Curriculum Design for Trajectory-Constrained Agent:
Compressing Chain-of-Thought Tokens in LLMs

Georgios Tzannetos Parameswaran Kamalaruban Adish Singla
MPI-SWS Featurespace Innovation Lab, Visa MPI-SWS
gtzannet@mpi-sws.org kaparame@visa.com adishs@mpi-sws.org
Abstract

Training agents to operate under strict constraints during deployment, such as
limited resource budgets or stringent safety requirements, presents significant chal-
lenges, especially when these constraints render the task complex. In this work, we
propose a curriculum learning strategy that gradually tightens constraints during
training, enabling the agent to incrementally master the deployment requirements.
Inspired by self-paced learning techniques in unconstrained reinforcement learning
(RL), our approach facilitates a smoother transition to challenging environments by
initially training on simplified versions of the constraints and progressively intro-
ducing the full deployment conditions. We provide a theoretical analysis using an
RL agent in a binary-tree Markov Decision Process (MDP) to demonstrate that our
curriculum strategy can accelerate training relative to a baseline approach that im-
poses the trajectory constraints from the outset. Moreover, we empirically validate
the effectiveness and generality of our method across both RL and large language
model (LLM) agents in diverse settings, including a binary-tree MDP, a multi-task
navigation domain, and a math reasoning task with two benchmarks. These results
highlight the potential of curriculum design in enhancing the efficiency and perfor-
mance of agents operating under complex trajectory constraints during deployment.
Moreover, when applied to LLMs, our strategy enables compression of output
chain-of-thought tokens, achieving a substantial inference speedup on consumer
hardware, demonstrating its effectiveness for resource-constrained deployment.

1 Introduction

Recent advances in reinforcement learning (RL) have enabled agents to excel in diverse applications,
including robotics, gaming, and large language models (LLMs) [1, 2, 3, 4, 5]. A common assumption
in these domains is that the resources available during training, such as computational power and time,
remain equally accessible during deployment. However, in many real-world scenarios, deployment-
time constraints such as limited resource budgets or strict safety requirements significantly diverge
from the training environment, posing unique challenges that standard RL methods often overlook.

Consider a robot navigating from point A to B that is expected to reach its destination, while ensuring
that travel time and energy consumption do not exceed predefined limits. Similarly, consider an
LLM being used for answering a mathematical question, where a user requires that the response
arrive at the correct answer while using no more than a specified number of chain-of-thought (CoT)
tokens. Recent works have studied how to control the length of LLM responses at test-time via
training objectives or prompting, leading to improved reasoning capabilities [6, 7, 8, 9]. We consider
it from the prospective of designing a curriculum strategy that can enable LLMs to output responses
more desirable than the initial response in terms of reduced inference time and computational cost,
while preserving the answer’s accuracy (Figure 1). Motivated by these examples, we consider the

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Test-set Math Question: Below is an instruction that describes a task. Write a response that appropriately
completes the request. ### Instruction: John adopts a dog. He takes the dog to the groomer, which costs $100.
The groomer offers him a 30% discount for being a new customer. How much does the grooming cost? ###
Response: Let’s think step by step.

(Base Model Response: The grooming cost is $100. The groomer offers a 30% discount, which means John)
will pay 100 - (30% of 100) = $70 for the grooming. So, the grooming cost is $70. #### 70
| The answer is: 70

J

Fine-tuned Model Response (50K Episodes): The grooming cost is $100. The groomer offers a 30% discount,)
so the discount amount is 30% of $100, which is 0.3 * $100 = $30. Therefore, the final cost of the grooming is
$100 - $30 = $70. ###H# 70

| The answer is: 70

J

Fine-tuned Model Response (100K Episodes): The original cost of grooming is $100. The discount is 30%)
of $100, which is $100 * 0.30 = $30. The final cost is $100 - $30 = $70. #### 70
| The answer is: 70

Fine-tuned Model Response (200K Episodes): Discount=0.3%100=30 Cost=100-30=70 #### 70
| The answer is: 70

(Fine-tuned Model Response (400K Episodes): 100*.7=70 #### 70
| The answer is: 70

J

Figure 1: Inference on an unseen GSMS8K test-set question using different model checkpoints
obtained during fine-tuning. These responses showcase that the fine-tuned models progressively learn
to generate shorter yet correct solutions by implicitly performing intermediate reasoning steps.

following research question: How can we effectively guide the training process when deployment-time
constraints are known in advance, in order to achieve the best performance under those constraints?

A natural approach is to impose deployment-time constraints during training. However, doing so
exacerbates the sparse reward problem common in RL, since the agent only receives a reward upon
both task completion and strict constraint adherence. This setup contrasts with standard constrained
RL formulations [10, 11], where the goal is to maximize the expected reward subject to a bounded
expected cost, a relaxation that does not fully capture the strict nature of deployment requirements.
Alternatively, curriculum learning methods developed for contextual RL [12, 13, 14] can treat the
permissible cost budget as an input context and gradually shift towards the deployment budget. Yet,
these methods incur significant computational overhead because they require extensive performance
evaluations across the entire high-dimensional context space, an issue that becomes particularly
problematic in domains such as LLMs, where each rollout can be costly.

In this work, we propose a novel curriculum strategy that adaptively adjusts the permissible cost
budget during training based on the agent’s current performance. This strategy starts with relaxed
trajectory constraints and adaptively tightens them, facilitating a smoother transition to stringent
deployment conditions. Our main results and contributions are as follows:

1. We introduce a computationally-efficient curriculum strategy tailored to deployment-time
constraints in RL.

2. We provide a theoretical analysis on a binary-tree MDP to demonstrate that our adaptive
curriculum strategy accelerates training relative to approaches that enforce strict deployment
constraints from the beginning.

3. We validate our method’s effectiveness and versatility through comprehensive experiments
with both RL and LLM agents across multiple domains. The results highlight its potential
to enhance agent performance under real-world deployment constraints, demonstrated by
compressing LLM’s output chain-of-thought tokens in math reasoning.'

1.1 Related Work

Constrained Reinforcement Learning. Constrained reinforcement learning (CRL) is typically
formulated as a constrained Markov decision process (CMDP) [15], where the goal is to maximize the

'Github: https://github.com/machine-teaching-group/neurips2025-curriculum-11lm-tokens

https://github.com/machine-teaching-group/neurips2025-curriculum-llm-tokens

expected cumulative reward while satisfying expectation-based cost constraints. Standard approaches
include Lagrangian methods [11, 16], which optimize a weighted combination of rewards and costs
using a scalar multiplier, and trust-region methods [10, 17, 18] that enforce constraint satisfaction
during policy updates. In these formulations, the objective is generally given by

max E, [ZVT . R(S(T)7G(T)):| subjectto E, [ZVT : C(s(T),a(T))] <a,

where R is the reward function, C is the cost function, and « is the cost threshold. In contrast, our
formulation enforces strict, trajectory-level constraint satisfaction by considering the problem

max E, {277 “R(sM aM) .1 {Z’YT -C(sM a0 < a”, (1

where the indicator function ensures that rewards are only granted if the entire episode adheres to the
cost constraint. This stricter requirement inherently induces a sparse reward setting, posing unique
challenges that are not addressed by conventional CRL methods.

Curriculum for Contextual Reinforcement Learning. Curriculum learning has been widely used
in contextual RL to gradually expose agents to increasingly challenging tasks [19, 20]. Self-paced
learning approaches [21, 22], such as SPDL [12, 23], SPACE [24], and CURROT [13], dynamically
adjust the task distribution based on agent performance. Similarly, unsupervised environment
design (UED) methods [25, 26, 27, 28] evolve the environment alongside the agent. ZPD-based
strategies [29, 30, 31, 32], such as GOALGAN [33], and PROCURL-TARGET [14], select tasks of
intermediate difficulty to maximize learning. While our setting could be framed as contextual RL,
treating the cost budget as context and the deployment-time constraint as the target, this would require
learning and evaluating a contextual policy across the full context space, which is impractical for
domains like LLMs, where each (prompt, budget) pair demands separate rollouts. Instead, we train a
non-contextual policy that adapts the cost budget per prompt, avoiding this computational overhead.

Curriculum for Constrained Reinforcement Learning. Another line of work has addressed
curriculum strategies in constrained RL. A recent work [34] extends CURROT [13] to generate
safe curricula that begin with low-cost tasks to reduce safety violations, then transition to high-
reward contexts, and eventually converge to the target. Similarly, [35] introduces a human-inspired
teaching strategy, where an artificial teacher guides the agent through progressively challenging,
safety-preserving stages. However, both approaches assume expectation-based constraints, making
them less applicable to our setting, which requires strict trajectory-level constraint satisfaction. Our
work extends curriculum learning to this more stringent setting, offering both theoretical insights and
empirical validation.

Efficient LLM Reasoning with Compressed Output. Recent works have begun exploring ways
to improve the efficiency of LLM reasoning by controlling the model’s output token length through
prompting or training strategies [0, 7, 8, 9]. Fine-tuning LLMs to reduce verbosity or to adhere to
length constraints specified in prompts has been studied, though primarily in the context of general-
purpose text generation [36, 37]. For reasoning tasks, [7] proposed a simple RL method to train
models to follow length constraints provided in the prompt, while [6] modified the RL objective
to penalize longer correct responses. Similarly, [38] and [39] employed RL-based techniques to
reduce LLM output length. However, these approaches do not consider strict user-specified test-time
constraints; instead, they explore tradeoffs between accuracy and output length. In contrast, our
work introduces a curriculum strategy that enables RL fine-tuning with the original sparse reward
while ensuring that the resulting LLM strictly adheres to user-defined test-time constraints, without
requiring constraint-specific prompts.

2 Formal Setup

Multi-task RL. We consider a multi-task reinforcement learning (RL) setting with a task or context
space X. Each task x € X corresponds to a learning environment modeled as a contextual Markov
Decision Process (MDP) M, := (8, A, v, Tz, Ry, Co, Pg), where the state space S, action
space A, and discount factor y are shared across all tasks, while the transition dynamics 7 : S X S x
A — [0, 1], reward function R, : S x A — [0, 1], cost function C,. : § x A — [0, 1], permissible
cost budget o, and initial state distribution PY : S — [0, 1] are task-specific components [40, 41].
The collection of all environments is represented as M = { M, : z € X'}.

Algorithm 1 Training RL Agents with Deployment-time Constraints

1: Input: RL agent’s initial policy m;

2: fort=1,2,... do

3: Env1ronment randomly picks a task z; € X.

4: Teacher component: picks a training-time permissible cost budget .
5

Student component: attempts the task z; via K rollouts {&}iK:1 generated using the policy
in the modified MDP M,,.
6: Student component: updates the policy to 7,1 using the rollouts {&} _, and the training-time

reward function Jlt.
7: Output: RL agent’s final policy meng ¢— 7y 1-

RL agent and performance evaluation. We consider an RL agent operating in an environment
M, € M using a contextual policy 7 : S x X x A — [0, 1], which maps a state and task context to
a probability distribution over actions. Given a task = € X, the agent attempts the task via a trajectory
rollout obtained by executing its policy 7 in the MDP M. The trajectory rollout is denoted as
&= {(s(T), a(T))}TZO 1 Where 50 ~ PY. Let = denote the space of all possible trajectories. To
evaluate the agent’s performance, we define a trajectory-level reward function .J,, : = — [0, 1] based
on R, C,, and the cost budget o}

_ {ZWT-RJU(S(T) m} [ZV (5,00 < a

The agent’s performance on task x is then measured by the value function V™ (x;.J,) :=
Ee~r M, [J2(€)]. Finally, the uniform performance of the agent across all tasks in X is given

by Vﬂ- = IE;cvaniform(X) [VW (Iv 71)] .

Training process of the RL agent. During training, the agent employs a student component, re-
sponsible for policy updates, and a teacher component, which guides the student’s learning process
to find a policy that performs uniformly well across all tasks in X, i.e., max, V™. Training occurs
in discrete steps indexed by t = 1, 2, .. ., as formally described in Algorithm 1. At each step ¢, the
environment randomly selects a task x; along with its deployment-time cost budget . . However, the
teacher component modifies this budget, replacing it with a training-time cost budget o. This effec-

tively transforms the original MDP M, into a new MDP M\xt = (S, A, v, Tz, Ra,, Coy s it Pa?t)’

thereby shaping the original trajectory-level reward function J,, = JZ“ to obtain a new reward
function J,, = Jg*, where:

= (SR [<]

The student component then attempts task x; by executing the policy 7; for K rollouts, denoted
as {&}fil, within the modified MDP /T/l\.z, After collecting these rollouts, the student component
updates the policy to 7,1 based on the current policy 7, the selected task x, the teacher-shaped
reward function fm, and the set of rollouts {&}ZK:1 Formally, the policy update is given by:
i1 < L(me, oy, fggt, {@}ZK 1)» where L is a learning algorithm. Let menq denote the agent’s final
policy at the end of training. The trammg objective is to ensure that the performance of the policy

Trend 18 €-near-optimal, i.e., (max, V-V e"d) < e. The primary objective of this work is to design a
teacher component that achieves this training objective efficiently, both computationally and in terms
of sample complexity.

3 Ouwr Curriculum Strategy

In Section 3.1, we propose a curriculum strategy for selecting a permissible cost budget o, (Algo-
rithm 1 at Line 4). In Section 3.2, we provide a theoretical analysis in a binary-tree environment,
demonstrating that the proposed strategy accelerates the agent’s training process.

3.1 Curriculum Strategy

First, we discuss the challenges of using deployment-time cost budgets during training, i.e., selecting
a; = a, in Line 4 of Algorithm 1. When the reward function R, is goal-oriented (i.e., R (s,a) = 1
foralla € Aand s € G,, and R, (s,a) = 0 otherwise for some goal space G,), training with the
deployment-time cost budget o, can be highly ineffective, especially when ¢, is small. In such cases,
obtaining successful rollouts, i.e., trajectories £ where J,(£) > 0, using the randomly initialized
policy 7 is extremely difficult. As a result, directly using the original deployment-time budget o}
(or the corresponding reward function .J,,) during training may fail to provide a meaningful learning

signal for policy updates, making the update rule 71 < L(7¢, 24, J s, {fz}fil) ineffective.

To address these challenges, we introduce a curriculum strategy that dynamically selects a permissible
cost budget o, based on the agent’s current performance. At a high level, the intuition behind
our approach is as follows: at each step ¢, given a task z;, we shape the trajectory-level reward

function .J,;, to obtain a new reward function .J,,, which remains close to .J,, while ensuring that the
performance of the current policy 7; on task x; is above a certain threshold. This naturally leads to a
curriculum strategy for selecting ay.

Formalization of the curriculum strategy. At each step ¢, given a task x, the teacher component
picks a; by solving the following optimization problem for a given performance threshold 5 > 0:

_1
o + argmin (o —a)2 subjectto V7™ (x4; J2) > min{B, V™ (z4; Ja,)}, (2)

a0, 1] . o

where V™ (245 J2) = Eenm, M., [J2.(€)] represents the value of policy ; on task z; under the
1

reward function J< . Since V™ (z; J¢, *) is the maximum achievable value due to the monotonically
non-decreasing property of V™ (z; J%) with respect to «, the optimization problem in Eq. (2) always
has at least one feasible solution: o = ﬁ Our curriculum strategy adaptively selects «; such
that: (1) oy remains as close as possible to the target permissible cost budget ,, and (2) the
resulting reward function J* provides sufficient learning signal for policy updates, as enforced by

1
the constraint V™ (z4; J2*) > min{3, V™ (x¢; Jz, ") }. Notably, we identify two particular cases of
our strategy. First, when 3 = 0, the constraint is trivially satisfied for a = o, , leading to oy = o}, .
This corresponds to the target curriculum, where the teacher directly picks the target ;. Second,
1

when the maximum achievable value for the unconstrained problem V™ (xz; Jz, ") is zero, the
curriculum selects the largest possible target parameter, aligning with the unconstrained curriculum.

Practical implementation. For any task = and trajectory &, the reward function J% (&) is mono-
tonically non-decreasing in . Consequently, for any policy 7, the value function V7 (x; J¢) is
also monotonically non-decreasing with respect to .. This property enables efficient solving of the
optimization problem in Eq. (2) using binary search. The full procedure is presented in Algorithm 2.

Algorithm 2 Teacher Component: Curriculum Strategy for Picking o, (Line 4 of Algorithm 1)

1: Input: current policy 7, current task x;, and performance threshold 5.
2: Generate a set of rollouts = = {fi}i\;l using the policy 7, in M, .

3: Set 8 <+ min {5,;,21-]\11 letiw(&)}

4: Binary search the smallest o; € [a;‘, ﬁ] such that % Zf\il Jo &) > 8.
5: Qutput: permissible cost budget ay.

3.2 Theoretical Analysis

We theoretically demonstrate the usefulness of our curriculum strategy in accelerating an agent’s
learning in a binary-tree environment. We select this basic RL setup, because it encapsulates the core
challenge of our study, i.e., the sparse reward nature in strictly constrained RL problems.

Binary-tree environment. We consider a binary-tree MDP Mz := (S, A, v, Tz, Rz, Cr, o, P2)
of depth H (focusing on the single-task setting X = {Z}). The state space S consists of the nodes of

a binary tree, denoted as S = {y(()o)7yé),yg), . ,y(()H)7y§H), .- ,y;’:}) 1> Where yz(h) represents

the i-th node (from the left) at level h. At each node, the agent can choose one of two actions,
A = {LEFT, RIGHT}, which deterministically transitions the agent to the respective child node in

the tree. The initial-state distribution is concentrated at the root node y(()o) , with Pfo(y(()o)) = 1. Each
trajectory through the tree terminates at a leaf node, representing a unique deterministic path from
the root. All leaf nodes are designated as goal states, with rewards defined as Rz (s,a) = 1 for all
s € {y(H),gAH), ,yzH .y and a € A, and Rz (s,a) = 0 otherwise. The cost function C is
structured such that total trajectory cost increases monotonically from the leftmost to the rightmost
leaf node. Denoting the total cost of a trajectory y(). , yl(H) as Cz(y, (0) , yl()) this condition
is formally expressed as: Cz (y(()o), . ,y(())) < Cx (y(()o), . ,y§)) < Cx (y(()o), e ,yégll)
Any given tree structure can be rearranged to meet this property. A perm1551ble cost budget, o €
[0,1], is specified as a constraint. Only the leftmost leaf node satisfies Cz (y(()o)7 e ,y((JH)) < of,
while all other leaf nodes exceed the budget, i.e., Cx (yo 0. ,yEH)) > axforie {1,...,20 —1}.
The agent begins with a uniformly random policy where 71 (LEFT | ygh)) = 71 (RIGHT | th)) =
0.5,Vi € {O, 2k — 1} ,h €{0,...,H — 1}. The optimal policy is deterministic, always choos-
ing LEFT at all relevant states, i.e., 7*(LEFT | yéh)) =1.0,he{0,...,H —1}.

Now, we compare the effects of two strategies in the binary-tree MDP described above:

1. Target curriculum strategy: The teacher always selects the target cost budget parameter
o (i.e., f = 0), meaning the learner receives a non-zero reward only upon completing a full
successful trajectory (i.e., reaching the leftmost leaf). As we will demonstrate, this baseline
strategy requires an exponential number of rollouts with respect to the tree depth H.

2. Curriculum strategy with adaptive 5; > 0: Here, the teacher gradually tightens the cost
constraint by setting the performance threshold parameters to 3; = 0.5 - (1 — ¢)~! for
t=1,..., H. This design ensures that a non-negligible fraction of rollouts yield a positive
reward well before the optimal trajectory is reached, thereby promoting progressive learning.

The following theorem establishes that our curriculum strategy dramatically reduces the sample
complexity compared to the baseline.

Theorem 1. Consider the binary-tree MDP with depth H. Suppose the teacher employs the curricu-
lum strategy as defined in Eq. (2) with threshold parameters 3; = 0.5 - (1 — €)™, fort =1,..., H,
and selects the cost budget parameter o, at each time step by solving
ap «— argmin (o —a%)? subjectto V™(T;J2) > By,
ae[O,ﬁ]
where 7y is chosen so that v > 0.57 (which guarantees that 3; < v for all t). Then, with probability
at least 1 — 0, the learner obtains an e-suboptimal policy (i.e., wg 11 (LEFT | y(()h)) >1—¢Vhe

{0,..., H — 1}) after a total ofth:1 K, = Zt 15 521?1(66)), - rollouts, where K, is the number
of rollouts required at step t. In particular, setting € = 75 +1 vields an overall sample complexity of
O (H 3). In contrast, the baseline target curriculum strategy (with o, = o) has an expected overall
sample complexity of O (2H)

Proof sketch. Under the target curriculum strategy, the learner receives a non-zero reward only when
a successful rollout (reaching the leftmost leaf) occurs. For a uniformly random policy, the probability

of following the leftmost branch in a tree of depth H isp= (f) " . Thus, the expected number of
rollouts needed to achieve a successful trajectory is = p = 2H leading to O(2%7) sample complexity.
In our curriculum strategy, at each step ¢, the teacher sets the cost threshold a; so that a fraction
0.5 - (1 — €)'~! of the rollouts yield a reward of 1. For example, at ¢t = 1 the teacher selects ay

such that half of the rollouts are successful, ensuring V™ (Z; Jo') > 0.5. As the learner collects
K, rollouts at step t, Hoeffding’s inequality guarantees that the updated policy m;4; satisfies the

following: P [‘Wt+1(LEFT |y D) — e (LepT | 5 1))’ > e} < 2.exp(—2- K, - €). Setting this

probability to be at most ¢ and accounting for the compounded e-suboptimality from previous steps,

Problem: Weng earns $12 an hour for
babysitting. Yesterday, she just did 50 min-
utes of babysitting. How much did she earn?
Solution: Weng earns 12/60 = 0.2 per
minute. Working 50 minutes, she earned

0.2 x 50 = 10. ##44 10

The answer is: 10

o u

==

(a) (b)

Cost:0 Cost:1 Cost:2 Cost:3

(d)

Figure 2: Illustrative visualization of each environment (from left to right): (a) BINARYTREE, (b)
PUDDLEGRID-SINGLE, (¢) PUDDLEGRID-MULTI, and (d) SVAMP / GSM8K.

one obtains Ky > 5—7"51

choice of € (e.g., € = HLH), one can show that the overall complexity is bounded by O(H?). O

n(2
: (_Eé)t,l . Summing over all ¢ gives the total sample complexity. With a proper

Theorem 1 rigorously shows that our curriculum strategy dramatically reduces the rollout complexity
for learning an e-suboptimal policy. In contrast, the baseline suffers from exponential dependence on
tree depth H, our approach leverages intermediate learning signals to guide the agent more efficiently.

4 Experimental Evaluation

We evaluate our curriculum across three RL environments of increasing complexity with challenging
trajectory constraints, culminating in a real-world math reasoning task involving an LLM agent. For
RL experiments, we employ REINFORCE in both tabular and neural single-/multi-task settings [42].
For LLMs, we adapt Hugging Face’s TRL library [43] using the RLOO trainer [44], an RL fine-tuning
method equivalent to REINFORCE. This unified setup ensures consistency across all experiments.
To assess the robustness of our findings to the choice of the training algorithm, we provide additional
results in Appendix E.1, where RL agents are trained with Proximal Policy Optimization (PPO) [45].

4.1 Environments

BINARYTREE. This environment is inspired by our theoretical analysis (Figure 2a). We use a
binary tree of depth H = 12, resulting in 27 = 4096 leaf nodes, each representing a terminal state
associated with a cost. The leftmost leaf has a cost of 0, with costs increasing monotonically from left
to right. The target cost budget is a* = 0, i.e., only the leftmost leaf yields a reward of 1 at test time.

PUDDLEGRID-SINGLE. The second environment, PUDDLEGRID-SINGLE (Figure 2b), is a cus-
tomized variant of the MINIGRID environment. The state representation includes the red agent’s
location and orientation, while the action space comprises three discrete actions: move, turn-left, and
turn-right. The agent’s objective is to reach the green square. Stepping on a lava (orange) square
increases the trajectory cost by 1 per time step. The agent receives a reward of 1 only if it reaches the
green square with a trajectory cost below the target budget; otherwise, the reward is 0. The target
cost budget is set to a* = 0, i.e., the agent must avoid stepping on lava squares entirely.

PUDDLEGRID-MULTI. Building on the previous environment, we design PUDDLEGRID-MULTI
(Figure 2c), which extends PUDDLEGRID-SINGLE to a multi-task setting. The core structure remains
the same, but after each episode, both the agent’s initial location and the goal location are randomly
selected. The state representation is augmented to include the goal location within the grid. In
this multi-task setup, each task can have its own constraint during training and testing. As in
PUDDLEGRID-SINGLE, the target cost budget is set to a® = 0.

SVAMP / GSMS8K. Last, we consider a more challenging setting which involves using LLMs to
solve math problems. Given a math problem (Figure 2d), an LLM agent generates a solution trajectory.
A reward of 1 is assigned only if the final answer is correct and the number of generated tokens does
not exceed the target budget. To ensure the generality of our evaluation, we assess the performance of
our algorithm on two mathematical reasoning benchmarks: SVAMP [46], and GSMS8K [47]. Given
the varying levels of difficulty across datasets, we set the target cost per test sample as a percentage
of the base model’s original response length. We fine-tune two base models with LoRA [48] using
RLOO: QWEN2.5-MATH-1.5B (QWEN) [49], and METAMATH-LLEMMA-7B (METAMATH) [50].

—@—CURLTRAC -#-PROCURL-TARGET

1.0

o

S

Performance
=

R

e g
ke~

1 3 3 1

Performance
=

EXPSCHEDULE_7+/y =%:=1ID

vt

nd
LA L e

1 p) 3 1 5

UNCONSTRAINT B TARGET

Episodes

x10*

Episocjes

x10*

10
----- =
0.8 /0 oy
Q
o
5 0.6 4
£ ‘
L0.4
e *
st
0.2 FETH
¢’. .’.
ad .‘.’
0.0fmrrfBeceeenomenne®” . .
0 3 0 5 2
Episodes x107

(a) BINARYTREE

(b) PUDDLEGRID-SINGLE

(c) PUDDLEGRID-MULTI

Figure 3: Performance of RL agents trained with different strategies, measured by the agent’s mean
return (with 95% confidence intervals over 10 random runs), evaluated under test-time constraints.
EXPSCHEDULE7_7+/y =*%:=1ID

[+CL‘RLTR/\C -9 -SoFT-RL,, 9 UNCONSTRAINT B+ TARGET ———ANS()NLYPR()MPT‘

0.8 0.6
0.6 0.64 o—o0
g g B et SEE ST S
c c
© ©
E0.4 £ 0.4
<2 £
o Q
002 8.2
0.0 0.0 .
0 5 10 15 20 25 0 10 20 30 10 50
Episodes x10* Episodes x10*
(a) SVAMP-QWEN (b) SVAMP-METAMATH
0 0
0.6 0.64
Q [
Q Q
c c
© ©
E0.4 £ 0.4
< <
Q Q
802 8-0.29
K
/
Rlud . - - - - : 0.oc® - - - - =L
0 10 20 30 40 50 0 20 40 60 0 100

1

Episodes
(c) GSM8K-QWEN

Episodes x10

(d) GSMS8K-METAMATH

Figure 4: Performance of LLM agents trained with different strategies, measured by the agent’s mean
accuracy (with 95% confidence intervals over 3 random runs), evaluated under test-time constraints.

4.2 Methods Evaluated

Our strategy CURLTRAC. We follow Algorithm 2 with a fixed performance threshold of 5 = 0.5
across all experiments, following the idea of intermediate difficulty. In Appendix E.2, we conduct a
sensitivity analysis of 5 across all RL environments to assess the robustness of the proposed method.
Starting from an upper bound on «, we perform a binary search to find the smallest value satisfying
the constraint in Line 4 of Algorithm 2. A history of per-task rollouts is maintained in a rolling
buffer. When task x is selected, its rollout outcome and length are added to the corresponding
per-task buffer, and the associated training budget o, is updated. In practice, updating «,, does not
require collecting additional rollouts at different constraint levels. Instead, the update relies solely on
previously collected training rollouts, introducing no additional computational overhead.

Contextual RL curriculum. We employ a recent curriculum strategy, PROCURL-TARGET [14],
which trains RL agents toward challenging target distributions. To apply a contextual RL curriculum
in our setting, the trajectory constraint must be treated as an input context, and the deployment-time
constraint as the target distribution. While this adaptation is conceptually straightforward, applying
it to domains with large context spaces, as in LLMs, is impractical. Effective training with such a
technique would require generating all possible (prompt, budget) pairs. Even with discretization, the
resulting augmented context space becomes intractable. Therefore, we apply PROCURL-TARGET
only in the RL environments.

—0—CURLTRAC -Q-SOFT-RL,.,,,1 0.9 EXPSCHEDULEp_7+/ ="%:=IID UNCONSTRAINT -B-=TARGET

1

3

).6

S o o -

o

Mean training cost «
Mean training reward
Mean response length

5
s

0 5 10 15 20 0 5 10 15 20

2 25 25 0 5 10 15 20 25
Episodes x10* Episodes x10* Episodes x10

(a) Training cost « (b) Training Reward (c) Training Response Length

Figure 5: Training plots of SVAMP-QWEN for different strategies. (a) shows the progression of the
cost budget « during training. (b) shows the average observed reward during training. (c) shows the
progression of the generated response lengths during training.

Regularized RL baselines. An alternative option is to relax the strict trajectory-level constrained RL
objective in Eq. (1) by considering a regularized, softer version, denoted as SOFT-RL, following [6].
This method aims to balance the trade-off between accuracy and response length rather than explicitly
enforcing hard constraints. It can also be applied to our LLM setup. Although it does not guarantee
satisfaction of the target constraints at the end of training, the added regularization term encourages
both correctness and brevity in the model’s responses. While [6] used a coefficient of e = 0.4,
we found stronger regularization to be more competitive. Hence, we report results with a;eg = 0.9,
corresponding to SOFT-RLy,,=0.9, to further encourage shorter responses.

Typical and heuristic baselines. We compare against three standard baselines: TARGET, trains
directly under the deployment constraint; UNCONSTRAINT, trains without restrictions; and 11D,
trains by sampling the cost budget randomly per episode. Motivated by the observation that CURL-
TRAC exhibits an empirical decay pattern resembling exponential scheduling, we also include
EXPSCHEDULE [51], a static curriculum with exponential decay. While the decay horizon T is
typically unknown in advance, we estimate it based on the convergence behavior of CURLTRAC
in each environment. In Appendix E.3, we evaluate EXPSCHEDULE with variable and fixed decay
lengths T' = {T*,T* /2, 50000, 5000}, where T™* denotes the total number of training episodes per
environment. We report results for the most competitive variant, EXPSCHEDULEp—1+ /3.

Prompting-based baseline. We also consider a prompting-based baseline, ANSONLYPROMPT, to
evaluate model’s accuracy under test-time constraints without any fine-tuning. ANSONLYPROMPT
prompts the model to provide a direct answer without any chain-of-thought reasoning.” Further
implementation details are provided in Appendix D.2.

4.3 Results

Convergence behavior. RL and LLM agents trained with CURLTRAC consistently outperform all
baselines under test-time constraints (Figures 3 and 4). PROCURL-TARGET performs relatively well
in RL environments but relies on providing the target budget as context, limiting its applicability in
complex LLM domains. EXPSCHEDULEr—_7+ /5 effectively trains RL agents in settings where the
target budget is identical across tasks; however, its performance becomes inconsistent in per-task
target settings, underscoring the need for per-task exponential scheduling. SOFT-RL,, .—0.9, @
state-of-the-art method for balancing response length, achieves competitive performance, yet its
formulation lacks an explicit notion of target constraints and therefore requires per-domain tuning of
its regularization coefficient. ANSONLYPROMPT method shows that, without fine-tuning, the LLM
fails to satisfy target constraints.

Training cost. Figure 5a shows the progression of the average training cost budget a, which reflects
task difficulty and defines the training curriculum. SOFT-RL,, ,=0.9 incorporates response length
directly into the reward function; hence, it does not control . TARGET maintains a fixed cost budget,
while UNCONSTRAINT allows maximum token generation. IID samples a randomly per episode.
EXPSCHEDULEr_7~ 2 decays « at a fixed rate, whereas CURLTRAC adaptively tightens constraints
by decreasing o based on model performance, gradually converging to the test target.

2Note that all other methods use a default chain-of-thought prompt that encourages step-by-step reasoning.

Table 1: Comparison of models in terms of inference metrics when deployed on various consumer
hardware configurations. Results are reported for inference on SVAMP test-set with QWEN as base
model used for fine-tuning. We consider the following inference metrics: (a) “Response Time”,
(b) “Response Length”, (c) “Accuracy”, and (d) “Constr. Accuracy”. Here, “Accuracy” denotes the
overall test-set accuracy, while “Constr. Accuracy” corresponds to the performance metric used in
Figure 4 (i.e., mean accuracy under test-time constraints). We report results for three configurations,
namely, M1 (Apple M1 Pro), GTX (Nvidia GTX 1070), and RTX (Nvidia RTX 3060).

Inference Metrics

Method Response Time (s) Response Length (tokens) Accuracy (%) Constr. Accuracy (%)
M1 GTX RTX M1 GTX RTX Ml GTX RTX Ml GTX RTX
Base model 7.5(0.2) 3.9(0.1) 25(0.1) 138(3.9) 142(4.0) 145(4.2) 7 7 75 0 0 0
ANSONLYPROMPT 5.6(0.3) 2.8(0.1) 1.7(0.1) 104(5.4) 102(5.3) 104 (5.5) 60 63 64 9 8 9
UNCONSTRAINT 8.1(0.2) 4.2(0.1) 25(0.1) 121(2.1) 119(2.2) 118(2.1) 91 90 91 0 0 0
TARGET 0.6(0.1) 0.5(0.0) 0.3(0.0) 5(0.8) 4(0.1) 4(0.6) 61 61 62 61 61 62
CURLTRAC 0.6 (0.0) 0.5(0.0) 0.3(0.0) 3(0.1) 3(0.1) 3(0.1) 74 74 72 T4 74 72

Training reward. Figure 5b shows that although UNCONSTRAINT and IID achieve increasing
training rewards, these gains do not transfer to test-time performance (see Figure 4). TARGET yields
delayed or no rewards due to its strict constraints, providing weak learning signals. In contrast,
CURLTRAC exhibits an initial reward drop as « decreases and tasks become more challenging, yet
the reward remains above the threshold 5 = 0.5. Once stabilized around 3, performance improves,
indicating that the models learn to adapt to progressively tighter constraints. EXPSCHEDULEp—_7+ /2
shows a sharp reward decline, indicating rapid constraint tightening. Finally, SOFT-RL,,,=0.9
regularizes UNCONSTRAINT, balancing accuracy and brevity through a regularized reward signal.

Training Response length. Figure 5c shows varying rates of response-length reduction as models
adapt to meet test-time constraints. CURLTRAC achieves the fastest adaptation to shorter responses,
followed by SOFT-RL,,,,=0.9. IID shows a moderate reduction but remains above the target lengths.
UNCONSTRAINT and TARGET exhibit no and late change during training.

LLM Deployment on Consumer Hardware. Next, we assess the practical impact of our strategy by
comparing inference metrics of QWEN models across hardware configurations (Table 1). Performance
of the base model serves as a default baseline of the model used for fine-tuning. ANSONLYPROMPT
fails to adequately reduce the response time, and displays a drop in accuracy. Fine-tuning with
UNCONSTRAINT improves accuracy, but results in high response time; fine-tuning with TARGET
decreases response time, but leads to a notable drop in accuracy. Our strategy CURLTRAC achieves a
balanced trade-off between response time and accuracy, while also ensuring high constrained accuracy.
Relative to the base model, CURLTRAC provides a substantial reduction in response time (e.g., 7.5
vs. 0.6 on M1 configuration), while maintaining accuracy (e.g., 77 vs. 74 on M1 configuration).

5 Concluding Discussions

We proposed a curriculum strategy for RL under strict trajectory-level constraints, enabling agents to
adapt to stringent resource or safety requirements. Our theoretical analysis on a binary-tree MDP
showed faster convergence compared to imposing constraints from the outset, and our empirical
results across multiple domains highlighted its effectiveness. Applied to math reasoning, our strategy
allowed us to fine-tune an LLM to compress its output chain-of-thought tokens to strict deployment
constraints, achieving a substantial speedup during inference time.

Next, we discuss a few limitations and outline a plan for addressing them in future work. First, we
assume that deployment-time constraints are predefined. Future work could explore Matryoshka-style
learning [52] to train models capable of dynamically adapting to varying target constraints, thereby
accommodating different test-time resources. Second, in our setting we compressed the output chain-
of-thought tokens of the model to satisfy certain deployment constraints. In future work, it would
be interesting to apply this idea of token compression to mitigate other inference-time bottlenecks,
such as reducing the number of rollouts in best-of-N sampling or reducing the size of input context.
Finally, while our strategy improves performance under constraints, its impact on the model’s internal
behavior remains unclear. Investigating changes in attention patterns or internal representations after
fine-tuning could provide deeper insight into the model’s adaptation.

10

Acknowledgments and Disclosure of Funding

Funded/Co-funded by the European Union (ERC, TOPS, 101039090). Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting authority can be held
responsible for them.

References

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, and Georg Ostrovski. Human-
Level Control Through Deep Reinforcement Learning. Nature, 518(7540):529-533, 2015.

[2] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous Control with Deep Reinforcement Learning.
CoRR, abs/1509.02971, 2015.

[3] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end Training of Deep
Visuomotor Policies. JMLR, 17(1):1334-1373, 2016.

[4] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, and Adrian Bolton. Mastering the Game of
Go Without Human Knowledge. Nature, 550(7676):354-359, 2017.

[5] Moschoula Pternea, Prerna Singh, Abir Chakraborty, Yagna Oruganti, Mirco Milletari, Sayli
Bapat, and Kebei Jiang. The RL/LLM Taxonomy Tree: Reviewing Synergies Between Rein-
forcement Learning and Large Language Models. JAIR, 80:1525-1573, 2024.

[6] Daman Arora and Andrea Zanette. Training Language Models to Reason Efficiently. CoRR,
abs/2502.04463, 2025.

[7] Pranjal Aggarwal and Sean Welleck. L1: Controlling How Long a Reasoning Model Thinks
With Reinforcement Learning. CoRR, abs/2503.04697, 2025.

[8] Simon A Aytes, Jinheon Baek, and Sung Ju Hwang. Sketch-of-Thought: Efficient LLM
Reasoning with Adaptive Cognitive-Inspired Sketching. CoRR, abs/2503.05179, 2025.

[9] Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen.
Token-Budget-Aware LLM Reasoning. CoRR, abs/2412.18547, 2024.

[10] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained Policy Optimization.
In ICML, 2017.

[11] Chen Tessler, Daniel] Mankowitz, and Shie Mannor. Reward Constrained Policy Optimization.
In ICLR, 2019.

[12] Pascal Klink, Carlo D’Eramo, Jan R Peters, and Joni Pajarinen. Self-Paced Deep Reinforcement
Learning. In NeurIPS, 2020.

[13] Pascal Klink, Haoyi Yang, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Curriculum Rein-
forcement Learning via Constrained Optimal Transport. In ICML, 2022.

[14] Georgios Tzannetos, Parameswaran Kamalaruban, and Adish Singla. Proximal Curriculum
with Task Correlations for Deep Reinforcement Learning. In IJCAI, 2024.

[15] Eitan Altman. Constrained Markov Decision Processes. Routledge, 2021.

[16] Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-Constrained
Reinforcement Learning with Percentile Risk Criteria. JMLR, 18(167):1-51, 2018.

[17] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-Based
Constrained Policy Optimization. In ICLR, 2020.

11

[18] Yiming Zhang, Quan Vuong, and Keith Ross. First Order Constrained Optimization in Policy
Space. NeurIPS, 2020.

[19] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey. JMLR,
21:1-50, 2020.

[20] Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Auto-
matic Curriculum Learning for Deep RL: A Short Survey. In IJCAI, 2021.

[21] M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-Paced Learning for Latent Variable
Models. In NeurIPS, 2010.

[22] LuJiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann. Self-Paced
Curriculum Learning. In AAAZ, 2015.

[23] Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D’Eramo, Jan Peters, and Joni Pajarinen.
A Probabilistic Interpretation of Self-Paced Learning with Applications to Reinforcement
Learning. JMLR, 22:182-1, 2021.

[24] Theresa Eimer, André Biedenkapp, Frank Hutter, and Marius Lindauer. Self-Paced Context
Evaluation for Contextual Reinforcement Learning. In ICML, 2021.

[25] Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew
Critch, and Sergey Levine. Emergent Complexity and Zero-shot Transfer via Unsupervised
Environment Design. In NeurIPS, 2020.

[26] Minqi Jiang, Edward Grefenstette, and Tim Rocktdschel. Prioritized Level Replay. In ICML,
2021.

[27] Mingi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and
Tim Rocktischel. Replay-Guided Adversarial Environment Design. In NeurIPS, 2021.

[28] Jack Parker-Holder, Mingi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktéschel. Evolving Curricula with Regret-Based Environment Design.
In ICML, 2022.

[29] Lev Semenovich Vygotsky and Michael Cole. Mind in Society: Development of Higher
Psychological Processes. Harvard University Press, 1978.

[30] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
Curriculum Generation for Reinforcement Learning. In CORL, 2017.

[31] Jan Wohlke, Felix Schmitt, and Herke van Hoof. A Performance-Based Start State Curriculum
Framework for Reinforcement Learning. In AAMAS, 2020.

[32] Georgios Tzannetos, Barbara Gomes Ribeiro, Parameswaran Kamalaruban, and Adish Singla.
Proximal Curriculum for Reinforcement Learning Agents. In TMLR, 2023.

[33] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic Goal Generation
for Reinforcement Learning Agents. In ICML, 2018.

[34] Cevahir Koprulu, Thiago D Simao, Nils Jansen, et al. Safety-Prioritizing Curricula for Con-
strained Reinforcement Learning. In ICLR, 2025.

[35] Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe
Reinforcement Learning via Curriculum Induction. In NeurIPS, 2020.

[36] Renlong Jie, Xiaojun Meng, Lifeng Shang, Xin Jiang, and Qun Liu. Prompt-based Length
Controlled Generation with Reinforcement Learning. CoRR, abs/2308.12030, 2023.

[37] Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho, Sainbayar Sukhbaatar, Jason Weston,
and Jing Xu. Following Length Constraints in Instructions. CoRR, abs/2406.17744, 2024.

12

[38] Jingyang Yi and Jiazheng Wang. Shorterbetter: Guiding Reasoning Models to Find Optimal
Inference Length for Efficient Reasoning. CoRR, abs/2504.21370, 2025.

[39] Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise Reasoning
via Reinforcement Learning. CoRR, abs/2504.05185, 2025.

[40] Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual Markov Decision Processes.
CoRR, abs/1502.02259, 2015.

[41] Aditya Modi, Nan Jiang, Satinder Singh, and Ambuj Tewari. Markov Decision Processes with
Continuous Side Information. In ALT, 2018.

[42] Ronald J Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Rein-
forcement Learning. Machine learning, 8(3-4):229-256, 1992.

[43] Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. TRL: Transformer Reinforce-
ment Learning. https://github. com/huggingface/trl, 2020.

[44] Arash Ahmadian,”Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier
Pietquin, Ahmet Ustiin, and Sara Hooker. Back to Basics: Revisiting REINFORCE-Style
Optimization for Learning from Human Feedback in LLMs. In ACL, 2024.

[45] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. CoRR, abs/1707.06347, 2017.

[46] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP Models really able to Solve
Simple Math Word Problems? In NAACL, 2021.

[47] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems. CoRR, abs/2110.14168, 2021.

[48] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. LoRA: Low-Rank Adaptation of Large Language Models. In
ICLR, 2022.

[49] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-Math Technical Report: Toward Mathematical
Expert Model via Self-Improvement. arXiv preprint arXiv:2409.12122, 2024.

[50] Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok,
Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap Your Own Mathematical
Questions for Large Language Models. In ICLR, 2024.

[51] Shahaf S Shperberg, Bo Liu, and Peter Stone. Relaxed Exploration Constrained Reinforcement
Learning. In AAMAS, 2024.

[52] Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek
Ramanujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, and Ali
Farhadi. Matryoshka Representation Learning. In NeurlIPS, 2022.

[53] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory Opti-
mizations Toward Training Trillion Parameter Models. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1-16. IEEE, 2020.

[54] Ollama. https://ollama.com/.

13

https://github.com/huggingface/trl

NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper is organized according to the contributions listed at the end of the
introduction section. The theoretical and experimental claims and outcomes mentioned in
the abstract and the introduction are detailed in Sections 3 and 4.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of the paper are specifically discussed in Section 5, along with
a future plan to address those limitations.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All the assumptions of the theoretical results have been stated in Subsection 3.2.
Complete proofs of the theoretical results are included in main paper and in Appendix C.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information and the details needed to reproduce the experiments are
provided in the paper (Section 4 and Appendix D).

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release the code in a publicly available GitHub repository, which enables
the reproduction of the main experimental results.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details required to understand the results are provided
in Section 4 and Appendix D. Moreover, full details are documented in the code.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: To obtain the results, we ran the experiments on independent runs and report
error-bars for the results with 95% confidence interval. To obtain the confidence interval we
use bootstrapping from Searborn package.

. Experiments compute resources

14

10.

11.

12.

13.

14.

15.

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources are reported in Appendix D. 1.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We confirm that our paper conforms to the ethics review guidelines.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: This work presents a new curriculum strategy for learning agents. Given the
algorithmic and empirical nature of our work applied to learning agents, we do not foresee
any direct negative societal impacts of our work in the present form.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: This paper poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We are using some assets, such as code and models that are used in literature
for our experiments. We have cited all the sources.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is provided in a publicly available GitHub repository. All parts of the
code are sufficiently documented.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing nor research with human subjects was involved.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

15

https://neurips.cc/public/EthicsGuidelines

16.

Justification: No crowdsourcing nor research with human subjects was involved.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLM was involved in the core method development of this work.

16

A Table of Contents

In this section, we briefly outline the content included in the paper’s appendices:

* Appendix B presents additional examples of model responses observed during training.
» Appendix C contains the proof of Theorem 1 (Section 3).
* Appendix D details further implementation aspects of the experiments (Section 4).

* Appendix E provides additional experimental results, including experiments with Prox-
imal Policy Optimization as the learning algorithm, a parameter sensitivity analysis of
CURLTRAC, and comparisons with additional baselines.

B Additional Examples with Model Responses

We present additional qualitative outputs generated by the language model at various stages of training.
These examples demonstrate how the fine-tuned model learns to produce compressed responses
that explicitly skip steps in chain-of-thought reasoning without compromising final correctness. To
maintain clarity and conciseness, we omit intermediate evaluation steps where the model’s responses
show negligible variation for a given test question. Figure 6 illustrates the progression of METAMATH
model responses for a representative example from the SVAMP dataset. In Figure 7, we highlight
a notable case where the METAMATH model, by the end of training, produces the correct answer
directly, without relying on intermediate chain-of-thought reasoning. Figure 8 shows the progression
of QWEN’s responses for an example from the GSM8K dataset. The model implicitly halves the
total number of glasses and computes the discounted glass price, significantly compressing the
chain-of-thought process by reducing the number of generated tokens. Similarly, Figure 9 presents
the progression of QWEN’s responses for another example from the GSM8K dataset. In this case, the
model implicitly computes the number of downloads for the second and third months, and directly
proceeds to calculate the total.

Test-set Math Question: Below is an instruction that describes a task. Write a response that appropriately
completes the request. ### Instruction: Jesse’s rooms are 19 feet long and 18 feet wide. If she has 20 rooms,
how much carpet does she need to cover the floors of all rooms? ### Response: Let’s think step by step.

[Base Model Response: Jesse’s rooms are 19 feet long and 18 feet wide. To find the area of one room, we)
multiply the length by the width: 19 feet * 18 feet = 342 square feet. Jesse has 20 rooms in total. To find the
total area of all the rooms, we multiply the area of one room by the number of rooms: 342 square feet * 20 =
6840 square feet. Therefore, Jesse needs 6840 square feet of carpet to cover the floors of all the rooms. ####
6840

(The answer is: 6840

J

[Fine-tuned Model Response (25K Episodes): The area of each room is 19 feet x 18 feet = 342 square‘
feet.Since Jesse has 20 rooms, the total area of all the rooms is 342 square feet x 20 = 6840 square feet.Therefore,
Jesse needs 6840 square feet of carpet to cover the floors of all the rooms. #### 6840
| The answer is: 6340

J

[Fine-tuned Model Response (50K Episodes): The area of each room is 19 feet x 18 feet = 342 square]
feet.Since Jesse has 20 rooms, she needs a total of 20 x 342 square feet of carpet. #### 6840
| The answer is: 6340

Fine-tuned Model Response (75K Episodes): She needs 20 * (19 * 18) = 6840 square feet of carpet. HiH)
6840
| The answer is: 6840

(Fine-tuned Model Response (100K Episodes) 19%18%20 #### 6840
(The answer is: 6840

Fine-tuned Model Response (250K Episodes): 19%18+20
| The answer is: 6840

J

Figure 6: METAMATH responses to a SVAMP test question at different stages of training. The
model trained with our curriculum technique learns to minimize the chain-of-thought process. In this
example, only the final calculation is generated.

17

Test-set Math Question: Below is an instruction that describes a task. Write a response that appropriately
completes the request. ### Instruction: Melissa scored a total of 21 points playing some games. Is she scored
7 points in each game. How many games did she play? ### Response: Let’s think step by step.

[Base Model Response: If Melissa scored 7 points in each game, then the total number of games she played is]
L21 /7= 3. Therefore, Melissa played 3 games. #### 3 The answer is: 3

J

Fine-tuned Model Response (50K Episodes): If Melissa scored 7 points in each game, then the number of]
games she played is 21 /7 = 3. #### 3
| The answer is: 3

Fine-tuned Model Response (75K Episodes): She played 21/7 = 3 games. #### 3
| The answer is: 3

(Fine-tuned Model Response (100K Episodes): 21/7 #### 3

| The answer is: 3

Fine-tuned Model Response (225K Episodes): 3
| The answer is: 3

J

Figure 7: METAMATH responses to a SVAMP test question at different training stages. By the end
of training, the fine-tuned model directly answers without any chain-of-thought tokens.

Test-set Math Question: Below is an instruction that describes a task. Write a response that appropriately
completes the request. ### Instruction: Kylar went to the store to buy glasses for his new apartment. One glass
costs $5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does
he need to pay for them? ### Response: Let’s think step by step.

[Base Model Response: To determine how much Kylar needs to pay for 16 glasses, we need to consider the]
pricing structure: one glass costs $5, but every second glass costs only 60% of $5, which is $3. We can break
down the cost as follows:

1. Calculate the cost of the first glass.

2. Calculate the cost of the second glass.

3. Repeat this pattern for all 16 glasses.

4. Sum up the costs to get the total amount Kylar needs to pay.

Let’s write the Python code to calculate this.

“‘python

Define the cost of a glass and the discounted cost

cost_per_glass = 5 discounted_cost_per_glass = cost_per_glass * 0.6

Total number of glasses

total_glasses = 16

Calculate the total cost

total_cost = 0 for i in range(total_glasses): if (i + 1) % 2 == 0: total_cost += discounted_cost_per_glass else:
total_cost += cost_per_glass

print(total_cost)

““ output 64.0 “‘ The total amount Kylar needs to pay for 16 glasses is .

J

Fine-tuned Model Response (100K Episodes): - The cost of the first glass is $5. - The cost of the second]
glass is $5 * 0.60 = $3. - The cost of the third glass is $5. - The cost of the fourth glass is $5 * 0.60 = $3. -
And so on... We can see that the cost alternates between $5 and $3. Since Kylar wants to buy 16 glasses, there
will be 8 glasses at $5 and 8 glasses at $3. The total cost is:

8Xx5+8x3=40+24 =064

So, Kylar needs to pay .

[Fine-tuned Model Response (200K Episodes): Cost=8 *5+8 *5 * (0.6 =40 + 24 =64]
[Fine-tuned Model Response (300K Episodes): Total = 8*5 + 8*3 = 40+24=64]
[Fine-tuned Model Response (S00K Episodes): 8*5+8%3=40+24=64]

Figure 8: QWEN’s responses to a GSMS8K test question at different training stages. The model trained
with our curriculum technique learns to reduce the chain-of-thought process, either by simplifying
steps or skipping them. In this example, the model implicitly halves the total number of glasses and
computes the discounted glass price, without explicitly generating those intermediate steps.

18

Test-set Math Question: Below is an instruction that describes a task. Write a response that appropriately
completes the request. ### Instruction: A new program had 60 downloads in the first month. The number of
downloads in the second month was three times as many as the downloads in the first month, but then reduced
by 30% in the third month. How many downloads did the program have total over the three months?###
Response: Let’s think step by step.

[Base Model Response: To determine the total number of downloads over the three months, we need to]
calculate the number of downloads for each month and then sum them up. Let’s break it down:

1. **First Month:** The program had 60 downloads.

2. **Second Month:** The number of downloads in the second month was three times as many as the
downloads in the first month. So, we calculate:

3 x 60 =180

Therefore, the program had 180 downloads in the second month.
3. **Third Month:** The number of downloads in the third month was reduced by 30

0.30 x 180 = 54
Then, we subtract this from the second month’s downloads:
180 — 54 = 126

Therefore, the program had 126 downloads in the third month.
4. **Total Downloads:** To find the total number of downloads over the three months, we sum the downloads
from each month:

60 4 180 + 126 = 366

So, the total number of downloads over the three months is .

Fine-tuned Model Response (100K Episodes): 1. The number of downloads in the first month is 60.

2. The number of downloads in the second month is three times the first month, so it is 3 x 60 = 180.

3. The number of downloads in the third month is reduced by 30% from the second month, so it is 180 —
0.3 x 180 = 180 — 54 = 126.

4. The total number of downloads over the three months is 60 + 180 + 126 = 366.

The total number of downloads over the three months is .

(Fine-tuned Model Response (200K Episodes): First month: 60
Second month: 3 * 60 = 180
Third month: 180 * (1 - 0.30) = 126

Total: 60 + 180 + 126 = 366

(Fine-tuned Model Response (300K Episodes): 3*60=180
180-0.3*180=126

60+180+126=366

[Fine-tuned Model Response (500K Episodes): 60+180+126=366]

J

Figure 9: QWEN’s responses to a GSMS8K test question at different training stages. The model trained
with our curriculum technique learns to reduce the chain-of-thought process, either by simplifying
steps or skipping them. In this example, the model implicitly computes the number of downloads for
the second and third months, then directly proceeds to calculate the total.

19

C Proof of Theorem 1

Proof. We analyze Algorithm [in a single-task setting where the environment consistently selects
the same task T (Line 3).

Analysis of the target curriculum strategy (3 = 0). Under the target curriculum strategy, the
teacher always selects a; = o at each time step ¢, ensuring that the learner consistently trains under
the target setting. Initially, until a successful rollout (trajectory reaching the leftmost leaf node) is
realized using the learner’s current policy, no learning signal is provided to the learner due to the zero
reward. Consequently, the learner’s policy remains unchanged during this phase.

Once a successful rollout is realized, the learner receives a non-zero reward, which serves as a
learning signal. In the best-case scenario, the learner immediately identifies the optimal policy 7*,
given that the reward signal aligns perfectly with the target optimal trajectory. Thus, the sample
or rollout complexity of this baseline is determined by the time required to achieve a successful
trajectory using the initial random policy.

When sampling from a distribution, the expected number of trials needed to achieve the first success
is given by the geometric distribution. If the probability of success in a single trial is p, the expected
number of trials to get the first success is: E [Number of trials] = %.

For a random policy, the probability of reaching the leftmost leaf node in a trajectory of depth H is
p= (%) " Consequently, the expected number of rollouts required to achieve a successful trajectory
is & = 2'7. Thus, the total number of steps taken by the learner is ¢ - K oc O (2"). This highlights

the exponential dependence of the baseline’s complexity on the depth H, reflecting the difficulty of
achieving success with this baseline.

Analysis of the curriculum strategy with 3; = 0.5 - (1 — ¢)!~1. We consider the curriculum
strategy defined in Eq. ((2)) and set the threshold parameter as 3; = 0.5- (1 —¢)!~!, which guarantees
that at each time step ¢ the teacher selects a cost budget parameter «; that facilitates progressive
learning by the agent. For the binary-tree MDP under consideration, the optimal value is given by
max, , V7 (%; J2) = vH. Thus, provided that 7 is sufficiently large—specifically, if 3, < v for
all ¢, which is ensured when v > 0.57 —we can simplify the curriculum strategy in Eq. (2) to:

oy + argmin (o — oz%)2 subjectto V™ (T; JS) > Bs.
aE[O,ﬁ]

At time step ¢t = 1, the teacher selects a; such that:

foa (y((f),... ,ygf”) <ay, Vie{o,... 2811},

Cs (yéo),-~- ,y§H)) >ap, Vie {2771 ... 2F -1},
This choice guarantees that, in expectation, half of the rollouts £ produced by policy 7 yield a
reward J2*! (§) = 1 and the other half yield J2* () = 0. Consequently, the expected value satisfies
V™(z; J2') > 1 = 0.5. By the end of step ¢t = 1, with a sufficiently large number K of rollouts,
the learner correctly identifies the optimal action at level 0 with high probability. In particular, by

using Hoeffding’s inequality, the updated policy 7o satisfies the following:

P sz (LEFT | y[()o)) -7 (LEFT | y(()o))‘ > e} < 2-exp(-2-Ki-€) < 4.

n(2
Thus, with probability at least 1 — §, if K7 > g, then:

o (LEFT | y(()o)) > 7 (LEFT | y(()o)) —e=1—-¢

At step t = 2, the teacher selects ag such that:

roa (y(gw,... ’ygm) <ay, Vie{0,...282-1}

20

Cz (y(()o),-~ ,ng)) >an, Vie{2f72 ... 2f —1}.

This choice ensures that, in expectation, a fraction 0.5 - (1 — ¢€) of the rollouts £ generated by policy
o receive a reward J2? (€) = 1, with the remainder receiving J52 (£) = 0. Therefore, the expected
value satisfies V™ (T; J22) > B2 = 0.5 - (1 — €). By the end of step ¢ = 2, with a sufficiently large
number K of rollouts, the learner identifies the optimal action at level 1 with high probability. In
particular, by using Hoeffding’s inequality, the updated policy 73 satisfies the following:

P Hm (LEFT | yél)) —7* (LEFT | yél))‘ > e} < 2-exp(-2-Ky-€?) < 4.

n(2
Thus, with probability at least 1 — 6, if Ko > % (where the factor i compensates for the
e-suboptimality accumulated up to level 0), then:

T3 (LEFT | yéi)> > " (LEFT | yé”) —e=1-—¢ Vie{0,1}.

More generally, at step ¢ = h, the teacher selects o, such that:
cf((gO),...,yl(H)) <an, Vie{o,...2f"_1}
Cf(y(()o),"' ,yZ(H)> >ap, Vi€ {QH_"’,...,ZH—I}.

This choice guarantees that, in expectation, a fraction 0.5 - (1 — €)"~! of the rollouts produced by
policy 7, yield a reward J2" () = 1, with the remaining rollouts yielding J2" (£) = 0; hence,
V™ (T; J2M) > B, = 0.5+ (1 —€)" 1. By the end of step ¢ = h, with a sufficiently large number K},
of rollouts, the learner identifies the optimal action at level h — 1 with high probability. Consequently,
the updated policy 7,41 satisfies the following:

The (LEFT|y§j>) >1—¢ Vic{0,...,h—1},

()

with probability at least 1 — ¢, provided that K}, > T AT (where the factor (1—5% compen-
sates for the e-suboptimality accumulated up to level h — 2).

This process continues iteratively until ¢ = H, at which point the learner recovers a near-optimal
policy mg 41 satisfying:

TH+1 (LEFT|y(()i)) >1—e¢ Vie{0,...,H—-1},

ln(%)

with probability at least 1 — §, provided that K >

The total sample complexity for learning an e-suboptimal policy with probability at least 1 — § is

therefore: " .
In (2) In (2)
ZKt:Z 2 2 - = H 2 ° H-1
pt —~2-€ (1—¢) 2-€2-(1—¢)
In particular, if we choose € = HLH, then Zil Ky = 0O (H?). O

21

D Implementation Details

We provide additional implementation details for the experiments described in Section 4.

D.1 Compute Resources

We conducted the LLM experiments on a SLURM cluster comprising nodes with eight Nvidia H100
GPUs. Using those resources, the longest LLM experiment ran for approximately three days. We
conducted the RL experiments on a cluster comprising nodes equipped with Intel Xeon Gold CPUs.

D.2 Training Details and Hyperparameters

RL experiments. We use the REINFORCE algorithm to train an MLP policy [42]. For BINARY TREE,
the policy is tabular, while for PUDDLEGRID-SINGLE and PUDDLEGRID-MULTI, we use a neural
policy with two hidden layers. Policies are updated using a batch size of five episodes and the
Adam optimizer with a learning rate of 3e—4 across all environments. PUDDLEGRID-SINGLE and
PUDDLEGRID-MULTI have a maximum of 200 steps per episode. Since PUDDLEGRID-MULTI is
a multi-task environment, we generated 100 tasks by randomly positioning the agent and goal. To
ensure the tasks are challenging, the agent and goal are placed on opposite sides of the lava squares.

LLM experiments. As METAMATH-LLEMMA-7B serves as one of the base models in our LLM
experiments, we adopt the prompt template (Figure 10), introduced by [50]. It corresponds to a default
chain-of-thought prompt that encourages step-by-step reasoning. This prompting template is used
across all methods during fine-tuning. Additionally, for both SVAMP [46] and GSM8K [47], we filter
out prompts exceeding 512 tokens. To conduct the experiments, we use Huggingface’s Accelerate
and Transformers libraries. For RL fine-tuning, we employ the RLOO trainer [44] from the TRL
library, training with DeepSpeed ZeRO Stage 2 [53]. The RLOO trainer is an adapted version of the
PPO trainer; since REINFORCE is a special case of PPO, where the number of PPO epochs and
the number of mini-batches are set to 1. This formulation is adopted in the TRL implementation.
All training parameters and details are reported in Figure 11. Remaining hyperparameters are set to
default values and kept consistent across all baselines. Target cost budgets for all tasks are defined as a
percentage of the base model’s original response length. Given the differing characteristics of models
and datasets, we set the target cost budgets to 10% of the original response tokens for the QWEN
model, and to 20% and 35% for the METAMATH model on SVAMP and GSM8K, respectively.
Regarding the LLM deployment comparison, we evaluate inference metrics using Ollama [54] for
both base and fine-tuned models across multiple hardware configurations. All models are converted
to GGUF format.

Chain-of-Thought Prompt

Below is an instruction that describes a task. Write a response
that appropriately completes the request.

Instruction:

<question>

Response: Let’s think step by step.

Figure 10: Instruction template that encourages step-by-step reasoning used to format the input
question. The dataset’s math question replaces the <question> placeholder. This is the default
prompt used across all methods during fine-tuning.

Variants of prompting templates. We experiment with different prompting templates to examine
whether it is possible to improve the performance of large language models under test-time constraints
without any fine-tuning. We explore the following variants of prompting templates. In Figure 12, we
present a prompt that asks the model to provide an answer directly. In Figure 13, we present a prompt
that specifically requests a short answer. In Figure 14, we show a prompt that instructs the model to
generate an answer within a specified token budget. The method ANSONLYPROMPT corresponds to
the prompting template that achieved the highest test performance.

22

Parameter SVAMP \ GSMSK
Fine-tuning Method PEFT with LoRA
LoRa o 96
LoRar 96
LoRa Dropout 0.1
Target Modules all linear
Per-device Train Batch Size 4 \ 2
Per-device Eval Batch Size 4
Gradient Accumulation Steps 8
Local Rollout Forward Batch Size 8
Learning Rate 3x1076
KL Coefficient 0.0001
Max Response Length 350 \ 512

Figure 11: Training details and hyperparameters used across all baselines for SVAMP and GSMS8K.

ANSONLYPROMPT

Below is an instruction that describes a task. Write a response
that appropriately completes the request. Provide a response
that contains only the answer.

Instruction:

<question>

Response:

\. J

Figure 12: Instruction template used to format the input questions to induce direct answers without
any chain-of-thought reasoning. The dataset’s math question replaces the <question> placeholder.

SHORTANSPROMPT

Below is an instruction that describes a task. Write a response
that appropriately completes the request. Provide a response
that is as short as possible.

Instruction:

<question>

Response:

Figure 13: Instruction template used to format the input questions to encourage short responses. The
dataset’s math question replaces the <question> placeholder.

ANSUNDERCONSTRAINT

Below is an instruction that describes a task. Write a response
that appropriately completes the request. Provide a response
where the maximum number of tokens is {target_tokens}.

Instruction:

<question>

Response:

Figure 14: Instruction template used to format the input questions to encourage answers below a
maximum number of tokens that correspond to the target constraint. The dataset’s math question
replaces the <question> placeholder.

Implementation details about our curriculum strategy CURLTRAC (Section 3). We apply our
curriculum training following Algorithm 1, and update the training cost budget «; using Algorithm 2.

23

—0—CURLTRAC -4-PROCURL-TARGET EXPSCHEDULE7_7./, =%:=1ID UNCONSTRAINT -*B:-=TARGET

Q [
o [}
c c
(2] @ Y.
£ £
< <
[()
a a
g 4
s R WL *
4 J B B e R e S el Eilias
(1 : : 4 0 1 2 3 1 5) 3 6 9 12
Episodes x10" Episodes x10° Episodes x10°
(a) BINARYTREE (b) PUDDLEGRID-SINGLE (c) PUDDLEGRID-MULTI

Figure 15: Performance comparison of RL agents trained with PPO as learning algorithm, measured
by mean return (with 95% confidence intervals for 10 random runs) under test-time constraints.

As shown, the only hyperparameter is the performance threshold 3. According to Line 3 of Algo-
1

rithm 2, at each step and for each task ;, the value of 3 is determined by min{3, V™t (x4; J2, *)},
_1

where V™ (xy; Jz, 7) denotes the maximum achievable performance for task x;. We set 8 = 0.5
across all environments without any tuning. To avoid performing K rollouts per task in Algorithm 1,
we use a buffer to collect rollouts during online training. Several design choices are possible for
the buffer. Our strategy, CURLTRAC, employs a fixed-size buffer that stores K rollouts per task.
Once the buffer for a given task is full, we update the corresponding « value using a binary search
procedure. The buffer then continues to store new rollouts in a FIFO manner, and the « value is
recomputed accordingly. The binary search is conducted over a predefined range: the upper bound is
set to the maximum trajectory or response length observed in the environment, and the lower bound is
defined as the per-task target cost. In our experiments, we use K = 10 for all RL and LLM settings,
except for SVAMP-QWEN, where K = 15 is used.

E Additional Experimental Evaluation

E.1 PPO Experiments

We selected REINFORCE [42] as the primary learning algorithm for our main experiments because
it closely aligns with the theoretical analysis. Moreover, REINFORCE-style algorithms have recently
gained traction in fine-tuning LLMs, such as in RLOO [44], REINFORCE++, and GRPO, due to
their simplicity, efficiency, and stability. Nevertheless, we conducted additional experiments using
PPO [45] across all RL environments, and report the results in Figure 15. We observe similar results
with REINFORCE, indicating robustness of our technique to the choice of learning algorithm.

E.2 Parameter Sensitivity Analysis

The performance threshold $ is the primary hyperparameter of our strategy, CURLTRAC. As
mentioned earlier, we use a standard value of 8 = 0.5, which aligns with the idea of intermediate
difficulty, and keep it fixed across all settings. In general, smaller values of 3 allow for a faster
reduction in the training budget o, leading to quicker convergence to the target constraint. Conversely,
larger values of 3 slow down this progression.

To evaluate the robustness of CURLTRAC, we conduct a sensitivity analysis across all RL environ-
ments. In Figure 16, we report performance under test constraints for CURLTRAC with the parameter
[ranging from 0.1 to 0.9, where 5 = 0.5 corresponds to the default setting used in all experiments.
Note that 8 = 0 and 5 = 1 correspond to the TARGET and UNCONSTRAINT baselines, respectively,
and are therefore excluded. Figure 16a shows that CURLTRAC is highly robust, performing well
across a wide range of /3 values. As expected, increasing /3 slows down the change in training cost
budget o (Figure 16b), which in turn affects performance. In Figure 16c, we observe how CURL-
TRAC controls the observed reward during training, maintaining it below the respective threshold /.
Additionally, we conduct sensitivity analysis across all RL environments. In Figure 17, we present the

24

——-CURLTRAC;_), —@—CURLTRACj_)3 —8—CURLTRAC;_y; —®—CURLTRAC;_)7
—4—CURLTRAC_yo —#—CURLTRAC3_y, —+—CURLTRACs_y¢ CURLTRAC 35

CURL-TRAICj-09

1.01 40004
s 4000: - o) {d
0.84 *g g . J, g |
g G 30007 d:o ol
c .64
06 w e
g E 20001 'z
<= 0.4 e © 0.44
5 F =
< 10004 <
0.2 3 3 0.21
= =
0.0 - y i 07 . . . : i i i
1 2 3 4 0 1 2 3 4 0 1 2 3 4
Episodes x10* Episodes x10* Episodes x10*

(a) Performance (b) Training cost « (c) Training Reward

Figure 16: Sensitivity analysis of performance threshold parameter 3 for CURLTRAC strategy in
BINARYTREE environment. (a) shows the performance measured by mean return under test-time
constraints. (b) shows the progression of the cost o during training. (c) shows the average observed
reward during training.

——CURLTRAC;_), —@—CURLTRAC;_(3 —#—CURLTRAC;_;; —®—CURLTRAC;_;
—4&—CURLTRACj3_y, —#—CURLTRAC3_y, —+—CURLTRACs_y¢ CURLTRAC 3.5

CURL-TRAIC 309

1.01 2004: 1.0
S 1751 E
0.81 B 50l 20.81
8 ol &
5 0.61 aol2! 600,61
E € 1001 €
L 0.41 g '® 0.4
5} = \ =
a) < 504 i\ c 5
0.2 e @ ().
< 25 '\‘\,, 2
0.0 4 - i . . 0 . i : ———— 0.0 . i . .
i 2 3 4 5 0 i 2 3 4 5 i 2 3 i 5
Episodes x10° Episodes x10° Episodes x10°

(a) Performance (b) Training cost « (c) Training Reward

Figure 17: Sensitivity analysis of performance threshold parameter 3 for CURLTRAC strategy in
PUDDLEGRID-SINGLE environment. (a) shows the performance measured by mean return under
test-time constraints. (b) shows the progression of the cost « during training. (c) shows the average
observed reward during training.

—B—-CURLTRACj_; —@—CURLTRACj_3 —8#—CURLTRACs_o5 —®—CURLTRAC3_7
—4—CURLTRACs_gy —#—CURLTRACj_y, —+—CURLTRAC3_y5 CURLTRAC -5

CURL-TRAIC -0

1.01 20041 1.0 m
Sy75q | = <
0.84 2 S (.81
8 o \ «
5 0.67 01257 | &00.6
£ 100 =
[© w0 A4
‘-‘5044 = 75 '_,_0.-1
[a) < 504 c
0.24 g . §0.21
- = % =
0.03—" , , , , 0] . : , e 0.04 , , ,
3 6 9 12 15 3 6 9 12 15 3 6 9 12 15
Episodes x10° Episodes x10° Episodes x10°

(a) Performance (b) Training cost « (c) Training Reward

Figure 18: Sensitivity analysis of performance threshold parameter 3 for CURLTRAC strategy in
PUDDLEGRID-MULTI environment. (a) shows the performance measured by mean return under
test-time constraints. (b) shows the progression of the cost « during training. (c) shows the average
observed reward during training.

25

—8—CURLTRAC EXPSCHEDULE7_7+ EXPSCHEDULE7_7- /5 = ®=EXPSCHEDULE7_ 5009 % EXPSCHEDULET 50000

1.0 1.0 1.0 =
0.8 .
8 i g
S 5 0.6 s
E E E
20. 204 Lo.
(7 (7 G)
o [a a
0.2
0.0 i r— .
0 1 2 3 | (1 2 3 ! 5. (3 6 9 12 15
Episodes x10* Episodes x10° Episodes x10*
(a) BINARYTREE (b) PUDDLEGRID-SINGLE (c) PUDDLEGRID-MULTI

Figure 19: Performance comparison of agents trained with variants of EXPSCHEDULE, measured
by mean return (with 95% confidence intervals for 10 random runs) under test-time constraints.

results for the PUDDLEGRID-SINGLE environment, where the robustness of CURLTRAC is evident
(Figure 17a). As expected, increasing [3 slows convergence to the test-time target constraints. The
training cost trends are similar to those observed in BINARYTREE, though the differences are less
pronounced due to the increased complexity of PUDDLEGRID-SINGLE (Figure 17b). The choice
of 3 directly influences the level of training reward observed (Figure 17c). Similarly, for multi-task
environments, CURLTRAC behaves as expected across different /3 values (Figure 18).

E.3 Additional Baselines

To provide a more thorough evaluation of our curriculum, we incorporate several additional baselines.

Variants of EXPSCHEDULE. As illustrated in Figure 5, our curriculum strategy naturally produces
per-task « schedules that, on average, follow a form of exponential decay. This observation motivates
the inclusion of a related baseline, EXPSCHEDULE, which applies a fixed exponential decay schedule
[51]. The intuition is that a well-tuned exponential decay should perform comparably to our strategy.
We evaluate variants of this strategy with different decay lengths T = {T*,T*/2,50000, 5000},
where 7™ denotes the total number of training episodes per environment. These correspond to EX-
PSCHEDULE7 =7+, EXPSCHEDULET_7~ /2, EXPSCHEDULET=50000, and EXPSCHEDULET=5000,
respectively. Figure 19 compares our strategy, CURLTRAC, with the variants of EXPSCHEDULE
across RL environments. Our approach consistently achieves the strongest and most stable empirical
performance. In contrast, the fixed exponential schedules exhibit instability, yielding competitive
results in some environments but failing to generalize across all. Among the exponential variants,
EXPSCHEDULE7_7- /o demonstrates comparatively greater stability, albeit with lower overall per-
formance than CURLTRAC. This suggests that incorporating domain knowledge, such as the total
number of training episodes 7™, plays a critical role in tuning the decay schedule effectively.

CURLTRAC-GLOBAL. This is a variant of CURLTRAC that maintains a single global value of
« shared across all tasks, rather than assigning an individual training budget o, per task z. We
refer to this method as CURLTRAC-GLOBAL. The procedure is identical to CURLTRAC, except
that rollouts from all selected tasks are stored in a common global buffer. As a result, a single
global training budget « is updated after each task. In single-task settings (as in BINARYTREE
and PUDDLEGRID-SINGLE), the two strategies are equivalent. The adaptive CURLTRAC requires
collecting a sufficient number of rollouts per task to enable task-specific updates of . In contrast,
one advantage of CURLTRAC-GLOBAL is a shorter warm-up phase, as the global buffer is populated
with rollouts from multiple tasks, allowing the threshold « to begin adapting earlier. We provide a
direct comparison between CURLTRAC and its global variant, CURLTRAC-GLOBAL.

Performance comparison with additional baselines. In Figure 20, we compare the convergence
behavior of LLM agents across additional baselines, including the global strategy CURLTRAC-
GLOBAL, a softer regularization variant SOFT-RL,, ,=0.4, and a fixed decay rate strategy EXP-
SCHEDULET—50000- Table 2 summarizes test-time performance at two training checkpoints. The
strategy CURLTRAC-GLOBAL shows a rapid initial performance increase, as it does not require a
warm-up phase for collecting rollouts per task. However, due to per-task targets in the LLM setting,
its performance ultimately plateaus below that of the adaptive CURLTRAC. The weaker regular-
ization in SOFT-RL,, —0.4 leads to slower convergence toward test-time constraints compared to
SOFT-RL,,,=0.9, as expected. The EXPSCHEDULET=50000 Strategy is unstable across all settings.

26

—8—CURLTRAC SoFT-RL,,,~0.4 EXPSCHEDULE7_50000 UNCONSTRAINT B~ TARGET

=¥ -CURLTRAC-GLOBAL - 4-SOFT-RL,, o9 EXPSCHEDULEp_7+/y =%:=IID —==ANSONLYPROMPT
0.8 0.8
. 0.67 A
3 8 *--0--0--9
c c
© ©
£0. E04
L L
5] 3]
[« [a 0.24
0.0 -
0 5 10 15 20 25 0 10 20 30 40 50
Episodes x10* Episodes x10*
(a) SVAMP-QWEN (b) SVAMP-METAMATH
0.8 0.8
0.6 0.64
8 8
[= c
© ©
E0.4 E0.49
£ £
5] 5]
8-0.2 8- 0.2
0.0; - 0.0 % -
0 10 20 30 40 50 0 20 40 60 80 100
Episodes x10* Episodes x10*
(c) GSM8K-QWEN (d) GSM8K-METAMATH

Figure 20: Performance of LLM agents trained with different strategies, measured by the agent’s mean
accuracy (with 95% confidence intervals over 3 random runs), evaluated under test-time constraints.

Table 2: Summary of LLM performance across two mathematical benchmarks, SVAMP and GSMSK,
and two large language models, QWEN2.5-MATH-1.5B and METAMATH-LLEMMA-7B, as detailed
in Figure 20. For each column, the highest-performing strategy is shown in bold, and the second-best
is underlined.

Dataset: SVAMP Dataset: GSM8K
Method Model: QWEN Model: METAMATH Model: QWEN Model: METAMATH
Episodes # Episodes # Episodes # Episodes
100K 250K 250K 500K 250K 500K 500K 1M
Test-time Performance

CURLTRAC 0.69 0.74 0.63 0.63 0.43 0.60 0.49 0.53
CURLTRAC-GLOBAL 0.60 0.63 0.62 0.62 0.49 0.48 0.49 0.46
SOFT-RLa, . =0.4 0.00 0.63 0.19 0.44 0.24 0.41 0.43 0.49
SOFT-RLa,,=0.9 0.26 0.69 0.54 0.54 0.52 0.50 0.49 0.47
EXPSCHEDULET=50000 0.48 0.45 0.00 0.00 0.00 0.00 0.00 0.00
EXPSCHEDULEp—7+,o 0.10 0.55 0.52 0.48 0.20 0.20 0.10 0.10
11D 0.00 0.03 0.00 0.00 0.01 0.06 0.00 0.00
UNCONSTRAINT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TARGET 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00
ANSONLYPROMPT 0.28 0.28 0.00 0.00 0.00 0.00 0.00 0.00

27

	1 Introduction
	1.1 Related Work

	2 Formal Setup
	3 Our Curriculum Strategy
	3.1 Curriculum Strategy
	3.2 Theoretical Analysis

	4 Experimental Evaluation
	4.1 Environments
	4.2 Methods Evaluated
	4.3 Results

	5 Concluding Discussions
	A Table of Contents
	B Additional Examples with Model Responses
	C Proof of Theorem 1
	D Implementation Details
	D.1 Compute Resources
	D.2 Training Details and Hyperparameters

	E Additional Experimental Evaluation
	E.1 PPO Experiments
	E.2 Parameter Sensitivity Analysis
	E.3 Additional Baselines

