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ABSTRACT

Grokking, the unusual phenomenon for algorithmic datasets where generalization
happens long after overfitting the training data, has remained elusive. We aim to
understand grokking by analyzing the loss landscapes of neural networks, identify-
ing the dependence of the generalization gap on model weight norm as a cause of
grokking. We refer to this as the "LU mechanism" because training and test losses
(against model weight norm) typically resemble "L" and "U", respectively. This
mechanism can explain many aspects of grokking: data size dependence, weight
decay dependence, the emergence of representations, etc. Guided by the intuitive
picture, we are able to induce grokking on tasks involving images, language and
molecules, although the grokking signals are sometimes less dramatic. We attribute
the dramatic nature of grokking for algorithmic datasets to representation learning.

1 INTRODUCTION

Generalization lies at the heart of machine learning. A good machine learning model should arguably
be able to generalize fast, and behave in a smooth/predictable way under changes of (hyper)parameters.
Grokking, the phenomenon where the model generalizes long after overfitting the training set, has
raised interesting questions after it was observed on algorithmic datasets by Power et al. (2022):

Q1 The origin of grokking: Why is generalization much delayed after overfitting?
Q2 The prevalence of grokking: Can grokking occur on datasets other than algorithmic datasets?

This paper aims to answer these questions by analyzing neural loss landscapes:

A1 Grokking can result from a mismatch between training and test loss against model weight
norm. Specifically, (reduced) training and test losses plotted against model weight norm
resemble "L" and "U", respectively, as shown in Figure 1b. We refer to this phenomenon as
the "LU mechanism", which we elaborate on in Section 2 and 3.

A2 Yes. Indeed, we demonstrate grokking for a wide range of machine learning tasks in Section 4,
including image classification, sentiment analysis and molecule property prediction. Grokking
signals observed for these tasks are usually less dramatic than for algorithmic datasets, which
we attribute to representation learning in Section 5.

Partial answers to Q1 are provided in recent studies: Liu et al. (2022) attribute grokking to the slow
formation of good representations, Thilak et al. (2022) attempts to link grokking to the slingshot
mechanism of adaptive optimizers, and Barak et al. (2022) uses Fourier gap to describe hidden
progress. This paper aims to understand grokking through the lens of neural loss landscapes. Our
landscape analysis is able to explain many aspects of grokking: data size dependence, weight decay
dependence, emergence of representations, etc.

The paper is organized as follows: In Section 2, we review background on generalization, and
introduce the LU mechanism. In Section 3, we show how the LU mechanism leads to grokking for a
toy teacher-student setup. In Section 4, we show that the intuition gained from the toy problem can
transfer to realistic datasets (MNIST, IMDb reviews and QM9), for which we also observe grokking,
although in a slightly non-standard setup where it is relatively weak. In Section 5, we discuss why
grokking is more dramatic for algorithmic datasets than on others (e.g., MNIST), by comparing their
loss landscapes. We review related work in Section 6 and summarize our conclusions in Section 7.
Code is available at https://github.com/KindXiaoming/Omnigrok.
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Figure 1: (a) w: L2 norm of model weights. Generalizing solutions (green stars) are concentrated
around a sphere in the weight space where w ≈ wc (green). Overfitting solutions (orange) populate
the w ≳ wc region. (b) The training loss (orange) and test loss (gray) have the shape of L and U,
respectively. Their mismatch in the w > wc region leads to fast-slow dynamics, resulting in grokking.

2 THE LU MECHANISM FOR GROKKING

Weight norm and reduced loss Letting w denote the weights of a model, any function f(w) (e.g,
train/test loss/accuracy) depends on both the weight norm w ≡ ||w||2 and the angular direction
ŵ ≡ w/w. Similar to Fort and Scherlis (2019), we define a reduced function f̃(w) by minimizing
training loss ltrain(w) over angular directions, i.e.,

f̃(w) ≡ f(w∗(w)), where w∗(w) ≡ argmin
||w||2=w

ltrain(w). (1)

In this paper, we set f as train/test loss/error, but it also applies to other metrics of interest. In practice,
we perform the constrained minimization by rescaling the model weights back to their original norm
after each unconstrained optimization step. We will see that this reduced 1D loss landscape, which is
easy to visualize, captures important features related to grokking. Throughout the paper, our model is
initialized by multiplying a factor α ≡ w/w0 to the standard initialization 1, where w0 and w are the
weight norm of the network before and after multiplying by α, respectively.

LU mechanism Although the loss landscapes of neural networks are nonlinear, Fort and Scherlis
(2019) reveal a simple landscape picture: There is a spherical shell in the weight space (the
"Goldilocks" zone), where generalization is better than outside this zone. We illustrate the Goldilocks
zone as the green area with average radius wc in Figure 1a; the green stars are the generalizing
solutions. The test loss is thus higher either both when w > wc and w < wc, forming a U-shape
against w in Figure 1b (gray curve). By contrast, the training loss has an L-shape against weight
norm . There are many solutions which overfit training data for w > wc, but high training losses are
incurred for w < wc. This corresponds to the L-shaped curve seen in Figure 1b (orange curve, no
regularization). In summary, the (reduced) training loss and test loss are L-shaped and U-shaped
against weight norm, respectively, which we will refer to as the LU mechanism throughout the paper.

It is well known in statistics that generalization error has a "U" shape against model capacity, which
is usually attributed to the bias-variance trade-off. Although this common wisdom was challenged
by the observation of double descent (Nakkiran et al., 2021), the "U" curve can be recovered from a
double descent simply by changing the x-axis from the number of model parameters N to the 2-norm
of model parameters w ≡ ||w||2, at least for linear regression (Ng and Ma, 2022). Although the LU
mechanism may remind readers of related phenomena (Schoenholz et al., 2016; Yang and Schoenholz,
2017; Nakkiran et al., 2021), their setups are not exactly the same as ours. More importantly, our
focus and contribution is to understand grokking, a brand new generalization puzzle.

1By “standard initialization” we mean the default one in PyTorch. For linear layers, each weight w ∼
U [−σ, σ] and bias b ∼ U [−σ, σ] where σ = 1/

√
fan_in, and U [a, b] denotes uniform distribution on [a, b].
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Grokking dynamics We identify the "LU mechanism" as the cause of grokking. If the weight norm is
initialized to be large (e.g., the black square in the w > wc region), the model first quickly moves to a
nearby overfitting solution by minimizing the training loss. Without any regularization, the model will
stay where it is, because the gradient of the training loss is almost zero along the valley of overfitting
solutions, so generalization does not happen. Fortunately, there are usually explicit and/or implicit
regularizations that can drive the weight vector towards the Goldilocks zone w ≈ wc. When the
regularization magnitude is non-zero but small, the radial motion can be (arbitrarily) slow. If weight
decay is the only source of regularization, and training loss is negligible after overfitting, then weight
decay γ causes w(t) ≈ exp(−γt)w0, when w0 > wc, so it takes time t ≈ ln(w0/wc)/γ ∝ γ−1 to
generalize. A small γ results in a huge generalization delay (i.e., grokking). The dependence on
regularization magnitudes is illustrated in Figure 1b: no generalization at all happens for γ = 0,
small γ leads to slow generalization (grokking), and large γ leads to faster generalization 2. The
above analysis only applies to large initializations w > wc. Small initializations w < wc can always
generalize fast 3, regardless of regularization.

Why isn’t grokking commonly observed? The standard initialization schemes typically initialize w
no larger than wc. However, if we increase initialization scales (explicitly or implicitly), grokking can
appear. In Section 3 and 4, we find that explicitly increasing initialization weight norm can induce
grokking. In Section 5, we argue for algorithmic datasets because (shown in Figure 6d)

wc(bad representation) > wc(good representation), (2)

i.e., a proper initialization for a bad representation is effectively too large for a good representation,
leading to grokking. Take the addition (base p) for example: with the good (linear) representation
or a bad (random) representation, the decoder needs to learn to classify O(p) or O(p2) examples,
respectively.

3 GROKKING FOR A TEACHER-STUDENT SETUP
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Figure 2: Teacher-student setup. α: student initialization scale, γ: weight decay. (a) The reduced
training loss and test loss have the shape of “L" and “U", respectively. (b) Top row: large initialization
(α = 2.0) can demonstrate no generalization (no reg), grokking (small reg) and fast generalization
(large reg). Bottom: small initialization (α = 0.5) always generalizes fast, regardless of weight deacy.
(c) α = 2. The steps to overfitting is independent of weight decay, while the steps to generalization
scale inversely with the weight decay.

To illustrate how the LU mechanism results in grokking, we employ a toy teacher-student setup. The
teacher and the student share the same architecture (a 5-100-100-5 MLP with tanh activation), but
are initialized with different seeds. The student network is initialized with the standard initialization
(the default one in PyTorch) but each weight is rescaled by the same factor α ≡ w/w0, where w0

and w are the weight norm of the student network before and after rescaling. The teacher network is
initialized standardly, i.e., αteacher = 1. Inputs and outputs have dimensions din = 5 and dout = 5,
respectively. We generate Ntrain = 100 training and Ntest = 100 test samples by first drawing inputs
from the standard Gaussian distribution N(0, Idin×din), and then feed the input data to the teacher
to generate output labels. The student network is trained with the Adam optimizer (learning rate
3× 10−4) for 105 steps.

2γ should not be too large, otherwise it will bring the weights to a trivial solution w = 0.
3w should not be too small to harm optimization.
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LU landscapes Firstly, we compute the reduced losses by minimizing the training loss (excluding
weight decay) while constraining the weight norm of the student network to be constant. We assume
the converging point after training as the global minimum on the spherical surface 4, which explicitly
defines the reduced losses l̃train(α) and l̃test(α). As shown in Figure 2a, l̃test(α) first decreases and
then increases as α increases, displaying a U-shape with a minimum at α ≈ 1. By contrast, l̃train(α)
decreases when α < 1 and remains flat near zero when α ≥ 1, forming an L-shape. When weight
decay γ is present, the training landscape becomes l̃train(α, γ) = l̃train(α) + γα2C2 where C is the
average parameter magnitude determined by the standard initialization.

Training dynamics Our problem is a regression task, but we can imitate the behavior of a classifica-
tion task by manually setting a threshold β = 0.01 and defining a sample to be correctly “classified"
if the prediction error is less than β. We study the dynamics of training and test accuracy. Note
that this is the normal training setup where the weight norm is not constrained, although with two
non-standard initializations α = 0.5 (small) and α = 2.0 (large), and three weight decays γ = 0 (no
reg), γ = 0.03 (small reg) and γ = 1 (large reg). As shown in Figure 2b (bottom), small initialization
runs always generalize fast regardless of regularization. Large initialzation runs (top) dependend on
weight decay: no regularization fails to generalize, small regularization generalizes slowly (grokking),
while large regularization generalizes faster.

For the large initialization α = 2.0, we do a finer sweep of γ in [0.03, 1]. We compute the number of
steps and weight norm w when training or test accuracy reaches 95%. As shown in Figure 2c, the
time (number of steps) to reach 95% training accuracy is independent of weight decay γ, while the
time to reach 95% test accuracy is inversely proportional to the weight decay, as we derived above
for the LU mechanism.

4 OMNIGROK: GROKKING FOR MORE INTERESTING TASKS

We now analyze loss landscapes and search for grokking for several more interesting datasets, and
see that the insights obtained from our toy model can transfer to these datasets. We report the main
results here, with experiment details included in Appendix A.

Image classification We visualize loss landscapes of MNIST (Deng, 2012) to verify the LU mech-
anism, and study the dependence on training data size. Similar to the teacher-student case, we
reduce losses and errors (one minus accuracy) to two variables (weight norm w and data size N ) by
minimizing over angular directions of weights, i.e.,

l̃train(w,N) ≡ ltrain(w
∗, N), l̃test(w,N) ≡ ltest(w

∗, N), w∗(w,N) ≡ argmin
||w||2=w

ltrain(w, N), (3)

shown in Figure 3 (a)(b). The reduced loss landscape reveals three things: (1) Larger initializations
lead to grokking. Point A in Figure 3 corresponds to the standard initialization (α = 1), which
has low training and test errors, hence no grokking. When increasing the weight norm from A to
B, training error is seen to remain low while test error rises. To generalize, weight decay must be
in place to bring the weight norm down, leading to grokking if weight decay is small. (2) Larger
datasets lead to de-grokking. Comparing B and C in Figure 3, C is seen to have larger training size
than B and lower test error. Larger data size N makes the Goldilocks zone broader, reducing or
eliminating grokking even for large weight initializations. (3) Critical data size can be defined. As
reported in Power et al. (2022); Liu et al. (2022), we see that there exists a critical training set size
below which generalization is impossible. The effective theory analysis in Liu et al. (2022) only
applies to algorithmic datasets, but not to other datasets with unknown optimal representations. The
loss landscape analysis presented is this work can apply to all supervised-learning tasks. As shown in
Figure 3 (b), the contours of constant test error are thumb-like, and the tip of the thumb determines
the minimum amount of data required for generalization.

Guided by the landscape analysis, we make two nonstandard decisions to induce grokking on MNIST:
(1) we reduce the size of the training set from 60k to 1k samples (by taking a random subset) and
(2) we increase the scale of the weight initialization distribution (by multiplying the initial weights,
sampled with Kaiming uniform initialization, by a constant α > 1). With these modifications to the

4This is generally not true when the loss landscape is non-convex. The aim of this assumption is to make the
minimizer aligned with Eq. (1).
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Figure 3: MNIST. (a) reduced training error, (b) reduced test error. Comparing A and B: larger weight
norm makes learning grok (delay generalization). Comparing B and C: a larger training data size
makes learning de-grok (speed up generalization). (c) "LU" holds truer for smaller data. (d) Accuracy
curves for MNIST in the setting where we observe grokking. (e) Time to generalize as a function of
training set size N , replicating Liu et al. (2022).

0.1 1.0 10.0
relative weight norm = w/w0

102

103

104

5 × 104

da
ta

 si
ze

 N

training error

0.20

0.200.25

0.2
5

0.25

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a)

0.1 1.0 10.0
relative weight norm = w/w0

102

103

104

5 × 104

da
ta

 si
ze

 N

test error

0.2
0

0.25

0.20

0.25

0.30

0.35

0.40

0.45

(b)

0.1 1 10
0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r

data size = 1k

test
train

0.1 1 10
relative weight norm = w/w0

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r

data size = 50k

test
train

(c)

100 101 102 103 104 105

steps
0.4

0.6

0.8

1.0

ac
cu

ra
cy

= 6

100 101 102 103 104 105

steps
0.4

0.6

0.8

1.0

ac
cu

ra
cy

= 1

train
test

(d)

Figure 4: We use an LSTM to predict IMDb reviews. (a) training error; (b) test error; (c) reduced
losses for data size 1k (top) and 50k (bottom); (d) With 1k data, a (weak) grokking signal is observed
for large initializations (α = 6), while no grokking is observed for standard initializations (α = 1).
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Figure 5: We use a GCNN to predict isotropic polarizability of molecules in the QM9 dataset. (a)
training loss; (b) test loss; (c) reduced losses for data size 100 (top) and 3000 (bottom); (d) with 200
training samples, grokking is observed for large initialization (α = 3).
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training set size and initialization scale, we train a depth-3 width-200 MLP with ReLU activations
with the AdamW optimizer using MSE loss with one-hot targets. We find that the network quickly
fits the training set, and test accuracy improves much later, as shown in Figure 3d, just as in the
stereotypical grokking learning first observed in algorithmic datasets. Figure 3e shows the effect of
training set size on time to generalization for MNIST. We find a result similar to what Power et al.
(2022) observed, namely that generalization time increases rapidly once one approaches a certain
critical data set size. The conclusions still hold for the cross entropy loss (see Appendix F), although
with quantitatively milder effects.

Sentiment analysis of text We look for grokking using LSTMs (Hochreiter and Schmidhuber, 1997)
for IMDb dataset (Maas et al., 2011). Similar to Eq. (3), we reduce training and test losses to
depend on only the weight norm w and data size N . We show the reduced training and test error
in Figure 4 (a)(b). For large data size, e.g., the full dataset, training and test errors have similar
"U" shapes 5, so one cannot create grokking via the "LU" mechanism. For small data size, say 1k,
however, the mismatch between training and test errors makes it possible to create grokking via large
initializations. In Figure 4 (c), we initialize weights larger (α = 6) with weight decay 1, overfitting
is complete within 102 steps, but generalization does not start until around 103 steps. Note that the
generalization "jump" is not as sharp as on algorithmic datasets (Power et al., 2022) or MNIST, but at
least generalization is delayed here. By contrast, if we use the standard initialization (α = 1) with
no weight decay, generalization happens early on during training, and does not improve much after
overfitting.

Molecules We search for grokking using the graph convolutional neural network (GCNN) for QM9
dataset (Ramakrishnan et al., 2014). Similar to Eq. (3), we define the reduced training/test losses,
which are only dependent on weight norm w and data size N . As shown in Figure 5(a)(b), when data
size is large, training and test losses have similar "U" shapes, hence grokking is impossible via the
"LU mechanism". When data size is small, training and test losses mismatch somewhere in the region
α = w/w0 > 1, making grokking possible. Indeed, shown in Figure 5(d), there is a sharp drop in test
loss around 104 steps if initialization is 3 times larger than standard, while standard initialization does
not lead to grokking. Note that zero weight decay is applied in both cases, implying the existence of
implicit regularizations.

5 REPRESENTATION IS KEY TO GROKKING

In Section 4, we showed that increasing initialization scales can make grokking happen for standard
ML tasks. However, this seems a bit artificial and does not explain why standard initialization
leads to grokking on algorithmic datasets, but not on standard ML datasets, say MNIST. The key
difference is how much the task relies on representation learning. For the MNIST dataset, the
quality of representation determines whether the test accuracy is 95% or 100%; by contrast in
algorithmic datasets, the quality of representation determines whether test accuracy is random guess
(bad representation) or 100% (good representation). So overfitting (under a bad representation)
has a more dramatic effect on algorithmic datasets, i.e., the model weights increase quickly during
overfitting but test accuracy remains low. During overfitting, model weight norm is much larger than
at initialization, but then drops below the initialization norm when the model generalizes, shown in
Figure 9 (see Appendix C), and also observed by Nanda et al. (2023).

In the following, we will compare algorithmic datasets (Section 5.1) to MNIST (Section 5.2). We
show how their loss landscapes depend on representations differently, and how the difference leads to
different outcomes (grokking or not).

5.1 ALGORITHMIC DATASETS

Setup Algorithmic datasets are the task of learning a binary operation a ◦ b = c (a, b, c are symbols)
with neural networks, which aim to predict c from input (a, b). We take the toy addition setup in (Liu
et al., 2022), where each input digit 0 ≤ i ≤ p− 1 (output label 0 ≤ k ≤ 2(q − 1)) is embedded as a
vector Ei (Yk). A decoder MLP is employed to predict Yk = Dec(Ei+Ej) (k = i+j). In the setup
of grokking, both the decoder and the input representations R ≡ {Ei} are trainable, with learning

5In principle, reduced training losses should be non-increasing ("L"), but optimization issues may occur for
too large initializations (Schoenholz et al., 2016).
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Figure 6: Loss landscapes on the 2D (w,m) plane. (a) Training loss splits the plane into two regions:
large loss small w (fast dynamics) and small loss large w (slow dynamics). (b) Test loss; the green
star is the generalizing solution. (c) Losses along an illustrative path A → E, demonstrating multiple
descent; (d) zoom-in of the training loss highlighting the gradients on the boundary. (e) the boundary
depends on training data size; (f) a simple illustration of grokking dynamics.

rates ηD and ηR, respectively; in the setup of landscape analysis, only decoder is trainable, as we
explain below. Training and test losses depend on three factors: (i) representation R, (ii) weight norm
w and (iii) weight direction ŵ. As in previous sections, we can optimize ŵ by minimizing the training
loss on constant weight norm spheres. We further reduce the high-dimensional representations to 1D
by interpolating in a particular direction:

R = mRrandom + (1−m)Rlinear (4)

where Rlinear refers to the linear representation in which number k is embedded to Ek = [k, 0, · · · , 0],
Rrandom is the initialized representation drawn from Gaussian distributions, i.e, Ek ∼ N(0, I), and
m ∈ [0, 1] is a scalar interpolating between Rlinear and Rrandom, that we term representation
messiness because R = Rlinear when m = 0, and R = Rrandom when m = 1. After these
reductions, both training and test losses become functions of two variables, representation messiness
m and weight norm w:

w∗(w,m) ≡ argmin
||w||2=w

ltrain(w,m), l̃train(w,m) ≡ ltrain(w
∗,m), l̃test(w,m) ≡ ltest(w

∗,m) (5)

Note that our definition of l̃train(w,m) excludes the weight decay term ℓreg = 1
2γw

2, but we should
be aware of its presence when we analyze the dynamics of (w,m), which is governed by the gradient
flow on l̃train(w,m) plus weight decay (ηR/ηD are learning rates of representation/decoder):

dw

dt
= −ηD

(
∂l̃train
∂w

+ γw

)
,

dm

dt
= −ηR

∂l̃train
∂m

. (6)

More experimental details are included in Appendix E.

Landscape We show l̃train(w,m) and l̃test(w,m) in Figures 6a and 6b, indicating the generalizing
solution with a green star. Based on the reduced training loss (Figure 6a), we can divide the 2D plane
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into two regions I and II, separated by a dashed yellow line (the contour of training loss = 0.05): (I):
The darker region, with high training losses/gradients and small weight norm. (II): The lighter region,
with low training losses/gradients and large weight norm. Comparing Figures 6a and 6b reveals that
training and test loss landscapes differ, especially in region II. Moreover, while the training loss
depends weakly on m, the test loss depends strongly on m. As we will see, the (weak) dependence
of training loss on representation drives the model to the generalizing solution. However, the driving
force is small because the dependence is weak, leading to grokking. We elaborate below how these
particular loss landscapes lead to grokking.

Grokking dynamics In region II, the dynamics is slow (for small γ) due to nearly vanishing gradients.
By contrast, the dynamics in region I is relatively fast. As we will explain, dynamics is also slow on
the boundary of I and II, and grokking is the consequence of traversing region II and/or the boundary.

Let us analyze a typical path A to E shown in Figure 6(a)(b). A rolls "downhill" to B following
training gradients, possibly continuing to C due to momentum. C is located in II where l̃train ≈ 0,
so according to Eq. (6), dm/dt ≈ 0 and dw/dt ≈ −ηDγw or, equivalently, d(logw)/dt ≈ −ηDγ.
So (logw,m) moves with a constant speed v = ηDγ in the −w direction from C to D, a point near
the boundary. Negative gradients around the boundary point towards larger w and smaller m, shown
in Figure 6d (a zoom-in of Figure 6a). The gradients become increasingly large as the model goes
deeper inside region I, and at some point, the gradient totally cancels out v in the gradient direction,
making the model start to drift along the boundary, as illustrated in Figure 6f. Then the model moves
along the boundary with a new velocity v′ = vcosθ 6, until it reaches the generalizing solution E.
The above picture is supported by empirical experiments in Appendix C and also Nanda et al. (2023).
Based on the picture, we also show the ability to eliminate grokking in Appendix C.

The slow dynamics from C to E is the origin of grokking. During this period, the model first moves
in the −w direction with a velocity v over the distance L1 = L− hcotθ, and then moves along the
boundary with a velocity v′ over the distance L2 = h/sinθ. So the total time is t = L1/v+L2/v

′ =
(L + htanθ)/(ηDγ). This formula agrees with the observation that large weight decays γ and/or
larger decoder learning rates ηD can make generalization happen faster (Power et al., 2022; Liu et al.,
2022). Besides, the path manifests intriguing multiple descent of test loss, shown in Figure 6c.

Dependence of grokking on training data size Another important observation in Power et al. (2022)
is that grokking happens faster for larger training size. Our landscape analysis can also explain the
data size dependence. In Figure 6e, we show the contours (training loss = 0.02) for different training
sizes (25, 35, 45, 55). The contours of training size 45 and 55 both connect to the green star, meaning
that generalization will eventually happen. However, the slopes of the contours are different, i.e.,
θ55 < θ45. Since t = (L + htanθ)/(ηDγ) increases as θ increases, we have t55 < t45, i.e, more
training data leads to faster grokking. For training size 35 and 25, the contours do not connect to the
green star, so generalization will not happen, no matter how long the training will be run.

5.2 MNIST

We now study how training and test losses depend on representation messiness in the MNIST dataset.
We denote the 28 × 28 images as the raw representation Rraw. We construct a linearly separable
representation Rlinear by assigning input representations proportional to their label yi, for example,
an image of a 2 is represented by a matrix with all elements being 2. Similar to Eq. (4), we use
m ∈ [0, 1] to interpolated between Rraw and Rlinear:

R = mRraw + (1−m)Rlinear, (7)

Similarly to Eq. (5), we define and plot l̃train(w,m) and l̃test(w,m) in Figure 7, using the full dataset
N = 60000. Comparing Figures 7a and 7b reveals two things: (1) The training and test losses behave
similarly; (2) Both training and test losses depend very weakly on m. This implies that the raw image
representation is already quite close to being optimal, so decent test accuracy can be obtained even
without learning optimal representations. As a result, grokking does not occur (Figure 7c).

Comparing Figure 6 and 7, we see that the (strong) dependence of test performance on the representa-
tion is the key to grokking: the dependence on representation is strong for algorithmic datasets, so
grokking happens. By contrast, the dependence is weak for MNIST, so grokking does not happen.

6For simplicity, we assume ηR = ηD here, but the analysis can apply to any (ηR, ηD).
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Figure 7: MNIST landscapes as functions of representation messiness m and weight norm w: (a)
training loss, and (b) test loss. Training and test losses do not have significant mismatch, and neither
of them depend on representation strongly, which is in stark contrast to algorithmic datasets (Figure 6).
(c) an illustrative path A → B → C does not manifest grokking.

6 RELATION TO RELATED WORKS

Grokking was first observed for algorithmic datasets by Power et al. (2022). Several attempts have
been made to understand grokking: (a) Liu et al. (2022) attributes grokking to the slow formation of
good representations. (b) Shah (2021) suggests that generalizable solutions achieve lower loss than
overfitting solutions, providing a training signal encouraging generalization. (c) Nanda et al. (2023)
suggests grokking is a phase change due to limited data and regularization. (d) Barak et al. (2022)
suggests that generalization is due not to random search, but to hidden progress of SGD to gradually
amplify a Fourier gap. (e) Thilak et al. (2022) links grokking to the "Slingshot mechanism" specific
to adaptive optimizers. (f) Millidge (2022) describes training as a random walk over parameters. Our
conclusion supports (a)(b)(c)(d), but does not necessarily negate (e)(f).

Double descent is the phenomenon that performance first gets worse and then gets better as we
increase the model size, data size, training epochs or regularization (Nakkiran et al., 2021; Yilmaz
and Heckel, 2022; Nakkiran, 2019). The typical "U" shape of test loss in this paper does not conflict
with double descent, because we are plotting the weight norm instead of the number of model
parameters (Ng and Ma, 2022). However, the "U"-shape should better be considered as empirically
common rather than provably universal. In fact, the interaction between properties of data and
inductive biases of learning algorithms can be more complicated than double descent (Chen et al.,
2021; d’Ascoli et al., 2020).

Initialization From the optimization perspective, initializations are usually based on the "edge of
chaos" idea such that variance of features and gradients should be preserved in the forward and
backward pass (Glorot and Bengio, 2010; He et al., 2015; Bahri et al., 2020; Yang and Schoenholz,
2017; Jing et al., 2017), or based on analyzing Jacobians and/or Hessians (Skorski et al., 2020). From
the generalization perspective, it was shown that large initializations overfit data easily but result in
poor generalization (Xu et al., 2019; Zhang et al., 2020), which agrees with our LU mechanism.

Weight decay regularization is a standard trick in machine learning and has various effects on
optimization and generalization (Zhang et al., 2018; Van Laarhoven, 2017). In particular, Lewkowycz
and Gur-Ari (2020) observes that it takes t ∝ 1/λ training steps to reach maximum test performance.
This is strikingly similar to the grokking time t ∝ 1/λ we derived from the LU mechanism.

7 CONCLUSIONS

This study elucidates the grokking phenomenon from the perspective of loss landscapes. Our
conclusions are: (i) grokking originates from the mismatch between training and test losses at high
model weight norm ("LU" mechanism). (ii) grokking can happen in various models for a wide range
of datasets, although the grokking signature is usually most dramatic for algorithmic datasets. (iii)
The severity of grokking depends on how much the task relies on learning representations. This work
not only reveals the mechanism of grokking, but also shows that reduced landscape analysis is a
useful tool for characterizing data-model interaction and representation learning.
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Appendix
A EXPERIMENT DETAILS

Sentiment analysis of text IMDb (Maas et al., 2011) includes 50k movie reviews to be classified
as being positive or negative. To pre-process the data, we extract the 1000 most frequent words and
tokenize each review into an array of token indices. Less frequent words are ignored, and each review
array is padded to length 500. We adopt the LSTM model (Hochreiter and Schmidhuber, 1997) to
perform the classification, with two layers, embedding dimension 64, and hidden dimension 128. We
use the Adam optimizer (Kingma and Ba, 2014) with learning rate 0.001 to minimize the binary cross
entropy loss. We hold back 25% of the dataset for testing.

Molecules QM9 is a database for small molecules and their properties. We use a graph convolutional
neural network (GCNN) to predict the isotropic polarizability. The GCNN contains 2 convolutional
layers with ReLU activation, followed by a linear layer. We use the Adam optimizer with learning
rate 0.001 to minimize the MSE loss. We split the dataset into 50/50 train/test.

MNIST We train width-200 depth-3 ReLU MLPs on the MNIST dataset with MSE loss. We use the
AdamW optimizer with a learning rate of 0.001 and a batch size of 200.

B REDUCED LOSS FOR MODULAR ADDITION WITH TRANSFORMERS

In Figure 8 we show reduced loss landscape plots for transformers trained on modular addition. We
use the setup of Nanda et al. (2023) and train a 1-layer transformer on modular addition (p = 113)
with dmodel = 128, 4 attention heads, and dmlp = 512 with ReLU activations. We train with a learning
rate of 0.001 while constraining model weight norm, for a variety of α and a variety of train set
fractions. The LU shape holds for α ∈ [0.1, 4] (some optimization issue may be responsible for the
rise in train loss for α > 4). We see the critical train set size is approximately 0.25, in line with earlier
studies on grokking.

Figure 8: Reduced loss landscapes for transformers trained on modular addition, the original setting
where grokking was observed.

C WEIGHT NORM EVOLUTION OVER TIME ON ALGORITHMIC TASKS

Evolution of weight norm As mentioned in Section 5, the dynamics of model weight norm over the
course of training, on algorithmic tasks, support the LU mechanism picture of grokking. Figure 9a,
shows how model norm changes over time and we see that there is an initial increase in weight norm,
which peaks during overfitting, but then drops during the period of generalization to be lower than
the initialization norm. For this experiment, we again used the setup of (Nanda et al., 2023). We train
with AdamW with a learning rate of 0.001 and weight decay γ = 1.

Constraining a small weight norm eliminates grokking As shown in Figure 9b, reducing the
initialization scale (α = 0.8) and constraining optimization to hold model weight norm constant
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over training brings train accuracy and test accuracy learning curves together, almost eliminating
grokking. We would like to investigate in future works whether this training trick can be helpful for
more standard machine learning tasks.
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Figure 9: Training 1L transformer on modular addition (p = 113). (a) Weight norm, train accuracy,
and test accuracy over time, initialized and trained normally. Weight norm first increases, and is
highest during the period of overfitting, but then drops to become lower than initial weight norm
when the model generalizes. (b) Constrained optimization at constant weight norm (α = 0.8) largely
eliminates grokking, with test and train accuracy improving almost concurrently.

D TIME TO GENERALIZE VERSUS WEIGHT DECAY

In our discussion of the “LU mechanism” as an explanation for grokking in Section 2, we predicted
that the training time required for a model to generalize should be t ∝ γ−1 where γ is the weight
decay. To test this, we perform a grid search over weight decays γ and plot the number of training
steps required for models to reach a specified level of test accuracy in Figure 10a-10b. We also show
full training curves for these runs in Figure 10c-10d. We perform experiments in two setups:

(a) Transformer on modular addition: We use the replication of grokking from Nanda et al.
(2023) and train a 1-layer transformer on modular addition (p = 113 and a train set fraction
of 0.3) where dmodel = 128, with 4 attention heads, dmlp = 512, ReLU activations, and an
AdamW learning rate of 0.001. From Figure 10a, we find that t ∝ γ−1 holds across roughly
two orders of magnitude of t and γ. There is some seed dependence on the generalization
time (some seeds consistently require longer to generalize), but for each seed (corresponding
to a particular model initialization) the relation t ∝ γ−1 appears to fit the data well.

(b) ReLU MLP on MNIST: We train ReLU MLPs on MNIST as described in Appendix A. We
use an α = 9.0 and train on a reduced training set of 1000 samples to delay generalization /
induce grokking. From Figure 10b, we find that for γ roughly between 0.1 and 1.0 the relation
t ∝ γ−1 holds. Very high values of weight decay seem to mess with optimization. On the
other hand, with very low weight decay the model generalizes faster than naively expected,
perhaps due to implicit regularization.

E SECTION 5.1 SETUP

Architecture Similar to Liu et al. (2022), the decoder architecture is an MLP with hard coded
addition. Each input symbol i is encoded to a scalar Ei. Each output symbol k is represented by a
30D random vector Ŷk. We consider addition with base p, so input 0 ≤ i, j ≤ p − 1 and output
0 ≤ k = i+ j ≤ 2(p− 1). We denote representation as R = {E0, E1 · · · , Ep−1}. The MLP has
two hidden layers, with neurons 1-200-200-30 in each layer and ReLU activations. Given a training
sample (Ei, Ej) → Yk where i+ j = k, the prediction of the MLP decoder is

Yk = Decw(Ei + Ej), (8)

and the loss function being the mean squared error (MSE) between Yk and Ŷk, and w being the
decoder weight. Although the common setup of grokking is to make both the representation R and
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Figure 10: Time to generalize as a function of weight decay: we investigate to what extent the relation
t ∝ γ−1 holds, where t is number of training steps needed for the model to generalize and γ is the
AdamW weight decay. When a lower weight decay is used, models spend longer in the period of
overfitting before eventually generalizing. We show the generalization time t as a function of γ in
(a)-(b) and full training curves for these runs in (c)-(d).

Trainability decoder weight w Representation R
norm w = ||w||2 direction ŵ = w/w messiness m Other

Landscape analysis No, w Yes No, m No, 0
Reduced trajectory Yes No, ŵ∗(w,m) Yes No, 0

Full trajectory Yes Yes Yes Yes

Table 1: Threes setups used in this paper, with different set of parameters trainable.

the decoder w trainable, we will freeze part of them for easier analysis. This is where it could be a bit
confusing, so we explicitly distinguish three setups: landscape analysis, reduced trajectory analysis
and full trajectory analysis. Each setup have different subset of trainable parameters, as shown in
Table 1.

Landscape analysis Both the representation R and weight norm w are fixed. Only the weight
direction ŵ is trainable. The representation R is fixed according to Eq. (4), which is dependent on m,
the representation messiness. The decoder has fixed weight norm w, but the weight direction ŵ is
trainable. For each fixed (w,m), we minimize training loss over ŵ to get

ŵ∗(w,m) = argmin
ŵ

ℓtrain(w,m, ŵ), (9)

and define reduced training and test loss, as in Eq. (5). The minimization is implemented by the
Adam optimizer with learning rate 10−3 for 104 steps. Although (w,m) are not trainable, we repeat
the above minimization independently for different (w,m). In Figure 6 (a)(b)(d), the background
heatmaps belong to landscape analysis.
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Reduced trajectory analysis is a “thought experiment" based on landscape analysis. Since full
trajectory analysis can be intractable due to too high dimensions, we try to reduce the trajectory anaysis
to 2D, by making two assumptions about the real dynamics: (1) Scale separation: the dynamics of ŵ
is much faster than the dynamics along w and along m, such that ŵ(t) = ŵ∗(w(t),m(t)) is valid
at every moment during training. (2) Representation evolution is linear, i.e., interpolating between
initial random Gaussian and final linear representation. With these two assumptions, the training
dynamics is effectively reduced to 2D, depending only on (w,m), obeying Eq. (6). In Figure 6
(a)(b)(c), the path A → E belongs to reduced trajectory analysis.

Admittedly the reduced trajectory may deviate from the full trajectory since the assumptions may not
be met, but it can shed light on the full trajectory: the weight norm first increases and then increases,
and the decrease of weight norm is highly correlated with generalization (please see Appendix C and
Figure 9.

F MNIST EXPERIMENTS WITH CROSS ENTROPY LOSS

To respond to a reviewer’s concern that our use of the MSE loss is the “secret" to get grokking
on MNIST (Figure 3), we reran our experiments with the cross entropy (CE) loss. The results are
qualitatively similar, with some quantitative differences.
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Figure 11: MNIST with the cross entropy loss (as opposed to the MSE loss used in Figure 3). (a)
reduced training error, (b) reduced test error. (c) "LU" still holds for the cross entropy loss, but the
effect is milder than the MSE loss. In particular, the “Goldilocks zone" (the weight range where
generalization happens) is broader.

Landscape analysis

Comparing Figure 3 (MSE) and Figure 11 (CE), we notice the they are qualitatively similar: (1) for
small datasets, the reduced training error and test error resemble an “L" and “U" against the weight
norm, respectively; (2) for large datasets, the “U" becomes more like “L", i.e., the mismatch between
the reduced training and test error is small. However, a quantitative difference exist: CE produces a
broader “Goldilocks zone" (the weight range where generalization happens) than MSE. This implies
that to induce grokking with CE, we need to increase the weight norm to a larger value (say α = 100).

Training dynamics

We are able to observe delayed generalization during trianing on MNIST with cross entropy loss, but
doing so requires a higher α than was necessary when using MSE loss, as predicted by the reduced
loss landscapes in Figure 11. Figure 12 shows training trajectories from a 3-layer ReLU MLP on
MNIST trained with cross entropy loss with α = 100 and D = 200. We see that test accuracy rises to
30-40% early in training, then plateaus for an extended period, before increasing to ≈75% while train
accuracy remains at 100%. While the dynamics are not as clean as with MSE loss, since test accuracy
first plateaus at better-than-random accuracy, we think it is still fair to classify these dynamics as
“grokking” due to the improvement in generalization late in training after a plateau.
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Figure 12: Training curves using cross entropy loss on MNIST. We are still able to observe delayed
generalization on MNIST using cross entropy loss, though test accuracy first plateaus at higher than
random-guess accuracy.
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