓

1
2ω2

n
↔Ax↓ y↔

2
)
pX(x) = exp

(
↓

1
2ω2

n
↔Ax↓ y↔

2
) d∏

k=1

pU
(
[Dx]k

)
. (10)

Unless pU is a Gaussian (the simplified setting in Pierret & Galerne (2025b)), this posterior is not191

conjugate, so neither closed-form sampling nor direct evaluation of moments is available. Nevertheless,192

for the increment distributions used in this paper, the posterior distributions admit efficient Gibbs193

methods via standard latent-variable augmentations. Motivation and more details about the Gibbs194

methods, such as the burn-in period B and the number of samples S, are provided in Appendix D.195
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Algorithm 1 GLM Gibbs method.

Require: x0 → Rd, K → Rn→d, conditional la-
tent distributions {p[Z]k|X}

n
k=1 and maps

{µk,ω2
k}

n
k=1

1: for s = 1, . . . , B + S do
2: Draw [z]k ⇑ p[Z]k|X=[Kxs→1]k ϖ par. over k
3: Draw xs ⇑ Gauss(µ(z),!(z))
4: return {xB+s}

S
s=1

The Gaussian, Laplace, and Student-t dis-196

tributions admit latent representations197

as infinite-component Gaussian mixtures,198

which makes them suitable for the Gaus-199

sian latent machine (GLM) that was re-200

cently introduced by Kuric et al. (2025).201

It is generally applicable to distributions202

p(x) ↑
n∏

k=1

ϱk

(
[Kx]k

)
, (11)

where K → Rn→d and all distributions ϱ1,ϱ2, . . . ,ϱn : R ↘ R have a latent representation203

ϱk(t) =

∫

R
gµk(z),ω2

k(z)
(t)fk(z) dz, (12)

where the latent distribution fk and the latent maps µk,ω2
k : R ↘ R depend on the distribution ϱk,204

and gµ,ω2 is the density of a one-dimensional Gaussian distribution with mean µ and variance ω2. We205

can cast the posterior distribution in (10) into this framework by rewriting it as206

pX|Y=y(x) ↑
m∏

k=1

g[y]k,ω2
n

(
[Ax]k

) d∏

k=1

pU
(
[Dx]k

)
=

m+d∏

k=1

ϱk

(
[Kx]k

)
. (13)

There,K = [A;D],ϱk = g[y]k,ω2
n

for k = 1, 2, . . . ,m, and ϱk = pU for k = m+1,m+2, . . . ,m+d.207

Importantly, non-Gaussian likelihoods can be handled by some appropriate definition of the first m208

distributions.209

The introduction of an appropriate n-dimensional random variable Z with nontrivial distribution (see210

the details in Kuric et al. (2025)) enables the efficient sampling from the conditionals: Sampling211

X | Z = z amounts to sampling a Gaussian with covariance and mean212

!(z) = (K↘
!0(z)

↔1
K)↔1 and µ(z) = !(z)K↘

!0(z)
↔1µ0(z), (14)

respectively, where !0(z) = diag
(
ω2
1([z]1), . . . ,ω

2
n([z]n)

)
and µ0(z) =

(
µ1([z]1), . . . , µn([z]n)

)
.213

Sampling Z | X = x amounts to sampling n independent one-dimensional conditional latent214

distributions p[Z]1|X=[Kx]1 , . . . , p[Z]n|X=[Kx]n that depend on the distributions ϱ1, . . . ,ϱn and are215

given in Table 3 in the appendix along with the corresponding latent distributions and latent maps.216

We summarize the GLM sampling in Algorithm 1.217

For the Bernoulli–Laplace increment distribution, we adapt the algorithm proposed by Bohra et al.218

(2023) that introduces two d-dimensional latent variables: a Bernoulli indicator (“on”/“off”); and219

a Laplace-distributed increment height. For a self-contained exposition, we rigorously derive the220

resulting Gibbs method in Appendix D.1.221

101.48

Baseline

+ Parallel CUDAGIG sampler

→54.07

+ Parallel sampling of U | V = v,W = w,Y = y

→33.52

+ Woodbury–Sherman–Morrison for sampling V | W = w,Y = y

→11.71

+ torch.compile

Seconds per Gibbs iteration (NVIDIA V100)

Final runtime: 1.36 s
Speedup: 74.61↑

Figure 4: Runtime improvements of the Bernoulli–
Laplace sampler.

The Gibbs methods that we just described are222

suitable for the generation of the gold-standard223

samples from the posterior that corresponds to224

the initial inverse problem intrinsic in (1) as225

well as the generation of samples from the de-226

noising posteriors in the DPS algorithms. In the227

latter case, the forward operator A is the iden-228

tity, the measurements are the noisy intermedi-229

ate reconstructions xt, and the noise variance230

ω2
n = ω2

t follows the schedule at timestep t.231

When these Gibbs methods are embedded232

within the reverse-diffusion loop, an efficient233

implementation is paramount to achieve ac-234

ceptable runtimes. This is most crucial for the235

Bernoulli–Laplace increment distribution, where the sequential drawing of the binary support vector is236

nested within the Gibbs loop, which in turn may be nested within the reverse-diffusion loop. Accord-237

ingly, we tailored our implementation to modern, highly parallel compute units and optimized several238

components, including custom CUDA- and Triton-compiled sampling routines and incremental239

updates based on the Woodbury–Sherman–Morrison identities . We achieved a cumulative speedup240

of 74.61↗ over the baseline implementation (illustrated in Figure 4 with details in Appendix D.2).241
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Algorithm 2 Template for DPS algorithms.
Require: Initial point xT , y, A, ω

1: for t = T, . . . , 1 do ϖ Diffusion process
2: Sample {x̄k}

S
k=1 ⇑ pX0|Xt=xt

3: Update xt↔1 =
S(xt, {x̄k}

S
k=1,y,A,ω, t)

4: return x̂
alg = x0 ϖ Posterior sample

A Generalized DPS Template Widely used242

methods, such as diffusion plug-and-play243

(DPnP) (Xu & Chi, 2024), fall outside the pat-244

tern described in Section 2, where one approx-245

imates likelihood score inside the reverse dif-246

fusion. We therefore introduce a simple tem-247

plate that is natural in our setting and accom-248

modates a broader set of DPS algorithms. More249

precisely, we characterize the iteration rule of250

DPS algorithms as a two-stage process: Given an iterate xt with associated noise variance ω2
t , the next251

iterate xt↔1 is computed by (i) drawing S samples denoted {x̄k}
S
k=1 from the denoising posterior252

pX0|Xt=xt
↑ exp

(
↓

1
2ω2

t
↔ · ↓ xt↔

2
)
pX0( · ); and (ii) the subsequent computation of an update step253

S that may utilize the current iterate xt, the samples {x̄k}
S
k=1, the measurements y, the forward254

operator A, and, possibly, other algorithm-internal parameters such as a scalar that weights likeli-255

hood and prior terms or parameters that define the noise schedule. This template is summarized in256

Algorithm 2 and specialized instances for the update step S for a variety of popular algorithms are257

given in Appendix E.2. We have absorbed the (variance-preserving) scaling into the step S since this258

template is not fundamentally limited to diffusion processes but supports any (also not monotonically259

decreasing) noise schedules. In addition, noise variances {ωt}
T
t=1 are usually derived from the internal260

parameters ω that may include a noise schedule.261

Through this construction, DPS algorithms can use any statistic R of the samples {x̄k}
S
k=1 in their262

update steps. Most methods use the mean R(x̄1, . . . , x̄S) =
1
S

∑S
k=1 x̄k := µ̄, which is the Monte263

Carlo estimate of E[X0 | Xt = xt]. An example of a DPS algorithm that utilizes additional statistics is264

Chung diffusion posterior sampling (C-DPS), which requires the Jacobian of xt ⇒↘ E[X0 | Xt = xt].265

As we show in Appendix E.1, this Jacobian equals (up to the known variance-preserving scaling) the266

conditional covariance of X0 | Xt = xt, an unbiased estimator of which can be obtained through267

the statistic R(x̄1, . . . , x̄S) =
1

S↔1

∑S
k=1(x̄k ↓ µ̄)(x̄k ↓ µ̄)↘. An example of a DPS algorithm that268

utilizes an alternative statistic is the DPnP algorithm that alternately samples from pX0|Xt=xt
and a269

data-proximal problem. There, R(x̄1, . . . , x̄S) = x̄1 is used to obtain one sample from pX0|Xt=xt
.270

This statistic is frequently used in the asymptotically exact and the CSGM-type algorithms (using the271

taxonomy due to Daras et al. (2024)). When only a learned MMSE denoiser is available, obtaining this272

one sample requires a full reverse diffusion. In contrast, it requires only one iteration (and the burn-in273

period) with the Gibbs methods. Thus, these algorithms are typically faster when they are endowed274

with the Gibbs methods (see the runtimes in Tables 5 and 6), which enables easy benchmarking.275

However, CSGM-type algorithms typically do not aim at posterior sampling and we do not benchmark276

them here.277

Since the denoising posteriors are always sub-Gaussian, the Monte Carlo estimation of any object278

enjoys favorable convergence. For instance, the computational complexity of estimating the covariance279

up to a desired precision in the operator norm scales linearly with the dimensionality of the signal280

(Vershynin, 2018, Theorem 4.7.1).281

Extensions A prerequisite for a quantitative evaluation of posterior-sampling algorithms is the282

availability of reasonably efficient samplers that can provide gold-standard samples. The development283

of such samplers for posteriors arising from nonlinear measurement models and non-Gaussian noise284

is challenging, and existing methods currently address only specific cases (e.g., Wang et al. (2017)285

study a nonlinear-Gaussian measurement model with a Laplace prior). Importantly, our framework286

is modular: as more general-purpose samplers for these posteriors become available, they can be287

plugged into our benchmark directly. The denoising posteriors in the reverse diffusion do not change288

with the likelihood and can, therefore, always be efficiently sampled.289

When going to higher dimensions, the primary challenge lies in the sampling of the high-dimensional290

Gaussian distributions required in the Gibbs methods. Luckily, the structure of the involved operators291

in our case is such that the Gaussians can be efficiently sampled with perturb-and-MAP approaches292

with matrix-free conjugate gradient implementations; we discuss this in more detail and show how293

the runtime of different samplers change with the dimensions in Appendix D.2. Sampling high-294

dimensional Gaussians is a well-studied problem and advances in that field can directly be used in295

our framework.296
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Our gold-standard posterior samples can be compared to samples obtained by any posterior-sampling297

algorithm. This includes classical Markov-chain Monte Carlo algorithms, algorithms that utilize298

flow-matching priors, and others. In this work, we primarily focus on DPS algorithms because299

our framework can supply arbitrary-precision Monte Carlo objects to them. We believe that this300

fundamental principle can be extended to other algorithms, in particular those that utilize flow-301

matching priors. Such algorithms are frequently evaluated on toy examples based on Gaussian302

mixtures (e.g. by Pourya et al. (2025)), that are overly simplistic.303

4 NUMERICAL EXPERIMENTS304

We consider signals of dimension d = 64 and four inverse problems that are frequently encountered305

in various estimation tasks throughout the natural sciences: denoising; deconvolution; imputation; and306

reconstruction from partial Fourier measurements. The dimension of the signal is large enough such307

that the corresponding operators can be sensibly defined, yet small enough such that the benchmark has308

acceptable runtimes. We provide experiments about the runtime with larger signals in Appendix D.2,309

details about the operators in Appendix F.1, and precise descriptions of the benchmarking pipeline310

(e.g., the number of training, validation, and test signals, and the number of iterations in the Gibbs311

methods) in Appendix F.2.312

4.1 RECONSTRUCTION ALGORITHMS313

Model-Based Methods We consider the model-based methods314

x̂
ϑ2(y,ς) = argmin

x≃Rd

(
1
2↔Ax↓ y↔

2 + ς↔Dx↔
2
)
, (15)

and315

x̂
ϑ1(y,ς) = argmin

x≃Rd

(
1
2↔Ax↓ y↔

2 + ς↔Dx↔1

)
(16)

as baseline reconstruction algorithms. They coincide with the maximum-a-posteriori (MAP) estima-316

tors of Lévy processes associated with Gaussian and Laplace increment distributions, respectively.317

Diffusion Posterior Sampling Algorithms We consider C-DPS (Chung et al., 2023), diffusion318

models for plug-and-play image restoration (DiffPIR), (Zhu et al., 2023) and DPnP (Xu & Chi,319

2024). This selection demonstrates the applicability of the framework to algorithms that require320

denoising-posterior samples (DPnP), the MMSE denoiser (DiffPIR), and its Jacobian (C-DPS), which321

covers most of the existing DPS algorithms. For each DPS algorithm, we benchmark a variant that322

uses learned components (learning details are provided in Appendix F.3) and a variant that uses Gibbs323

samples of the denoising posterior. For DPnP, this fully removes approximation errors. For the others,324

the learned components and the Monte Carlo estimates of those components have varying quality325

for different distributions and noise variances that we systematically investigate in Appendix F.4.326

We provide our main results, the MMSE optimality gap, for the learned variant and then investigate327

changes when we substitute the Gibbs samples for the learned components.328

The model-based methods and the DPS algorithms require the tuning of some hyperparameters.329

These were found by grid search on validation data independently for each algorithm, increment330

distribution, and forward operator. The precise setup for this grid search is given in Appendix F.5.331

The hyperparameters for the DPS algorithms were tuned to the learned denoiser. Parameters obtained332

with this procedure are later denoted with a star in the superscript.333

Gold-Standard Gibbs Methods The Gibbs methods are used to obtain gold-standard samples from334

the posterior. As described in Section 3, the Gibbs methods are parameter- and bias-free and efficient.335

Consequently, they are well-suited for our purpose. Chain lengths, diagnostics, and implementation336

details are given in Appendix F.2; we reuse the same settings across operators and increment families.337

4.2 RESULTS338

For any measurement y, some DPS algorithm alg that depends on the parameters ω will339

produce samples that we denote {x̂
alg
k (y,ω)}

Nsamples

k=1 . We moreover denote x̂
alg
MMSE(y,ω) :=340

8
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Table 1: MMSE optimality gap in decibel (mean ± standard deviation; lower is better; 0 is a perfect
reconstruction) of various estimation methods over the test set. Bold: best among DPS algorithms.

Gauss(0, 0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Denoising

C-DPS 0.12 ± 0.18 0.12± 0.20 2.22± 2.26 3.26± 1.01 0.28± 0.30 0.10± 0.18
DiffPIR 0.16± 0.21 0.09 ± 0.16 0.72 ± 1.10 0.93 ± 1.06 0.07 ± 0.14 0.15± 0.21
DPnP 0.24± 0.25 0.11± 0.17 1.33± 2.12 1.19± 1.38 0.10± 0.17 0.10 ± 0.17
φ1 0.15± 0.21 0.06± 0.12 3.44± 2.38 0.38± 0.43 0.14± 0.19 0.11± 0.18
φ2 0.00± 0.01 0.16± 0.21 8.61± 3.10 3.25± 0.99 0.74± 0.83 0.25± 0.33

Deconvolution

C-DPS 0.12± 0.20 0.12± 0.23 4.30± 3.87 18.30± 5.28 0.46± 1.40 0.17± 0.53
DiffPIR 0.07 ± 0.17 0.07 ± 0.19 1.09 ± 2.22 10.45± 6.10 0.09 ± 0.57 0.08 ± 0.26
DPnP 0.10± 0.18 0.13± 0.22 1.71± 2.49 7.84 ± 5.66 0.35± 1.39 0.14± 0.41
φ1 1.65± 0.84 1.38± 0.86 1.86± 3.14 1.87± 4.01 1.10± 1.19 1.28± 0.94
φ2 0.00± 0.01 0.07± 0.23 6.11± 4.49 21.50± 4.46 1.44± 2.85 0.36± 1.09

Imputation

C-DPS 0.15± 0.29 0.18± 0.39 2.99± 2.82 23.33± 8.69 0.50± 1.09 0.14± 0.57
DiffPIR 0.09 ± 0.23 0.08 ± 0.24 0.24 ± 1.14 0.88 ± 3.50 0.11 ± 0.62 0.08 ± 0.42
DPnP 0.14± 0.32 0.17± 0.36 0.50± 1.28 10.89± 5.92 0.25± 0.82 0.27± 0.58
φ1 1.74± 1.12 1.77± 1.35 1.25± 2.78 13.32± 5.32 1.37± 2.56 1.55± 1.58
φ2 0.00± 0.01 0.01± 0.05 1.10± 1.88 0.42± 0.95 0.06± 0.34 0.02± 0.28

Fourier

C-DPS 0.15± 0.36 0.26± 0.65 5.90± 4.41 4.29± 5.78 0.53± 0.83 0.35± 0.77
DiffPIR 0.11 ± 0.29 0.08 ± 0.31 0.83 ± 1.44 3.19± 4.37 0.11 ± 0.39 0.12 ± 0.37
DPnP 0.11± 0.35 0.20± 0.51 1.88± 2.47 2.45 ± 4.83 0.39± 0.89 0.24± 0.64
φ1 1.50± 1.59 0.73± 0.94 3.57± 2.82 1.07± 2.98 0.71± 0.99 0.78± 0.97
φ2 0.00± 0.02 0.36± 0.73 12.22± 4.53 9.47± 8.34 2.66± 3.57 1.03± 1.79

1
Nsamples

∑Nsamples

k=1 x̂
alg
k (y,ω). For an estimation method x̂

est( · ) and data y with corresponding341

data-generating signal x we measure the MMSE optimality gap (in decibel) defined by342

10 log10

(
↔x̂

est(y)↓ x↔
2

↔x̂Gibbs
MMSE(y)↓ x↔2

)
, (17)

where x̂
est(y) = x̂

ϑ1↑2(y,ςϖ) for model-based methods and x̂
est(y) = x̂

alg
MMSE(y,ω

ϖ) for DPS343

algorithms. A gap of 0 indicates a perfect recovery of the gold-standard MMSE estimate and any344

positive values show the orders of magnitude of the error relative to the reference error. We found345

that Nsamples = 50 provided a good tradeoff between runtime and accuracy by benchmarking the346

gold-standard Gibbs method with that number of samples.347

We report in Table 1 the mean and standard deviation of the MMSE optimality gap over all signal-348

measurement pairs (x,y) in the test set obtained by the model-based methods and the DPS algorithms349

endowed with the learned denoiser . The Gaussian increment distribution validates the implementation:350

Since the MMSE and the MAP point estimates coincide, the model-based φ2 estimator matches the351

Gibbs reference up to the error due to the finite parameter-grid resolution. When the posterior352

mean is smooth (e.g., imputation and some deconvolution cases), φ2 is the best model-based choice353

and frequently outperforms the DPS algorithms. When the posterior mean is close to piecewise-354

constant (typical in denoising of signals with sparse increments), the φ1 estimator is preferred. Among355

DPS algorithms, DiffPIR is typically the top performer and often exceeds φ2 and φ1 baselines in356

deconvolution, imputation, and reconstruction from partial Fourier measurements. For spike-and-slab357

settings (Bernoulli–Laplace), DPS algorithms substantially outperform the model-based baselines358

across operators. In deconvolution and reconstruction from partial Fourier measurements, DPS359

algorithms frequently match or surpass the best model-based estimator.360

We now inspect the change in performance after we substitute higher-quality Monte Carlo com-361

ponents for the learned components. We do this without retuning of the hyperparameters, which362

allows us to see if the performance of the algorithms increases automatically with the quality of363

the denoiser. Here, we discuss general trends; an exhaustive quantitative evaluation and a precise364

quantification of the quality of the learned and Monte Carlo objects is given in Appendix G. For365

the same hyperparameters, the performance of DPnP increases significantly with the quality of the366

denoising-posterior samples. For example, the optimality gap decreases by 10.46 dB for imputation367

of signals with St(1) increments, and significantly for other measurement operators for signals with368

St(1) increments and BL(0.1, 1) increments. By contrast, C-DPS and DiffPIR can require a retuning369

when the denoiser changes: Scores can deteriorate after one has substituted a higher-quality Monte370

Carlo denoiser for the learned one, but a brief hand-tuning of the hyperparameters on the validation set371

improves them way beyond the learned denoiser. For instance, for DiffPIR and imputation of signals372

with St(1) increments, reusing the hyperparameters deteriorates the gap by 13.56 dB, whereas a brief373

hand-tuning decreased the optimality gap by almost 10 dB over what is reported in Table 1. Qualita-374

tive examples of the MMSE estimates and the marginal variances obtained by the DPS algorithms375

and the gold-standard Gibbs methods are shown in Figures 11 to 18 in the appendix.376
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Figure 5: Conditional generation for deconvolution
of a signal with BL(0.1, 1) increments with Diff-
PIR. The shaded area indicates the variance.

Prototypical samples and the corresponding377

MMSE estimate obtained from a DPS algorithm378

(here DiffPIR for deconvolution of a signal with379

BL(0.1, 1) increments) are shown in Figure 5.380

(The full conditional reverse-diffusion trajectory,381

the data-generating signal, the measurements,382

and the MMSE estimated obtained with the gold-383

standard Gibbs methods are shown in Figure 19384

in the appendix.) The figure highlights a key dis-385

tinction: Posterior samples often preserve high-386

frequency structure and reflect prior variability,387

whereas the MMSE point estimate—obtained by388

averaging all samples—is much smoother. This explains why DPS methods tend to score higher on389

perception-oriented metrics, while regressors that target the MMSE point estimate (through training390

with the mean squared error) excel on distortion metrics like the peak signal-to-noise-ratio (PSNR).391

Consistent with this distinction, Saharia et al. (2023) fairly compare a sampling-based method392

to an MMSE regressor and find the expected tradeoff: higher PSNR and structural similarity for393

the regressor; and better perceptual scores for the sampler. We therefore recommend to make the394

Bayesian target explicit—point estimate versus sample quality—and to use evaluation protocols that395

are aligned to that target. Our framework supports this by offering gold-standard posterior samples396

and arbitrary-precision Monte Carlo estimates.397

In addition to the evaluation of the MMSE optimality gap we analyze the highest-posterior-density398

coverage of the algorithms. Specifically, for any measurement y and any k = 1, 2, . . . , Nsamples,399

we define4 lk(y) := log pX|Y=y(x̂
alg
P (k)(y,ω

alg,ϖ)) where P is the permutation that ensures that400

l1(y) ⇓ l2(y) ⇓ · · · ⇓ lNsamples(y) and define the empirical highest-posterior-density threshold at401

ϑ → [0, 1] as l⇐ϱNsamples⇒(y). We declare the data-generating signal x covered if log pX|Y=y(x) ⇓402

l⇐ϱNsamples⇒(y) and define the coverage of a method as the fraction of signal-measurement pairs (x,y)403

in the test set for which x is covered by the threshold l⇐ϱNsamples⇒(y). The coverage of a calibrated404

posterior-sampling method will be ϑ, up to Monte Carlo error. A coverage result that is less than ϑ405

indicates that the samples concentrate too heavily around the mode; a coverage result that is greater406

than ϑ indicates that the samples are too spread out. We again discuss general trends here and present407

an exhaustive quantitative evaluation in Appendix G. The coverages obtained by the DPS algorithms408

are generally much smaller than ϑ, which indicates that they are uncalibrated and is in line with what409

is reported by Thong et al. (2024). For C-DPS and DiffPIR, the reported coverage values are almost410

always 0 except for BL(0.1, 1) and St(1) increments, where the coverages are usually (close to) 1411

for C-DPS and inconsistent for DiffPIR. For almost all increment distributions and forward operators,412

DPnP reports coverage values that are closest to but typically smaller than ϑ.413

5 CONCLUSION414

We have introduced a statistical benchmark for diffusion posterior sampling algorithms for linear415

inverse problems. The framework constructs signals with a known distribution, simulates the mea-416

surement process, and subsequently generates samples from the posterior distribution that arises417

through the combination of the known prior and the known likelihood. Gold-standard samples from418

this distribution are obtained via efficient Gibbs methods. These samples are then compared to those419

obtained by the diffusion posterior sampling algorithms. In addition, the Gibbs methods can be420

used to obtain arbitrary-precision Monte Carlo estimates of objects that are needed in the reverse421

stochastic differential equation, such as the minimum-mean-squared-error denoiser or its Jacobian.422

Consequently, the framework also enables the isolation and quantification of the error attributable to423

the likelihood approximations in the conditional reverse diffusion. We have provided numerical results424

for three common diffusion posterior sampling algorithms applied to four common inverse problems.425

A consistent theme across all tested algorithms is that they are not calibrated, which demonstrates that426

research into algorithms that perform better in this respect remains crucial. We invite other researchers427

to benchmark their algorithms on our open implementation.428

4With some slight abuse of notation, log pX|Y=y is the unnormalized ground-truth log-posterior (10). Since
the additive constant is the same across all methods, this ranking is valid.
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Reproducibility Statement We release an online repository with complete algorithm implemen-429

tations and step-by-step instructions to reproduce all results. A containerized runtime enables one-430

command setup and fully automated execution via the provided scripts. Each algorithm is specified at431

a level that supports independent re-implementation: The main text precisely details Gaussian latent-432

machine sampling; and the appendix presents the Bernoulli–Laplace Gibbs method in implementation-433

aligned notation, together with practical optimizations required for acceptable runtimes. The appendix434

also enumerates all experimental settings, including the numbers of training/validation/test signals,435

the samples-per-datum for each sampler, and the exact grid-search procedure used to select hyperpa-436

rameters.437

Usage of Large Language Models We used large language models to adapt passages of already-438

written text for readability and conciseness.439
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Ozan Özdenizci and Robert Legenstein. Restoring vision in adverse weather conditions with patch-525

based denoising diffusion models. IEEE Transactions on Pattern Analysis and Machine Intelligence,526

pp. 1–12, 2023.527

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming528

Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic Differentiation in PyTorch. In529

NIPS-W, 2017.530

Emile Pierret and Bruno Galerne. Exact evaluation of the accuracy of diffusion models for inverse531

problems with Gaussian data distributions, 2025a. arXiv.532

Emile Pierret and Bruno Galerne. Diffusion models for Gaussian distributions: Exact solutions and533

Wasserstein errors. In Proceedings of the Forty-Second International Conference on Machine534

Learning, 2025b.535

Rian Po, Wang Yifan, Vladislav Golyanik, Kfir Aberman, Jonathan T. Barron, Amit H. Bermano,536

Eric R. Chan, Tali Dekel, Aleksander Holynski, Angjoo Kanazawa, Karen Liu, Lingjie Liu, Ben537

Mildenhall, Matthias Nießner, Björn Ommer, Christian Theobalt, Peter Wonka, and Gordon Wet-538

zstein. State of the Art on Diffusion Models for Visual Computing. Computer Graphics Forum, 43539

(2), April 2024.540

Mehrsa Pourya, Bassam El Rawas, and Michael Unser. Flower: A flow-matching solver for inverse541

problems, 2025.542

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising543

diffusion models for multivariate probabilistic time series forecasting. In International conference544

on Machine Learning, pp. 8857–8868. PMLR, 2021.545

Mengwei Ren, Mauricio Delbracio, Hossein Talebi, Guido Gerig, and Peyman Milanfar. Multiscale546

structure guided diffusion for image deblurring. In 2023 IEEE/CVF International Conference547

on Computer Vision (ICCV), pp. 10687–10699, Los Alamitos, CA, USA, October 2023. IEEE548

Computer Society.549

Severi Rissanen, Markus Heinonen, and Arno Solin. Free hunch: Denoiser covariance estimation550

for diffusion models without extra costs. In The Thirteenth International Conference on Learning551

Representations, 2025.552

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-553

resolution image synthesis with latent diffusion models. In 2022 IEEE/CVF Conference on554

Computer Vision and Pattern Recognition (CVPR), pp. 10674–10685. IEEE, June 2022.555

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J. Fleet, and Mohammad Norouzi.556

Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and557

Machine Intelligence, 45(4):4713–4726, 2023.558
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A BAYES ESTIMATORS628

A benefit of the Bayesian approach over classical variational methods (see, e.g., (Scherzer et al.,629

2008)) is that different point estimates arise from a fixed prior. For a given measurement y, these point630

estimates summarize the posterior distribution pX|Y=y with respect to a given loss φ : Rd
↗Rd

↘ R631

via the optimization problem of finding the point x̂ϑ(y) that minimizes the posterior risk:632

x̂ϑ(y) = argmin
x̂≃Rd

(∫

Rd

φ(x̂,x) pX|Y=y(x) dx

)
. (18)

In this paper, the Bayes estimator with respect to the mean-squared error (MSE) φ = 1
d↔ · ↓ · ↔

2633

plays a key role due to its close relation to the prior score in the reverse diffusion (see Section 2) and634

because we quantify the performance of DPS algorithms via the MMSE optimality gap in Section 4.635

With this choice of φ, (18) can be written as636

x̂MMSE(y) = argmin
x̂≃Rd

(∫

Rd

1
d↔x̂↓x↔

2 pX|Y=y(x) dx

)
=

∫

Rd

xpX|Y=y(x) dx = E[X | Y = y],

(19)
which is the expectation of the posterior pX|Y=y.637

Another widely-used estimator arises through the choice638

φ(x̂,x) = ↓↼{x̂}(x) (20)

where639

↼A(x) :=

{
1 if x → A,
0 else,

(21)

which leads to the MAP estimator that seeks the mode of the posterior:5640

x̂MAP(y) = argmin
x̂≃Rd

(∫

Rd

↓↼{x̂}(x) pX|Y=y(x) dx

)
= argmax

x̂≃Rd

pX|Y=y(x̂). (22)

Rewriting (22) as641

x̂MAP(y) = argmin
x̂≃Rd

(
↓

1
2ω2

n
↔Ax̂↓ y↔

2
↓ log pX(x̂)

)
, (23)

reveals a close relation to classical variational approaches after identifying the regularizer with642

↓ log pX.643

5This definition is informal but sufficient for the purposes of this paper. For continuous posteriors, the strict
0–1 loss Bayes’ rule is ill-posed. A common formalization defines MAP as the limit of Bayes estimators under
shrinking small-ball 0–1 losses; under additional regularity, this limit agrees with the posterior mode (Bassett &
Deride, 2018; Clason et al., 2019). The MAP estimator may also not be unique.
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B TWEEDIE’S FORMULA644

In the setting of Section 2, we now derive an equality that relates ⇐ log pXt to E[X0 | Xt = · ], i.e.,645

the MMSE estimate of X0 given that Xt takes on a certain value. Similar derivations can be found646

in, e.g., (Song et al., 2021; Chung et al., 2023; Daras et al., 2024), but we include it to underscore647

the relevance of the MMSE estimate in this paper and to facilitate the understanding of its relation648

to various objects. Under the variance-preserving choice for f(x, t) = ↓
ε(t)
2 x and g(t) =

√
ε(t)649

of the drift and diffusion coefficient, the diffusion SDE (4) simplifies to a time-inhomogeneous650

Ornstein–Uhlenbeck SDE (see Klenke (2020, Example 26.5))651

dXt = ↓
ε(t)
2 Xt dt+

√
ε(t) dWt, (24)

whose pathwise solution652

Xt = ϑ(t)X0 +

∫ t

0

ϑ(t)

ϑ(s)

√
ε(t) dWs, (25)

where X0 is an appropriate initial condition and ϑ(t) = exp
(
↓

1
2

∫ t
0 ε(s) ds

)
, can be computed with653

standard techniques, see, e.g., (Gardiner, 1990, Section 4.4.4). In addition, since654

∫ t

0

(
ϑ(t)

ϑ(s)

)2

ε(t) ds =

∫ t

0
ε(s) exp

(
↓

∫ t

s
ε(u) du

)
ds = 1↓ ϑ2(t), (26)

we can write that655

Xt = ϑ(t)X0 + ω(t)N (27)
in distribution, where ω2(t) = (1↓ϑ2(t)). Consequently, the density of Xt is given by the convolution656

of pX0 with a Gaussian with variance ω2(t) and appropriate scaling by ϑ(t), which we write as657

pXt(x) =

∫

Rd

g0,ω(t)2I(x↓ ϑ(t)x̂)pX0(x̂) dx̂, (28)

where gµ,!(x) = (2↽)↔
d
2 |!|

↔ 1
2 exp

(
↓

1
2↔x ↓ µ↔2!→1

)
. Finally, after taking the gradient, we see658

that659

⇐pXt(x) =

∫

Rd

⇐g0,ω(t)2I(x↓ ϑ(t)x̂)pX0(x̂) dx̂

=

∫

Rd

↓
1

ω2(t) (x↓ ϑ(t)x̂
)
g0,ω2(t)I(x↓ ϑ(t)x̂)pX0(x̂) dx̂

= ↓
1

ω2(t)

(
xpXt(x)↓ ϑ(t)

∫

Rd

x̂g0,ω2(t)I(x↓ ϑ(t)x̂)pX0(x̂) dx̂
)

= ↓
1

ω(t)2

(
xpXt(x)↓ ϑ(t)pXt(x)E[X0 | Xt = x]

)
.

(29)

Finally, after dividing by pXt(x) and since ⇑pXt (x)
pXt (x)

= ⇐ log pXt(x), we find the celebrated Tweedie660

identity661

⇐ log pXt(x) = ↓ω(t)↔2
(
x↓ ϑ(t)E[X0 | Xt = x]

)
. (30)

B.1 A CONNECTION BETWEEN THE DISCRETIZED REVERSE SDE AND DDPM662

To show the connection between the Euler–Maruyama discretization of the reverse-diffusion SDE663

and the DDPM backward process, we start by deriving the latter from the respective forward process.664

DDPM has been introduced by Sohl-Dickstein et al. (2015) as a discrete-time Markov chain of length665

T with Gaussian transitions666

pXt|Xt→1=xt→1
= Gauss(

√
1↓ εtxt↔1,εtI), (31)

such that the transitions from X0 to Xt are also tractable as667

Xt =
⇔
ϑ̄tX0 +

⇔
1↓ ϑ̄tZt, (32)

where ϑt = (1↓ εt), ϑ̄t =
∏t

s=0 ϑs, and Zt ⇑ Gauss(0, I). By definition,668

Xt =
√
1↓ εtXt↔1 +

√
εtZt↔1 (33)

16



Under review as a conference paper at ICLR 2026

and a straightforward application of Tweedie’s formula (6) gives that669

E[Xt↔1|Xt] =
1↗
ϱt

(
Xt + (1↓ ϑt)⇐ log pXt(Xt)

)
, (34)

which leads to the DDPM backward transitions670

Xt↔1 = 1↗
1↔εt

(Xt + εt⇐ log pXt(Xt)) +
√
εtZt (35)

like they appear in (7).671

Now, we recall the reverse-diffusion SDE which, under our choice of the drift and diffusion coefficient,672

is given by673

dXt =
(
↓

ε(t)
2 Xt ↓ ε(t)⇐ log pXt(Xt)

)
dt+

√
ε(t) dWt. (36)

A first-order step from t to (t↓ 1) (dt = ↓1) of gives the Euler–Maruyama update674

Xt↔1 =
(
1 + εt

2

)
Xt + εt⇐ log pXt(Xt) +

√
εtZt, (37)

where εt := ε(t) and Zt ⇑ Gauss(0, I).675

The DDPM reverse process (35) can be related to the the Euler–Maruyama discretization of the676

reverse SDE (37) via Taylor expansions, since677

1
⇔
1↓ εt

= 1 +
εt

2
+O(ε2

t ) (38)

and678
εt

⇔
1↓ εt

= εt +O(ε2
t ) (39)

as εt ↘ 0.679

C LÉVY PROCESSES AND INCREMENT DISTRIBUTIONS680

The prior distributions in our framework are those of signals obtained by regularly spaced samples of681

processes with independent, stationary increments (Lévy processes and their discrete-time counter-682

parts). We briefly recall the definition; see Unser & Tafti (2014); Sato (1999) for background and the683

link to infinitely divisible laws.684

Definition C.1 (Lévy process). A stochastic process s = {s(t) : t ⇓ 0} is a Lévy process if685

1. (anchor at the origin) It holds that s(0) = 0 almost surely;686

2. (independent increments) for any N → N \ {0, 1} and 0 ↖ t1 < t2 < · · · < tN < ≃, the687

increments (s(t2)↓s(t1)), (s(t3)↓s(t2)), . . . , (s(tN )↓s(tN↔1)) are mutually independent;688

3. (stationary increments) for any given step h, the increment process uh = {s(t)↓ s(t↓ h) :689

t > h} is stationary;690

4. (stochastic continuity) for any ⇀ > 0 and t ⇓ 0,691

lim
h⇓0

Pr
(
|s(t+ h)↓ s(t)| > ⇀

)
= 0.

We form discrete and finite-length signals by sampling s at integer times and stacking the values692

into x = (s(1), s(2), . . . , s(d)). Let the unit-step increments be [u]k = (s(k) ↓ s(k ↓ 1)) for693

k = 1, 2, . . . , d. By independence and stationarity, the law6 of [u]k does not depend on k and we694

denote it pU . We define the finite-difference matrix695

D =





1 0 0 · · · 0
↓1 1 0 · · · 0
0 ↓1 1 · · · 0
...

...
. . . . . . 0

0 0 · · · ↓1 1




(40)

6For our choices, it always has a density w.r.t. a suitable reference measure.
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Table 2: Univariate distributions used throughout this work. Parameters appear in the order they are
specified in this table, e.g. Gauss(µ,ω2).

Name Distribution Parameter(s) Supp. Notation

Gaussian 1↗
2ςω2

exp
(
↓

(x↔µ)2

ω2

)
µ → R,ω2

→ R>0 R Gauss

Exponential ς exp(↓ςx) ς → R>0 R↑0 Exp

Laplace 1
2b exp

(
↓

|x|
b

)
b → R>0 R Laplace

Student-t
!
(

ω+1
2

)
↗
ςφ!

(
ω
2

)(1 + x2

φ

)↔ ω+1
2 ⇁ → R>0 R St

Gamma εε

!(ϱ)x
ϱ↔1 exp(↓εx) ϑ,ε → R>0 R>0 Gamma

Gen. inv. Gaussian ( a
b )

p
2

2Kp(
↗
ab)

xp↔1 exp
(
↓

ax+b/x
2

)
a, b → R>0, p → R R>0 GIG

Bernoulli–Laplace ςδ(x) + (1↓ ς) 1
2b exp(↓

|x|
b ) ς → [0, 1], b → R>0 R BL

Moreover, the gamma function is defined as !(x) =
∫↓
0 tx↔1 exp(↓t) dt for any x → R>0.

The modified Bessel function of the second kind with parameter ⇁ is denoted by Kφ .

such that the increment vector satisfies696

u = Dx. (41)
Because s(0) = 0, the finite-difference matrix D has an initial condition that makes it invertible and697

D
↔1 is a lower-triangular matrix of ones. This also implies that for all k = 1, 2, . . . , d,698

[x]k =
k

n=1

[u]n, (42)

which is a convenient way to synthesize signals once u is drawn. The combination of (41) with the699

independence of the increments implies that the density of the discrete signal is700

pX(x) =
d∏

k=1

pU
(
[Dx]k

)
. (43)

C.1 EXTENSIONS701

The approach in this paper can be extended to two- or higher-dimensional signals on grids, such as702

images or videos, and even to more specialized structures like signals defined over trees or graphs.703

The structure of the signal is effectively encoded through the choice of the matrix D. For instance, a704

two-dimensional finite-difference matrix would result in a signal vector that can be interpreted as a705

two-dimensional image. The main additional (computational) challenge is sampling during signal706

generation: Whenever D is not trivially reducible to a one-dimensional operator, the model (43)707

will be overcomplete and, in general, no whitening transformation exists to decouple increments for708

independent sampling. The extension to higher-dimensional signals and the complications that arise709

in that context are rigorously treated in Kuric et al. (2025).710

C.2 LATENT DISTRIBUTIONS AND NOTATION711

Some of the distributions that we rely on in this work have multiple competing parametrizations.712

To avoid ambiguities, we provide precise definitions of the four increment distributions that we713

consider in this work: Gaussian; Laplace; Student-t; and Bernoulli–Laplace (spike-and-slab). We give714

in Table 2 our notations of these and other distributions that we use in this work. We list in Table 3715

the latent maps and conditional latent distributions that are needed for the GLM for the distributions716

in this work.717

D GIBBS METHODS AND SAMPLING EFFICIENCY718

Gibbs methods are Markov chain Monte Carlo (MCMC) methods to sample from a joint distribution719

pX,Z1,Z2,...,Zn of (n+1) blocks of variables that are advantageous when the direct sampling is compu-720

18



Under review as a conference paper at ICLR 2026

Table 3: Latent variable representations and conditional distributions for common distributions.

Dist. ϱk Latent dist. fk Latent maps Cond. latent dist. p[Z]k|X=[Kx]k

Gauss(µ,ω2) δ(0) µk(z) = µ, ω2
k(z) = ω2 δ(0)

Laplace(b) Exp
(

1
2b2

)
µk(z) = 0, ω2

k(z) = z GIG
(

1
b2 , [Kx]2k,

1
2

)

St(⇁) Gamma
(
φ
2 ,

φ
2

)
µk(z) = 0, ω2

k(z) =
1
z Gamma

(
φ+1
2 , φ+[Kx]2k

2

)

Algorithm 3 Latent-variable Gibbs sampling of pX,Z1,...,Zn .

Require: Burn-in period B → N, number of samples S → N, initial point (x0, z1, . . . zn).
1: for k = 1, 2, . . . , B + S do
2: xk ⇑ pX|Z1=z1,...,Zn=zn

3: z1 ⇑ pZ1|X=xk,...,Zn=zn
ϖ Latent blocks do not need to be stored

4:
...

5: return {xB+k}
S
k=1

tationally difficult but sampling from the conditional distributions pX|Z1,Z2,...,Zn
, pZ1|X,Z2,...,Zn

, . . .721

is easy. Gibbs methods cycle through the conditional distributions with repeated draws, which722

maintains the joint distribution invariant (Casella & George, 1992). The naming of the variables723

X,Z1,Z2, . . . ,Zn is deliberately chosen to emphasize that we use latent-variable Gibbs methods724

that rely on auxiliary variables that are introduced solely to make the conditionals simple. The steps725

of a general latent variable Gibbs sampler are shown in Algorithm 3, where the iteration counter in726

the sampling of the latent variables is omitted since they need not be stored and previous iterations727

can immediately be overwritten.728

Kuric et al. (2025) recently showed that such methods are significantly faster than other standard729

sampling routines that are commonly used in settings similar to the one in this paper. They report730

sampling efficiencies of close to 1, while alternatives, such as the Metropolis-adjusted Langevin731

algorithm, achieve sampling efficiencies7 of around 1↗ 10↔3. In addition, Gibbs methods require no732

stepsize or acceptance-rate tuning and introduce no discretization bias. These properties motivate our733

use of Gibbs methods for the fast and robust posterior sampling throughout this work.734

Like all MCMC methods, in practice Gibbs methods benefit from the discarding of some number735

of initial samples (the burn-in period) when the initial point is located in low-density regions. After736

the burn-in period, the quality of the Monte Carlo estimate of any object depends on the number of737

samples one uses in their estimation. We discuss our choice of the burn-in period and the number of738

samples for the various problems in Appendix F.2.739

D.1 A GIBBS METHOD FOR BERNOULLI–LAPLACE INCREMENTS740

Let δ be the Dirac distribution. Then, letting ς be the Bernoulli parameter and b the scale parameter,741

we note that the Bernoulli–Laplace density742

pU (u) = ςδ(u) + (1↓ ς) b2 exp(↓b|u|) (44)

admits the representation743

pU (u) =

∫

R

( 1

v=0

pU |V=v,W=w(u)pV (v)

)
pW (w) dw, (45)

where744

pV (v) = ς1↔v(1↓ ς)v (46)
for v → {0, 1} is a Bernoulli distribution,745

pW (w) =
b2

2
exp

(
↓
b2w

2

)
↼R↓0

(w) (47)

7Sampling efficiency refers to effective samples per iteration; an efficiency of ε means roughly 1/ε iterations
per “effective sample” (Gelman et al., 2013, Section 11.5).
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Algorithm 4 Bernoulli–Laplace Gibbs sampler.

Require: Initial increments u0 → Rd, initial support vector v → Rd

1: for s = 1, 2, . . . , B + S do
2: Draw [w]k ⇑ pW |U=[us→1]k,V=[v]k ϖ parallel over k
3: for k = 1, 2, . . . , d do
4: Draw [v]k ⇑ Bernoulli(pk(v))
5: Draw us ⇑ pU|V=v,W=w,Y=y

6: return {D
↔1

uB+k}
S
k=1

is an exponential distribution, and746

pU |V=v,W=w(u) =

{
δ(u) if v = 0,
Gauss(0, w) if v = 1.

(48)

The algorithm relies on the introduction of two latent vectors v,w → Rd that satisfy747

pU|V=v,W=w(u) =
d∏

k=1

pU |V=[v]k,W=[w]k([u]k) (49)

such that, as a result, the distribution conditioned on the measurements can be written as748

pU,V,W|Y=y(u,v,w) ↑ exp
(
↓

1
2ω2

n
↔Hu↓ y↔

2
) d∏

k=1

pU |V=[v]k,W=[w]k([u]k)

↗

d∏

k=1

ς1↔[v]k(1↓ ς)[v]k
d∏

k=1

b2

2
exp

(
↓
b2[w]k

2

)
,

(50)

where H = AD
↔1. Equations (48) and (50) imply that any sample from pU|V=v,W=w,Y=y takes749

the value zero at those indices where v is zero, and values from a multivariate Gaussian distribution750

with covariance C =
(
ω2
nHH

↘ + diag(w)
)↔1 and mean ω↔2

n CH
T
y otherwise. Sampling W |751

U = u,V = v,Y = y amounts to the independent sampling of d one-dimensional distributions,752

which are Exp(2/b2) at indices where v is zero and GIG(b2, [u]2k, 0.5) those indices k where v is753

one. The conditional distribution of the binary support vector is754

pV|W=w,Y=y(v) ↑ |B(v,w)|↔
1
2 exp

(
↓

1
2y

↘
B(v,w)↔1

y
) d∏

k=1

ς1↔[v]k(1↓ ς)[v]k , (51)

where8
B(v,w) = ω2

nI+Hdiag(v ↙w)H↘. The standard way to sample from this distribution is755

to use a coordinate-wise Gibbs sampler that updates [v]k ⇑ Bernoulli(pk(v)) with756

pk(v) = (1 + exp(↓”k(v)))
↔1 (52)

where the log-odds increment757

”k(v) = log 1↔↼
↼ ↓

1
2

(
log |B(vk=1,w)|↓ log |B(vk=0,w)|

)

↓
1
2

(
y
↘
B(vk=1,w)↔1

y ↓ y
↘
B(vk=0,w)↔1)y

)
,

(53)

where vk= · := (v1, . . . ,vk↔1, · ,vk+1, . . . ,vd) is the difference between the log-posterior when758

the bit is on and when it is off. The resulting algorithm is summarized in Algorithm 4 and can be759

interpreted9 as (d+ 2)-block (i.e., dimension-dependent) Gibbs method.760

8This formulation is equivalent to the one presented by Bohra et al. (2023), who explicitly “slice” the matrices
H and diag(w) with the indices where v is one. We stick to this formulation since it requires less notation
and emphasizes that implementations need not build variable-sized matrices, which is crucial for an efficient
implementation on modern compute units that utilize highly parallelized computations.

9This is only an interpretation because the density violates the classical positivity conditions that are needed
for Gibbs methods. It is a partially collapsed Gibbs method, see (Bohra et al., 2023; van Dyk & Park, 2008).
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Figure 6: Runtimes needed to perform 20 Gibbs iterations on a denoising posterior (Laplace(1)
increment distribution, 10 parallel chains) depending on the dimensionality of the signal. Missing
entries are due to excessive memory requirements.

D.2 PRACTICAL GIBBS IMPLEMENTATIONS761

Sampling the Gaussians The sampling of X | Z in the GLM and of U | V,W,Y for the762

Bernoulli–Laplace case reduces to drawing from a high-dimensional Gaussian, which is a well-763

studied problem. For settings that necessitate a matrix-free implementation such as those that are764

commonly encountered in imaging applications, Kuric et al. (2025) advocate a Perturb-and-MAP765

sampler with preconditioned conjugate-gradient solvers. We report the runtime of the Gibbs method766

as a function of signal dimension for a Laplace(1) increment distribution in Figure 6. A standard767

implementation based on a Cholesky factorization of the covariance matrix—which requires explicitly768

instantiating the matrices A and D in memory—is faster than the Perturb-and-MAP sampler with a769

conjugate-gradient solver across a broad range of noise variances and dimensions. For our moderate-770

dimensional setting with d = 64, the Cholesky-based implementation is approximately an order of771

magnitude faster.772

However, explicitly storing these matrices becomes infeasible at larger dimensions (in our setup, we773

ran out of memory at d = 8096), and the expected cubic scaling is apparent in the figure. In contrast,774

the Perturb-and-MAP sampler (convergence criterion: squared residual norm below 1↗ 10↔6), while775

slower than Cholesky at small dimensions, exhibits substantially better scaling with signal dimension.776

In particular, it does not require materializing the operators: both the measurement operator A and777

the finite-difference operator D can be implemented efficiently in a matrix-free manner. Moreover,778

the sublinear runtime observed in this experiment suggests that the corresponding linear systems are779

well conditioned.780

The sampling accuracy of Perturb-and-MAP depends on the termination criterion used by the781

optimization solver, and any finite stopping rule yields approximate samples. A principled refinement782

is to incorporate a Metropolis–Hastings correction step to remove bias, and to tune the solver accuracy783

to optimize overall runtime; this strategy was proposed by Gilavert et al. (2015), to which we refer for784

details. Overall, these results indicate that the Gibbs method scales favorably to higher dimensions.785

Combined with the fact that the denoising posteriors are sub-Gaussian, and with the relatively mild786

sample-complexity requirements for estimator accuracy in this setting, this suggests that the proposed787

framework scales well as the dimension increases.788

Sampling the Latent Variables The sampling of the latent variables necessitates the sampling789

of the one-dimensional conditional latent distributions. All the conditional latent distributions that790

are relevant in this paper admit efficient samplers that are readily available in standard scientific791

computing packages or can be implemented with little effort. We reuse the CUDA implementation792

of the generalized inverse Gaussian sampler from Kuric et al. (2025) that implements the method793

proposed by Devroye (2012) and rely on PyTorch (Paszke et al., 2017) for all others. Wherever794

possible, latent updates are parallelized.795

In the Gibbs methods for the Bernoulli–Laplace increments, the sequential drawing of the binary796

support vector V is embedded in the outer Gibbs loop which, in turn, may be embedded in the797

reverse-diffusion loop. This makes it crucial to minimize the use of heavy linear-algebra operations798

to achieve acceptable runtimes. Writing B(v,w) = ω2
nI+Hdiag(v ↙w)H↘, we recognize that799
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the flipping of the kth bit of v adds or removes a rank-one term [w]kHkH
↘
k , where Hk is the kth800

column of H. Using the matrix-determinant lemma and Woodbury–Sherman–Morrison, we update801

log |B(vk=1,w)| = log |B(vk=0,w)|+ log(1 + [w]kτk) (54)

and802

y
↘
B(vk=1,w)↔1

y = y
↘
B(vk=0,w)↔1

y ↓
[w]k(H↘

k B(vk=0,w)↔1
y)2

1 + [w]kτk
, (55)

where τk = H
↘
k B(vk=0,w)↔1

Hk. Thus, an efficient implementation factors B(v,w) once per803

latent state, obtains the needed scalars via triangular solves, and performs rank-one updates as bits804

flip. We report our cumulative runtime improvement over a naive implementation in Figure 4.805

E DPS UPDATE STEPS806

E.1 COVARIANCE IN C-DPS807

C-DPS (Chung et al., 2023) uses the approximation of the likelihood808

pY|Xt=x(y) ∝ pY|X0=E[X0|Xt=x](y). (56)

When the noise in the inverse problem is Gaussian, the likelihood score809

⇐
(
x ⇒↘ log pY|X0=E[X0|Xt=x](y)

)
necessitates the computation of810

⇐
(
x ⇒↘

1
2↔AE[X0 | Xt = x]↓ y↔

2
)
, (57)

which is811

J (x ⇒↘ E[X0 | Xt = x]) ( · )A↘(AE[X0 | Xt = · ]↓ y) (58)

after an application of the chain rule. The Jacobian J (x ⇒↘ E[X0 | Xt = x]) is typically computed812

with automatic differentiation when (x, t) ⇒↘ E[X0 | Xt = x] is approximated with a neural network.813

In our framework, we use the connection with the covariance matrix Cov[X0 | Xt = · ]. Indeed, as814

also shown by Rissanen et al. (2025), if X0 and Xt verify (32), then815

1
1↔ϱ̄t

Cov[X0 | Xt = x] = 1
ϱ̄t

(
I+ (1↓ ϑ̄t)

2
⇐

2 log pXt(x)
)
. (59)

This identity, combined with the derivative of (6), yields816

J
(
x ⇒↘ E[X0 | Xt = x]

)
(xt) =

⇔
ϑ̄t

1↓ ϑ̄t
Cov[X0 | Xt = xt]. (60)

E.2 EXPLICIT UPDATE STEPS817

We give the instantiations of the update step S a variety of DPS algorithms below. Each zt is a818

d-dimensional random vector with i.i.d. standard Gaussian entries.819

Score-ALD (Jalal et al., 2021) The input parameters of this algorithm are composed of the follow-820

ing: A noise schedule {εt}
T↔1
t=0 , the noise level of the inverse problem ωn, and annealing parameters821

{▷t}
T↔1
t=0 and {◁t}

T↔1
t=0 . The update step goes822

µ̄ =
1

S

S

s=1

x̄s,

st = (µ̄↓ xt)/ε
2
t ,

xt↔1 = xt + ▷t
(
st +

1
↽2
t +ω2

n
A

↘(y ↓Axt)
)
+

√
2▷tzt.

(61)

C-DPS (Chung et al., 2023) The input parameters are the the variance-preserving scaling weight823

ϑ̄t as in (32), the variance of the diffusion transitions εt as in (35), and a scalar 0 that governs the824
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likelihood-guidance strength. The diffusion noise level that corresponds to the denoising posterior is825

denoted ωt = (1↓ ϑ̄t)/
⇔
ϑ̄t, which is used to compute the samples {x̄k}

S
k=1. The update step goes826

µ̄ =
1

S

S

k=1

x̄s,

C =
1

S

S

k=1

(x̄k ↓ µ̄)(x̄k ↓ µ̄)↘,

x
⇔
t↔1 =

↗
ϱ̄t(1↔ϱ̄t→1)

1↔ϱ̄t
xt +

↗
ϱ̄t→1εt

1↔ϱ̄t
µ̄+ ωtzt,

x̃t↔1 = x
⇔
t↔1 ↓

⇀
↖Aµ̄↔y↖

↗
ϱ̄t

1↔ϱ̄t
C

↘
A

↘(Aµ̄↓ y),

xt↔1 = x̃t↔1/
⇔
ϑ̄t↔1.

(62)

DiffPIR (Zhu et al., 2023) The input parameters are similar to those of C-DPS. It also uses the827

noise level of the inverse problem ωn and an additional balance hyperparameter ◁. The update step828

goes829

µ̄ =
1

S

S

k=1

x̄k,

1t = 0
ω2
n

ω2
t

,

x̄0 = argmin
x≃Rd

(
1
2↔Ax↓ y↔

2 + ⇁t

2 ↔x↓ µ̄↔2
)
,

2̂ = 1↗
1↔ϱ̄t

(
xt ↓

⇔
ϑ̄tx̄0

)
,

x̃t↔1 =
⇔
ϑ̄t↔1x̄0 +

√
1↓ ϑ̄t↔1(

√
1↓ ◁2̂+

⇔
◁zt),

xt↔1 = x̃t↔1/
⇔
ϑ̄t↔1.

(63)

”GDM (Song et al., 2023) The input parameters are the noise schedule {ωt}
T↔1
t=0 , the data-830

dependent noise schedule {rt}
T↔1
t=0 , and the DDIM (Song et al., 2020) time-dependent coefficients831

{c(1)t }
T↔1
t=0 and {c(2)t }

T↔1
t=0 . The update step goes832

µ̄ =
1

S

S

k=1

x̄k,

C =
1

S

S

s=1

(x̄k ↓ µ̄)(x̄k ↓ µ̄)↘,

J =

⇔
ϑ̄t

1↓ ϑ̄t
C,

g =
(
(y ↓Aµ̄)↘

(
AA

↘ + ω2
n

r2t
I

)↔1
AJ

)↘
,

2̂ = 1↗
1↔ϱ̄t

(
xt ↓

⇔
ϑ̄tµ̄

)
,

x̃t↔1 =
⇔
ϑsµ̄+ c1zt + c22̂+

⇔
ϑtg,

xt↔1 = x̃t↔1/
⇔
ϑ̄t↔1.

(64)

DPnP (Xu & Chi, 2024) The diffusion noise level that corresponds to the denoising posterior is833

denoted ▷t, which is used to compute the sample x̄1. This same ▷t defines the likelihood-guidance834

strength. The update step goes835

x0 = x̄1,

xt↔1 ⇑ exp
(
↓

1
2↔A ·↓y↔

2
↓

1
2η2

t
↔ ·↓x0↔

2
)
.

(65)
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Diffusion step t = T, . . . , 1

pX0|Y=y

pXt|Y=y

Sampling of denoising posterior

pX0|Xt=xt

Gauss(xt,ω
2
t )

Denoising step Likelihood step

xt {x̄k}S
k=1 → pX0|Xt=xt

xtxt→1/2 xt→1/2xt→1

↑ log pXt ↓ ↑ log pY|Xt= · (y)

?

Step S of a DPS algorithm
pX0

pY|X0

Figure 7: Illustration of the proposed template for DPS algorithms.

Annealed Plug-and-Play Monte Carlo (PnP and RED variants) (Sun et al., 2024) The diffusion836

noise level that corresponds to the denoising posterior is denoted ωt, which are used to compute the837

samples {x̄k}
S
k=1. The parameter ▷ denotes the likelihood guidance strength, and 3t is an annealing838

parameter.839

The update step for the PnP variant goes840

µ̄ =
1

S

S

k=1

x̄k,

s = (µ̄↓ xt)/ω
2
t ,

xt↔1 = xt + ◁3ts+
√
2◁zt,

xt ′ xt ↓ ◁A↘(Ax↓ y).

(66)

The update step for the RED variant goes841

µ̄ =
1

S

S

k=1

x̄k,

s = (µ̄↓ xt)/ω
2
t ,

xt↔1 = xt ↓ ◁
(
A

↘(Ax↓ y)↓ 3ts
)
+
√
2◁zt.

(67)

The DPS template that is summarized in Algorithm 2 is illustrated with a one-dimensional toy-example842

in Figure 7.843

F NUMERICAL EXPERIMENTS844

F.1 FORWARD OPERATORS845

We consider four forward operators A in our experiments. The first operator is the identity A = I →846

Rd→d. This choice is motivated by the fundamental role that denoising algorithms currently play in847

many restoration algorithms and even in labeling problems such as edge detection (Le et al., 2025).848

The second operator A → Rd→d implements the convolution with a kernel that consists of the 13849

central samples of a truncated Gaussian with variance 2 that are normalized to unit sum. We adopt850

circular boundary conditions to enable a fast computation of the proximal map that arises in the update851

step of DiffPIR (see Appendix E.2) via the fast Fourier transform. Deconvolution is a relevant problem852

with applications like microscopy or astronomy. The third operator is a sampling operator A → Rm→d853

that returns m < d entries of its argument unchanged. This operator is relevant in many fields such854

as image reconstruction and time-series forecasting. In particular, in a forecasting or prediction855

problem the operator would return the first m known entries, and the resolution of the inverse problem856

estimates the remaining (d↓m) entries. In our experiments, each entry has an independent chance857

of 40% of being kept. The fourth and last operator is A = MF → Rm→d, where F → R2(↙d/2∝+1)→d858

is the matrix representation of the “real” one-dimensional discrete Fourier transform with separated859

real and imaginary components, and M → Rm→2(↙d/2∝+1) is a sampling operator. Such operators are860

relevant in medical imaging or astronomy. The sampling operator is constructed such that the 5 lowest861
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frequencies (the DC term included) are acquired, while the remaining frequencies independently have862

a 40% chance of being kept.863

For all operators, the noise variance ω2
n is chosen such that the median measurement signal-to-noise864

ratio (SNR) is around 25 dB. We set Ntrain = 1↗ 106, Nval = 1↗ 103, and Ntest = 1↗ 103.865

F.2 BENCHMARK IMPLEMENTATION866

The benchmarking pipeline starts with the generation of Ntest test signals denoted {x
test
k }

Ntest
k=1 per867

increment distribution, each of which is independently synthesized by first drawing i.i.d. increments868

from the respective increment distribution and forming the signals via (42). It then proceeds to869

synthesize the Ntest measurements (i.e. we use one noise instance per signal) denoted {y
test
k }

Ntest
k=1870

according to (1) and, for each of the measurements, computes the gold-standard posterior samples871

of the various inverse problems via the Gibbs methods described in Section 3. This stage is off-line872

(no reverse-diffusion loop) and trivially parallel across the measurements, which allows us to run873

long chains with burn-in periods of 1↗ 105 iterations and obtain 2↗ 105 draws from the posterior874

distribution. This far exceeds any values reported by Kuric et al. (2025) or Bohra et al. (2023) and875

results in precise MMSE estimates.876

The dataset-generation stage also involves the generation of Ntrain training signals {xtrain
k }

Ntrain
k=1877

and Nval validation signals (mutually disjoint from the test signals) {x
val
k }

Nval
k=1 , along with the878

corresponding validation measurements {yval
k }

Nval
k=1 . The training signals are used for the learning879

of a neural score function like those that are used for the resolution of inverse problems when the880

prior is unknown or too expensive to evaluate. Training details are provided in Appendix F.3 The881

validation signals are used to monitor the performance of the neural score function on unseen signals882

during the training stage and to tune the regularization parameters for the model-based approaches as883

well as the parameters of the DPS algorithms, see Section 4.1 .884

Unlike for the computation of the gold-standard MMSE estimate of the initial inverse problem, the885

denoising posteriors are sampled T times per trajectory (we use T = 1000). To ensure acceptable886

runtimes in this setting, we therefore pick the smallest burn-in period and sample count that still yield887

accurate estimates of the required statistics. We determine these settings with a rigorous protocol that888

is detailed in Appendix F.4. Ultimately, this protocol resulted in the choice of a burn-in period of 100889

iterations and a sample count of 300.890

F.3 LEARNING DETAILS891

For learned-based denoisers, a noise-conditional neural network with UNet architecture (305 761892

learnable parameters) is trained in an off-line step on the Ntrain training signals in a standard setup893

(Adam optimizer with learning rate 1 ↗ 10↔4 with exponential decay with factor 0.9999, 100 000894

parameter updates, batch size 10 000). The noise schedule in C-DPS and DiffPIR is defined by the895

two endpoints ε0 = 1↗ 10↔4 and εT = 2↗ 10↔2 with linear equidistant samples in-between. The896

learned variant of DPnP is the “DDS-DDPM” variant (Xu & Chi, 2024, Algorithms 1 and 3) that897

contains an inner denoising-sampling loop. The arbitrary-precision variant does not require an inner898

loop at all (except for the burn-in period), which makes the arbitrary-precision variant the faster one899

for this case.900

F.4 BURN-IN PERIOD AND DENOISER QUALITY901

As discussed in Appendix F.2, the burn-in period and the number of samples of the Gibbs samplers902

needs to be chosen appropriately to ensure an acceptable runtimes and a sufficiently small Monte903

Carlo error. We determine the burn-in period and the number of samples through the following904

protocol that is run in an off-line stage prior to running the benchmark. We synthesize xt = x0 +ωtn905

where ωt is in the range defined by the noise schedule ε, x0 is constructed via (42) for all four906

considered increment distributions, and n is some unknown but fixed vector of standard Gaussian907

noise. For each of the synthesized signals, we then launch C = 1000 parallel Gibbs chains on the908

corresponding denoising posterior and run those chains for Nsu”cient iterations, where Nsu”cient909

is a sufficiently large natural number that guarantees that the chains are stationary for at least Navg910

(which is also relatively large) iterations and that, consequently, we can compute precise estimates of911
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Figure 9: Mean squared error between MMSE estimates and the reference MMSE. Dashed lines:
Learned neural MMSE estimate. Solid lines: Monte Carlo MMSE estimate in terms of the window
length.

various statistics of the posterior distribution from the iterates from the last Navg iterations across all912

C chains.913
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Figure 8: Wasserstein-1 distance of intermediate
marginal distributions to that of the final sample.

To determine the burn-in period, we then pro-914

ceed to calculate a statistic that we can mon-915

itor throughout the iterations and that we can916

compare against the reference statistic. Specif-917

ically, denoting with X the random variable of918

the Gibbs sampler, we compute the empirical919

distribution of the increments at index 32 like920

(X33 ↓ X32). The distribution of differences921

that is obtained by taking the last Navg iterations922

across all C chains is considered the reference923

distribution. Then, we compute the Wasserstein-924

1 distance of that distribution to the one obtained925

by taking the average across Navg iterations and926

all C in a sliding-window starting from the first927

Gibbs iterations. This allows us to gauge the928

burn-in period through a visual inspection of the929

Wasserstein-1 distance through the Gibbs iterations. In particular, we expect the Wasserstein-1 dis-930

tance to be large for a number of initial samples where the Gibbs sampler is not stationary and then to931

oscillate around a small but nonzero value. The value will be nonzero due to the finite sample size.932

The Wasserstein-1 distance between the reference distribution and the one obtained through the Gibbs933

iterations is shown in Figure 8 (for the exemplary case of a St(1) distribution and a selection of noise934

variances). We observe that the empirical distribution of increments converges rapidly to the reference935

one. The Wasserstein-1 distance reaches the noise level after a single-digit number of iterations,936

which is in line with the analysis provided by Kuric et al. (2025). Based on these findings, we chose937

the burn-in period as B = 100 iterations for all our experiments, which is more than sufficient to938

reach stationarity and has acceptable runtime.939
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To determine the number of samples that are needed for a sufficiently accurate computation of various940

statistics that any DPS algorithm may utilize in their update steps, we compute a precise estimation941

of the MMSE estimate of the denoising posterior by averaging the last Navg iterations across all C942

chains. Then, we pick one arbitrary chain and grow a window from iteration (Navg ↓ 1) to the left,943

average the samples in that window, and compute the MSE from the MMSE estimates obtained in944

the one-chain window to the precise estimate obtained by averaging the C chains and the last Navg945

iterations. We show this error in terms of the window length and the noise variance for all increment946

distributions in Figure 9. The quality of the learned denoiser and the Monte Carlo denoiser differ over947

the noise variances and the learned denoiser improves relative to the Monte Carlo denoiser as the948

noise variance vanishes. Our final choice of S = 300 samples is motivated by the fact that the quality949

of the Monte Carlo denoiser, when averaged across all noise variances that appear in the reverse950

diffusion, is always strictly better than the learned denoiser. Since it is relevant for the discussion in951

Section 4.2, we highlight that for this choice the quality of the Monte Carlo denoiser is superior to952

the learned one across all noise variances for the St(1) and BL(0.1, 1) increment distributions.953

F.5 ALGORITHM PARAMETERS954

The adjustable regularization parameter for est → {φ2, φ1} satisfies955

ςest,ϖ = argmin
↼≃#

1

Nval

Nval

k=1

1
d↔x̂

est(yval
k ,ς)↓ x

val
k ↔

2. (68)

There, # is the loglinear grid # = {ς1,ς2, . . . ,ςNmb} with956

ςn = 10a+(n↔1) (b→a)
Nmb→1 (69)

with a = (↓5) and b = 5. Since the model-based methods are very fast, we can use the relatively957

high Nmb = 1000.958

The adjustable hyperparameters of the DPS methods were found by959

ωalg,ϖ = argmin
ω≃”alg

1

Nval

Nval

k=1

1
d↔x̂

alg
MMSE(y

val
k ,ω)↓ x

val
k ↔

2 (70)

where the grid #
alg is method-dependent. This tuning is tailored to the evaluation with respect to960

the MMSE optimality gap. Due to resource constraints, the parameters are tuned for the learned961

denoiser. We use Nsamples = 10 for the grid search on the validation set. We define a modest number962

of Ndps = 40 grid-points and found the extreme points of the grid (i.e., the values of the parameters963

that clearly lead to worse results) by hand. For C-DPS and DiffPIR, we fix the diffusion schedule to964

standard choices (ε0 = 1↗ 10↔4,εT = 0.02). In addition to the diffusion schedule, C-DPS has one965

tunable parameter ◁ that we tune on 40 loglinear grid points (n = 1, . . . , Ndps)966

10
a+(n↔1) (b→a)

Ndps→1 . (71)

There, a = (↓3) and b = 1. DiffPIR has two tunable parameters ◁ and 0, with ◁ being typically967

considered uncritical. Thus, we split the 40 grid points into a two-dimensional grid $Di$PIR =968

{0.3, 0.7}↗$⇀ , with 2 points for ◁ and 20 points for 0 given by $⇀ = {$⇀
1, . . . ,$

⇀
Ndps/2

}, where969

$⇀
n = 10

a+(n↔1) (b→a)
(Ndps/2)→1 (72)

with a = (↓4) and b = 1. The DPnP algorithm only has the schedule {▷t}Tt=1 to tune. In this case,970

since DPnP is asymptotically correct, the schedule is a practical vehicle that enables to trade off971

between speed and accuracy. Therefore, the schedule of this paper is similar to the one that was972

proposed by (Xu & Chi, 2024): We fix a small ▷final = 0.15 and linearly decrease ▷ from some973

▷initial to ▷final after K/5 initial iterations with ▷initial, like974

▷n =


▷initial if n = 1, . . . ,K/5
ηfinal

ηinitial

i→K/5
K→K/5 ▷initial if n = K/5 + 1, . . . ,K

(73)
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deconvolution; imputation; reconstruction from partial Fourier measurements. For better visualization,
each curve has had its minimum subtracted. To limit clutter, marks are spaced ten apart.

We treat ▷initial as a tunable parameter and search over $DPnP = {▷1, ▷2, . . . , ▷40}, where975

▷n = 10a+(n↔1) (b→a)
40→1 . (74)

There, a = (↓1) and b = 4. Like in the original publication, we use the comparatively small K = 40.976

The MSE over the validation data depending on the value of the adjustable regularization parameter977

of the φ2 and φ1 estimators and the adjustable hyperparameters of C-DPS, DiffPIR, and DPnP is978

shown in Figure 10. Since the ◁ parameter of DiffPIR is assumed to be uncritical, we only show the979

values of the MSE for various choices of 0, where ◁ is set to the value of the optimal (◁, 0) pair.980
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Table 4: Change in MMSE optimality gap (mean ± standard deviation) after substituting the learned
denoiser with the arbitrary-precision denoiser. An asterisk indicates a significant changes according
to a Wilcoxon signed-rank test (p = 0.05). Negative number with asterisk: MMSE estimates obtained
with the arbitrary-precision denoiser are significantly better. Positive number with asterisk: MMSE
estimates obtained with the learned denoiser are significantly better.

Gauss(0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Denoising
C-DPS 0.00± 0.11 0.00± 0.16 ↓0.46± 1.16* 0.00± 0.01 0.02± 0.79*

↓0.01± 0.14
DiffPIR 0.00± 0.13 0.00± 0.17 ↓0.05± 0.78*

↓0.41± 0.80* 0.00± 0.20 0.00± 0.15
DPnP 0.04± 0.27*

↓0.01± 0.22 ↓0.55± 1.31*
↓0.77± 1.31* 0.00± 0.24 0.00± 0.23

Deconvolution
C-DPS ↓0.01± 0.24 0.00± 0.26 0.09± 0.97* 6.64± 3.21*

↓0.12± 1.11*
↓0.03± 0.43

DiffPIR ↓0.01± 0.23 0.00± 0.23 0.04± 1.12 13.56± 9.90*
↓0.01± 0.47 0.00± 0.31

DPnP 0.00± 0.25 ↓0.01± 0.27*
↓0.02± 1.20 ↓4.98± 3.86* 0.06± 0.77 ↓0.02± 0.34

Imputation
C-DPS 0.00± 0.30 0.01± 0.35 0.41± 1.51* 3.41± 4.99*

↓0.12± 1.01*
↓0.01± 0.57

DiffPIR 0.00± 0.29 0.00± 0.33 0.03± 1.05 ↓0.20± 3.05* 0.03± 0.71 0.00± 0.47
DPnP 0.00± 0.35 ↓0.02± 0.38 ↓0.02± 1.02 ↓10.46± 5.70* 0.02± 0.67 ↓0.01± 0.48

Fourier
C-DPS ↓0.02± 0.43 ↓0.01± 0.49 0.80± 1.43* 0.09± 5.63*

↓0.03± 0.79* 0.01± 0.49
DiffPIR ↓0.01± 0.39 0.00± 0.40 0.12± 0.83*

↓0.64± 1.70*
↓0.03± 0.42*

↓0.02± 0.38
DPnP ↓0.01± 0.43 0.00± 0.45 ↓0.33± 1.13*

↓1.32± 3.18* 0.00± 0.54 0.01± 0.46

Table 5: Runtime of the benchmark with learned objects.
Gauss(0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Denoising
C-DPS 00:04:52 00:04:52 00:02:56 00:04:52 00:04:52 00:04:52
DiffPIR 00:01:59 00:01:58 00:01:12 00:01:58 00:01:59 00:01:59
DPnP 00:02:33 00:04:58 00:01:15 00:59:33 00:06:13 00:04:58

Deconvolution
C-DPS 00:04:52 00:04:53 00:02:57 00:04:53 00:04:53 00:04:52
DiffPIR 00:01:59 00:01:59 00:01:12 00:01:59 00:01:59 00:01:59
DPnP 00:13:54 00:46:39 00:05:48 00:53:30 00:28:24 00:28:24

Imputation
C-DPS 00:04:53 00:04:53 00:02:59 00:04:53 00:04:53 00:04:53
DiffPIR 00:01:59 00:01:59 00:01:13 00:01:59 00:01:59 00:01:59
DPnP 00:04:58 00:16:18 00:18:56 00:51:41 00:39:04 00:32:50

Fourier
C-DPS 00:04:54 00:04:54 00:02:59 00:04:55 00:04:55 00:04:54
DiffPIR 00:01:59 00:01:59 00:01:13 00:01:59 00:01:59 00:01:59
DPnP 00:06:13 00:13:53 00:04:42 00:51:41 00:23:39 00:16:18

G ADDITIONAL RESULTS981

We provide in Table 4 an exhaustive quantitative evaluation of the change in the optimality gap982

after we substitute the arbitrary-precision Monte Carlo denoiser for the learned denoiser. We also983

report for which cases the arbitrary-precision denoiser enjoys significantly better results than the984

learned denoiser according to a Wilcoxon signed-rank test (p = 0.05, Ntest pairs, two-sided test985

with the winner determined by the median of differences). We attribute a better performance of986

the learned denoiser to the fact that the algorithms are fine-tuned using the learned component or987

to the cases where the likelihood score approximation is compensated by the one of the learned988

component. Note that this table must be interpreted with the quality of the denoisers in mind. As we989

show in Figure 9, for our particular choice of S = 300 samples, the Monte Carlo denoiser is strictly990

better than the learned denoiser over all noise variances only for signals with BL(0.1, 1) and St(1)991

increment distributions.992

We show uncurated qualitative results of the MMSE estimate obtained by the DPS algorithms and the993

gold-standard Gibbs methods in Figures 11 to 18. The figures alternate between the arbitrary-precision994

denoiser and the learned denoiser and show the results for deconvolution, denoising, imputation, and995

reconstruction from partial Fourier samples, in that order. Each figure contains results for BL(0.1, 1),996

St(1), St(2), and Laplace(1) increment distributions.997

The coverage results for ϑ = 0.9 are presented in Table 7. The Gibbs row again validates the998

implementation; for all forward operators, they achieve coverages that are very close to 0.9. In999

contrast, the coverage values obtained by the DPS algorithms are generally much smaller than 0.9.1000

For C-DPS and DiffPIR, the reported coverage values are almost always 0 except for BL(0.1, 1)1001

and St(1) increments, where the coverages are usually (close to) 1 for C-DPS and inconsistent for1002

DiffPIR. For almost all increment distributions and forward operators, DPnP reports coverage values1003

that are closest to, but typically smaller than, 0.9. Note that a coverage of 1 can be considered the1004

worst case even at a target of 0.9. For instance, it would be achieved by setting all samples to a1005

constant vector with extremely large (i.e., “unlikely”) entries.1006
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Figure 11: Qualitative results for deconvolution using the Monte Carlo. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 12: Qualitative results for deconvolution using the learned denoiser. Rows: increment distribu-
tions. For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 13: Qualitative results for denoising using the Monte Carlo denoiser. Rows: increment
distributions. For each increment distribution, the MMSE estimates obtained by the different DPS
algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-wise
marginal variances. Columns: Different measurements.
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Figure 14: Qualitative results for denoising using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms
and the gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal
variances. Columns: Different measurements.
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Figure 15: Qualitative results for imputation using the Monte Carlo denoiser. Rows: increment
distributions. For each increment distribution, the MMSE estimates obtained by the different DPS
algorithms and the gold-standard Gibbs methods are shown on top of the corresponding index-wise
marginal variances. Columns: Different measurements.
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Figure 16: Qualitative results for imputation using the learned denoiser. Rows: increment distributions.
For each increment distribution, the MMSE estimates obtained by the different DPS algorithms and the
gold-standard Gibbs methods are shown on top of the corresponding index-wise marginal variances.
Columns: Different measurements.
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Figure 17: Qualitative results for reconstruction from partial Fourier measurements using the Monte
Carlo denoiser. Rows: increment distributions. For each increment distribution, the MMSE estimates
obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown on top of
the corresponding index-wise marginal variances. Columns: Different measurements.
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Figure 18: Qualitative results for reconstruction from partial Fourier measurements using the learned
denoiser. Rows: increment distributions. For each increment distribution, the MMSE estimates
obtained by the different DPS algorithms and the gold-standard Gibbs methods are shown on top of
the corresponding index-wise marginal variances. Columns: Different measurements.
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Table 6: Runtime of the benchmark with Monte Carlo objects.
Gauss(0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Denoising
C-DPS 05:52:28 07:23:23 34:07:44 05:52:40 05:34:51 05:31:10
DiffPIR 05:04:40 06:36:25 33:46:29 05:12:30 05:39:06 05:38:24
DPnP 00:03:04 00:03:57 00:20:36 00:03:23 00:03:08 00:03:10

Deconvolution
C-DPS 05:53:40 07:25:17 34:17:12 05:28:38 05:24:12 05:24:00
DiffPIR 05:28:09 06:55:34 34:16:17 05:31:29 05:32:32 05:22:39
DPnP 00:03:05 00:03:59 00:21:01 00:03:13 00:03:21 00:03:21

Imputation
C-DPS 05:49:07 07:15:41 34:29:37 05:53:44 05:27:44 05:26:05
DiffPIR 05:50:15 07:00:13 33:52:26 05:34:00 05:24:16 05:09:56
DPnP 00:03:23 00:04:18 00:20:58 00:03:09 00:03:05 00:03:22

Fourier
C-DPS 05:49:49 07:09:51 34:30:13 05:49:44 05:49:26 05:49:07
DiffPIR 05:13:06 06:38:32 34:31:38 05:17:58 06:14:52 05:15:14
DPnP 00:03:04 00:04:12 00:20:59 00:03:05 00:03:19 00:03:32
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Figure 19: Conditional generation for deconvolution of a signal with BL(0.1, 1) increments with
DiffPIR. Top: Prototypical sampling trajectory at times t = 999, 600, 200, 0. Bottom: From left to
right: MMSE estimate obtained by averaging all DiffPIR samples; gold-standard MMSE estimate
obtained by the Gibbs method; the data-generating signal; the data.

Table 7: Posterior coverage of various estimation methods at ϑ = 0.9. MC: Monte Carlo.
Gauss(0, 0.25) Laplace(1) BL(0.1, 1) St(1) St(2) St(3)

Learned MC Learned MC Learned MC Learned MC Learned MC Learned MC

Denoising

Gibbs — 0.90 — 0.91 — 0.91 — 0.89 — 0.91 — 0.89
C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.28 0.02 0.00 0.00 0.00 0.00
DPnP 0.58 0.67 0.11 0.11 1.00 0.41 0.53 0.08 0.09 0.09 0.09 0.10

Deconvolution

Gibbs — 0.89 — 0.90 — 0.90 — 0.91 — 0.91 — 0.91
C-DPS 0.00 0.00 0.01 0.00 1.00 1.00 1.00 0.83 0.01 0.00 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.97 0.92 0.00 0.00 0.00 0.00
DPnP 0.12 0.12 0.06 0.07 1.00 0.31 0.50 0.06 0.06 0.06 0.07 0.06

Imputation

Gibbs — 0.89 — 0.90 — 0.86 — 0.91 — 0.91 — 0.91
C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 0.94 0.78 0.15 0.15 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.72 0.32 0.00 0.00 0.00 0.00
DPnP 0.28 0.31 0.09 0.08 1.00 0.41 0.56 0.07 0.14 0.13 0.12 0.13

Fourier

Gibbs — 0.91 — 0.90 — 0.90 — 0.91 — 0.92 — 0.91
C-DPS 0.00 0.00 0.00 0.00 1.00 1.00 0.96 0.74 0.01 0.01 0.00 0.00
DiffPIR 0.00 0.00 0.00 0.00 1.00 1.00 0.92 0.65 0.00 0.01 0.00 0.00
DPnP 0.19 0.19 0.08 0.06 1.00 0.32 0.50 0.06 0.07 0.07 0.07 0.06
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