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Abstract

In recent years, there has been a proliferation of ready-to-use large language mod-
els (LLMs) designed for various applications, both general-purpose and domain-
specific. Instead of advocating for the development of a new model or continuous
pretraining of an existing one, this paper introduces a pragmatic teacher-teacher
framework to facilitate mutual learning between two pre-existing models. By lever-
aging two teacher models possessing complementary knowledge, we introduce a
LIghtweight kNowledge alignmEnt (LINE) module aimed at harmonizing their
knowledge within a unified representation space. This framework is particularly
valuable in clinical settings, where stringent regulations and privacy considerations
dictate the handling of detailed clinical notes. Our trained LINE module excels in
capturing critical information from clinical notes, leveraging highly de-identified
data. Validation and downstream tasks further demonstrate the effectiveness of the
proposed framework.

1 Introduction

Clinical data frequently appears in various forms, with each format capturing overlapping but
complementary aspects of patient information. For instance, narrative details in a clinical note may
be processed into a structured list of clinical concepts for research purposes. Similarly, a CT scan
report provides descriptive findings that are directly linked to the visual data in the corresponding
scan. Ideally, both forms of data would be jointly accessible; however, practical challenges, such as
privacy restrictions, often limit us to only one form. This limitation raises an important question:

Could we use the accessible form of data to approximate or represent the unobserved one?

To explore this question, we can leverage the capabilities of large pretrained models. Recent years
have seen the emergence of large language models (LLMs), which have demonstrated impressive
performance across a range of tasks, including prediction, generation, and representation learning
[1, 28, 35]. In the clinical domain, many pretrained LLMs—such as CODER [39], UmlsBERT [16],
Clinical BioBERT [3], SapBERT [14], PubmedBERT [9], and BioBERT [12]—are based on BERT
architectures with approximately 300 million parameters. These models are typically initialized with
BERT weights and then undergo further pretraining on biomedical texts, a process often referred to
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as continual pretraining. While this approach allows the model to integrate both general and domain-
specific knowledge, it is also time-consuming and resource-intensive. The recent proliferation of
off-the-shelf clinical LLMs now prompts a pragmatic idea:

Can the pretrained models be made to directly exchange knowledge with one another?

Inspired by the two questions posed above, we propose a teacher-teacher framework for clinical
representation learning. The core idea is as follows: given paired training data in two distinct forms
and two pretrained models with complementary knowledge bases, the framework processes each form
of data separately through one of the models. It then processes the resulting representations through a
newly proposed module and further aligns them within a unified representation space. This alignment
entails a mutual teaching process, where both models act as teachers, exchanging their knowledge.
The complementary knowledge arises from two sources: first, the complementary information
inherent to each form of data, and second, the distinct knowledge embedded in each pretrained model
due to differences in their original training corpora. We summarize our key innovations as follows:

• LINE module for teacher-teacher learning: We propose a lightweight knowledge alignment
(LINE) module to facilitate effective teacher-teacher learning. This module takes representations
from two pretrained teacher models and projects them into a unified representation space, guided
by an alignment loss and a relational loss.

• Efficient training with residual information recovery: We adopt a two-stage, few-epoch training
process focused solely on the LINE module, keeping the pretrained model weights frozen. In
the first stage, we train the LINE module for a few epochs to achieve initial alignment and to
capture residuals (complementary information across two forms of data). In the second stage, these
residuals are used to refine the training data for further few-epoch training, offering insights into
the complementary information between data forms.

• Generating cross-form representation: Once trained, the LINE module enables cross-form
representation for downstream tasks. When only one data form is available, the corresponding
teacher model and LINE projection can generate a proxy for the missing data, enabling its use in
the downstream tasks.

We evaluate our teacher-teacher framework on two fronts: (1) whether knowledge alignment can
improve the performance of one or both teacher models across different tasks, and (2) whether the
available data form can be used to generate better proxies for the other, missing data form.

1.1 Clinical use case

While using one form data to represent another is a relevant question across various fields, we
demonstrate the utility of our proposed method through a real-world clinical use case. This example
is particularly relevant to clinical data privacy concerns, highlighting its practical importance. Specir-
ically, we focus on two data forms: clinical notes and their corresponding structured lists of clinical
concepts. Clinical notes play a crucial role in numerous applications, such as disease diagnosis,
disease progression prediction, patient classification, and risk assessment [26, 30, 15].However,
working with real clinical notes is subject to strict regulations due to privacy concerns. Sharing
clinical notes between institutions necessitates approval from an institutional review board (IRB),
adding layers of regulatory complexity and substantially extending project timelines.

These challenges are a major barrier to scaling up clinical datasets for pre-training. As an alternative,
efficient software [e.g. 37, 24] can directly extract structured clinical concepts from clinical notes.
This approach offers two advantages: First, because clinical concepts are drawn from a predefined
dictionary – specifically, the Unified Medical Language System (UMLS) [6] – it reduces the risk of
including sensitive information, making data sharing across research groups more feasible. Second,
known relationships among many clinical concepts can be further incorporated to form a structured
graph, capturing both the textual content and interrelationships among concepts.

In this use case, we treat the clinical note as the missing data form and reframe our question
accordingly: Can we leverage the list of clinical concepts to effectively summarize and provide a
proxy for the content in the clinical note?
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1.2 Related works

Different modes of learning Existing knowledge within pretrained LLMs varies based on their
learning modes and domains of their pretrained data. The first mode, learning by generalization,
involves training models on extensive datasets to generalize knowledge through example-based
learning [1, 28]. These models encode knowledge directly into their embeddings, which capture
syntactic and semantic relationships in texts. Numerous studies have demonstrated the efficacy of
LLMs in encoding syntactic heuristics and retaining factual knowledge to varying extents [8, 20,
29, 19, 22]. Recent advancements, exemplified by models such as Sentence-T5 [18], E5 [32], BGE
[35], and GPT-4 [2], have focused on generating high-quality textual representation for downstream
tasks. However, in specialized clinical domains, vocabulary diverges significantly from general
corpora, requiring that these general-purpose models undergo additional training on biomedical data
to ensure relevance and accuracy. Models like BioBERT [12] and PubmedBERT [9], pretrained on
biomedical texts, have demonstrated superior performance compared to BERT in biomedical-specific
tasks. Clinical BioBERT [3] further augment their training data with MIMIC datasets to incorporate
medical knowledge derived from real-world medical practices. Nevertheless, scaling up training data
in the clinical domain poses challenges due to privacy regulations, as previously noted.

The second mode, learning by integrating pre-existing knowledge, focuses on encoding established
factual associations between concepts into the model’s representation space. In the clinical domain,
knowledge repositories such as UMLS [6] offer comprehensive biomedical ontologies and relatedness
information between concepts, which can be treated as existing knowledge graph and harnessed
during the pre-training phase. For example, SapBERT [14] leverages synonymous relationships
extracted from UMLS during self-supervised pretraining, strengthening the model’s understanding of
semantic similarity. UmlsBERT [16] incorporates semantic type information from UMLS, enabling a
deeper semantic understanding of clinical texts. Furthermore, CODER [39] encodes more granular
relationships, such as "may prevent or treat" and "may cause", into their knowledge networks,
enhancing its ability to capture medical associations. By integrating such pre-existing domain-specific
knowledge graph during training, these models show improved ability to navigate the intricacies of
specialized domains, leading to better performance in domain-specific tasks [14, 16, 39].

Distinct from these two modes, the proposed teacher-teacher framework adopts the third mode,
learning by alignment. This mode of learning involves creating a joint representation space between
two models using paired data, such as an image with its textual description, audio/video with its
transcript, or multilingual translated texts. This approach focuses on teaching models to distinguish
between paired and unpaired data, making it especially effective for multimodal applications. For
example, the seminal CLIP framework [21] uses different encoders for text and images to embed
each mode of information separately. It then employs a contrastive loss to align these multimodal
embeddings by end-to-end training on both encoders, ensuring that related text and image pairs are
closely aligned in the representation space. Similarly, Li et al. [13] utilize a text encoder and a
text-referred audio encoder with inter-modality and intra-modality training, enhancing the model’s
ability to integrate complementary features from different views. Wang et al. [34] propose an efficient
global-local alignment framework for co-training language with videos, and its improved performance
further highlights the advantages of learning the homogeneity as well as heterogeneity across language
and visual modalities. For multilingual translation tasks, alignment learning has also demonstrated
remarkable efficacy. For example, Reimers and Gurevych [23] introduce a teacher-student network
model in which a fixed teacher network, well-versed in a target language, guides a student network,
initially proficient in a different language, to emulate the teacher’s knowledge. This method not
only enhances translation accuracy but also creates a joint representation space that offers potentially
interesting insights into cross-linguistic differences.

Other related works In a broader context, if we view the accessible form of data as the source
domain and the inaccessible one as the target domain, our approach is weakly related to generative
domain adaptation; however, unlike generative domain adaptation, our method requires paired data
during training. Traditional methods in this field often utilize generative models to synthesize samples
across domains, helping the model generalize effectively in new contexts. Some example frameworks
include generative adversarial networks [41], variational autoencoders [33], diffusion models [5],
or generative pretrained transformers [36]. However, our framework diverges from these in that we
specifically deploy two pretrained teacher models, each with distinct expertise and capabilities. This
design allows the models not only to align but also to exchange complementary knowledge during
the learning process, potentially enhancing the performance of one or both teacher models.
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Figure 1: The proposed teacher-teacher framework is illustrated for a specific use case. The two
forms of training data are unstructured clinical notes and structured clinical concepts represented in a
relational graph. Two pretrained teacher LLMs independently embed these two forms of data, with
the LINE module facilitating mutual learning and alignment. Through this process, the embeddings
of the two data forms converge toward a shared representation space, enabling knowledge exchange
and cross-form representation between the two teacher models.

2 The teacher-teacher framework

2.1 Training data and alignment objective

This section provides a detailed illustration of our LINE framework for a specific clinical use case,
aligning clinical concepts with corresponding clinical texts. The algorithm can be extended to support
a broad range of other alignment tasks, as discussed in Section 4. Specifically, our paired training data
take the form (CLINICAL TEXT, LIST OF CLINICAL CONCEPTS), where each list of clinical concepts
is derived from the clinical texts. We further augment the clinical concepts with known relationships
from UMLS to form a structured graph. The primary objective is to create a “summarized” embedding
for the list of concepts and align it with the projected text embedding, as illustrated in Figure 1.

2.2 Teacher models

A key design principle in our framework is selecting two teacher models with complementary
knowledge bases. To this end, we choose (1) a general-purpose LLM pretrained on large-scale,
general-domain text, and (2) a domain-specific LLM with established knowledge of biomedical
concept relationships. In this setup, the general-purpose model (Teacher 1) learns factual relationships
between clinical concepts from the domain-specific model (Teacher 2), while Teacher 2 enhances its
grasp of the contextual connections linking these concepts. In the paper, we explore two combinations
of teacher models: BGE+CODER and GPT-4+CODER.

Teacher 1: General purpose LLM BGE is a general-purpose embedding model trained on large,
diverse language datasets. Initially trained on 100 million text pairs from open web corpora, BGE
further underwent multitask learning on various retrieval and reranking tasks, including the CMedQA-
v2 medical question and answer dataset [40]. It ranks highly on the Massive Text Embedding
Benchmark (MTEB) dataset [17], which covers tasks like classification, reranking, retrieval, STS,
and paired classification tasks. GPT-4 is a large-scale, multimodal model considered as one of the
state-of-the-art tools for language modeling and generation. Although its model architecture and
trained weights are not publicly available, GPT-4 can generate embeddings for textual data, accessible
through the OpenAI API. For our experiments, we used the "text-embedding-3-small" model, which
produces embeddings with a dimension of 1536.
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Teacher 2: LLM with domain knowledge CODER is initialized by PubMedBERT [9] and trained
on the UMLS 2020AA release relation triplets, encompassing 4.27M concepts, 15.48M terms, and
87.89M relations across 127 semantic types, 14 relation types, and 923 relationship attributes. It
employs contrastive learning with relation triplets, i.e. (head entity, relation, tail entity). CODER
demonstrates superior performance in term normalization and disease classification tasks compared
to SapBERT, Clinical BERT, PubMedBERT, and BioBERT.

In our two combinations of teacher models, the general purpose LLMs (BGE and GPT-4) with their
extensive and diverse training, generally outperform CODER. This imbalance might suggest that they
cannot learn from CODER. However, our experiments suggest that not only can CODER benefit from
the knowledge of the general-purpose LLM, but the performance of BGE or GPT-4 also improves
on certain tasks with alignment training. We hypothesize that the alignment process regularizes
the embedding space of the general-purpose LLM by incorporating CODER’s association graph,
resulting in a more diversified and robust representation space.

2.3 LIghtweight kNowledge alignmEnt module (LINE)

Our framework eliminates the need for any further training of the original teacher models. Instead,
we introduce a trainable LIghtweight kNowledge alignmEnt module (LINE), which explicitly models
projection operations to align the embeddings from the general-purpose LLM and the domain-specific
LLM into a unified representation space.

First, we derive clinical text embeddings and concept embeddings from the general-purpose LLM and
domain-specific LLM using pretrained checkpoints available through Huggingface or the OpenAI
API, denoted as t(0) ∈ Rdt and c(0) ∈ Rdc , respectively. These initial embeddings retain the original
knowledge encoded within each teacher model. We then incorporate trainable projection layers
specific to each LLM to refine and align these embeddings.

Projection layer for general purpose LLM: Fully-connected layer The projection layer for the
output embeddings t(0) from BGE or GPT-4 is implemented as a simple fully-connected linear layer:

t := F(t(0)) = FC(t(0)).

This approach aligns with prior work [4, 7, 21], where linear projections are used without non-linear
activation functions.

Projection layer for domain-specific LLM: Multihead graph attention This layer is designed to
reinforce the domain-specific knowledge embedded in CODER from the UMLS ontology. We focus
on modeling seven broad categories of UMLS relations: parent-child hierarchy, synonyms, related
and possibly synonymous, broad relationship, narrow relationship, non-synonymous/narrow/broad
relationship, and quantifiable relationships. Each relationship type is represented by a distinct
adjacency matrix, and a multi-head graph attention (MHGA) layer assigns each type to a separate
attention head. This design enables the layer to explicitly account for the unique structure of each
relation. The outputs from all attention heads are aggregated and projected into the joint representation
space. Formally, for any concept with an initial CODER embedding c(0), we have:

c := G(c(0)) = averagek∈[7]

[
GraphAttnk(Wcc

(0), adjacency matrixk)
]
, (1)

where Wc ∈ Rdt×dc is the projection matrix that maps the initial CODER embeddings to the same
dimension as the BGE or GPT-4 embeddings. Additional details on the handling of negatively
mentioned concepts are provided in the Appendix.

2.4 Training strategy

To enable the two teacher models to enhance each other’s knowledge in a time-efficient and resource-
efficient way, we adopt a two-stage, few-epoch training strategy exclusively for the LINE module.
This approach effectively aligns the embeddings from the general-purpose and domain-specific
LLMs without any additional training of the original pretrained models. It also allows for the use of
proprietary models, such as GPT-4, where access to the underlying pretrained model is restricted.

Unified representation via alignment The first stage involves an initial round of few-epoch training
aimed at defining residuals, i.e. the differences between the learned representations of the two data
forms. This stage is critical for capturing complementary information between the two models.
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Specifically, we aim to align the embedding for clinical texts with its list of associated concept
embeddings in the joint representation space. This alignment is quantified using a monotonic
score function s, which measures the degree of alignment between the elements of each data pair.
Formally, let pi = ({ci,j}j∈[mi], ti) denote a positive pair, where ti is the clinical text embedding
and {ci,j}j∈[mi] are the corresponding concept embeddings with a total of mi concepts, for all
i ∈ [N ]. The negative pair is defined as ni,i′ = ({ci,j}j∈[mi], ti′) for i′ ̸= i ∈ [N ]. The score
function s is defined as s(·) = s({cj}j∈[m], t) = −∥t− mean({cj}j∈[m])∥2. Our goal is to ensure
s(pi) ≥ s(ni,i′), indicating better alignment of positive pairs over negative pairs.

To account for complementary information in the positive pairs, we introduce a data-dependent
alignment weight ρi ∈ (0, 1] to allow varying degrees of information overlap. For example, in
extracting clinical concepts from clinical texts, misspellings can result in failure to detect key concepts;
see Table A1 in the Appendix for concrete examples. A smaller ρi value indicates more tolerance
for misalignment, reflecting cases with less overlap between the text and concept embeddings. The
alignment loss is defined as: ∑

i

∑
i′ ̸=i

ρif(s(pi), s(ni,i′)),

where f is a contrastive loss function, and we used the triplet loss [25] for our experiments. In our
specific context, the weight ρi is computed as the percentage of words in the text captured in the
concept list, i.e. ρi = number of words accounted for in text i

total word count in text i .

In addition, to preserve the integrity of existing concept relations, we incorporate a relational
contrastive loss during training. Here, positive pairs represent known relationships, while negative
pairs indicate absent or unknown relationships. This additional loss term ensures that information
from the known association graph is retained throughout the alignment process.

Refinement through residual recovery Once the first training stage stabilizes, we move to the
second stage, focusing on recovering residual information to further refine the alignment. The residual
ei for each data pair is computed as:

ei = ti − mean({ci,j}j∈[mi]), i ∈ [N ].

To further consolidate information from residuals, we make use of a projected concept dictionary
CG , consisting of all clinical concepts from UMLS, projected using the trained G defined in (1). For
each residual ei, we select concepts from CG that have a cosine similarity of 0.9 or higher with ei.
The most similar concept from the selected subset, denoted as ci,mi+1, is then added to the concept
embeddings set, refining the training pair to ({ci,j}j∈[mi+1], ti) for further few-epoch training.

3 Training and validation

3.1 Data preprocessing and training

Our model, referred to as LINE, is trained with two configurations of teacher models: BGE+CODER
and GPT-4+CODER. For our training dataset, we utilized 332K discharge notes and 2.2M radiology
reports from 146K patients available in the MIMIC-IV database [11]. Given the structured nature
of both types of clinical notes, we began by segmenting the notes into their respective sections.
Radiology reports were divided into seven sections: examination, indication, technique, comparison,
finding, procedures, and impression. Similarly, discharge notes were segmented into fourteen sections:
chief complaint, major surgical or invasive procedure, history of present illness, past medical history,
social history, family history, physical exam, pertinent results, brief hospital course, medications on
admission, discharge medications, discharge disposition, discharge diagnosis, discharge condition,
discharge instructions, and follow-up instructions.

To extract clinical concepts from these notes, we employed the Narrative Information Linear Ex-
traction (NILE) software [37]. NILE outputs a list of clinical concepts present in each segmented
text, indicating whether each concept is mentioned positively or negatively. Figure 1 provides an
illustrative example. Next, we combined the original text with its extracted clinical concepts to create
paired training data. This preprocessing resulted in a dataset of 7.2M text-concept pairs. During
this process, we located the extracted concepts within the text and counted the number of words
accounted for by the list of concepts. The alignment weight for each text was then calculated as
ρ = number of words accounted for

total word count . To construct the relational adjacency matrices for the CODER projection
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Table 1: For each positive concept-text pair, we randomly selected 100 other texts to replace the
original text, forming negative pairs. We then calculated the cosine similarity between the mean
of the clinical concept list and the text, with embeddings generated by various models. By ranking
these cosine similarities from highest to lowest, we identified the rank of each positive pair among its
negative pairs and computed the mean rank, mean reverse rank, and Top-10 accuracy (Top10@Acc).
Improvements over the corresponding teacher models are indicated by "↓" for mean rank and "↑" for
mean reverse rank and Top10@Acc.

Models / Metric Mean Rank ↓ Mean Reverse Rank ↑ Top10@Acc ↑
BioBERT 35.83 0.127 0.258
Clinical BioBERT 34.51 0.143 0.287
SapBERT 15.49 0.346 0.588
PubMedBERT 39.55 0.117 0.210
CODER 43.79 0.092 0.181
BGE 5.526 0.534 0.845
GPT-4 1.778 0.820 0.988

LINE
BGE+CODER 1.437↓ 0.873↑ 0.997↑
GPT-4+CODER 1.477↓ 0.872↑ 0.995↑

layer, we leveraged the 2022AB release of the UMLS knowledge graph, which encompasses 9M
concepts, defined by 4M unique identifiers (CUIs), and includes 25M relationships.

We adopted the Adam optimizer with a learning rate of 10−3 and a batch size of 128. The training
process was divided into two stages as detailed in Section 2.4: We first trained the model for three
epochs initially, during which we identified residual concepts not adequately captured. Then, using
the model checkpoint from the first phase, we recovered the residual concepts and refined the training
pairs. The model was then trained for an additional two epochs. The alignment loss and the relational
loss both converged rapidly. All experiments were conducted using an NVIDIA RTX 8000 GPU with
48GB of VRAM. The entire training process required less than 10 hours on a single GPU.

3.2 Validation on alignment objective

This section validates the effectiveness of our trained LINE model in aligning the representation
spaces of the two teachers. To achieve this, we utilized a holdout subset of patients whose clinical
notes were excluded from the training set. This subset comprised 100K radiology reports from 92K
patients. We applied the same data preprocessing steps, resulting in 275K text-concept pairs. Our
evaluation method involved the following steps. For each positive pair, we randomly sampled 100
negative pairs by substituting the clinical text with a different one. We then computed the cosine
similarity between the mean embedding of the concept list and the text embedding for all pairs, in
line with our alignment objective. Finally, we ranked these pairs based on their cosine similarity
scores, from highest to lowest.

To assess performance, we calculated the mean rank, mean reverse rank, and Top-10 accuracy for all
positive pairs. These metrics are presented in Table 1. We compared our LINE model against several
models: GPT-4, BGE, CODER, SapBERT, Clinical BioBERT, PubMedBERT, and BioBERT. As
shown in Table 1, LINE with BGE+CODER achieves the highest alignment between concept and
text representations, outperforming the other models. Both LINE models show improved alignment
compared to their respective teacher models, validating the consistency of our training objectives.

3.3 Validation on downstream tasks

In this section, the performance of our trained LINE models on various downstream tasks is evaluated
based on two main aspects: (1) to determine whether the teacher models can benefit from mutual
learning, and (2) to assess whether the LINE module can generate more effective proxies for clinical
text using the list of clinical concepts. Specifically, we use the LINE-projected CODER embeddings
for tasks involving clinical concepts and the LINE-projected BGE or GPT-4 embeddings for tasks
involving clinical text. Given that two model configurations are used, we refer to each configuration
as "LINE" in our tables, with "Teacher 1+Teacher 2" specified for clarity. Three types of downstream
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Table 2: AUCs for detecting related pairs versus randomly selected pairs under various models.
The classes of clinical concepts include parent-child hierarchy, siblings hierarchy, may treat or may
prevent, classifies as, differential diagnosis, method of, and causative of. The last row lists the detailed
number of positive pairs in each class. Improvements over the corresponding teacher models are
indicated by "↑".

Models / Relation Parent Sibling May Treat/Prevent Classifies DDX Method of Causative

BioBERT 0.785 0.754 0.442 0.842 0.665 0.722 0.708
Clinical BioBERT 0.837 0.814 0.386 0.885 0.733 0.825 0.753
SapBERT 0.940 0.874 0.672 0.960 0.874 0.871 0.914
PudmedBERT 0.637 0.651 0.639 0.640 0.634 0.535 0.604
CODER 0.943 0.886 0.441 0.969 0.844 0.774 0.899
BGE 0.968 0.940 0.840 0.984 0.927 0.906 0.944
GPT-4 0.974 0.940 0.825 0.991 0.939 0.934 0.935

LINE
BGE+CODER 0.978 ↑ 0.939 0.926 ↑ 0.989 ↑ 0.959 ↑ 0.971 ↑ 0.953 ↑
GPT-4+CODER 0.977 ↑ 0.932 0.931 ↑ 0.988 0.938 0.965 ↑ 0.947 ↑

# relation pairs 125152 48252 14686 14073 9777 6588 3711

Table 3: The mean of the F1 scores for different models over five random initializations on two i2b2
datasets. The results for BioBERT, Clinical BioBERT and UmlsBERT were directly copied from
[16] for comparison. Here, the LINE projection is applied to the token-level BGE embeddings. The
best result under each metric is highlighted in bold font.

Dataset i2b2 2006 i2b2 2014

Test. F1 Val. F1 Test. F1 Val. F1

BioBERT 93.3 93.8 94.6 93.9
Clinical BioBERT 93.1 93.4 94.3 93.0
UmlsBERT 93.6 94.4 94.9 94.3
CODER 98.0 96.9 97.7 97.8
BGE 97.2 96.1 97.1 97.1

LINE 98.1 97.2 98.1 98.1

tasks are considered: (1) a zero-shot clinical concept similarity evaluation task; (2) two standard i2b2
clinical NLP tasks; and (3) a renal cancer recurrence detection task.

3.3.1 Clinical concept similarity

We evaluated the quality of the LINE-projected embeddings based on their ability to detect known
relationships among 222K pairs of 159K concepts. These pairs were curated from several major
UMLS relation classes, including "may treat or may prevent”, "classifies”, "differential diagnosis”,
"method of", and "causative”. Detailed counts of positive pairs for each class are provided in the
last row of Table 2. To ensure a fair comparison with the other models, we removed the edges
corresponding to these evaluation pairs from the relational adjacency matrices used in the LINE
model. We then assessed the model’s ability to capture different types of relationships by calculating
cosine similarities between the embedding vectors of related pairs and comparing these to randomly
selected pairs with similar semantic characteristics. For example, when evaluating the "may treat or
may prevent" relationship, we used related disease-drug pairs as positive examples and compared
them against negative pairs also composed of disease-drug pairs.

We calculated the Area Under the Curve (AUC) of the cosine similarities to assess the models’ ability
to distinguish known pairs from random ones. As shown in Table 2, GPT-4 and BGE outperform
CODER and all other baseline clinical LLMs, serving as strong benchmarks. Notably, the LINE-
projected embeddings achieve AUCs that not only exceed those of the original CODER model but
also outperform the BGE benchmark in six of the seven relation classes and the GPT-4 benchmark in
four of the seven. In the remaining classes, LINE’s AUCs are comparable to their respective BGE
and GPT-4 benchmarks, with a deviation less than 0.008.
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Table 4: Performance metrics of sentence embeddings and their proxy embeddings generated from
concept lists for various models, averaged over five-fold cross-validation. Improvements over the
corresponding teacher models are indicated by "↑".

Model Concept Sentence

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

BioBERT 0.701 0.686 0.693 0.701 0.681 0.669 0.675 0.680
Clinical BioBERT 0.722 0.723 0.722 0.726 0.726 0.726 0.711 0.729
SapBERT 0.726 0.711 0.718 0.722 0.741 0.723 0.732 0.722
PubMedBERT 0.715 0.697 0.706 0.708 0.725 0.711 0.718 0.708
CODER 0.711 0.691 0.701 0.708 0.707 0.706 0.706 0.698
BGE 0.728 0.695 0.711 0.711 0.778 0.768 0.773 0.764
GPT-4 0.718 0.687 0.694 0.711 0.805 0.787 0.791 0.781

LINE
BGE+CODER 0.741 ↑ 0.728 ↑ 0.734 ↑ 0.722 ↑ 0.778 0.765 0.771 0.771 ↑
GPT-4+CODER 0.731 ↑ 0.715 ↑ 0.714 ↑ 0.722 ↑ 0.806 ↑ 0.786 0.789 0.781

Table 5: Difference in performance metrics between sentence embeddings and their proxy embeddings
generated from concept lists, calculated using results in Table 4. Reductions in difference, which
indicate improved alignment, are marked by "↓".

Model Precision Recall F1 Accuracy

BGE 0.050 0.073 0.062 0.053
GPT-4 0.087 0.100 0.097 0.070

LINE
BGE+CODER 0.037 ↓ 0.037 ↓ 0.037 ↓ 0.049 ↓
GPT-4+CODER 0.075 ↓ 0.071 ↓ 0.075 ↓ 0.059 ↓

3.3.2 Clinical NLP benchmarks

We evaluated our model on two standard biomedical named entity recognition (NER) benchmark
tasks: the i2b2 2006 de-identification challenge [31] and the i2b2 2014 de-identification challenge
[27]. We followed the train/validation/test splits specified in the original challenges, as detailed in
Table 1 of [3]. The datasets from 2006 and 2014 contain 317 and 43 label classes, respectively. The
NER tasks involve tokenizing sentences and then classifying each token within the sentence. For
this task, we used token-level embeddings from each model and the LINE projection was applied to
token-level BGE embeddings. GPT-4 was not included due to the limited access to its token-level
embedding. Our fine-tuning process followed the setting in [16]. Specifically, a single linear layer was
added on top of each model and trained for 20 epochs. We adopted Adam optimizer and the learning
rates for CODER, BGE and LINE were set to 2× 10−5, 2× 10−5 and 5× 5× 10−4, respectively.
The mean of the F1 scores calculated over five random initializations are reported in Table 3, and it
can be observed that LINE achieves the best overall performance.

3.3.3 Renal cancer recurrence detection

The dataset used for this downstream task comes from Mass General Brigham and was previously
curated, fully de-identified, and annotated for another ongoing project. Here, we briefly describe the
curation and annotation process. First, a phenotyping algorithm [38] was applied to identify a pool of
renal cell carcinoma (RCC) patients. From this pool, 300 RCC patients were randomly selected, and
a clinician reviewed all notes to extract one diagnostic-relevant sentence per patient. Each sentence
was annotated into one of three classes: uninformative of RCC recurrence, informative of past or
current recurrence, and informative of no recurrence. We then used NILE [37] to extract clinical
concepts from each sentence, excluding those where NILE failed to extract any concept. This resulted
in a final set of 288 labeled sentences, each paired with a list of corresponding clinical concepts. The
dataset comprises 136 uninformative sentences, 64 informative of recurrence, and 88 informative of
no recurrence.

This classification task is designed to test how effectively proxy sentences, generated from concept
lists, can detect recurrence information. Specifically, we aim to understand how well the proxy sen-
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tences perform in classifying uninformative, recurrence-informative, and non-recurrence-informative
cases, simulating scenarios where only concept lists, not full sentences, are available. To this end, we
additionally include classification results using raw sentences as a benchmark for expected optimal
performance. We used LINE-projected CODER to embed the concept lists and LINE-projected
GPT-4 or BGE to embed the raw sentences. A single linear layer was added on top of both models,
and we fine-tuned it for 2000 epochs, with early stopping when the change in loss was less than
10−5. We used Adam optimizer with a learning rate of 10−3. The same setup was applied to all
models for fair comparison. On average, the fine-tuning process took approximately one or two
minutes per model. The average performance metrics from five-fold cross-validation are reported in
Table 4. As shown, when raw sentences are available, GPT-4 and BGE achieve significantly better
classification results than the other benchmarks. LINE-projected embeddings for GPT-4 and BGE
manage to maintain a comparable level of classification performance. However, using only concept
lists for GPT-4 and BGE results in a substantial drop in classification performance. Notably, adding
the LINE projection reduces this performance gap, as shown in Table 5, supporting the effectiveness
of the LINE module in better approximating sentence embeddings using concept lists.

4 Conclusion and Discussion

This paper introduces a teacher-teacher paradigm in which two pretrained LLMs align different forms
of data to enable knowledge exchange and cross-form representation through a two-stage, few-epoch
training of the LINE module, guided by a well-defined alignment objective. Our downstream analysis
demonstrates that (1) the proposed LINE module effectively generates cross-form representations,
and (2) alignment learning enhances performance for both models, even when one teacher model is
more advanced than the other.

Although our primary focus is on a specific clinical use case, this teacher-teacher framework has
broad potential applications. One promising application is enhancing the indexing and searchability
of non-textual data. For example, medical images (e.g., CT or MRI scans) are often accompanied
by clinical notes from which clinical concepts can be extracted. By segmenting images into regions
and associating them with clinical concepts, we create a concept-based index of image content. The
teacher-teacher framework aligns each image segment with its concept list, allowing the concept
list to serve as a proxy representation for image content. This enables concept- or keyword-based
searches for specific image segments via embeddings, making non-textual data more searchable. The
framework also supports alignment between modalities without direct pairing. For example, CT and
MRI scans are seldom captured together for the same patient, but clinical notes serve as a potential
intermediary. In this scenario, clinical concepts extracted from notes are embedded by a pretrained
teacher model. Separate teacher models then embed CT and MRI images. The alignment objective
splits into two tasks: aligning clinical concepts with CT images and aligning clinical concepts with
MRI images. This dual alignment establishes an indirect connection between CT and MRI images,
creating a unified representation without direct pairing. These examples illustrate the framework’s
broad applicability in aligning disparate modalities, supporting cross-form searches and enhancing
the utility of diverse data sources.

Our clinical use case further demonstrates the practical benefits of this framework in improving
patient care and data security. By reducing the need for direct access to clinical notes, the framework
minimizes privacy concerns and strengthens data protection. Additionally, it facilitates the integration
of up-to-date LLMs, improving performance in tasks essential to patient care and potentially leading
to better outcomes. The framework’s use of external, factual knowledge also reduces misinformation
risks, fostering trust in AI-assisted clinical tools.

Despite its strengths, the framework has two notable limitations. First, its reliance on paired data
may limit its applicability in situations where aligned datasets are scarce. Although intermediaries
can help bridge certain gaps, the framework’s effectiveness remains constrained in cases where no
suitable intermediaries are available. Second, the framework requires access to a comprehensive
knowledge graph for effective training. In cases where such resources are unavailable or incomplete,
model performance and generalizability may be impacted.
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A Appendix

A.1 Handling negation in clinical concepts

Here, we provide additional details on how we handle concepts that are negatively mentioned. For
example, consider the sentence, "There is no focal consolidation, pleural effusion, or pneumothorax."
The terms "focal consolidation", "pleural effusion", and "pneumothorax" are stated as negative,
indicating their absence. This negation significantly alters the sentence’s meaning compared to
a positive assertion, such as "There is focal consolidation, pleural effusion, or pneumothorax."
Therefore, these negative concepts must be treated differently. To address this, we propose creating a
dictionary of negative concepts derived from the original positive concepts, treating them as distinct
entities. For example, the positive concept "pneumothorax" would have a corresponding negative
"concept pneumothorax unobserved". Since the Unified Medical Language System (UMLS) only
includes relations for positive concepts, we update the negative concepts by first using the multihead
graph attention module, as described in Section 2.3, to update their corresponding positive concepts.
The negative concept embeddings then pass through a projection layer. To ensure differentiation, we
introduce a loss function to maintain a cosine similarity between the updated negative concept and its
corresponding positive concept below a predefined threshold, δ. For each positive-negative concept
pair, denoted as (cp, cn), the corresponding loss is calculated as follows:

− log
eδ−cos(cp,cn)

1 + eδ−cos(cp,cn)
,

with 0 < δ ≤ 0.5. This loss function is implemented throughout our two-stage training process.

A.2 Information recovered from residuals

In Table A1, we present some examples of crucial clinical concepts that remain undetected due to
misspellings but can be subsequently recovered in the first stage of our training process.

Table A1: Examples of crucial clinical concepts that remain undetected due to misspellings but can
be subsequently recovered through our two-stage training process.

Original Sentence Undetected Concept Recovered Concept
Nasal
fractureEpistaxisNSTEM

fracture Epistaxis NSTEM Fracture

year old man
with traumatic
hemothorax s/p
pigtail drainageand
removal// please
assess for interval
change s/p pigtail
removal****Pleaseperform
at 3:30PM****

drainage External drainage

Hypodense appearance
of the anterior
rightlobe of the liver
near the falciform
ligament is likely
perfusional.

right lobe Right

Pulmonary markings are
likely accentuated by
lower lung volumes.

accentuated Somewhat Worse

Globes andlenses are
intact.

lenses Cornea
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Table A2: Further results for Table 1.

Models / Metric Mean Rank ↓ Mean Reverse Rank ↑ Top10@Acc ↑
CODER→BGE 2.509 0.732 0.968
BGE→CODER 3.281 0.648 0.942

LINE
BGE+CODER 1.437 0.873 0.997

Table A3: Further results for Table 4.

Model Concept Sentence

Precision Recall F1 Accuracy Precision Recall F1 Accuracy

CODER→BGE 0.690 0.667 0.666 0.670 0.670 0.667 0.656 0.663
BGE→CODER 0.702 0.687 0.685 0.695 0.783 0.766 0.769 0.767

LINE
BGE+CODER 0.741 0.728 0.734 0.722 0.778 0.765 0.771 0.771

A.3 Comparison with related literature

In this subsection, we compare the proposed teacher-teacher framework with Retrieval-Augmented
Generation (RAG), a method that combines large language models with knowledge databases to
improve generation quality. A key distinguishing feature of our framework is that, rather than directly
incorporating a knowledge database into Teacher 1 to enhance generation, we introduce a second
generative model, Teacher 2, which is inherently endowed with relational knowledge. Teacher 2
then transfers this knowledge to Teacher 1 through alignment learning. This structural difference
also supports an additional objective of our framework: enabling Teacher 2 to generate a purely
concept-based embedding that can serve as a proxy for the clinical text, i.e. cross-form generation.

A.4 Further experiment results

We include two additional benchmarks to our validation task on the alignment objective (Section
3.2) and the renal cancer recurrence detection task (Section 3.3.3), as both tasks utilize two teacher
models. Specifically, we projected the CODER embeddings onto the BGE embedding space (denoted
as "CODER→BGE") and also performed the reverse projection from BGE to CODER (denoted as
"BGE→CODER") using a projection matrix. Compared to the two benchmarks, the proposed LINE
model achieves better alignment and reduces the performance gap between using sentences and only
concepts to detect recurrence information.

Additionally, we report the standard deviation of the F1 scores over five random initializations on two
i2b2 datasets in Table A4

A.5 Computational efficiency

To demonstrate the computational efficiency of the proposed framework, using our training data, we
compare the increase in training time over several training epochs for the following three approaches:
(1) directly fine-tuning BGE or CODER, (2) fine-tuning with low-rank adaptation (LoRA [10]), and
(3) training the LINE module while keeping the pretrained LLMs frozen. The computation time was
estimated using the tqdm function on a single NVIDIA RTX 8000 GPU with 48GB of VRAM. The
rough estimates, shown in Figure A1, indicate that even with LoRA, training large models like BGE
takes several days per epoch on a single GPU, with increasing computational overhead as training
progresses. In contrast, our proposed LINE module requires only 2 hours per epoch on the same
hardware.
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Table A4: The mean of the F1 scores for different models over five random initializations on two
i2b2 datasets. The results for BioBERT, Clinical BioBERT and UmlsBERT were directly copied
from [16] for comparison. Here, the LINE projection is applied to the token-level BGE embeddings.
The best result under each metric is highlighted in bold font.

Dataset i2b2 2006 i2b2 2014

Test. F1 Val. F1 Test. F1 Val. F1

BioBERT 93.3 ± 1.300 93.8 ± 0.300 94.6 ± 0.200 93.9 ± 0.500
Clinical BioBERT 93.1 ± 1.300 93.4 ± 0.200 94.3 ± 0.200 93.0 ± 0.300
UmlsBERT 93.6 ± 0.500 94.4 ± 0.200 94.9 ± 0.100 94.3 ± 0.500
CODER 98.0 ± 0.020 96.9 ± 0.030 97.7 ± 0.010 97.8 ± 0.010
BGE 97.2 ± 0.010 96.1 ± 0.040 97.1 ± 0.004 97.1 ± 0.030

LINE 98.1 ± 0.004 97.2 ± 0.007 98.1 ± 0.003 98.1 ± 0.010

Figure A1: Computational Time Comparison between LINE and Baselines
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

17



Justification: The paper does not contain any theoretical result.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include the information needed to reproduce the main results.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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future. For the downstream tasks, we use both publicly available data as well as a dataset
which is not publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
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• The instructions should contain the exact command and environment needed to run to
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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results?
Answer: [Yes]
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that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Standard errors are reported in some tables.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard error or the standard error of the
mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include information about the computing resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual
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Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]

Justification: We conform with the code of ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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Answer: [Yes]
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have not yet release either our model or the non-public dataset.
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
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12. Licenses for existing assets
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have made appropriate citations in places needed.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper has not released any new assets at the moment.
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well as details about compensation (if any)?

Answer: [NA]

Justification: The only non-public dataset used was previously curated, fully de-identified
and annotated for another ongoing project with an existing IRB approval. The dataset used
in the paper has already been fully de-identified and annotated. Hence, no human subjects
are involved.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The only non-public dataset used was previously curated, fully de-identified
and annotated for another ongoing project with an existing IRB approval. The dataset used
in the paper has already been fully de-identified and annotated.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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