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Abstract

Existing unified methods typically treat multi-degradation image restoration as a1

multi-task learning problem. Despite performing effectively compared to single2

degradation restoration methods, they overlook the utilization of commonalities3

and specificities within multi-task restoration, thereby impeding the model’s per-4

formance. Inspired by the success of deep generative models and fine-tuning tech-5

niques, we proposed a universal image restoration framework based on multiple6

low-rank adapters (LoRA) from multi-domain transfer learning. Our framework7

leverages the pre-trained generative model as the shared component for multi-8

degradation restoration and transfers it to specific degradation image restoration9

tasks using low-rank adaptation. Additionally, we introduce a LoRA composing10

strategy based on the degradation similarity, which adaptively combines trained11

LoRAs and enables our model to be applicable for mixed degradation restoration.12

Extensive experiments on multiple and mixed degradations demonstrate that the13

proposed universal image restoration method not only achieves higher fidelity and14

perceptual image quality but also has better generalization ability than other unified15

image restoration models.16

1 Introduction17

In the wild, a range of distortions commonly appear in captured images, including noise[56], blur[14,18

47, 6], low light[58, 22, 8], and various weather degradations[15, 51, 54, 45]. As a fundamental task19

in low-level vision, image restoration aims to eliminate these distortions and recover sharp details and20

original scene information from corrupted images. With the assistance of deep learning, an abundance21

of restoration approaches [56, 3, 54, 2, 16, 14, 53] have made significant progress in eliminating22

single degradation from images. However, these approaches typically require additional training from23

scratch on specific image pairs in multi-degraded scenarios, which leads to inconvenience in usage24

and limited generalization ability.25

For simplicity and practicality, some existing works [15, 31, 55]consider training a unified model26

(also called all-in-one model) to handle multiple degradations as multi-task learning. These studies27

primarily explore how to discern degradation from the image and integrate it into the restoration28

network. Nevertheless, these methods share all parameters across different degradations, resulting in29

gradient conflicts [40, 52] that hinder further improvement of unified models’ performance.30

Digging deeper, the underlying issue lies in that the similarities among different image restoration31

tasks and the inherent specificity of each degradation are not well considered and utilized in the32

training. This limitation drives us to seek solutions for multi-degradation restoration by leveraging33

both commonalities and specificities.34
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Figure 1: Motivation of our work. A pre-trained generative model serves as the shared component
and minimal parameters are added to model the specificity of each degradation restoration task.

Inspired by the successes of deep generative models[37, 36, 35] and fine-tuning techniques[11, 10, 4],35

we propose addressing the aforementioned issue from the perspective of multi-domain transfer36

learning, as presented in Figure 1. The pre-trained generative model exhibits powerful capabilities,37

implying rich prior knowledge of clear image distribution p(x), which is exactly what is needed38

for image restoration. Since image prior p(x) is degradation-agnostic and applicable to all types39

of degraded images, the pre-trained generative model is an excellent candidate for serving as the40

shared component for multiple degradation restoration. To model the transition from the clean image41

domain to different degraded image domains, minimal specific parameters are required to fine-tune42

the pre-trained model for each degradation restoration task. This approach not only isolates conflicts43

between each degradation task but also ensures efficiency and performance during training.44

Following the idea of multi-domain transfer learning, we proposed a universal image restoration45

framework based on multiple low-rank adaptations, named UIR-LoRA. In our framework, the pre-46

trained SD-turbo [39] serves as the shared fundamental model for multiple degradation restoration47

tasks due to its powerful one-step generation capability and extensive image priors. Subsequently,48

we incorporate the low-rank adaptation (LoRA) technique [11] to fine-tune the base model for each49

specific image restoration task. This involves augmenting low-dimensional parameter matrices on50

selected layers within the base model, ensuring efficient fine-tuning while maintaining independence51

between LoRAs for each specific degradation. Additionally, we propose a LoRA composition strategy52

based on degradation similarity. We calculate the similarity between degradation features extracted53

from degraded images and existing degradation types, utilizing it as weights for combining different54

LoRA experts. This strategy enables our method to be applicable for restoring mixed degradation55

images. Moreover, we conducted extensive experiments and compared our approach with several56

existing unified image restoration methods. The experimental results demonstrate that our method57

achieves superior performance in the restoration of various degradations and mixed degradations. Not58

only does our approach outperform existing methods in terms of distortion and perceptual metrics,59

but it also exhibits significant improvements in visual quality.60

Our contributions can be summarized as follows:61

• From the perspective of multi-domain transfer learning, we propose a novel universal image62

restoration framework based on multiple low-rank adaptations. It leverages the pre-trained63

generative model as the shared component for multi-degradation restoration and employs64

distinct LoRAs for multiple degradations to efficiently transfer to specific degradation65

restoration tasks.66

• We introduce a LoRAs composition strategy based on the degradation similarity, which67

adaptively combines trained LoRAs and enables our model to be applicable for mixed68

degradation restoration.69

• Through extensive experiments on multiple and mixed degradations, we demonstrate that the70

proposed universal image restoration method not only achieves higher fidelity and perceptual71

image quality but also has better generalization ability than other unified models.72
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2 Related Work73

2.1 Image Restoration74

Specific Degradation Restoration. According to degradation type, image restoration tasks are75

categorized into different groups, including denoising, deblurring, inpainting, draining .etc. Most76

existing image restoration methods [2, 53, 16, 56, 5, 14] mainly address the issue with a single77

degradation. Traditional approaches [27, 28, 7] have proposed image priors. While these priors can78

be applied to different degraded images, their capability is limited. Due to the remarkable capability79

of the deep neural network (DNN), numerous DNN-based methods [2, 53, 16] have been proposed80

to tackle image restoration tasks. While DNN-based methods have made significant progress, they81

struggle with multiple degradations and mixed degradations, since they typically require retraining82

from scratch on data with the same degradation.83

Universal degradation restoration. Increasing attention is currently focused on developing a84

unified model to process multiple degradations. For example, AirNet[15] explores the degradation85

representation in latent space for separating them in the restoration network. PromptIR[31] utilizes a86

prompt block to extract the degradation-related features to improve the performance. Daclip-IR[20]87

introduces the clip-based encoder to distinguish the type of degradation and extract the semantics88

information from distorted images and embed them into a diffusion model to generate high-quality89

images. Despite the advancements, these unified models still have limitations. They also require90

retraining all parameters when unseen degradations arrive and have limited performance due to the91

gradient conflict.92

2.2 Low-Rank Adaptation93

LoRA [11] is proposed to fine-tune large models by freezing the pre-trained weights and introducing94

trainable low-rank matrices. This fine-tuning method leverages the property of "intrinsic dimension"95

within neural networks, lowering the rank of additional matrices and making the re-training process96

efficient. Concretely, given a weight matrices W ∈ Rn×m in pre-trained model θp, two trainable97

matrices B ∈ Rn×r and A ∈ Rr×m are inserted into the layer to represent the LoRA ∆W = BA,98

where r is the rank and satisfy r ≪ mim(n,m), the updated weights W ′are calculated by99

W ′ = W +∆W. (1)

By applying LoRA in pre-trained models, numerous image generation methods [29, 13], show100

superior performance in the field of image style and semantics concept transferring. Additionally,101

fine-tuning methods like ControlNet [57], T2i-adapter [24] are also commonly employed in large-102

scale pre-trained generative models such as Stable Diffusion [37], SDXL [30], and Imagen [38].103

2.3 Mixture of Experts104

Mixture of Experts (MoE) [41, 49, 48] is an effective approach to scale up neural network capacity to105

improve performance. Specifically, MoE integrates multiple feed-forward networks into a transformer106

block, where each feed-forward network is regarded as an expert. A gating function is introduced to107

model the probability distribution across all experts in the MoE layer. The gating function is trainable108

and determines the activation of specific experts within the MoE layer based on top-k values. Broadly109

speaking, our framework aligns with the concept of MoE. However, unlike traditional MoE layers, we110

employ the more efficient LoRA as experts in selected frozen layers and utilize a degradation-aware111

router across all selected layers to uniformly activate experts, reducing learning complexity and112

avoiding conflicts among different image restoration tasks on experts.113

3 Methodology114

3.1 Problem Definition115

This paper seeks to develop a novel universal image restoration framework capable of handling116

diverse forms of image degradation in the wild by fine-tuning the pre-trained generative model.117

Consider a set of T image restoration tasks D = {Dk}Tk=1, where Dk = {(xi, yi)}nk
i=1 is the training118

dataset containing nk images pairs of the k-th image degradation task. Within the set of tasks D,119
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Figure 2: Overview of UIR-LoRA. UIR-LoRA consists of two components: a degradation-aware
router and a universal image restorer. The router calculates degradation similarity in the latent space
of CLIP, while the restorer utilizes the similarity provided by the router to combine LoRAs and frozen
base model and restore images with multiple or mixed degadations.

each task Dk only has a specific type of image degradation, with no intersection between any two120

tasks. Given a pre-trained generative model θp with frozen parameters, our objective is to learn a121

set of composite {θk}Tk=1 to construct a unified model fθ that performs well on multi-degradation122

restoration and mixed degradation restoration by transferring learning, where θ = θp +
∑T

k=1 skθk123

and sk represents the composite weight for θk. The trainable {θk}Tk=1 can be optimized through124

minimizing the overall image reconstruction loss:125

L = E(x,y)∈Dl(fθ(x), y). (2)

We will present how to design and optimize the trainable {θk}Tk=1 and construct the composite126

weights s in the next sections.127

3.2 Overview of Universal Framework128

Inspired by transferring learning, we introduce a novel universal image restoration framework based129

on multiple low-rank adaptations, named UIR-LoRA. Referring to Figure 2, our framework consists130

of two main components, namely degradation-aware router and universal image restorer, respectively.131

The degradation-aware router first extracts the degradation feature from input degraded images and132

then calculates the similarity probabilities s with existing degradations in the latent space of CLIP133

model [35, 20]. For the universal image restorer, it comprises a pre-trained generative model θp and134

T trainable LoRAs {θk}Tk=1. This design is primarily motivated by two considerations: firstly, the135

pre-trained generative model contains extensive image priors that are degradation-agnostic and can136

be shared across all types of degraded images. Secondly, each LoRA can independently capture137

specific characteristics of each degradation without gradient conflicts. In practice, the pre-trained138

SD-turbo [39] is employed as the frozen base model in our framework and each LoRA θk serves139

as an expert responsible for transferring the frozen base model to a specific degradation restoration140

task Dk. By adjusting the value of Top-K parameter within the degradation-aware router, different141

combinations of LoRAs in the universal image restorer can be activated, enabling the removal of a142

specific degradation and mixed degradation in multi-degraded scenarios.143
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3.3 Degradation-Aware Router144

The Degradation-Aware Router is designed to provide the restorer with weights for LoRA combination145

based on degradation confidence. Following Daclip-ir [20], we utilized the pre-trained image encoder146

in CLIP [35] to obtain the degradation vector d ∈ R1×z from the input degraded image x, where z is147

degradation length in latent space. Differing from Daclip-ir [20], we use the degradation vector and148

existing degradations to calculate the similarity, instead of directly embedding the degradation vector149

into the restoration network in Daclip-ir [20]. The existing degradations refer to the vocabulary bank150

of diverse degradation types that we introduce in the router, such as "noisy", "blurry" and "shadowed".151

This vocabulary bank is highly compact and flexible when adding new degradation types. Similarly,152

by applying the text encoder of CLIP [35], the vocabulary bank can be encoded into the degradation153

bank B ∈ Rz×T in the latent space. As presented in Figure 2, the original degradation similarity154

so ∈ R1×T is calculated by:155

so = dB. (3)

Building upon the original similarity, we adopt a more flexible and controllable Top-K strategy156

to modify so. Specifically, we select the Top-K largest values from the original similarity so, and157

normalize them to reallocate the weights for LoRAs. The reallocation process can be formulated as :158

s =
so ·MK∑
so ·MK

, (4)

where MK represents a binary mask with the same length as so, where it is 1 when the corresponding159

value in so is among the Top-K, otherwise it is 0. With a smaller value of K, the restorer activates160

fewer LoRAs, reducing its computational load. For instance, with K = 1, only the most similar161

LoRA is activated and it yields effective results when s is accurate, but performance noticeably162

declines with inaccurate s. Conversely, as K increases, the restorer exhibits higher tolerance to s and163

the combination of LoRAs allows it to handle mixed degradation.164

3.4 Universal Image Restorer165

Our universal image restorer consists of a pre-trained generative model θp and a set of LoRAs166

{θk}Tk=1. As illustrated in Figure 2, our universal image restorer takes the degraded image x and167

similarity s predicted by the degradation-aware router as inputs. It then activates relevant LoRAs168

based on s to recover the degraded image along with the frozen base model. Since one of our169

objectives is to ensure that each LoRA serves as an expert in processing a specific degradation, the170

number of LoRAs in the restorer aligns with the number of degradation types, T . In practice, we171

select multiple layers from the base model, For a selected layer W of the pre-trained base model, a172

sequence of trainable matrices {∆Wk}Tk=1 are added into this layer, and the parameters of all chosen173

layers L form a complete LoRA θk = {∆W j
k}j∈L. As previously explained, each LoRA is a unique174

expert responsible for a specific degradation. Drawing inspiration from Mixture of Expert (MoE), we175

aggregate the outputs of each expert rather than directly merging parameters in [11]. Therefore, given176

the input feature xin of the current layer and the similarity s, the total output xout of this modified177

layer can be expressed as178

xout = fo(xin) +

K∑
i=1

sifi(xin), (5)

where fi(xin) denotes the result of i-th trainable matrice Wi, particularly fo(xin) is output of the179

frozen base layer. From the equation 5, it can be observed that the introduced LoRAs interact with the180

frozen base model at intermediate feature layers in our restorer. This interaction forces the restorer181

to leverage the image priors of the pre-trained generative model and eliminate degradation with the182

assistance of LoRAs. In contrast to employing stable diffusion [37] directly as a post-processing183

technique, our restorer yields results closer to the true scene without introducing inaccurate structural184

details. Since each W is implemented using two low-rank matrices like the formula 1, the total185

trainable parameters of our framework are much smaller than that of the pre-train generative model.186

3.5 Training and Inference Procedure187

During the training phase, for the efficient training of the universal image restorer, we ensure that188

each batch is sampled from the same degradation type Dk, and activate the corresponding LoRA θk189
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Table 1: Comparison of the restoration results over ten different datasets. The best results are marked
in boldface.

Model Distortion Perceptual Complexity
PSNR↑ SSIM ↑ LPIPS ↓ FID ↓ Param /M Runtime /s

SwinIR [16] 23.37 0.731 0.354 104.37 15.8 0.66
NAFNet [2] 26.34 0.847 0.159 55.68 67.9 0.54
Restormer [53] 26.43 0.850 0.157 54.03 26.1 0.14

AirNet [15] 25.62 0.844 0.182 64.86 7.6 1.50
PromptIR [31] 27.14 0.859 0.147 48.26 35.6 1.19
IR-SDE [21] 23.64 0.754 0.167 49.18 36.2 5.07
DiffBIR [17] 21.01 0.618 0.263 91.03 363.2 5.95
Daclip-IR [20] 27.01 0.794 0.127 34.89 295.2 4.09
UIR-LoRA (Ours) 28.08 0.864 0.104 30.58 95.2 0.44

for training. Since the dataset D is organized by degradation type without overlap and each LoRA190

is assigned to handle each type of degradation correspondingly, the overall optimization process in191

equation 2 can be decomposed into independent optimization processes for each degradation. This192

design and training process circumvent task conflicts among multiple degradations and makes it193

possible to use suitable loss functions for the specific degradation. Due to the availability of accurate194

s during training and the use of pre-trained encoders from CLIP [35] and Daclip-ir [20] in our router,195

the router was not utilized during training.196

In the inference phase, the similarity s is unknown and needs to be estimated from the degraded197

image. The estimated similarity s serves as a reference in our framework and can also be manually198

specified by users. Subsequently, our universal image restorer composite LoRAs and recovers the199

input image with the guidance of s.200

4 Experiments201

4.1 Experimental Setting202

Datasets. We validate the effectiveness of our framework in multiple and mixed degradation scenarios.203

In the case of multiple degradations, we follow Daclip-IR [20] and construct a dataset using 10204

different single degradation datasets. Briefly, the composite dataset comprises a total of 52800 image205

pairs for training and 2490 image pairs for testing. The degradation types included are commonly206

encountered in image restoration, such as blur, noise, shadow, JPEG compression, and weather207

degradations. For mixed degradations, we utilize two degradation datasets, REDS [25] and LOLBlur208

[58]. In REDS, the images are distorted by JPEG compression and blur, and those images in LOLBlur209

have blur and low light. For more details about datasets in our experiments, please refer to Appendix.210

Metrics. The objective of the image restoration task is to output images with enhanced visual quality211

while maintaining high fidelity to the original scene information. This differs from image generation212

tasks, which prioritize visual quality. Therefore, to thoroughly evaluate the effectiveness of our213

method, we utilize reference-based image quality assessment techniques from both distortion and214

perceptual perspectives, including PSNR, SSIM, and LPIPS, as well as FID.215

Comparison Methods. In the experiments, we primarily compare with several state-of-the-art216

methods in image restoration, which fall into two categories: regression model and generative model.217

Regression models include NAFNet [2], Restormer [53], as well as AirNet [15] and PromptIR [31]218

proposed for multiple degradation restoration. DiffBIR [17], IR-SDE [21] and Daclip-IR [20] are219

generative models built upon the diffusion model [9].220

4.2 Implementation Details221

During the training, we adapt an AdamW optimizer to update the weights of trainable parameters in222

our model. Before training LoRA for specific degradation, we add skip-connections in the VAE of223

SD-turbo[39] like [29, 44] and train them with multiple degraded images. We set the initialization224
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Figure 3: Qualitative comparison on multiple degraded images.

learning rate to 2e-4 and decrease it with CosineAnnealingLR . We trained every LoRA for 80K225

iterations with batch size 8 and we keep the same hyper-parameters when training different LoRAs.226

The default rank of LoRAs in VAE and Unet is 4 and 8, respectively.227

4.3 Multiple Image Restoration228

For fair comparisons, all methods are trained and tested on the multiple degradation dataset. The229

results are presented in Table 1. We can find that our model, UIR-LoRA, considerably surpasses all230

compared image restoration approaches across four metrics. This indicates that our approach can231

balance generating clear structures and details while ensuring the restored images closely resemble the232

original information of the scene. The visual comparison results depicted in Figure 7 also confirm this233

assertion. Regression models such as NAFNet [2]and Restormer [53], lacking extensive image priors,234

tend to produce blurred and over-smoothed images, leading to inferior visual outcomes. Conversely,235

generative models Daclip-IR [20] excessively prioritize perceptual quality, yielding artifacts and236

noise that diverge from the actual scene information. Our approach integrates the strengths of both237

categories of methods, enabling strong performance in both distortion and perceptual aspects238

4.4 Mixed Image Restoration239

To evaluate the transferability of UIR-LoRA, we conduct some experiments on mixed degradation240

datasets from REDS[25] and LOLBlur [58]. Each image in these two datasets contains more than one241

type of degradation, like blur, jpeg compression, noise, and low light. We test the mixed degraded242

images using models trained on multiple degradations and set K to 2 in the router. As shown in243

Table 2, our method achieves superior results in both distortion and perceptual quality, particularly244

on the LOLBlur dataset. We also provide visual comparison results, as illustrated in Figure 4, our245

approach effectively enhances the low-light image compared to SOTA methods, highlighting its246

stronger transferability in the wild. More visual results can be found in Appendix.247
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Table 2: Comparison of the restoration results on mixed degradation datasets. The best results are
marked in boldface.

Model REDS LOLBlur
PSNR↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR↑ SSIM ↑ LPIPS ↓ FID ↓

SwinIR 21.53 0.676 0.449 116.80 10.06 0.320 0.619 124.52
NAFNet 25.06 0.721 0.412 122.12 10.57 0.397 0.477 85.77
Restormer 23.15 0.713 0.413 118.61 12.77 0.479 0.478 87.23
PromptIR 24.98 0.712 0.424 128.11 9.09 0.275 0.560 91.68
DiffBIR 20.70 0.598 0.377 122.76 9.86 0.288 0.611 125.41
Daclip-IR 24.30 0.699 0.337 95.29 14.52 0.599 0.358 68.10
UIR-LoRA 25.11 0.718 0.315 89.79 18.16 0.690 0.318 61.55

Degraded image

GT

Restormer PromptIR

Daclip-IR Ours

Figure 4: Qualitative comparison on multiple degraded images.

4.5 Ablation Study248

Complexity Analysis. We compare model complexity with SOTA models. The comparison results249

are shown in Table 1, where we report the number of trainable parameters and the runtime for a250

256×256 image on an A100 GPU. The complexity of UIR-LoRA is comparable to regression models251

like NAFNet [2] and significantly more efficient than generative models like Daclip-IR [20].252

Effectiveness of Degradation-Aware Router. The degradation-aware router plays a crucial role in253

determining which LoRAs are activated in the inference. To comprehensively demonstrate the impact254

of the router, we conduct experiments with different selection strategies. As illustrated in Table 3,255

we have five strategies: "random" indicates activating a LoRA at random, "average" denotes using256

average weights to activate all LoRAs, and "Top-1", "Top-2" and "All" correspond to setting K in the257

router to 1,2, and 10, respectively. From the comparison of these results, we can see that the random258

and average strategies result in poorer performance while using the strategy based on degradation259

Table 3: Impact of strategies in router

Strategy Multiple Degradation Mixed Degradation
PSNR↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR↑ SSIM ↑ LPIPS ↓ FID ↓

Random 17.52 0.617 0.388 126.48 10.35 0.323 0.577 104.84
Average 17.62 0.617 0.370 129.06 9.28 0.277 0.549 106.05
Top-1 28.06 0.864 0.105 30.62 18.04 0.683 0.321 61.65
Top-2 28.05 0.864 0.105 30.60 18.16 0.690 0.318 61.55

All 28.05 0.864 0.105 30.61 18.16 0.691 0.318 61.58
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Figure 5: The impact of LoRA’s rank on deblurring and denoising tasks.

similarity achieves better outcomes. This suggests that the transferability between different types260

of degradation is limited and that specific parameters are needed to address their particularities.261

Furthermore, the selection of the K value also affects the model’s performance. When an image has262

only one type of degradation, a smaller K value can result in comparable performance with lower263

inference costs. However, for mixed degradations, a larger K value is required to handle the more264

complex situation.265

Impact of LoRA’s Rank. Within our framework, LoRA is utilized to facilitate the transfer from266

the pre-trained generative model to the image restoration task. In order to investigate the impact of267

LoRA’s rank on the performance of image restoration, we conduct experiments using deblurring268

and denoising tasks chosen from ten distinct degradation categories. We set the initial rank to 2 and269

incrementally increase the value by a factor of 2. The performance changes are depicted in Figure 5.270

It is evident that as the rank grows, the restoration results improve in distortion and perceptual quality,271

and at the same time, the number of trainable parameters also increases. Once the rank value exceeds272

4, the performance improvement becomes progressively marginal. Therefore, we set the default rank273

to 4 in our restorer to balance between performance and complexity.274

Table 4: The accuracy of predicted degradation type

PSNR↑ SSIM ↑ LPIPS ↓ FID ↓ Accuracy ↑
Original 26.66 0.839 0.159 18.72 91.6
Modified 26.87 0.842 0.155 18.42 99.2

Impact of Predicted Degradation.275

The resizing operation on input images in CLIP models [20, 35] may lead to inaccurate predictions276

of degradation types, especially for blurry images. To reduce its negative impact on performance, we277

introduce a simple way that uses the degradation vector of the image crop without resizing to correct278

the potential error in the resized image. Table 4 is the comparison conducted on blurry images from279

GoPro dataset. It can be observed that our model with modified operation has higher accuracy and280

better performance for deblurring.281

5 Conclusion282

In this paper, we propose a universal image restoration framework based on multiple low-rank283

adaptation, named UIR-LoRA, from the perspective of multi-domain transfer learning. UIR-LoRA284

utilizes a pre-trained generative model as the frozen base model and transfers its abundant image285

priors to different image restoration tasks using the LoRA technique. Moreover, we introduce a286

LoRAs’ composition strategy based on the degradation similarity that allows UIR-LoRA applicable287

for multiple and mixed degradations in the wild. Extensive experiments on universal image restoration288

tasks demonstrate the effectiveness and better generalization capability of our proposed UIR-LoRA.289

6 Limitation and Discussion290

Although our UIR-LoRA has achieved remarkable performance in image restoration tasks under both291

multiple and mixed degradations, it still has limitations and problems for further exploration. For292

instance, adding new trainable parameters into the network for unseen degradations is unavoidable in293

image restoration tasks, although UIR-LoRA is already more efficient and flexible compared to other294

approaches.295
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A Appendix470

A.1 More Details about Datasets471

For multiple degradations, we follow Daclip-IR [20] to construct the dataset, which includes a total472

of ten distinct degradation types: blurry, hazy, JPEG-compression, low-light, noisy, raindrop, rainy,473

shadowed, snowy, and inpainting. The data sources and data splits for each degradation type are474

illustrated in Table 5.475

Table 5: Details of the datasets with ten different image degradation types

Dataset Train Test
Sources Num Sources Num

Blurry GoPro[26] 2 103 GoPro 1 111
Hazy RESIDE-6k[33] 6 000 RESIDE-6k 1 000
JPEG DIV2K[1] and Flickr2K[43] 3 550 LIVE1[42] 29
Low-light LOL[46] 485 LOL 15
Noisy DIV2K and Flickr2K 3 550 CBSD68[23] 68
Raindrop RainDrop[32] 861 RainDrop 58
Rainy Rain100H[50] 1 800 Rain100H 100
Shadowed SRD[34] 2 680 SRD 408
Snowy Snow100K-L[18] 1 872 Snow100K-L 601
Inpainting CelebaHQ[12] 29 900 CelebaHQ and RePaint[19] 100

For mixed degradations, we utilize images from REDS[25] and LOLBlur[58]to evaluate the trans-476

ferability of models. We sample 60 images from REDS and 200 images from LOLBlur dataset for477

testing. The degraded images from REDS dataset feature a variety of realistic scenes and objects,478

which suffer from both motion blurs and compression. And the images from LOLBlur dataset cover479

a range of real-world dynamic dark scenarios with mixed degradation of low light and blurs.480

A.2 More Visual Results481

Input

GT

Restormer PromptIR

Daclip-IR Ours

Figure 6: Qualitative comparison on mixed degraded images from LOLBlur dataset.

A.3 Details about Metrics on Multiple Dagradation482
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Figure 7: Qualitative comparison on mixed degraded images from REDS dataset.

Table 6: Comparison of the restoration results over ten different datasets on PSNR

Blurry Hazy JPEG Low-light Noisy Raindrop Rainy Shadowed Snowy Inpainting Average

SwinIR 24.49 23.49 24.44 19.59 25.13 24.64 22.07 23.97 21.86 24.05 23.37
NAFNet 26.12 24.05 26.81 22.16 27.16 30.67 27.32 24.16 25.94 29.03 26.34
Restormer 26.34 23.75 26.90 22.17 27.25 30.85 27.91 23.33 25.98 29.88 26.43
AirNet 26.25 23.56 26.98 14.24 27.51 30.68 28.45 23.48 24.87 30.15 25.62
PromptIR 26.50 25.19 26.95 23.14 27.56 31.35 29.24 24.06 27.23 30.22 27.14
IR-SDE 24.13 17.44 24.21 16.07 24.82 28.49 26.64 22.18 24.70 27.56 23.64
DiffBIR 22.79 20.52 22.39 16.96 21.60 23.22 21.04 22.27 20.63 18.77 21.01
Daclip-IR 27.03 29.53 23.70 22.09 24.36 30.81 29.41 27.27 26.83 28.94 27.01
Ours 26.66 30.28 27.15 22.45 27.74 30.51 28.26 28.63 28.09 30.88 28.06
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Table 7: Comparison of the restoration results over ten different datasets on SSIM

Blurry Hazy JPEG Low-light Noisy Raindrop Rainy Shadowed Snowy Inpainting Average

SwinIR 0.758 0.848 0.734 0.735 0.690 0.758 0.623 0.757 0.665 0.743 0.731
NAFNet 0.804 0.926 0.780 0.809 0.768 0.924 0.848 0.839 0.869 0.901 0.847
Restormer 0.811 0.915 0.781 0.815 0.762 0.928 0.862 0.836 0.877 0.912 0.850
AirNet 0.805 0.916 0.783 0.781 0.769 0.926 0.867 0.832 0.846 0.911 0.844
PromptIR 0.815 0.933 0.784 0.829 0.774 0.931 0.876 0.842 0.887 0.918 0.859
IR-SDE 0.730 0.832 0.615 0.719 0.640 0.822 0.808 0.667 0.828 0.876 0.754
DiffBIR 0.695 0.761 0.607 0.665 0.395 0.682 0.573 0.568 0.566 0.678 0.618
Daclip-IR 0.810 0.931 0.532 0.796 0.579 0.882 0.854 0.811 0.854 0.894 0.794
Ours 0.839 0.962 0.782 0.826 0.789 0.908 0.857 0.862 0.893 0.916 0.864

Table 8: Comparison of the restoration results over ten different datasets on LPIPS

Blurry Hazy JPEG Low-light Noisy Raindrop Rainy Shadowed Snowy Inpainting Average

SwinIR 0.347 0.180 0.392 0.362 0.439 0.353 0.481 0.335 0.388 0.265 0.354
NAFNet 0.284 0.043 0.303 0.158 0.216 0.082 0.180 0.138 0.096 0.085 0.159
Restormer 0.282 0.054 0.300 0.156 0.215 0.083 0.170 0.145 0.095 0.072 0.157
AirNet 0.279 0.063 0.302 0.321 0.264 0.095 0.163 0.145 0.112 0.071 0.182
PromptIR 0.267 0.051 0.269 0.140 0.230 0.078 0.147 0.143 0.082 0.068 0.147
IR-SDE 0.198 0.168 0.246 0.185 0.232 0.113 0.142 0.223 0.107 0.065 0.167
DiffBIR 0.269 0.158 0.244 0.273 0.442 0.187 0.309 0.261 0.236 0.246 0.263
Daclip-IR 0.140 0.037 0.317 0.114 0.272 0.068 0.085 0.118 0.072 0.047 0.127
Ours 0.159 0.021 0.204 0.126 0.153 0.048 0.112 0.103 0.070 0.056 0.105

Table 9: Comparison of the restoration results over ten different datasets on FID

Blurry Hazy JPEG Low-light Noisy Raindrop Rainy Shadowed Snowy Inpainting Average

SwinIR 53.84 35.43 83.33 156.55 126.87 111.64 186.60 70.22 79.51 139.71 104.37
NAFNet 42.99 15.73 71.88 73.94 82.08 56.43 86.35 47.32 35.76 44.32 55.68
Restormer 39.08 15.34 72.68 78.22 87.14 50.97 78.16 48.33 33.45 36.96 54.03
AirNet 41.23 21.91 78.56 154.2 93.89 52.71 72.07 64.13 64.13 32.93 64.86
PromptIR 36.5 10.85 73.02 67.15 84.51 44.48 61.88 43.24 28.29 32.69 48.26
IR-SDE 29.79 23.16 61.85 66.42 79.38 50.22 63.07 50.71 34.63 32.61 49.18
DiffBIR 37.84 31.83 66.07 150.96 127.27 81.27 133.60 74.09 53.62 154.02 91.03
Daclip-IR 14.13 5.66 42.05 52.23 64.71 38.91 52.78 25.48 27.26 25.73 34.89
Ours 18.72 5.92 37.23 62.21 44.36 23.77 44.30 23.39 22.77 23.50 30.62

Table 10: Impact of rank in LoRAs

Rank Deblurring Denoising
PSNR↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR↑ SSIM ↑ LPIPS ↓ FID ↓

2 26.35 0.831 0.170 21.35 27.57 0.783 0.163 48.98
4 26.64 0.841 0.157 18.79 27.74 0.789 0.153 44.32
8 26.79 0.845 0.151 18.01 27.81 0.791 0.150 43.29

16 26.80 0.846 0.151 17.90 27.83 0.792 0.147 42.82
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paper’s contributions and scope?486

Answer: [Yes]487

Justification: The main claims made in the abstract and introduction1 accurately reflect the488

paper’s contributions and scope.489

Guidelines:490

• The answer NA means that the abstract and introduction do not include the claims491

made in the paper.492
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contributions made in the paper and important assumptions and limitations. A No or494
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a complete (and correct) proof?533

Answer: [Yes]534
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instructions for how to replicate the results, access to a hosted model (e.g., in the case569
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appropriate to the research performed.571
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sions to provide some reasonable avenue for reproducibility, which may depend on the573

nature of the contribution. For example574

(a) If the contribution is primarily a new algorithm, the paper should make it clear how575

to reproduce that algorithm.576

(b) If the contribution is primarily a new model architecture, the paper should describe577

the architecture clearly and fully.578

(c) If the contribution is a new model (e.g., a large language model), then there should579

either be a way to access this model for reproducing the results or a way to reproduce580
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the dataset).582

(d) We recognize that reproducibility may be tricky in some cases, in which case583

authors are welcome to describe the particular way they provide for reproducibility.584

In the case of closed-source models, it may be that access to the model is limited in585

some way (e.g., to registered users), but it should be possible for other researchers586

to have some path to reproducing or verifying the results.587

5. Open access to data and code588
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Question: Does the paper provide open access to the data and code, with sufficient instruc-589

tions to faithfully reproduce the main experimental results, as described in supplemental590

material?591

Answer: [No]592

Justification: Upon acceptance of the paper, we will release the code under an open-source593

license, which will allow the community to access and verify the experimental results.594

Guidelines:595

• The answer NA means that paper does not include experiments requiring code.596

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/597

public/guides/CodeSubmissionPolicy) for more details.598

• While we encourage the release of code and data, we understand that this might not be599

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not600

including code, unless this is central to the contribution (e.g., for a new open-source601

benchmark).602

• The instructions should contain the exact command and environment needed to run to603

reproduce the results. See the NeurIPS code and data submission guidelines (https:604

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.605

• The authors should provide instructions on data access and preparation, including how606

to access the raw data, preprocessed data, intermediate data, and generated data, etc.607

• The authors should provide scripts to reproduce all experimental results for the new608

proposed method and baselines. If only a subset of experiments are reproducible, they609

should state which ones are omitted from the script and why.610

• At submission time, to preserve anonymity, the authors should release anonymized611

versions (if applicable).612

• Providing as much information as possible in supplemental material (appended to the613

paper) is recommended, but including URLs to data and code is permitted.614

6. Experimental Setting/Details615

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-616

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the617

results?618

Answer: [Yes]619

Justification: The paper provides detailed information on all training and test aspects,620

including datasets, metrics, comparison methods, hyperparameters, the type of optimizer621

used, and other relevant details necessary to understand the results in Sections 4.1 and 4.2.622

Guidelines:623

• The answer NA means that the paper does not include experiments.624

• The experimental setting should be presented in the core of the paper to a level of detail625

that is necessary to appreciate the results and make sense of them.626

• The full details can be provided either with the code, in appendix, or as supplemental627

material.628

7. Experiment Statistical Significance629

Question: Does the paper report error bars suitably and correctly defined or other appropriate630

information about the statistical significance of the experiments?631

Answer: [Yes]632

Justification: The paper reports error bars appropriately and includes correctly defined infor-633

mation regarding the statistical significance of the experiments, ensuring the transparency634

and reliability of the results.635

Guidelines:636

• The answer NA means that the paper does not include experiments.637

• The authors should answer "Yes" if the results are accompanied by error bars, confi-638

dence intervals, or statistical significance tests, at least for the experiments that support639

the main claims of the paper.640
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• The factors of variability that the error bars are capturing should be clearly stated (for641

example, train/test split, initialization, random drawing of some parameter, or overall642

run with given experimental conditions).643

• The method for calculating the error bars should be explained (closed form formula,644

call to a library function, bootstrap, etc.)645

• The assumptions made should be given (e.g., Normally distributed errors).646

• It should be clear whether the error bar is the standard deviation or the standard error647

of the mean.648

• It is OK to report 1-sigma error bars, but one should state it. The authors should649

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis650

of Normality of errors is not verified.651

• For asymmetric distributions, the authors should be careful not to show in tables or652

figures symmetric error bars that would yield results that are out of range (e.g. negative653

error rates).654

• If error bars are reported in tables or plots, The authors should explain in the text how655

they were calculated and reference the corresponding figures or tables in the text.656

8. Experiments Compute Resources657

Question: For each experiment, does the paper provide sufficient information on the com-658

puter resources (type of compute workers, memory, time of execution) needed to reproduce659

the experiments?660

Answer: [Yes]661

Justification: The paper provides detailed information regarding the computer resources662

used in Sections 4.1, and time of execution in Table 1.663

Guidelines:664

• The answer NA means that the paper does not include experiments.665

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,666

or cloud provider, including relevant memory and storage.667

• The paper should provide the amount of compute required for each of the individual668

experimental runs as well as estimate the total compute.669

• The paper should disclose whether the full research project required more compute670

than the experiments reported in the paper (e.g., preliminary or failed experiments that671

didn’t make it into the paper).672

9. Code Of Ethics673

Question: Does the research conducted in the paper conform, in every respect, with the674

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?675

Answer: [Yes]676

Justification: The research conducted in the paper is in full compliance with the NeurIPS677

Code of Ethics.678

Guidelines:679

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.680

• If the authors answer No, they should explain the special circumstances that require a681

deviation from the Code of Ethics.682

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-683

eration due to laws or regulations in their jurisdiction).684

10. Broader Impacts685

Question: Does the paper discuss both potential positive societal impacts and negative686

societal impacts of the work performed?687

Answer: [Yes]688

Justification: The paper provides both the potential benefits and the risks associated with the689

research, ensuring a comprehensive assessment of its societal implications.690

Guidelines:691
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• The answer NA means that there is no societal impact of the work performed.692

• If the authors answer NA or No, they should explain why their work has no societal693

impact or why the paper does not address societal impact.694

• Examples of negative societal impacts include potential malicious or unintended uses695

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations696

(e.g., deployment of technologies that could make decisions that unfairly impact specific697

groups), privacy considerations, and security considerations.698

• The conference expects that many papers will be foundational research and not tied699

to particular applications, let alone deployments. However, if there is a direct path to700

any negative applications, the authors should point it out. For example, it is legitimate701

to point out that an improvement in the quality of generative models could be used to702

generate deepfakes for disinformation. On the other hand, it is not needed to point out703

that a generic algorithm for optimizing neural networks could enable people to train704

models that generate Deepfakes faster.705

• The authors should consider possible harms that could arise when the technology is706

being used as intended and functioning correctly, harms that could arise when the707

technology is being used as intended but gives incorrect results, and harms following708

from (intentional or unintentional) misuse of the technology.709

• If there are negative societal impacts, the authors could also discuss possible mitigation710

strategies (e.g., gated release of models, providing defenses in addition to attacks,711

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from712

feedback over time, improving the efficiency and accessibility of ML).713

11. Safeguards714

Question: Does the paper describe safeguards that have been put in place for responsible715

release of data or models that have a high risk for misuse (e.g., pretrained language models,716

image generators, or scraped datasets)?717

Answer: [NA]718

Justification: The paper does not introduce assets that carry a high risk for misuse, therefore,719

no specific safeguards for data or model release are required.720

Guidelines:721

• The answer NA means that the paper poses no such risks.722

• Released models that have a high risk for misuse or dual-use should be released with723

necessary safeguards to allow for controlled use of the model, for example by requiring724

that users adhere to usage guidelines or restrictions to access the model or implementing725

safety filters.726

• Datasets that have been scraped from the Internet could pose safety risks. The authors727

should describe how they avoided releasing unsafe images.728

• We recognize that providing effective safeguards is challenging, and many papers do729

not require this, but we encourage authors to take this into account and make a best730

faith effort.731

12. Licenses for existing assets732

Question: Are the creators or original owners of assets (e.g., code, data, models), used in733

the paper, properly credited and are the license and terms of use explicitly mentioned and734

properly respected?735

Answer: [Yes]736

Justification: The paper meticulously cites all external assets in references, including code,737

dataset, and models, acknowledging the contributions of their creators and respecting the738

associated licenses and terms of use.739

Guidelines:740

• The answer NA means that the paper does not use existing assets.741

• The authors should cite the original paper that produced the code package or dataset.742

• The authors should state which version of the asset is used and, if possible, include a743

URL.744
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.745

• For scraped data from a particular source (e.g., website), the copyright and terms of746

service of that source should be provided.747

• If assets are released, the license, copyright information, and terms of use in the748

package should be provided. For popular datasets, paperswithcode.com/datasets749

has curated licenses for some datasets. Their licensing guide can help determine the750

license of a dataset.751

• For existing datasets that are re-packaged, both the original license and the license of752

the derived asset (if it has changed) should be provided.753

• If this information is not available online, the authors are encouraged to reach out to754

the asset’s creators.755

13. New Assets756

Question: Are new assets introduced in the paper well documented and is the documentation757

provided alongside the assets?758

Answer: [Yes]759

Justification: The novel universal image restoration framework introduced in the paper is760

well documented, and the documentation is provided alongside the model in Sections 3,761

offering comprehensive details for replication and application.762

Guidelines:763

• The answer NA means that the paper does not release new assets.764

• Researchers should communicate the details of the dataset/code/model as part of their765

submissions via structured templates. This includes details about training, license,766

limitations, etc.767

• The paper should discuss whether and how consent was obtained from people whose768

asset is used.769

• At submission time, remember to anonymize your assets (if applicable). You can either770

create an anonymized URL or include an anonymized zip file.771

14. Crowdsourcing and Research with Human Subjects772

Question: For crowdsourcing experiments and research with human subjects, does the paper773

include the full text of instructions given to participants and screenshots, if applicable, as774

well as details about compensation (if any)?775

Answer: [NA]776

Justification: The paper does not engage in crowdsourcing experiments or research with777

human subjects therefore, it does not include participant instructions, screenshots, or details778

about compensation.779

Guidelines:780

• The answer NA means that the paper does not involve crowdsourcing nor research with781

human subjects.782

• Including this information in the supplemental material is fine, but if the main contribu-783

tion of the paper involves human subjects, then as much detail as possible should be784

included in the main paper.785

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,786

or other labor should be paid at least the minimum wage in the country of the data787

collector.788

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human789

Subjects790

Question: Does the paper describe potential risks incurred by study participants, whether791

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)792

approvals (or an equivalent approval/review based on the requirements of your country or793

institution) were obtained?794

Answer: [NA]795
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Justification: The paper does not involve research with human subjects, so there are no796

participant risks to disclose, and no Institutional Review Board (IRB) approvals or equivalent797

reviews were required.798

Guidelines:799

• The answer NA means that the paper does not involve crowdsourcing nor research with800

human subjects.801

• Depending on the country in which research is conducted, IRB approval (or equivalent)802

may be required for any human subjects research. If you obtained IRB approval, you803

should clearly state this in the paper.804

• We recognize that the procedures for this may vary significantly between institutions805

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the806

guidelines for their institution.807

• For initial submissions, do not include any information that would break anonymity (if808

applicable), such as the institution conducting the review.809
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