
EXPLOITING CODE SYMMETRIES FOR LEARNING PRO-
GRAM SEMANTICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) hold significant potential for automating program
analysis, but current code LLMs face challenges in grasping program semantics.
Our paper addresses this by formalizing program semantics through code symme-
tries and integrating them into LLM architectures for code analysis. We introduce
a group-theoretic framework that defines code symmetries as semantics-preserving
transformations, enabling precise reasoning within LLMs. Our solution, SYMC,
employs a novel variant of group-equivariant self-attention that is provably equivari-
ant to code symmetries. We extensively evaluate SYMC on four program analysis
tasks, comparing it to eight baselines against eight code transformations. Our
results show that SYMC generalizes to unseen code transformations, outperforming
the state-of-the-art code models by 30.7%. SYMC, by design, stays invariant to
semantics-preserving permutations, while code LLMs like WizardCoder and GPT-4
violate these invariances at a high rate (i.e., 14% and 43%, respectively).

1 INTRODUCTION

Automated program analysis using Code Large Language Models (LLMs) has become widely popular
for software engineering and security tasks (Liu et al., 2023; Maniatis & Tarlow, 2023), but current
code LLMs struggle with generalization to new code (Henke et al., 2022; Rabin et al., 2021; Gao et al.,
2023b;a; Yefet et al., 2020; Bundt et al., 2022; Zhang et al., 2023). This paper aims to enhance LLMs
by establishing and preserving fundamental code symmetries, drawing inspiration from translation
and rotation symmetries that typically hold in vision (Cohen & Welling, 2016).

Code symmetry. Intuitively, symmetry of code refers to any transformation applied to a code block
that preserves the semantics (i.e., input-output behavior) of the original code. Consider a (sequential)
code fragment x=2;y=4. Reordering the instructions to y=4;x=2 does not change the semantics of
the code. Of course, any code analysis task that depends solely on the semantics of the code (e.g., bug
detection) needs to preserve these symmetries by staying invariant to the transformations. Formally,
given a code block c and a set of symmetries G, an LLM m should ensure ∀g ∈ G,m(g(c)) = m(c).

Limitations of existing approaches. A popular way to train LLMs to be invariant to code symmetries
is data augmentation and pre-training (Luo et al., 2023; Feng et al., 2020). However, this approach is
not very effective due to the sheer number of possible symmetries and their compositions. Specifically,
this approach has two major limitations: (1) it is prohibitively expensive to enumerate each possible
variant g(c); and (2) it provides no guarantee of invariance even for the seen symmetries. In fact, we
find that existing state-of-the-art LLMs break desired invariances at an alarmingly high rate (e.g.,
14% in WizardCoder and 43% in GPT4 as shown in Table 1) even for simple code symmetries like a
single statement permutation.

Our approach. We introduce a group-theoretic framework to precisely define code symmetries
in terms of semantics-preserving permutations of statements and create LLM architectures that
inherently preserve these symmetries. Using this framework, we present SYMC, an LLM architecture
designed to guarantee invariance to semantics-preserving statement permutations. This is achieved
through a G-equivariant code representation learning (r) followed by a G-invariant predictive learning
(p), with G determined based on the graph automorphisms of the code block’s interpretation graph (a
generalization of program dependence graph).

1

Table 1: Invariance
violation rate across
different code models
(darker colors indicate
more violations).

Violation

SYMC 0%
GPT-4 43%
WizardCoder 14%
code2vec 61%
code2seq 52%
GGNN 7%

c1: assert a > 0
c2: assert b > 0
c3: area = a * b
c4: return area

c2: assert b > 0
c1: assert a > 0
c3: area = a * b
c4: return area

"calculate_area"

...

(a) SYMC

"calculate_area"

...

"check"

c1: assert a > 0
c2: assert b > 0
c3: area = a * b
c4: return area

c2: assert b > 0
c1: assert a > 0
c3: area = a * b
c4: return area

(b) Existing LLMs

Figure 1: (a) SYMC as a G-invariant function name predictor where G is a
group of semantics-preserving statement permutations g. (b) Code LLMs
not preserving the symmetries in G and thus incorrectly change the output.

Figure 1a shows a concrete example of the benefit SYMC when deployed for function name prediction.
The code snippets illustrate a semantics-preserving statement reordering. SYMC enforces its output
to stay invariant via keeping its learned representation G-equivariant, where the code representation
(e1, e2, e3, e4) is transformed into (e2, e1, e3, e4), followed by a G-invariant prediction module. By
contrast, Figure 1b shows an existing code model (Jin et al., 2022) that does not preserve permutation
symmetry. In this case, the code representation (e1, ..., e4) is transformed into a completely different
set of embeddings (e′1, ..., e

′
4), leading to a changed prediction.

Result summary. We evaluate SYMC on four program analysis tasks against various source code
and binary analysis baselines. For semantics-preserving permutations, SYMC is guaranteed to stay
invariant while the state-of-the-art code LLMs like WizardCoder and GPT-4 violate the invariance at a
high rate, i.e., 14% and 43%, respectively. For other semantics-preserving source code transformations
beyond permutations, SYMC surpasses the state-of-the-art code baselines, namely WizardCoder
and GPT-4, by 1.63% and 16.1%, respectively, while maintaining a model size 108× smaller.
On sophisticated transformations introduced by compiler optimizations and obfuscations, SYMC
outperforms the extensively pre-trained binary analysis baseline, PalmTree, by 30.7% without
requiring any pre-training.

Contributions. (1) We establish a foundational framework using semantics-preserving code sym-
metries, ensuring provable generalization to new samples resulting from their compositions. (2)
We introduce a mechanism to identify symmetries in programs through graph automorphism. (3)
We present a novel LLM architecture with a new variant of self-attention equivariant to program
symmetries. (4) Our approach demonstrates effectiveness in generalizing invariance to various
semantics-preserving transformations, surpassing state-of-the-art code LLMs in program analysis.

2 PRELIMINARIES

This section briefly describes the symmetry groups. See Appendix A for a more formal description.

Symmetry group. A symmetry group (G, ◦) consists of a non-empty set G of transformations and
a binary operator ◦ : G × G → G, where ◦ operates on two elements (i.e., transformations) in G,
e.g., x, y ∈ G, and produces a new transformation z = x ◦ y, z ∈ G. The binary operator has to be
associative, invertible, and there exists an identity ∃1 ∈ G,∀x ∈ G, x ◦ 1 = 1 ◦ x.

Group action. The elements of a G are abstract transformations that become concrete when they act
on some set X , i.e., they transform x ∈ X into x′ ∈ X while keeping some properties of x invariant.
Formally, an action • of a symmetry group G is a binary operation defined on a set of objects X , i.e.,
• : G×X → X , where it is also associative and has an identity.

It is common in the group theory literature to use ◦ to denote both action and composition, when it
is clear from the context (Higgins et al., 2018). It is also customary to interchange g(x) and g ◦ x.
Therefore, we treat g • (h • x), g ◦ (h ◦ x), and g(h(x)) as the same in the rest of this paper.

2

Invariance and equivariance. A symmetry group comes with two properties, namely invariance
and equivariance, that formalize the concept of preservation of some properties when a set X is
acted upon by G. Let f be a function that maps each element x ∈ X to a corresponding element y
in the set Y , indicating the property’s value for that particular element. f is called G-invariant if
∀g ∈ G,∀x ∈ X, f(g◦x) = f(x). f is called G-equivariant if ∀g ∈ G,∀x ∈ X, f(g◦x) = g◦f(x).
Given the definition of G-equivariant function, we have the following lemmas:
Lemma 1. Let f1 and f2 be two functions that are both G-equivariant and h = f1 ◦ f2 be the new
function composed by f1 and f2. h is also G-equivariant.
Lemma 2. Let f1 and f2 be two functions where f1 is G-equivariant and f2 is G-invariant, and
h = f2 ◦ f1 be the new function composed by applying f1 and then f2. h is G-invariant.

3 METHODOLOGY

This section describes the definitions of the equivariance/invariance properties for code models, the
construction of group-equivariant self-attention layers, and the group-invariant code analysis model.

3.1 INVARIANCE & EQUIVARIANCE FOR CODE MODELS

Code representation units. We establish formal definitions of the code space as a collection of
code blocks, which serves as the input space for representation learning. We then proceed to define
representation learning and predictive learning in the code space.
Definition 3.1. A code representation unit (e.g., procedure) c consists of n instructions from an
instruction set I , i.e., c ∈ In. The code space In is the set of all code representation units of interest.

A typical Code Representation Unit (CRU) is a method with well-defined interfaces, ensuring
controlled interaction with other methods, without arbitrary control transfers. Below, we provide
formal definitions for learning program representation and predictive learning.
Definition 3.2. Representation learning for code involves learning a function r that maps a CRU
c ∈ In to a point in the code representation space Rd×n, r : In → Rd×n, where R denotes the set of
real numbers, and d denotes the dimension of the vector to which each instruction is mapped.
Definition 3.3. Predictive learning for code entails learning a function p : Rd×n → RL that maps
the code representation produced by the representation learning r to a label space RL. RL becomes
concrete in the context of downstream analyses (§5).

In this framework, the earlier layers of the neural network serve as the representation learning function
r, learning program representations. The subsequent layers serve as the predictive learning function
p, making predictions based on analysis-specific labels, such as function names. Therefore, the whole
network computation can be thought of as a composition of r and p, i.e., p ◦ r.

In the following, we establish formal properties for code analysis models with explicit representation
learning r and predictive learning p based on G-equivariance/invariance.
Definition 3.4 (G-equivariant code representation learning). Let G be a symmetry group consist-
ing of semantics-preserving transformations applied to a CRU c ∈ In. A representation function
r : In → Rd×n is G-equivariant if for every g ∈ G and c ∈ In, we have g ◦ r(c) = r(g ◦ c).
Note that here the input space of r (In) and its output space (Rd×n) are both sets of size n, where
each instruction I is mapped to a Rd vector by the representation function. This consideration is
necessary to ensure the symmetry group can act on both sets appropriately.
Definition 3.5 (G-invariant code predictive learning). Let G be a symmetry group consisting of
semantics-preserving transformations applied to program representation vector c ∈ In. A predictive
learning function p : Rd×n → RL is G-invariant if ∀g ∈ G,∀e ∈ Rd×n, p(g ◦ e) = p(e).

Stacking p on top of r, p ◦ r, leads to a G-invariant model according to Lemma 2.

3.2 SEMANTICS-PRESERVING PROGRAM SYMMETRIES

A semantics-preserving program symmetry is a program transformation preserves the input and
output behavior of a CRU when interpreted by the program interpretation function f . The program

3

interpretation function takes a CRU c ∈ In as input, where I represents the set of possible input
values to execute CRU, and produces output values represented by the set O.
Definition 3.6. A semantics-preserving program symmetry g is a transformation acting on c ∈ In

(g : In → In) such that ∀in ∈ I,∀out ∈ O, f(g ◦ c, in) = f(c, in) = out.
Definition 3.7. A semantics-preserving program symmetry group G is a set of semantics-preserving
program symmetries that also satisfy the group axioms.

Local and global program symmetry. We call g local program symmetry because it acts on a single
CRU c ∈ In. In this paper, we do not consider global program symmetry defined over the entire
program space In, e.g., rotation as in image space. This is because each independent sample c will
have its own symmetries corresponding to its semantics-preserving transformations, and we develop
model architectures that preserve the specific code symmetry group for each individual sample (§4).

3.3 Aut(IG): A PROGRAM SYMMETRY GROUP

In this paper, we focus on a specific symmetry group that maintains the structural integrity of CRUs
by utilizing their inherent compositional structure. However, note that this approach is not the only
way to form code symmetry groups and does not encompass all possible code symmetries. We leave
further exploration in these directions to future research.

Next, we describe the compositional structure of the program interpreter f operating on a CRU,
enabling us to define the program interpretation graph that links CRUs to their input-output behavior.

Compositional structure of program interpreter f . The interpreter function f (defined in §3.2) can
be represented as a composition of individual per-instruction interpreter functions {f1, ..., fn}. Each
fi : Ii → Oi interprets a single instruction ci from the instruction set I (Definition 3.1), takes the
input values ini ∈ Ii, and produce the output values outi ∈ Oi. It is important to note that the output
of fi can include both data flow elements (e.g., variables or memory locations with values assigned
by fi) and control flow elements (e.g., addresses of next interpreter functions fj ∈ f assigned by
fi). Consequently, we can express f as the composition of different individual interpreters, i.e.,
fn ◦ ... ◦ f1, where later instructions act on the output of previous instructions.

Program interpretation graph (IG). Programs often involve different control flow paths, such as
if-else statements, leading compositions between individual interpreter functions to a directed graph
instead of a linear sequence. This graph is referred to as the program interpretation graph. For a given
CRU c, there can be multiple execution paths, each exercising different subsets of {f1, ..., fn}.

To construct the interpretation graph IG = (V,E), we consider all feasible execution paths of c. In
IG, each node Vi ∈ V corresponds to fi, and each directed edge Ei,j ∈ E (connecting Vi to Vj)
represents at least one execution path where fj takes the output of fi as input, i.e., Ei,j = (outi, inj).

Automorphism group of interpretation graph. Our objective is to find a group of symmetries
that act on c while preserving its input and output behavior as interpreted by f in terms of I and
O (Definition 3.6). Intuitively, as IG represents all execution paths of c, any transformations that
preserve IG should also preserve the execution behavior of c. Therefore, we aim to uncover a group
of symmetries that preserve IG (Theorem 1), and such a group can guide us to construct code analysis
model that can stay invariant to all symmetries of the group (§3.4).

To achieve this, we consider a specific set of symmetries called the automorphisms of IG, denoted as
Aut(IG). An automorphism is a group of symmetries σ ∈ Aut(IG) that act on the interpretation
graph IG = (V,E). Intuitively, graph automorphisms can be thought of as permutations of nodes
that do not change the connectivity of the graph. Aut(IG) is formally defined as follows:
Definition 3.8 (IG Automorphism). IG automorphism is a group of symmetries σ ∈ Aut(IG)
acting on an interpretation graph IG = (V,E), where σ is a bijective mapping: σ : V → V , such that
for every edge Ei,j ∈ E, i.e., connecting fi and fj , there is a corresponding edge (σ(fi), σ(fj)) ∈ E.

We now show how the automorphism σ ∈ Aut(IG) preserves all input and output behavior of
{f1, ..., fn} in the space of I and O. As mentioned earlier, graph automorphism is a permutation on
the set of nodes in IG such that the edges Ei,j = (outi, inj) are preserved in the transformed IG′.
As each fi ∈ {f1, .., fn} operates on ci ∈ c, we have the following (see Appendix B for the proof):
Theorem 1. The set of automorphisms σ ∈ Aut(IG) forms a program symmetry group.

4

3.4 Aut(IG)-EQUIVARIANT CODE REPRESENTATION

Existing approaches for code analysis using Transformer typically involve an embedding layer
followed by applying l self-attention layers Al. For downstream code analysis, a prediction head
F , is placed on top of Al. We can thus consider the representation learning r as the composition of
embedding layer and Al, while the prediction head F as the predictive learning p (§3.1). We now
present the development of a new self-attention layer that is Aut(IG)-equivariant.

Self-attention. The standard self-attention computation can be succinctly represented as wv ·
s(wT

k · wq), where wv, wk, and wq are learnable parameters for transforming value, key, and query,
respectively, and s(·) represents scaling by

√
d and applying Softmax (see Appendix A).

It is easy to show that the existing self-attention layer is equivariant to permutations (Appendix B).
However, we want to make the self-attention layers equivariant only to Aut(IG), not all permutations.
In the following, we describe how to build Aut(IG)-equivariant self-attention.

Biasing self-attention with a distance matrix. To build Aut(IG)-equivariant self-attention layers,
denoted as GA, we add a customized distance matrix dIG to GA: GA(e) = wve · (s(wke

T ◦ wqe) +
dIG). Importantly, dIG should have two properties: (1) dIG stays invariant when σ ∈ Aut(IG) acts
on IG: dIG = σ(dIG), and (2) dIG commutes with permutation matrix pσ (σ ∈ Aut(IG)).
We will describe a concrete instantiation of dIG in §4.2. Based on the two properties, we have the
following Theorem (see Appendix B for the proof).
Theorem 2. Self-attention GA(e) = wve · (s(wke

T · wqe) + dIG) is Aut(IG)-equivariant.

As the embedding layer is trivially permutation equivariant, composing it with Aut(IG)-equivariant
self-attention layers leads to Aut(IG)-equivariant code representation learning (Lemma 1).

3.5 Aut(IG)-INVARIANT PREDICTOR

We describe two prediction modules that are inherently G-invariant, so stacking them on top of the
Aut(IG)-equivariant module leads to an Aut(IG)-invariant code model (Lemma 2).

Token-level. Token-level predictor is often employed when each input token needs a label, e.g.,
predicting memory region per instruction (§5). As the automorphism acts on the input sequence e but
not individual tokens, i.e., the value of the embedding vectors, the automorphism σ does not apply to
the query vector qi (§3.4). Therefore, we have Lemma 3. See Appendix B for complete proof.
Lemma 3. The biased self-attention computing the embedding e′i = GA(ei) is Aut(IG)-invariant.

Pooling-based. Another popular Aut(IG)-invariant predictor involves pooling the embedding
sequence e′ = GA(e), e.g., using max or mean. Pooling operators are invariant to permutations, thus
to Aut(IG), e.g., the mean pooling µ(e′) = (Σn

i=1e
′
i)/n is not sensitive to the order of (e′1, ..., e

′
n).

Pooling-based predictor is often employed when we aim to predict the property for the entire input
sequence, e.g., predicting the function signature, detecting function similarity, etc. (§5).

4 SYMC IMPLEMENTATION

4.1 RELAXING IG TO PROGRAM DEPENDENCE GRAPH

In §3.4, we demonstrated how to build Aut(IG)-equivariant self-attention layers. However, directly
constructing IG is computationally impractical as we need to iterate all possible execution paths. To
address this, we consider program dependence graph (PDG), a sound over-approximation to IG that
explicitly captures the control/data dependencies and can be computed statically and efficiently.

PDG (VPDG, EPDG) is a super graph of IG, sharing the same vertices but having a superset of edges
(EPDG ⊇ EIG), because we consider all memory accesses as aliasing, making PDG a conservative
construction of IG. Enforcing PDG to be a super graph of IG is crucial because the automorphism
group of a subgraph is a subgroup of that of the super graph (Aut(PDG) ⊇ Aut(IG)). Thus, if the
self-attention layer is Aut(PDG)-equivariant, it is guaranteed to be Aut(IG)-equivariant.

PDG construction. We construct PDG edges based on data/control dependencies between instruc-
tions. Three types of data dependencies (read-after-write, write-after-read, and write-after-write) are

5

considered, indicating the presence of data flow. Control dependencies are included to determine the
execution order. These dependencies establish a partial order of instructions, preventing permutations
that violate edge directions that might alter the input-output behavior of the program (§3.3).

4.2 ENCODING GRAPH STRUCTURE

This section presents a concrete instance of the distance matrix defined on PDG, which enables us to
prove Aut(PDG)-equivariance for the resulting self-attention layers.

Distance matrix. Let d denote the distance matrix of PDG where dij represents the distance between
nodes Vi and Vj . Each entry dij is a 2-value tuple (pij , nij), indicating the shortest path from the
lowest common ancestor of Vi and Vj , denoted as Tij , to Vi and Vj , respectively.

We incorporate d into the multi-head self-attention (MHA), ensuring Aut(PDG)-equivariance, and
define specific modifications to the attention heads to handle positive and negative distances. Specifi-
cally, the first half of the attention heads MHAi(e), for i ∈ [1, h/2], are combined with the matrix
dp formed by the positive distances in d (denoted as dpij = pij). The second half of the attention
heads MHAi(e), for i ∈ [h/2 + 1, h], are combined with the matrix dn formed by the negative
distances in d (denoted as dnij = nij). The modified attention heads are defined as: (1) MHAi(e) =
wve·(s(wke

T ·wqe)+dp), i ∈ [1, h/2], (2) MHAi(e) = wve·(s(wke
T ·wqe)+dn), i ∈ [h/2+1, h].

It is easy to show d satisfies the two properties defined in §3.4 (see Appendix B). We thus have:
Lemma 4. The distance matrix d of PDG remains invariant under the action of σ ∈ Aut(PDG).
Lemma 5. The distance matrix d of PDG commutes with permutation matrix pσ of the automorphism
σ ∈ Aut(PDG): d · pσ = pσ · d.

Based on these two properties, we can prove each head in MHA is Aut(PDG)-equivariant, following
the same proof steps to Theorem 2. Therefore, according to Lemma 1, MHA composed by multiple
Aut(PDG)-equivariant heads is also Aut(PDG)-equivariant.

5 EXPERIMENTAL SETUP

Program analysis tasks. We consider analysis tasks that require a deep understanding of code
behavior such that they are expected to stay invariant to code symmetries. Specifically, we consider
(1) function name prediction, which performs an “extreme summarization” of the function behavior.
(2) function similarity detection, which predicts if a pair of functions are semantically similar; (3)
function signature prediction, which predicts the types (int, float, etc.) of function arguments;
and (4) memory region prediction, which predicts the memory region (stack, heap, etc.) that each
memory-accessing instruction can possibly access. For (2)-(4), we focus on analyzing stripped
binaries considering its broad applications, e.g., vulnerability detection and security retrofitting.

Baselines. We consider five baselines for function name prediction: code2vec (Alon et al., 2019),
code2seq (Alon et al., 2018), GGNN (Fernandes et al., 2018), and two more general-purpose LLMs,
GPT-4 and WizardCoder (3B) (Luo et al., 2023). Note that the dataset used to train LLMs might
overlap with our test set. For example, Hadoop (our test set for function name prediction, see
Appendix D) is included in BigCode (HuggingFace & ServiceNow, 2022), one of the widely used
datasets to train code LLMs. Our goal is to demonstrate SYMC still generalizes better than existing
code LLMs under such a disadvantaged setting.

For tasks (2)-(4), we compare to PalmTree (Li et al., 2021), the state-of-the-art binary analysis tool
that covers all our considered tasks. To ensure a fair comparison, we include three PalmTree ver-
sions: PalmTree, PalmTree-O, and PalmTree-N. PalmTree is pre-trained on 2.25 billion instructions.
PalmTree-O is pre-trained on 137.6 million instructions using our own dataset (Appendix D), with
full access to fine-tuning and evaluation data (excluding labels), while not accessible by SYMC as it
is not pre-trained. We aim to show SYMC’s strong generalizability even in this disadvantaged setting.
PalmTree-N serves as the baseline Transformer encoder without being pre-trained.

Code transformations. We consider a set of real-world semantics-preserving transformations
beyond PDG automorphisms to evaluate SYMC’s generalization by staying Aut(PDG)-equivariant.
Instruction permutation occasionally forms the basis for these transformations. In particular, we

6

Table 2: Evaluation on samples under different percentages of semantics-preserving permutations. F1
measures the prediction performance of function name, function signature, and memory region. AUC
(area under the ROC curve) measures the function similarity detection performance. The violation
rate is highlighted in red . The larger the violation rate, the darker the color.

Model
Size

Train
Size

F1 & AUC Invariance Violation (%)
0% 25% 50% 75% 100% 25% 50% 75% 100%

Function
Name

SYMC 68.4M 202M 0.363 0.364∗ 0.363 0.363 0.363 0 0.1∗ 0 0
code2seq 6.3M 5.1G 0.255 0.238 0.236 0.237 0.247 54 53 57 61
code2vec 348M 32G 0.177 0.199 0.195 0.197 0.196 53 53 52 52
GGNN 53M 2.4G 0.016 0.016 0.016 0.016 0.016 4 4 5 7
GPT-4 N/A N/A 0.303 0.313 0.317 0.329 0.307 42 43 45 43
WizardCoder 3B N/A 0.339 0.347 0.348 0.359 0.346 6 7 12 14

Function
Signature

SYMC 58.3M 12M 0.88 0.88 0.88 0.88 0.88 0 0 0 0
PalmTree 3.2M 17.4G 0.59 0.55 0.49 0.42 0.41 12 23 18 24
PalmTree-O 3.2M 5.3G 0.49 0.48 0.45 0.41 0.41 19 6 12 6
PalmTree-N 3.2M 614M 0.19 0.41 0.41 0.41 0.41 83 82 83 86

Memory
Region

SYMC 58.9M 340M 0.86 0.86 0.86 0.86 0.86 0 0 0 0
PalmTree 3.07M 17.9G 0.57 0.45 0.45 0.48 0.43 17 17 28 18
PalmTree-O 3.07M 5.8G 0.57 0.42 0.45 0.47 0.44 10 13 14 11
PalmTree-N 3.07M 1.1G 0.32 0.22 0.29 0.17 0.2 30 36 31 32

Function
Similarity

SYMC 58.9M 133M 0.96 0.96 0.96 0.96 0.96 0 0 0 0
PalmTree 3.06M 17.4G 0.72 0.61 0.53 0.71 0.69 18 19 30 31
PalmTree-O 3.06M 5.3G 0.8 0.79 0.76 0.72 0.72 30 28 30 35
PalmTree-N 3.06M 614M 0.71 0.64 0.56 0.66 0.72 11 18 24 38

∗We observe a slight value change due to the floating point precision error by adopting memory-efficient 16-bit.

consider two categories of binary code transformations: (1) compiler optimizations from GCC-7.5
and Clang-8, some of which reorder instructions for scheduling purposes (-fdelayed-branch,
-fschedule-insns); and (2) compiler-based obfuscations, where we consider 5 obfuscations
following Jin et al. (2022), such as control flow flattening, indirect branching, etc.

In addition to binary transformations, we consider six source code transformations following Rabin
et al. (2021) and Wang et al. (2022): variable rename - changes the name of the identifiers; statement
permute – permutes statements but preserves the code blocks’s input-output behavior; loop exchange
– transforms for from/to while loops; boolean exchange – flips the boolean variables and negates
all their uses by tracking their def-use chain; unused statement – injects unused string declaration
into a randomly chosen basic block; switch to if – transforms switch from/to if statements.

6 EVALUATION

6.1 INVARIANCE AND GENERALIZATION

Evaluating Aut(PDG)-invariance. As SYMC is provably invariant to Aut(PG), we aim to study how
other baselines perform under varying percentages of semantics-preserving statement permutations.
Table 2 shows that all baselines, even some of which have much larger model sizes and are extensively
pre-trained with samples that potentially include the test set (§5), are susceptible to slight permutations
(e.g., 25%), i.e., with their prediction changed by 27.8% on average.

Generalization to other semantics-preserving transformations. Table 3 shows that SYMC general-
izes to new samples transformed by unseen semantics-preserving transformations that are not part of
Aut(PDG), outperforming the second-best non-LLM based approach, code2seq, by 30.8%. It also
outperforms the two LLMs, GPT-4 and WizardCoder, by 16.1% and 1.63%, respectively. We integrate
CodeWordNet (Jin et al., 2022) to relax predicted names to a cluster of synonyms, addressing the
issue of ambiguity of function names. However, the performance of SYMC decreases to 0.309 (was
0.374) when we measure the exact match. This performance gap shows that large pre-trained code
models possess a more comprehensive understanding of natural language, especially beneficial for

7

SymC Palmtree PalmTree-O PalmTree-N

Seen Unseen
0.2

0.4

0.6

0.8

1.0
AU

C

(a) Cross-OPT similarity
Seen Unseen

0.2

0.4

0.6

0.8

1.0

F1

(b) Cross-OPT signature
Seen Unseen

0.2

0.4

0.6

0.8

1.0

AU
C

(c) Cross-OBF similarity
Seen Unseen

0.2

0.4

0.6

0.8

1.0

F1

(d) Cross-OBF signature

Figure 2: Evaluation on unseen optimization and obfuscation (marked in pink). We also include the
testing results on seen optimizations and obfuscations.

function name prediction. Nonetheless, SYMC retains the edge of having a much smaller model size
(108×), eliminating the need for extensive pre-training, and offering provable robustness.

Besides basic source rewrites, we compare SYMC to baselines on generalization to unseen compiler
optimizations and obfuscations. Figure 2 shows that SYMC outperforms PalmTree across all binary
analysis tasks (we do not include memory region prediction as the dataset does not have such
information (Guo et al., 2019)) by 33.8% and 30.7% on seen and unseen transformations, respectively.
While the compiler optimizations and obfuscations often involve more sophisticated transformations
not directly related to instruction permutations, SYMC maintains its superior generalization.

6.2 TRAINING EFFICIENCY

Table 3: The performance (F1) of SYMC and baselines against different
unseen code transformations.

SYMC code2seq code2vec GGNN GPT-4 WizardCoder

Variable
Rename

0% 0.389 0.334 0.264 0.029 0.356 0.362
100% 0.375 0.335 0.247 0.026 0.351 0.361

Statement
Permute

0% 0.363 0.241 0.177 0.019 0.303 0.339
100% 0.363 0.234 0.196 0.019 0.307 0.346

Loop
Exchange

0% 0.373 0.283 0.243 0.007 0.310 0.379
100% 0.357 0.299 0.241 0.007 0.308 0.366

Boolean
Exchange

0% 0.421 0.332 0.268 0.031 0.329 0.414
100% 0.412 0.272 0.242 0.026 0.323 0.406

Unused
Statement

0% 0.347 0.296 0.267 0.016 0.316 0.358
100% 0.342 0.285 0.26 0.012 0.309 0.350

Switch
to If

0% 0.372 0.31 0.376 0.027 0.326 0.385
100% 0.372 0.293 0.33 0.009 0.332 0.379

Besides the improved ro-
bustness and generaliza-
tion, SYMC is efficient
in training in avoiding
expensive pre-training ef-
forts, e.g., some may take
up to 10 days (Jin et al.,
2022). As shown in §6.1,
SYMC, without any pre-
training, outperforms the
pre-trained baselines.

In this section, we assess
SYMC’s performance un-
der the limited training
resources and how much
training effort it can save.
Specifically, we reduce
the model sizes and train-
ing iterations to test the
hypothesis that SYMC requires less training effort for similar testing performance due to its improved
training efficiency. Figure 3 shows that SYMC’s performance (on memory region prediction) remains
the highest in both reduced size and training iterations, outperforming PalmTree by 36.9% and 21.4%,
respectively. Even in the most strict scenario, SYMC remains 38.2% and 15.3% better in both settings.

We then study the training effort (including both pre-training and fine-tuning) of SYMC and PalmTree.
Table 4 shows their GPU hours, power, and emitted carbon dioxide estimation when they reach 0.5
F1 score in memory region prediction. We assume the GPU always reaches its power cap (350W) to
estimate an upper bound of the power usage. CO2eq stands for the carbon dioxide equivalent, a unit
for measuring carbon footprints. By being more training efficient, SYMC incurs 1,281× less total
GPU time, power, and emitted carbon dioxide than PalmTree in obtaining the same performance.

6.3 ABLATIONS OF DESIGN CHOICES

Equivariance vs. Invariance. We compare the Aut(PDG)-equivariant self-attention layers to the
Aut(PDG)-invariant ones, an alternative design choice to implement Aut(PDG)-invariant code

8

SymC Palmtree PalmTree-O PalmTree-N

100% 50% 25% 12.5%

0.4

0.6

0.8
F1

(a) Reduce model size
8k 4k 2k 1k

0.4

0.6

F1

(b) Reduce training iterations

Figure 3: Comparing SYMC and baselines on constrained
resources, where we (a) reduce the model weights, and (b)
reduce the number of training iterations, and observe how
that affects the performance.

Table 4: The resource consumed by train-
ing SYMC and other baselines to reach
0.5 F1 score in memory region prediction.

Time
(Hours)

Power
(kWh)

Carbon
(CO2eq)

SYMC 0.07 0.025 0.009
PalmTree-O∗ 89.67 31.38 11.64
∗PalmTree did not disclose its hours for pre-training,
so we include the pre-training time (in 10 epochs)
based on our own pre-trained PalmTree.

models. Figure 4a shows that setting layers invariant early hinders prediction performance. SYMC
with equivariant layers has an average 0.73 F1 across all training iterations and outperforms the
second-best setting by 60.7%. This observation confirms the empirical findings that making earlier
layers equivariant instead of invariant leads to better performance (Higgins et al., 2018).

1 2 3 4 5 6 7 8 9 10
Training Iterations (k)

0.24

0.26

0.28

0.30

Te
st

in
g

F1

Equivariant SymC F1=0.86
2nd 4th 6th

(a) Equivariance vs. invariance

1 2 3 4 5 6 7 8 9 10
Training Iterations (k)

0.7

0.8

Te
st

in
g

F1

w/o pre-train
pre-train 1 epoch

pre-train 5 epochs
pre-train 10 epochs

(b) Pre-training SYMC

Figure 4: (a) Comparing SYMC’s equivariant self-attention layers
with setting them invariant starting at earlier layer. (b) Comparing
SYMC when adding pre-training with varying pre-training epochs.

Adding pre-training. We ex-
plore the impact of pre-training
SYMC with masked language
modeling (Devlin et al., 2018).
We compare SYMC (without
pre-training by default) to pre-
trained versions with varying pre-
training iterations. We then fine-
tune them for memory region pre-
diction. Figure 4b shows that pre-
training with even one epoch re-
sults in a significantly improved
F1 score, e.g., by 10.8%, with
much faster convergence. How-
ever, additional pre-training epochs show diminishing returns, likely due to the limited training
samples, e.g., the F1 score only improves by 3.2% with pre-training five epochs compared to 1 epoch.

7 RELATED WORK

Code representation learning. Previous research aims to automate software development tasks
through code representation learning (Ding et al., 2023; Feng et al., 2020; Guo et al., 2022; Ahmad
et al., 2021), employing new architectures and pre-training objectives (Hellendoorn et al., 2019;
Allamanis et al., 2017; Sun et al., 2020; Peng et al., 2021; Kim et al., 2021; Guo et al., 2020). However,
unlike our approach, these approaches cannot provide any guarantees of encoding semantics.

Symmetry in machine learning. Symmetry plays a crucial role in creating efficient neural architec-
tures across various domains (Reiser et al., 2022; Wang et al., 2020; Bogatskiy et al., 2020; Perraudin
et al., 2019; Cohen & Welling, 2016; Gordon et al., 2019; Dehmamy et al., 2021). Different architec-
tures, such as CNNs, GNNs, and Transformers, leverage symmetry to handle translations, rotations,
permutations, etc. (Lee et al., 2019; Cohen & Welling, 2016; Esteves et al., 2018; Hutchinson et al.,
2021; Gordon et al., 2019; Romero & Cordonnier, 2020). SYMC sets the first step to formalize code
semantics learning using symmetry groups.

8 CONCLUSION

We studied code symmetries’ impact on code LLM architectures for program reasoning tasks, intro-
ducing a novel self-attention variant that brought significant gains in generalization and robustness
across a variety of program analysis tasks, providing valuable insights for specialized LLM develop-
ment in reasoning and analyzing programs.

9

REFERENCES

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training
for program understanding and generation. arXiv preprint arXiv:2103.06333, 2021.

Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for extreme
summarization of source code. In International conference on machine learning, pp. 2091–2100.
PMLR, 2016.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. arXiv preprint arXiv:1711.00740, 2017.

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from
structured representations of code. arXiv preprint arXiv:1808.01400, 2018.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed rep-
resentations of code. Proceedings of the ACM on Programming Languages, 3(POPL):1–29,
2019.

Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio Pierazzi, Christian
Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. Dos and don’ts of machine learning in
computer security. In 31st USENIX Security Symposium (USENIX Security 22), pp. 3971–3988,
2022.

Norman Biggs, Norman Linstead Biggs, and Biggs Norman. Algebraic graph theory. Number 67.
Cambridge university press, 1993.

Alexander Bogatskiy, Brandon Anderson, Jan Offermann, Marwah Roussi, David Miller, and Risi
Kondor. Lorentz group equivariant neural network for particle physics. In International Conference
on Machine Learning, pp. 992–1002. PMLR, 2020.

Joshua Bundt, Michael Davinroy, Ioannis Agadakos, Alina Oprea, and William Robertson. Black-box
attacks against neural binary function detection. arXiv preprint arXiv:2208.11667, 2022.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pp. 2990–2999. PMLR, 2016.

Nima Dehmamy, Robin Walters, Yanchen Liu, Dashun Wang, and Rose Yu. Automatic symmetry
discovery with lie algebra convolutional network. Advances in Neural Information Processing
Systems, 34:2503–2515, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yangruibo Ding, Ben Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and Baishakhi Ray. Traced:
Execution-aware pre-training for source code. arXiv preprint arXiv:2306.07487, 2023.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning so (3)
equivariant representations with spherical cnns. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 52–68, 2018.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. Structured neural summarization.
arXiv preprint arXiv:1811.01824, 2018.

Fengjuan Gao, Yu Wang, and Ke Wang. Discrete adversarial attack to models of code. Proceedings
of the ACM on Programming Languages, 7(PLDI):172–195, 2023a.

Shuzheng Gao, Cuiyun Gao, Chaozheng Wang, Jun Sun, David Lo, and Yue Yu. Two sides of the
same coin: Exploiting the impact of identifiers in neural code comprehension. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), pp. 1933–1945. IEEE, 2023b.

10

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and Diane Bouchacourt. Permutation equivariant
models for compositional generalization in language. In International Conference on Learning
Representations, 2019.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. arXiv preprint arXiv:2009.08366, 2020.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified
cross-modal pre-training for code representation. arXiv preprint arXiv:2203.03850, 2022.

Wenbo Guo, Dongliang Mu, Xinyu Xing, Min Du, and Dawn Song. DEEPVSA: Facilitating value-set
analysis with deep learning for postmortem program analysis. In 28th USENIX Security Symposium
(USENIX Security 19), 2019.

Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global
relational models of source code. In International conference on learning representations, 2019.

Jordan Henke, Goutham Ramakrishnan, Zi Wang, Aws Albarghouth, Somesh Jha, and Thomas Reps.
Semantic robustness of models of source code. In 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 526–537. IEEE, 2022.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende,
and Alexander Lerchner. Towards a definition of disentangled representations. arXiv preprint
arXiv:1812.02230, 2018.

HuggingFace and ServiceNow. BigCode is an open scientific collaboration working on the responsible
development and use of large language models for code. https://www.bigcode-project.
org/, 2022.

Michael J Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont, Yee Whye Teh, and
Hyunjik Kim. Lietransformer: Equivariant self-attention for lie groups. In International Conference
on Machine Learning, pp. 4533–4543. PMLR, 2021.

Shuiwang Ji, Yaochen Xie, and Hongyang Gao. A mathematical view of attention models in deep
learning. Texas A&M University: College Station, TX, USA, 2019.

Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin. Symlm: Predicting function names in stripped
binaries via context-sensitive execution-aware code embeddings. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1631–1645, 2022.

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish Chandra. Code prediction by feeding trees to
transformers. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
pp. 150–162. IEEE, 2021.

Donald Knuth. Permutations, matrices, and generalized young tableaux. Pacific journal of mathemat-
ics, 34(3):709–727, 1970.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
Conference on Machine Learning, pp. 3744–3753. PMLR, 2019.

Xuezixiang Li, Qu Yu, and Heng Yin. Palmtree: Learning an assembly language model for instruction
embedding. In 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021.

Dongge Liu, Jonathan Metzman, and Oliver Chang. AI-Powered Fuzzing: Break-
ing the Bug Hunting Barrier. https://security.googleblog.com/2023/08/
ai-powered-fuzzing-breaking-bug-hunting.html, 2023.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

11

https://www.bigcode-project.org/
https://www.bigcode-project.org/
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html
https://security.googleblog.com/2023/08/ai-powered-fuzzing-breaking-bug-hunting.html

Petros Maniatis and Daniel Tarlow. Large sequence models for software
development activities. https://ai.googleblog.com/2023/05/
large-sequence-models-for-software.html?m=1, 2023.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. Fairseq: A fast, extensible toolkit for sequence modeling. In 2019 Annual
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Demonstrations, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, and Zhi Jin. Integrating tree path in transformer for
code representation. Advances in Neural Information Processing Systems, 34:9343–9354, 2021.

Nathanaël Perraudin, Michaël Defferrard, Tomasz Kacprzak, and Raphael Sgier. Deepsphere: Effi-
cient spherical convolutional neural network with healpix sampling for cosmological applications.
Astronomy and Computing, 27:130–146, 2019.

Md Rafiqul Islam Rabin, Nghi DQ Bui, Ke Wang, Yijun Yu, Lingxiao Jiang, and Mohammad Amin
Alipour. On the generalizability of neural program models with respect to semantic-preserving
program transformations. Information and Software Technology, 135:106552, 2021.

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam
Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks for
materials science and chemistry. Communications Materials, 3(1):93, 2022.

David W Romero and Jean-Baptiste Cordonnier. Group equivariant stand-alone self-attention for
vision. arXiv preprint arXiv:2010.00977, 2020.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. Treegen: A tree-based
transformer architecture for code generation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 8984–8991, 2020.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for
improved generalization. arXiv preprint arXiv:2002.03061, 2020.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, et al. Recode: Robustness evaluation of code
generation models. arXiv preprint arXiv:2212.10264, 2022.

Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River,
2001.

Noam Yefet, Uri Alon, and Eran Yahav. Adversarial examples for models of code. Proceedings of
the ACM on Programming Languages, 4(OOPSLA):1–30, 2020.

Zhuo Zhang, Guanhong Tao, Guangyu Shen, Shengwei An, Qiuling Xu, Yingqi Liu, Yapeng Ye,
Yaoxuan Wu, and Xiangyu Zhang. Pelican: Exploiting backdoors of naturally trained deep learning
models in binary code analysis. In 32nd USENIX Security Symposium, 2023.

A PRELIMINARIES

This section formally defines the symmetry group and the invariance and equivariance properties
against the symmetry group.

Symmetry group. Intuitively, a symmetry is a transformation or operation on an object that preserves
certain properties of the object. For example, in the context of image classification, a rotation
operation acting on an image of a ball, which does not change the label of the ball, can be considered
a symmetry. A symmetry group is a set of such symmetries with some additional properties. An
arbitrary set of symmetries does not always form a symmetry group. To form a symmetry group, a
set of operations must possess certain additional properties as described below.

12

https://ai.googleblog.com/2023/05/large-sequence-models-for-software.html?m=1
https://ai.googleblog.com/2023/05/large-sequence-models-for-software.html?m=1

Definition A.1. A symmetry group (G, ◦) consists of a non-empty set G of transformations and a
binary operator ◦ : G×G → G, where ◦ operates on two elements (i.e., transformations) in G, e.g.,
x, y ∈ G, and produces a new transformation z = x ◦ y. (G, ◦) should satisfy four axioms:

• Associativity: ∀x, y, z ∈ G, x ◦ (y ◦ z) = (x ◦ y) ◦ z

• Identity: ∃1 ∈ G,∀x ∈ G, x ◦ 1 = 1 ◦ x

• Inverse: ∀x ∈ G,∃x−1 ∈ G, x ◦ x−1 = 1

• Closure: ∀x, y ∈ G, x ◦ y ∈ G

Action of a symmetry group. As defined above, the elements of a G are abstract transformations
that become concrete when they act on some set X , i.e., they transform some object x ∈ X into
another object x′ ∈ X while keeping some properties of the object invariant. Formally, an action of
a symmetry group G is defined as follows:
Definition A.2. An action • of a symmetry group (G, ◦) is a binary operation defined on a set of
objects X , i.e., • : G×X → X ,1 where

• Identitiy: ∀x ∈ X,1 • x = x

• Compatibility: ∀g, h ∈ G, x ∈ X, (g ◦ h) • x = g • (h • x)

As a concrete example, X can be a set of programs and G can be all possible instruction permutations
that preserve the input-output behavior of the programs in X . It might seem unclear at this point
how these permutations form a group (satisfying group axioms). We will formalize the notion of
permutations and their actions on programs in §3.3.

Notation. It is common in the group theory literature to use ◦ to denote both action and composition,
when it is clear from the context which operation is being used (Higgins et al., 2018). For example,
(g ◦ h) ◦ x denotes composing the two transformations g and h and then letting the composite
transformation act on an object x. It is also customary to interchange g(x) and g ◦ x where both
denote applying a function/action on x. Therefore, we treat g • (h • x), g ◦ (h ◦ x), and g(h(x)) as
the same and follow this convention in the rest of this paper.

Invariance and equivariance. A symmetry group comes with two properties, namely invariance
and equivariance, that formalize the concept of preservation of some properties when a set X is acted
upon by the symmetry group G. Invariance refers to the property that remains unchanged under the
action of the symmetry group. Equivariance, on the other hand, expresses the compatibility between
the action of the symmetry group and the property.

To define this more precisely, we need to introduce a function f : X → Y , where X is the set under
consideration and Y is the co-domain representing the range of possible values associated with the
property of interest. The function f maps each element x ∈ X to a corresponding element y in the
set Y , indicating the property’s value for that particular element. We now define the equivariance and
invariance of f operating on X against the group operations in G.
Definition A.3. Let f : X → Y be a function where X and Y are two sets and G be the symmetry
group that acts on both sets X and Y .2

• Invariant: f is called G-invariant if ∀g ∈ G,∀x ∈ X, f(g ◦ x) = f(x).

• Equivariant: f is called G-equivariant if ∀g ∈ G,∀x ∈ X, f(g ◦ x) = g ◦ f(x).

Self-attention layers. Given the embeddings of all vertices fi from IG, we consider a sequence of
embeddings by flattening IG following the order of instructions in c. Let this sequence of embeddings
be denoted as e = (e1, ..., en). The self-attention computation, denoted as A, takes e as input and
produces another sequence of embeddings, denoted as (e′1, ..., e

′
n).

1In group theory literature, this is often called the left action, but we will omit “left” as it is the only type of
action we will use in this paper.

2We assume that X and Y have the same number of elements for the action of G to be defined on both X
and Y .

13

The core operations in self-attention A involve updating each embedding ei through the following
steps:

1. First, it maps each embedding ei to three embeddings (query, key, and value): qi = fq(ei),
ki = fk(ei), vi = fv(ei), where fq, fk, and fv are affine transformations (i.e., fully-connected
linear layers) parameterized by wq , wk, and wv , respectively.

2. Next, it computes the attention score aij between every pair of embeddings ei and ej by taking
the dot product between the query qi of ei and the key kj of ej : aij = qi · kj . The attention scores
form a square matrix, where each cell aij indicates the attention that ei should pay to ej . The
attention scores are then divided by

√
d (the dimension of the embedding vectors), scaled using

the softmax function to ensure they sum up to 1: âij =
exp(aij)∑n

j=1 exp(aij)
. These two operations are

denoted by s.

3. Finally, the scaled attention score âij is multiplied by vj , and a vector sum is computed: e′i =∑n
j=1 âijvij .

B PROOFS

Lemma 1. Let f1 and f2 be two functions that are both G-equivariant and h = f1 ◦ f2 be the new
function composed by f1 and f2. h is also G-equivariant.

Proof. For all g ∈ G and any input x, we have

h(g ◦ x) = (f1 ◦ f2)(g ◦ x)
= f1(f2(g ◦ x)) ▷ Associativity

= f1(g ◦ f2(x)) ▷ f2 is equivariant to g

= g ◦ f1(f2(x)) ▷ f1 is equivariant to g

= g ◦ (f1 ◦ f2)(x) ▷ Associativity

= g ◦ h(x)

Therefore, h(g ◦ x) = g ◦ h(x), so h is G-equivariant.

Lemma 2. Let f1 and f2 be two functions where f1 is G-equivariant f2 is G-invariant, and h = f2◦f1
be the new function composed by applying f1 and then f2. h is G-invariant.

Proof. For all g ∈ G and any input x, we have

h(g ◦ x) = (f2 ◦ f1)(g ◦ x)
= f2(f1(g ◦ x)) ▷ Associativity

= f2(g ◦ f1(x)) ▷ f1 is equivariant to g

= f2(f1(x)) ▷ f2 is invariant to g

= (f2 ◦ f1)(x) ▷ Associativity

= h(x)

Theorem 1. The set of automorphisms σ ∈ Aut(IG) forms a program symmetry group.

Proof. Consider an arbitrary σ ∈ Aut(IG). Definition 3.8 states that for all fi ∈ {f1, ..., fn}, σ(fi)
have the same edges as IG before σ was applied. As σ is a permutation and there is also a bijective
mapping between fi and ci, i.e., fi always interprets ci, we have σ(fi) = fi(σ◦ci, ini). Definition 3.8
also states that σ(fi) is connected with the same edges. Therefore, the output of σ(fi) = outi. We
thus have fi(σ ◦ ci, ini) = outi = fi(ci, ini),∀σ ∈ Aut(IG) and ∀fi ∈ {f1, ..., fn}. Therefore, all
σ ∈ Aut(IG) are semantics-preserving program symmetries, according to Definition 3.6. Moreover,
it is well known in the literature that the automorphisms of any graph form a group by satisfying
group axioms (Definition A.1) (Biggs et al., 1993; West et al., 2001). Therefore, Aut(IG) forms a
group of program symmetries, according to Definition 3.7: Aut(IG) ∈ G.

14

Permutation matrix. Let π be a symmetry in the permutation group that permutes input embeddings
e ∈ Rd×n to the self-attention layer. Applying π is done by e with a permutation matrix pπ ∈
{0, 1}n×n (Knuth, 1970). pπ is an orthogonal binary matrix with a single 1 in each column and row,
and 0s elsewhere. Right-multiplying e with pπ permutes columns, and left-multiplying eT with pTπ
permutes rows.

Theorem 2. The biased self-attention layer, GA(e) = wve · (s(wke
T · wqe) + dIG), is Aut(IG)-

equivariant.

Proof.

GA(σ · e)
= wvσ(e) · (s(wkσ(e)

T · wqσ(e)) + σ(dIG))

σ(·) denotes applying the permutation matrix pσ. As we have σ(dIG) = dIG (the first property of
dIG):

= wvepσ · (s((wkepσ)
T · wqepσ) + dIG)

= wvepσ · s(pTσ (wke)
T · wqepσ) + wvepσ · dIG

Softmax s is permutation equivariant, and dIG · pσ = pσ · dIG (the second property of dIG):

= wve(pσp
T
σ) · s((wke)

T · wqe) · pσ + wve · dIG · pσ
= wve · ((s(wke)

T · wqe) + dIG) · pσ
= σ(GA(e))

Lemma 3. The biased self-attention layer computing the embedding e′i = GA(ei) is Aut(IG)-
invariant.

Proof.

e′i = GA(σ · ei)
= wvσ(e) · (s(wkσ(e)

T · wqei) + σ(di))

di is a column vector, so permuting the row of di is achieved by pTσ di (see §3.4):

= wvepσ · (s((wkepσ)
T · wqei) + pTσ di)

= wvepσ · s(pTσ (wke)
T · wqei) + wvepσ · pTσ di

= wve(pσp
T
σ) · s((wke)

T · wqei) + wve · (pσpTσ) · di
pσ is an orthogonal matrix (see §3.4):

= wve · ((s(wke)
T · wqei) + di)

= GA(ei)

Lemma 4. The distance matrix d of PDG remains invariant under the action of σ ∈ Aut(PDG).

Proof. We need to show that the shortest path pσ(i)σ(j) from σ(Tij) to σ(Vi) remains the same as
pij (the same applies to nσ(i)σ(j)). Without loss of generality, we focus on proving pσ(i)σ(j) = pij .

Assume there exists a shortest path P = (Tij , ..., Vi). Let P ′ = (σ(Tij), ..., σ(Vi)) be the cor-
responding shortest path in σ(PDG) under the automorphism σ. We need to demonstrate two
properties.

First, P ′ is a valid path from σ(Tij) to σ(Vi). Since P is a valid path, Tij is adjacent to its next
node in P (denoted as Vm), and this holds for every pair of neighboring nodes until Vi. As σ is an

15

automorphism, the same adjacency relationship holds for P ′, where σ(Tij) is adjacent to σ(Vm) and
so on, until σ(Vi). Hence, P ′ is a valid path from σ(Tij) to σ(Vi) in PDG.

Second, we aim to show that |P | = |P ′|, meaning pσ(i)σ(j) = pij . Suppose, for contradiction, that
pσ(i)σ(j) ̸= pij . Let’s consider the case where pσ(i)σ(j) < pij . This implies that the length of the
path P ′ = (σ(Tij), σ(Vm), ..., σ(Vn), σ(Vi)) is shorter than pij .

Now, let’s apply σ−1 to each node in P ′, resulting in σ−1(P ′). Since σ−1 is also in Aut(PDG) and
σ−1(σ(V)) = V (Definition A.1), each pair of adjacent nodes in P ′, after applying σ−1, remains
adjacent. Furthermore, the path formed by these adjacent nodes has a length of pσ(i)σ(j), connecting
Tij and Vi in the original PDG.

Therefore, we obtain a path in PDG connecting Tij and Vi that is shorter than pij , contradicting the
fact that pij is the shortest path in PDG between Tij and Vi. Thus, we reject the assumption that
pσ(i)σ(j) < pij .

Similarly, we can prove that pσ(i)σ(j) > pij is also false by demonstrating its contradiction with the
fact that pσ(i)σ(j) is the shortest path in σ(PDG).

Hence, we conclude that pσ(i)σ(j) = pij , and as a result, the positive distance matrix dp remains
invariant under the action of σ ∈ Aut(PDG).

By following the same steps, we can prove that nσ(i)σ(j) = nij , demonstrating the invariance of the
negative distance matrix dn under the action of σ ∈ Aut(PDG).

Therefore, the distance matrix d remains invariant.

Lemma 5. The distance matrix d of PDG commutes with permutation matrix pσ of the automorphism
σ ∈ Aut(PDG): d · pσ = pσ · d.

Proof. According to Lemma 4, we have:

pTσ · d · pσ = d

pσ · pTσ · d · pσ = pσ · d ▷ Apply pσ on both side

d · pσ = pσ · d ▷ pσ is orthogonal matrix

Lemma 6. Standard self-attention layer A is equivariant to the group of all permutations of input
sequences.

Proof. Based on the operations performed by the self-attention layer and the permutation matrix, we
can show the equivariance property as follows (Ji et al., 2019):

A(π · e)
= wvπ(e) · s(wkπ(e)

T · wqπ(e))

= wvepπ · s((wkepπ)
T · wqepπ) ▷ Applying pπ

= wvepπ · s(pTπ (wke)
T · wqepπ) ▷ Transpose of a product

= wve(pπp
T
π) · s((wke)

T · wqe)pπ

= wve · s((wke)
T · wqe)pπ ▷ pπ is orthogonal matrix

= π(A(e))

C SYMC IMPLEMENTATION DETAILS

Input sequences to self-attention. The Transformer self-attention layer takes an input sequence
of embeddings e generated by the embedding layer Emb. It consists of four input sequences: the

16

instruction sequence c, per-instruction positional embeddings, and node centrality, denoted as xc,
xpos, xind, and xoutd, respectively. For example, given the instruction sequence a=a+1;b=a,
xc represents the tokenized sequence as (a,=,a,+,1,b,=,a). xpos assigns positions such that
each new instruction/statement begins with position 1 of its first token and increases by 1 for each
subsequent token within the instruction.

The centrality of each instruction is encoded by the in-degree and out-degree of the corresponding
node in PDG. For each token in ci, we annotate it with its in-degree (number of incoming edges)
and out-degree (number of outgoing edges). For instance, in the case of a=a+1;b=a, the in-degree
sequence xind is (0, 0, 0, 0, 0, 1, 1, 1), and the out-degree sequence xoutd is (1, 1, 1, 1, 1, 0, 0, 0).

We embed the four sequences independently using the embedding layers Embc, Embpos, Embind,
and Emboutd. The final input embedding sequences Emb(x) are obtained by summing the em-
bedded sequences for each token: Emb(x) = Embc(xc) + Embpos(xpos) + Embind(xind) +
Emboutd(xoutd). We have the following lemma:
Lemma 7. The sum of the input embedding tokens sequences is Aut(PDG)-equivariant: Emb(σ ◦
x) = σ ◦ Emb(x).

Group axiom of inclusion specifies that composing the Aut(PDG)-equivariant embedding lay-
ers with Aut(PDG)-equivariant MHA layers results in an Aut(PDG)-equivariant representation
learning component r in our implementation.

D DETAILED EXPERIMENT SETUP

D.1 IMPLEMENTATION DETAILS

We implement SYMC in 40,162 lines of code using Fairseq (Ott et al., 2019) PyTorch (Paszke et al.,
2019). To compute PDG for x86 assembly code, we utilize Ghidra to lift the assembly code into
P-Code, an intermediate representation used by Ghidra, to track implicit data and control flow via
FLAGS register. To compute PDG for Java functions, we employ JavaParser on Java ASTs to analyze
control and data dependencies. We conduct all the experiments on three Linux servers with Ubuntu
20.04 LTS, each featuring an AMD EPYC 7502 processor, 128 virtual cores, and 256GB RAM, with
12 Nvidia RTX 3090 GPUs in total.

Datasets. We use the Java dataset collected by Allamanis et al. (2016) to evaluate the function
name prediction. The dataset includes 11 Java projects, such as Hadoop, Gradle, etc., totaling 707K
methods and 5.6M statements. We fix Hadoop as our test set and use the other projects for training,
to ensure the two sets do not overlap. For binary analysis, we collect and compile 27 open-source
projects such as OpenSSL, which contains approximately 1.13M functions and 137.6M instructions.

D.2 EXPERIMENT CONFIGURATIONS

Hyperparameters. We use SYMC with 8 attention layers, 12 attention heads, and a maximum input
length of 512. For training, we use 10 epochs, a batch size of 64, and 14K/6K training/testing samples
(strictly non-overlapping) unless stated otherwise. We employ 16-bit weight parameters for SYMC to
optimize for memory efficiency.

Evaluation metrics. For most analysis tasks (§5), we use F1 score, the harmonic mean of precision
and recall. For function similarity detection, we use Area Under Curve (AUC) of ROC curve, as
it handles continuous similarity scores and varying thresholds for determining function similarity.
We note that AUC-ROC might not be the most reliable metric (Arp et al., 2022), but we choose it
primarily for comparing to the baselines whose results are measured in AUC-ROC (Li et al., 2021).

E MORE DETAILED EXPERIMENTS

Unseen optimizations. We vary the compiler optimizations in training and evaluation and include
reference experiments where the training and evaluation share the same optimization options (marked
in gray). For function similarity detection, training on O0-O1means the function pair has one function
compiled with O0 and the other with O1. In the case of evaluating on unseen optimizations, the

17

SymC Palmtree PalmTree-O PalmTree-N

O2-O3 Seen opts
0.2

0.4

0.6

0.8

1.0

AU
C

(a) Train O0-O1
O1-O3 Seen opts

(b) Train O0-O2
O1-O2 Seen opts

(c) Train O0-O3
O0-O3 Seen opts

(d) Train O1-O2
O0-O2 Seen opts

(e) Train O1-O3
O1-O0 Seen opts

(f) Train O2-O3

O0 O1 O2 O3
0.00

0.25

0.50

0.75

F1

(g) Train O0
O0 O1 O2 O3

0.00

0.25

0.50

0.75

F1

(h) Train O1
O0 O1 O2 O3

0.00

0.25

0.50

0.75

F1

(i) Train O2
O0 O1 O2 O3

0.00

0.25

0.50

0.75

F1

(j) Train O3

Figure 5: Unseen optimization evaluation. The upper row, i.e., (a)-(f), shows the results on function
similarity detection. The lower row, i.e., (g)-(j), are results on function signature prediction. We also
include the evaluation on seen optimizations (marked in gray).

SymC Palmtree PalmTree-O PalmTree-N

sub cff bcf ind spl
0.4

0.6

0.8

1.0

AU
C

(a) Train sub

sub cff bcf ind spl

(b) Train cff

sub cff bcf ind spl

(c) Train bcf

sub cff bcf ind spl

(d) Train ind

sub cff bcf ind spl

(e) Train spl

sub cff bcf ind spl

0.5

1.0

F1

(f) Train sub

sub cff bcf ind spl

(g) Train cff

sub cff bcf ind spl

(h) Train bcf

sub cff bcf ind spl

(i) Train ind

sub cff bcf ind spl

(j) Train spl

Figure 6: Unseen obfuscations evaluation. Similar to Figure 5, the upper row, i.e., (a)-(e), shows the
results on function similarity detection. The lower row, i.e., (f)-(j), are results on function signature
prediction. We also include the evaluation on seen optimizations (marked in gray).

corresponding testing set has to come from those compiled with O2-O3 to ensure the optimizations
are unseen.

Figure 5 shows that SYMC outperforms PalmTree by 31% when evaluated on unseen optimizations.
SYMC experiences a performance drop (e.g., by 28.6%) when not trained on O0 but tested on those
compiled with O0. We believe this drop is caused by the extensive optimizations already enabled at
the O1 (e.g., GCC employs 47 optimizations to aggressively reduce execution time and code size).
The shift in distribution between O1 and O0 is much more pronounced than between O2 and O1,
indicated by a KL divergence of 1.56 from O1 to O0 compared to 0.06 (96.2% lower) from O3 to
O2. Nevertheless, when evaluated on seen optimizations, SYMC outperforms PalmTree by 28.1% on
average.

Unseen obfuscations. We compare SYMC to baselines on generalization to unseen obfuscations.
Figure 6 shows that SYMC outperforms PalmTree (on average) on unseen and seen obfuscations
by 33.3% and 36.6%, respectively. Similar to the observations in evaluating unseen optimizations,
while the obfuscations are not directly related to instruction permutations (i.e., automorphisms in
Aut(PDG)), SYMC maintains its superior performance.

Unseen lengths. Besides the code transformations, we look into SYMC’s generalization to longer
sequences than those seen in training, a popular task for evaluating model generalizability (Gordon
et al., 2019). We divide samples into four length bins (bin1 to bin4) based on their distribution in
the dataset (§5). The bins are non-overlapping and increase in length. For example, we used bins

18

SymC Palmtree PalmTree-O PalmTree-N

bin1-
bin2

bin1-
bin3

bin1-
bin4

bin2-
bin3

bin2-
bin4

bin3-
bin4

0.0

0.5

1.0
AU

C

(a) Function similarity

bin1-
bin2

bin1-
bin3

bin1-
bin4

bin2-
bin3

bin2-
bin4

bin3-
bin4

0.00

0.25

0.50

0.75

F1

(b) Function signature

bin1-
bin2

bin1-
bin3

bin1-
bin4

bin2-
bin3

bin2-
bin4

bin3-
bin4

0.00

0.25

0.50

0.75

F1

(c) Memory region

Figure 7: Evaluation on unseen samples with longer lengths. bin1-bin4 denotes training on
samples with lengths in bin1 and testing on those in bin4.

[0-10], [1-20], [21-50], and [51-500] for function similarity detection. Figure 7 demonstrates that
SYMC maintains strong generalization to longer sequences, outperforming PalmTree by 41.8%.

19

