
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNCOUPLED AND CONVERGENT LEARNING IN
MONOTONE GAMES UNDER BANDIT FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of no-regret learning algorithms for general monotone and
smooth games and their last-iterate convergence properties. Specifically, we in-
vestigate the problem under bandit feedback and strongly uncoupled dynamics,
which allows modular development of the multi-player system that applies to a
wide range of real applications. We propose a mirror-descent-based algorithm,
which converges in O(T

�1/4
) and is also no-regret. The result is achieved by a

dedicated use of two regularizations and the analysis of the fixed point thereof.
The convergence rate is further improved to O(T

�1/2
) in the case of strongly

monotone games. Motivated by practical tasks where the game evolves over time,
the algorithm is extended to time-varying monotone games. We provide the first
non-asymptotic result in converging monotone games and give improved results
for equilibrium tracking games.

1 INTRODUCTION

We consider multi-player online learning in games. In this problem, the cost function for each player
is unknown to the player, and they need to learn to play the game through repeated interaction with
other players. We focus on a class of monotone and smooth games, which was first introduced
by Rosen (1965). This encapsulates a wide array of common games, such as two-player zero-sum
games, convex-concave games, and zero-sum polymatrix games (Bregman & Fokin, 1987). Our
goal is to find algorithms that solve the problem under bandit feedback and strongly uncoupled dy-
namics. Within this context, each player can only access information regarding the cost function
associated with their chosen actions without prior insight into their counterparts. This allows mod-
ular development of the multi-player system in real applications and leverages existing single-agent
learning algorithms for reuse.

Many works have focused on the time-average convergence to Nash equilibrium on learning in
monotone games (Even-Dar et al., 2009; Syrgkanis et al., 2015; Farina et al., 2022). However,
these works only guarantee the convergence of the time average of the joint action profile. Such
convergence properties are less appealing, because while the trajectories of the players converge in
the time-average sense, it may still exhibit cycling (Mertikopoulos et al., 2018). This jeopardizes
the practical use of such algorithms.

Popular no-regret algorithms such as mirror descent have demonstrated convergence in the last it-
erate within specific scenarios, such as two-player zero-sum games (Cai et al., 2023) and strongly
monotone games (Bravo et al., 2018; Drusvyatskiy et al., 2022; Lin et al., 2021). Yet convergence to
Nash equilibrium in monotone and smooth games is not available unless one assumes exact gradient
feedback and coordination of players (Cai et al., 2022; Cai & Zheng, 2023). It remains open as to
whether a no-regret algorithm can efficiently converge to a Nash equilibrium in monotone games
with bandit feedback and strongly uncoupled dynamics. In this paper, we investigate the pivotal
question:

How fast can no-regret algorithms converge (in the last iterate) to a Nash equilibrium in general
monotone and smooth games with bandit feedback and strongly uncoupled dynamics?

In this work, we present a mirror-descent-based algorithm designed to converge to the Nash equilib-
rium in monotone and smooth games. Our algorithm is uncoupled and convergent and is applicable
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to the general monotone and smooth game setting. Motivated by real applications, where many
games are also time-varying, we extend our study to encompass time-varying monotone games.
This justifies that our algorithm could be deployed in both stationary and non-stationary tasks.

We achieve state-of-the-art results in both monotone games and time-varying monotone games.

• In monotone and smooth games:

– Under bandit feedback and strongly uncoupled dynamics, we show our algorithm
achieves a last-iterate convergence rate of O(T

�1/4
).

– In cases where the game exhibits strong monotonicity, our result improves to
O(T

�1/2
), matching the current best available convergence rates for strongly mono-

tone games (Drusvyatskiy et al., 2022; Lin et al., 2021).
– Our algorithm is no regret albeit players may be self-interested. The individual regret

is at most O(T
3/4

) in monotone games and at most O(T
1/2

) in strongly monotone
games.

• In time-varying monotone and smooth games:

– If the game eventually converges to a static state within a time frame of O(T
↵
), our

algorithm achieves convergence in O(T
�1/4+↵

).
– If the game does not converge but experiences gradual changes in the Nash

equilibrium that evolves in O(T
'
), our algorithm exhibits convergence rates of

O

⇣
max

n
T

2'/3�2/3
, T

(4'+5)
2/72�9/8

o⌘
. The algorithm outperforms best available

results of T'/5�1/5 by Duvocelle et al. (2023) and T
'/3�2/3 by Yan et al. (2023).

Table 1 and Table 2 summarize our results and the results of previous works.

2 RELATED WORKS

Monotone games The convergence of monotone games has been studied in a significant line of
research. For a strongly monotone game under exact gradient feedback, the linear last-iterate conver-
gence rate is known (Tseng, 1995; Liang & Stokes, 2019; Zhou et al., 2020). Under noisy gradient
feedback, Jordan et al. (2023) showed a last-iterate convergence rate of O(T

�1
). Under bandit

feedback, Bervoets et al. (2020) proposed an algorithm that asymptotically converges to the equi-
librium if it is unique. Bravo et al. (2018) subsequently introduced an algorithm with a last-iterate
convergence rate of O(T

�1/3
), while also ensuring the no-regret property. Later works (Lin et al.,

2021) further improved the last-iterate convergence rate to O(T
�1/2

) under bandit feedback using
the self-concordant barrier function. Jordan et al. (2023) gave a result of the same rate, but with the
additional assumption that the Jacobian of each player’s gradient is Lipschitz continuous. In the case
of bandit but noisy feedback (with a zero-mean noise), Lin et al. (2021) showed that the convergence
rate is still O(T

�1/2
).

For monotone but not strongly monotone games, Mertikopoulos & Zhou (2019) leveraged the dual
averaging algorithm to demonstrate an asymptotic convergence rate under noisy gradient feedback.
With access to the exact gradient information, Cai & Zheng (2023) gave a last-iterate convergence
rate of O(T

�1
). In the context of bandit feedback, Tatarenko & Kamgarpour (2019) proposed an

algorithm that asymptotically converges to the Nash equilibrium. Table 1 provides a summary of the
recent results.

Time-varying monotone games Motivated by real-world applications such as Cournot competi-
tion, where multiple firms supply goods to the market and pricing is subject to fluctuations due to
factors like weather, holidays, and politics. Duvocelle et al. (2023) studied the strongly monotone
game under a time-varying cost function. When the game converges to a static state, they propose an
algorithm that achieves asymptotic convergence under bandit feedback. Assuming the cost function
varies O(T

�
) across a horizon T , Duvocelle et al. (2023) provided an algorithm that attains a con-

vergence rate of O(T
�/5�1/5

) under bandit feedback. Subsequent work of Yan et al. (2023) further
improved this rate to O(T

�/3�2/3
) under exact gradient feedback.
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Table 1: Summary of results for monotone games. “E” stands for the result in expectation and “P”
stands for the result held in high probability. Strongly monotone games are abbreviated to “StroM”,
while monotone games are abbreviated to “M”. We use “linear*” to denote the two-player zero-sum
game, which is a special case of the linear game. We use “(N)” to remark that the results can also be
obtained with noisy feedback.

Class of games Feedback Results

Bravo et al. (2018) StroM bandit O(T
�1/3

) (E)
Drusvyatskiy et al. (2022) StroM bandit O(T

�1/2
) (E)

Lin et al. (2021) StroM bandit (N) O(T
�1/2

) (E)
Jordan et al. (2023) StroM noisy gradient O(T

�1
)

Ours StroM bandit (N) O(T
�1/2

) (E & P)
Mertikopoulos & Zhou (2019) M noisy gradient asymptotic

Cai & Zheng (2023) M exact gradient O(T
�1

)

Tatarenko & Kamgarpour (2019) M bandit asymptotic
Ours M bandit (N) O(T

�1/4
) (E)

Cai et al. (2023) linear* bandit O(T
�1/6

) (E)
Ours linear bandit O(T

�1/6
) (E)

Table 2: Summary of last-iterate convergence results for time-varying games. All results here are
in expectation results. Strongly monotone games are abbreviated to “StroM”, and monotone games
are abbreviated to “M”.

Class of
games Time-varying property Feedback Results

Duvocelle et al. (2023) StroM converging in O(T
↵
) bandit asymptotic

Ours M converging in O(T
↵
) bandit O(T

�1/4+↵
)

Duvocelle et al. (2023) StroM O(T
'
) variation path bandit O(T

'/5�1/5
)

Yan et al. (2023) StroM O(T
'
) variation path exact

gradient O(T
'/3�2/3

)

Ours M O(T
'
) variation path bandit

O
�
max{T 2'/3�2/3

,

T
(4'+5)

2/72�9/8}
⌘

3 PRELIMINARIES

We consider a multi-player game with n players, with the set of players denoted as N . Each
player i takes action on a compact and convex set Xi ✓ Rd of d dimensions, and has cost func-
tion ci(xi, x�i), where xi 2 Xi is the action of the i-th player and x�i 2

Q
j2[n],j 6=i Xj is the

action of all other players. We assume the radius of Xi is bounded, i.e., kx� x
0k  B, 8x, x0 2 Xi.

Without loss of generality, we further assume ci(x) 2 [0, 1].

In this work, we study a class of monotone continuous games, where the gradient of the cost func-
tions is monotone and the cost functions continuous (Assumption 3.1). Games that satisfy this as-
sumption include convex-concave games, convex potential games, extensive form games, Cournot
competition, and splittable routing games. A discussion of these games is available in Section 3.1.
Note that the class of monotone continuous games is commonly studied in the literature (Lin et al.,
2021; Farina et al., 2022).

Assumption 3.1. For all player i 2 N , the cost function ci(xi, x�i) is continuous, differentiable,
convex, and `i-smooth in xi. Further, ci has bounded gradient |rici(x)|  G and the gradient
F (x) = [rici(x)]i2N is a monotone operator, i.e., (F (x)� F (y))

>
(x� y) � 0, 8x, y.

For notational convenience, we denote L =
P

i2N `i.

3
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A common solution concept in the game is Nash equilibrium, which is a state of dynamic where no
player can reduce its cost by unilaterally changing its action. Our aim is to learn a Nash equilibrium
x
⇤ 2

Q
i Xi of the game. Formally, the Nash equilibrium is defined as follows.

Definition 3.1 (Nash equilibrium). An action x
⇤ 2

Q
i Xi is a Nash equilibrium if ci(x

⇤
) 

ci(xi, x
⇤
�i) , 8xi 2 Xi, xi 6= x

⇤
i , i 2 N .

When the game satisfies Assumption 3.1, and is with a compact action set, it is known that it must
admit at least one Nash equilibrium (Debreu, 1952).

3.1 EXAMPLES OF MONOTONE CONTINUOUS GAMES

A wide range of monotone games are captured by Assumption 3.1, and we now present a few classic
examples. We include more examples in the appendix.
Example 3.1 (convex-concave game). Consider a two-player convex-concave game, where the ob-
jective function is c1(x1, x2) = f(x1, x2), c2(x1, x2) = �f(x1, x2). It is immediate that if f is
continuous, differentiable, smooth, convex in x1, concave in x2, then the game satisfies Assumption
3.1. Examples are rock paper scissors and chicken games.

Example 3.2 (Cournot competition). In the Cournot oligopoly model, there is a finite set of N
firms, where firm i supplies the market with a quantity xi 2 [0, Ci] of some good and Ci is the
firm’s production capacity. The good is priced as a decreasing function P (xtot) = a� bxtot, where
xtot =

PN
i=1

xi is the total number of goods supplied to the market, and a, b > 0 are positive
constants. The cost of firm i is then given by ci(xi, x�i) = dixi � xiP (xtot), where di is the cost
of producing one unit of good. This is the associated production cost minus the total revenue from
producing xi units of goods. It is clear that ci is continuous and differentiable, and Bravo et al.
(2018) showed ci has positive definite and bounded hessian (is convex and smooth).

Example 3.3 (Splittable routing game). In a splittable routing game, each player directs a flow,
denoted as fi, from a source to a destination within an undirected graph G = (V,E). Each edge
e 2 E is linked to a latency function, represented as `e(f), which denotes the latency cost of
the flow passing through the edge. The strategies available to player i are the various ways of
dividing or ”splitting” the flow fi into distinct paths connecting the source and the destination.
With some restrictions on the latency function, the game satisfies Assumption 3.1 (Roughgarden &
Schoppmann, 2015).

3.2 BANDIT FEEDBACK AND STRONGLY UNCOUPLED DYNAMIC

In this work, we focus on learning under bandit feedback and strongly uncoupled dynamics. The
bandit feedback setting restricts each player to only observe the cost function ci(xi, x�i) with re-
spect to the action taken xi. The strongly uncoupled learning dynamic (Daskalakis et al., 2011)
means players do not have prior knowledge of cost function or the action space of other players
and can only keep track of a constant amount of historical information. As the bandit feedback
and strongly uncoupled dynamic only require each player to access information of its own, this al-
lows for modular development of the multi-player system, by reusing existing single-agent learning
algorithms.

4 ALGORITHM

Our algorithm builds upon the renowned mirror-descent algorithm. The efficacy of online mirror-
descent in solving Nash equilibrium has been demonstrated under full information, and in both
linear or strongly monotone games, with extensive investigations into its last-iterate convergence
investigated in Cen et al. (2021); Lin et al. (2021); Cai et al. (2023); Duvocelle et al. (2023).

Our algorithm differs from classic online mirror descent approaches by making use of two regular-
izers: A self-concordant barrier regularizer h to build an efficient Ellipsoidal gradient estimator and
contest the bandit feedback; and a regularizer p to accommodate monotone (and not strongly mono-
tone) games. Similar use of two regularizers has also been investigated (Lin et al., 2021). However,
their method used the Euclidean norm regularization, which cannot be extended to our setting.

4
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Regularizers Let h be a ⌫-self-concordant barrier function (Definition 4.1), p be a convex function
with µI � r2

p(x) � ⇣I , ⇣ > 0, µ � 0. Let Dp denote the Bregman divergence induced by
p. We choose p such that for any xi, x

0
i 2 Xi, Dp(xi, x

0
i)  Cp < 1, and for some  > 0,

ci(xi, x�i)� p(xi) to be convex. Notice that when ci is convex but not linear, we can always find
such p when the action set is bounded. Intuitively, this is to interpolate a function p that possesses
less curvature than all ci. We will discuss the modification to the algorithm needed when ci is linear
in Section 5.3.
Definition 4.1. A function h : int(X ) 7! R is a ⌫-self concordant barrier for a closed convex
set X ✓ Rn, where int(X ) is an interior of X , if 1) h is three times continuously differentiable;
2) h(x) ! 1 if x ! @X , where @X is a boundary of X ; 3) for 8x 2 int(X ) and 8� 2 Rn,
we have

��r3
h(x)[�,�,�]

��  2
�
�
>r2

h(x)�
�3/2 and

��rh(x)
>
�
�� 

p
⌫
�
�
>r2

h(x)�
�1/2 where

r3
h(x) [�1,�2,�3] =

@3

@t1@t2@t3
h (x+ t1�1 + t2�2 + t3�3)

���
t1=t2=t3=0

.

1. h is three times continuously differentiable;

2. h(x) ! 1 if x ! @X , where @X is a boundary of X ;

3. for 8x 2 int(X ) and 8� 2 Rn, we have
��r3

h(x)[�,�,�]
��  2

�
�
>r2

h(x)�
�3/2

and
��rh(x)

>
�
�� 

p
⌫
�
�
>r2

h(x)�
�1/2 where r3

h(x) [�1,�2,�3] =

@3

@t1@t2@t3
h (x+ t1�1 + t2�2 + t3�3)

���
t1=t2=t3=0

.

It is shown that any closed convex domain of Rd has a self-concordant barrier (Lee & Yue, 2021).

Ellipsoidal gradient estimator As our algorithm operates under bandit feedback and strongly
uncoupled dynamics, we would need to design a gradient estimator while only using costs for the
individual player.

Let Sd, Bd be the d-dimensional unit sphere and the d-dimensional unit ball, respectively. Our
algorithm estimates the gradient using the following ellipsoidal estimator:

ĝ
t
i =

d

�t
ci(x̂

t
)(A

t
i)

�1
z
t
i , A

t
i = (r2

h(x
t
i) + ⌘t(t+ 1)r2

p(x
t
i))

�1/2
, x̂

t
i = x

t
i + �tA

t
iz

t
i ,

where z
t
i is uniformly independently sampled from Sd and �t, ⌘t 2 [0, 1] are tunable parameters.

One can show that ĝti is an unbiased estimate of the gradient of a smoothed cost function ĉi(x
t
) =

Ewt
i⇠BdEzt

�i⇠⇧j 6=iSd
⇥
ci

�
x
t
i +A

t
iw

t
i , x̂

t
�i

�⇤
. When p is strongly convex, one can upper bound

kriĉi(x)�rici(x)k by the maximum eigenvalue of A
t
i and it suffices to take �t = 1, which

recovers the results in Lin et al. (2021). However, when p is convex and not strongly convex, one
would need to carefully tune �t to control the bias from estimating the smoothed cost function. This
ellipsoidal gradient estimator was first introduced by Abernethy et al. (2008) for the case of ci be-
ing linear, and was then extended by Hazan & Levy (2014) to the case of strongly convex costs.
In learning for games, the ellipsoidal estimator was used in the case of strongly monotone games
(Bravo et al., 2018; Lin et al., 2021).

Based on the ellipsoidal gradient estimator, we present our uncoupled and convergent algorithm for
monotone games under bandit feedback.

Implementation Notice that solving Equation (1) is equivalent to solving a convex but poten-
tially non-smooth optimization problem. Certain sets X ✓ Rd, including the cases when X is the
strategy space of a normal-form game or an extensive-form game, can be solved by proximal New-
ton algorithm provably in O(log

2
(1/✏)) iterations (Farina et al., 2022). When such guarantees are

not required, one could accommodate other optimization methods in solving (1). Our experiment
section provides more details.

The choice of p and h is game-dependent. For example, when ci(x) = x
2 and the action set is on

the positive half line, we can use the negative log function as our self-concordant barrier function h

and take p = x.
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Algorithm 1: Algorithm
Input: Learning rate ⌘t, parameter �t, regularizer h(·), p(·), constant 

1 x
1

i = argminxi2Xi
h(xi)

2 for t = 1, . . . , T do
3 Set At

i = (r2
h(x

t
i) + ⌘t(t+ 1)r2

p(x
t
i))

�1/2

4 Play x̂
t
i = x

t
i + �tA

t
iz

t
i , receive bandit feedback ci(x̂i, x̂�i), sample z

t
i ⇠ Sd

5 Update gradient estimator ĝti =
d
�t
ci(x̂

t
)(A

t
i)

�1
z
t
i

6 Update the strategy

x
t+1

i = argmin
xi2Xi

�
⌘t

⌦
xi, ĝ

t
i

↵
+ ⌘t(t+ 1)Dp(xi, x

t
i) +Dh(xi, x

t
i)
 

(1)

5 NO-REGRET CONVERGENCE TO NASH EQUILIBRIUM

In this section, we present our main results on the last-iterate convergence to the Nash equilibrium.
We show that Algorithm 1 converges to the Nash equilibrium in monotone, strongly monotone, and
linear games. Such convergence is no-regret, meaning that the individual regret of each player is
sublinear.

For notational simplicity, we present the results in a perfect bandit feedback model, where player i
observes exactly ci(x

t
). The discussion of noisy bandit feedback, where player i observes ci(xt

) +

✏
t
i, with ✏

t
i be a zero-mean noise, is deferred to the appendix (Theorem D.1).

5.1 PERFECT BANDIT FEEDBACK

The following theorem describes the last-iterate convergence rate (in expectation) for convex and
strongly convex loss under perfect bandit feedback.

Theorem 5.1. Take ⌘t =

⇢
1

2dt3/4
µ = 0

1

2dt1/2
µ > 0 ,

, �t =
⇢

1

t1/4
µ = 0

1 µ > 0 .
. With Algorithm 1, we have

E
"
X

i2N
Dp

�
x
⇤
i , x

T+1

i

�
#



8
<

:
O

⇣
nd⌫ log(T )

T 1/4 +
n⇣dB
T 3/4 +

nBL

p
T
+

ndCp

T 1/4 +
nd log(T )

T 1/4 +

p
nB2L log(T )

T 1/4

⌘
µ = 0

O

⇣
nd⌫ log(T )


p
T

+
nd⇣B
T +

nBL

p
T
+

ndCpp
T

+
nd log(T )


p
T

+
BL log(T )

µ
p
T

⌘
µ > 0 ,

.

In the case of the monotone games, Bravo et al. (2018) showed an asymptotic convergence to Nash
equilibrium. To the best of our knowledge, Theorem 5.1 is the first result on the last-iterate con-
vergence rate for monotone games. For strongly monotone games, Bravo et al. (2018) first gave a
O(T

�1/3
) last-iterate convergence rate, which was later improved to O(T

�1/2
) by Lin et al. (2021).

While we defer the proof to the appendix, we discuss the main ideas for deriving the results. By the
update rule, we can obtain the inequality

Dh

�
!i, x

t+1

i

�
+ ⌘t(t+ 1)Dp

�
!i, x

t+1

i

�

 Dh

�
!i, x

t
i

�
+ ⌘t(t+ 1)Dp

�
!i, x

t
i

�
+ ⌘t

⌦
rici

�
x
t
�
,!i � x

t
i

↵
+ ⌘t · residual terms ,

(2)

where !i is a fixed point given.

When the game is strongly monotone, we can directly use strongly monotonicity and take p to be the
Euclidean norm to obtain a recursive relation similar to

��!i � x
t+1

i

��2
2
 (1� ⌘

2
t )
��!i � x

t+1

i

��2
2
+

residual terms. This amounts to applying this recursion and upper-binding the residual terms in-
dividually to obtain a last-iterate convergence. However, when the game is monotone but not
strongly monotone, we will need a different approach. Notice that G = rci � rp is a mono-
tone operator. Using the property of Bregman divergence, we have hG(x)�G(x

0
), x

0 � xi 
�
P

i2N (Dp (xi, x
0
i) +Dp (x

0
i, xi)).
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We then sum the recursive inequality and leverage the combination of two regularizations, which
obtain

⌘T(T + 1)

X

i2N
Dp

�
!i, x

T+1

i

�


X

i2N
Dh

�
!i, x

1

i

�
+ 

X

i2N
Dp

�
!i, x

1

i

�
+

TX

t=1

X

i2N
⌘t

⌦
rici(!),!i � x

t
i

↵

+

TX

t=1

X

i2N
⌘t

⌦
ĝ
t
i �rici

�
x
t
�
,!i � x

t
i

↵
+

TX

t=1

X

i2N
⌘t

⌦
ĝ
t
i , x

t
i � x

t+1

i

↵
.

Now it suffices to properly choose a fixed point !i such that both the first term
P

i2N Dh

�
!i, x

1

i

�

and the third term
PT

t=1

P
i2N ⌘t hrici(!),!i � x

t
ii are bounded. When !i is the Nash equilib-

rium x
⇤
i , the third term can be upper bounded trivially using the monotonicity of ci, while it does

not imply a bounded first term. Therefore, we set !i = x
⇤
i when the first term can be bounded.

Otherwise, we set it to a close enough point to x
⇤
i , such that the first term can be bounded and the

third term is bounded through a more careful calculation.

High probability result In the case of a strongly monotone game, our results show that the
O(T

�1/4
) last-iterate convergence rate holds a high probability. This is the first high-probability

result for last-iterate convergence in strongly monotone games.
Theorem 5.2. With a probability of at least 1 � log(T )�, � 
e
�1, and with Algorithm 1, we have

P
i2N Dp

�
x
⇤
i , x

T+1

i

�


O

⇣
nd⌫ log(T )p

T
+

nd⇣B
T +

nBLp
T

+
ndCpp

T
+

nd log(T )p
T

+
dBL log(T )

µ
p
T

+
nBd2

log
2
(1/�) log(T )

min{pµ,µ}
p
T

⌘
.

5.2 INDIVIDUAL LOW REGRET

Beyond the fast convergence to Nash equilibrium, our algorithm also ensures each player with a
sublinear regret when playing against other players. The sublinear regret convergence is a desirable
property as the players could be self-interested in general, and want to ensure their return even when
other players are not adhering to the protocol. The low regret property remains true for players that
are potentially adversarial, despite the convergence to Nash equilibrium no longer holds in that case.

For player i, and a sequence of actions {x̂t
i}Tt=1

, define the individual regret as the cumulative
expected difference between the costs received and the cost of playing the hindsight optimal action.
That is,

PT
t=1

E
⇥
ci

�
x̂
t
i, x

t
�i

�
� ci

�
!i, x

t
�i

�⇤
, where {xt

�i}Tt=1
is a fixed sequence of actions of

other players. The following theorem shows a guarantee of the individual regret of each player.

Theorem 5.3. Take ⌘t =

⇢
1

2dt3/4
µ = 0

1

2dt1/2
µ > 0 ,

, �t =

⇢
1

t1/4
µ = 0

1 µ > 0 ,
. For a fixed !i 2 Xi, a fixed

sequence of {xt
�i}Tt=1

, and with Algorithm 1, we have

TX

t=1

E
⇥
ci

�
x̂
t
i, x

t
�i

�
� ci

�
!i, x

t
�i

�⇤
=

8
<

:
O

⇣
⌫dT

3/4
log(T ) +G

p
T + `i

p
nBT

3/4
⌘

µ = 0

O

⇣
⌫d

p
T log(T ) +G

p
T +

nB`i
p
T

µ

⌘
µ > 0

.

Our result matches the
p
T regret bound for strongly monotone games (Lin et al., 2021), but applies

to monotone games as well.

Implication on social welfare By designing the algorithm to be no-regret, we can also show that
the social welfare attained by the algorithm also converges to the optimal value.

The social welfare for a joint action x is defined as SW(x) =
P

i2N ci(x). We let OPT =

minx SW(x) to denote the optimal social welfare.
Definition 5.1 (Roughgarden 2015; Syrgkanis et al. 2015). A game is (C1, C2)-smooth, C1 > 0,
C2 < 1, if there exists a strategy x

0, such that for any x 2 N ,
P

i2N ci(x
0
i, x�i)  C1OPT +

C2SW(x).

7
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We have the following proposition which shows that the social welfare converges to optimal welfare
on average.

Proposition 5.1. With ⌘t =
1

2dt3/4
, �t =

1

t1/4
, and suppose every player employ Algorithm 1, we

have 1

T

PT
t=1

E [SW(x̂)] = O

⇣
C1OPT

(1�C2)
+

n⌫d log(T )

(1�C2)T 1/4 +

p
nB

P
i2N `i

(1�C2)T 1/4

⌘
.

5.3 SPECIAL CASE: LINEAR COST FUNCTION

When ci is linear, there does not exist a p that is convex while making ci � p convex. Algorithm
1 therefore does not apply to the linear case. This coincides with our intuition that the landscape ci

does not provide enough curvature information for the algorithm to utilize.

To extend the algorithm to the linear case, we modify line 6 of Algorithm 1 as x
t+1

i =

argminxi2Xi
{⌘t hxi, ĝ

t
ii+ ⌘t⌧(t+ 1)Dp(xi, x

t
i) +Dh(xi, x

t
i)}. The idea is to first show the con-

vergence of xT to a game with the cost ci(x)+⌧p(x). With this regularized game, we choose p to be
a strongly convex function and measure the convergence in terms of the gap function hci(x), xi�x

⇤i.
By carefully controlling ⌧ , we obtain the following result.

Theorem 5.4. With ⌘t =
1

2d
p
t
, ⌧ =

1

T 1/6 , Gp = supx krp(x)k and Algorithm 1, we have

E
"
X

i2N

⌦
rici

�
x
T
�
, x

T
i � x

⇤
i

↵
#

 Õ

 
BGp +

p
d(BL+G)(n⌫ + nBL+ nd2)

T 1/6
+

p
dBL(BL+G)
p
µT 1/6

+

p
dnCp(BL+G)

p
µT 1/4

!
.

Similar regularization techniques have been used in the analysis of the zero-sum game (Cen et al.,
2021; Cai et al., 2023). Our result matches the last-iterate convergence for zero-sum matrix game
(Cai et al., 2023), which is a class of games with linear cost functions. However, our result is
more general as it applies to multi-player linear games with convex and compact action sets (while
previous works only apply to a simplex action set). It remains open to how games with linear cost
functions could be effectively learned and whether the convergence rate could be improved.

6 APPLICATION TO TIME-VARYING GAME

In this section, we further apply Algorithm 1 to games that evolve over time. A time-varying game
Gt is a game where the cost function c

t
i(·), i 2 N depends on t. The game Gt is not revealed to the

players before choosing their actions xt. We assume that Gt satisfies Assumption 3.1 for every t.

Such evolving games have applications in Kelly’s auction and power control, where the cost function
may change as time-dependent values change, such as channel gains. While the changes of Gt can
be random, we discuss two cases here, 1) when Gt converges to a static game G in o(T ) time, and 2)
when the variation path of the Nash equilibrium,

PT
t=1

kxt+1,⇤
i � x

t,⇤
i k is bounded in o(T ).

Converging monotone game Let Gt denote the game formed by the costs {cti(·)}i2N , and G be
the game formed by the costs {ci(·)}i2N . Suppose Gt converges to G, and let x⇤ be the set of Nash
equilibrium of the game G. The cost function c

t
i converges to some cost function ci in o(T ) time.

The following theorem shows the last iterate convergence to x
⇤.

Theorem 6.1. With
PT

t=1

P
i2N maxx krici(x) � ric

t
i(x)k2 = T

↵, take ⌘t =

1

2dt3/4
, �t =

1

t1/4
, and under Algorithm 1, we have E

⇥P
i2N Dp

�
x
⇤
i , x

T+1

i

�⇤


O

⇣
nd⌫ log(T )

T 1/4 +
n⇣dB
T 3/4 +

nBL

p
T
+

ndCp

T 1/4 +
nd log(T )

T 1/4 +

p
nB2L log(T )

T 1/4 +
B

T 1/4�↵

⌘
.

For monotone games, Duvocelle et al. (2023) showed an asymptotic last-iterate convergence rate.
To the best of our knowledge, Theorem 6.1 is the first last-iterate convergence rate for the class of
converging monotone game.

8
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Figure 1: Experiment on Cournot competition, zero-sum two-player minimax game, and convex-
concave game. In Cournot competition, the curves of OMD and GD overlap with each other.

Evolving game and equilibrium tracking We now discuss the case where Gt does not necessarily
converge to a game G, but the cumulative changes of the equilibrium are bounded. We use the
variation path Vi(T ) =

P
t2[T ]

���xt+1,⇤
i � x

t,⇤
i

��� to track the cumulative changes of equilibrium.
In this setting, the last-iterate convergence is not applicable, and the convergence is measured in
terms of the average gap. Because of this, the algorithm is slightly modified and updates with
x
t+1

i = argminxi2Xi
{⌘t hxi, ĝ

t
ii+Dh(xi, x

t
i)}.

Theorem 6.2. Assume Vi(T )  T
', ' 2 [0, 1]. Take ⌘t =

1

2dt
(1�')

3

, �t =
1

t1/2
, and un-

der Algorithm 1, we have 1

T

PT
t=1

P
i2N

⌦
ric

t
i

�
x̂
t
i, x̂

t
�i

�
, x̂

t
i � x

t,⇤
i

↵
= Õ

⇣
n⌫d+Ln3/2B2

+nG

T
2(1�')

3

+

n

T
9
8
� (4'+5)2

72

⌘
.

In the case of a strongly monotone game, Duvocelle et al. (2023) gave a result of T'/5�1/5 and Yan
et al. (2023) gave a result of T'/3�2/3. In comparison, Theorem 6.2 extends the study to monotone
games, and improves the result to O

⇣
max

n
T

2'/3�2/3
, T

(4'+5)
2/72�9/8

o⌘
.

7 EXPERIMENT

In this section, we provide a numerical evaluation of our proposed algorithm in three static games.
We repeat each experiment with 5 different random seeds. We ran all experiments with a 10-core
CPU, with 32 GB memory. We set ⌘t = 1p

t+1
, and �t = 0.001.

We present the results of the following example games described below. More results with other
parameters can be found in the Appendix K.

Cournot competition In this Cournot duopoly model, n players compete with constant marginal
costs, each having individual constant price intercepts and slopes. We model the game with 5

players, where the margin cost is 40, price intercept is [30, 50, 30, 50, 30], and the price slope is
[50, 30, 50, 30, 50].

Zero-sum matrix game In this zero-sum matrix game, the two players aim to solve the bilinear
problem minx maxy x

>
Ay. We set this matrix A to be [[1, 2], [3, 4]].

monotone zero-sum matrix game In this monotone version of the zero-sum matrix game, we
regularize the game by the regularizer x2

+ y
2.

Algorithm 1 is evaluated against two baseline methods: online mirror descent and gradient descent,
with exact gradient, or estimated gradient (bandit feedback). We set the learning rate ⌘ to be 0.01

in both zero-sum matrix games and monotone zero-sum matrix games and 0.09 in Cournot compe-
tition.

Figure 1 summarizes our experimental findings, where our algorithm attains comparable perfor-
mance to online mirror descent and gradient descent with full information. This demonstrates the
efficacy of our algorithm. We also compare our algorithm to gradient descent with an estimated

9
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gradient, using the same ellipsoidal gradient estimator, for a more fair comparison. However, apart
from the zero-sum matrix game, we find the baseline algorithm performs too poorly to be compared.

8 CONCLUSION

In this work, we present a mirror-descent-based algorithm that converges in O(T
�1/4

) in general
monotone and smooth games under bandit feedback and strongly uncoupled dynamics. Our algo-
rithm is no-regret, and the result can be improved to O(T

�1/2
) in the case of strongly-monotone

games. To our best knowledge, this is the first uncoupled and convergent algorithm in general
monotone games under bandit feedback. We then extend our results to time-varying monotone
games and present the first result of O(T

�1/4
) for converging games and the improved result of

O

⇣
max{T 2'/3�2/3

, T
(4'+5)

2/72�9/8}
⌘

for equilibrium tracking. We further verify the effective-
ness of our algorithm with empirical evaluations.
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