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Abstract

KV cache quantization can improve Large Lan-
guage Models (LLMs) inference throughput and
latency in long contexts and large batch-size
scenarios while preserving LL.Ms effectiveness.
However, current methods have three unsolved
issues: overlooking layer-wise sensitivity to KV
cache quantization, high overhead of online fine-
grained decision-making, and low flexibility to
different LLLMs and constraints. Therefore, we
theoretically analyze the inherent correlation of
layer-wise transformer attention patterns to KV
cache quantization errors and study why key
cache is generally more important than value
cache for quantization error reduction. We fur-
ther propose a simple yet effective framework
KVTuner to adaptively search for the optimal
hardware-friendly layer-wise KV quantization
precision pairs for coarse-grained KV cache with
multi-objective optimization and directly utilize
the offline searched configurations during on-
line inference. To reduce the computational cost
of offline calibration, we utilize the intra-layer
KV precision pair pruning and inter-layer clus-
tering to reduce the search space. Experimen-
tal results show that we can achieve nearly loss-
less 3.25-bit mixed precision KV cache quantiza-
tion for LLMs like Llama-3.1-8B-Instruct and
4.0-bit for sensitive models like Qwen2.5-7B-
Instruct on mathematical reasoning tasks. The
maximum inference throughput can be improved
by 21.25% compared with KIVI-KV8 quantiza-
tion over various context lengths. Our code and
searched configurations are available at https:
//github.com/cmd2001/KVTuner.
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Figure 2: Token-level attention score of the 79-th query
token to previous key tokens with the per-token-asym key
cache quantization (Qwen2.5-7B-Instruct, GSM8K). Low-
precision KV quantization (4-bit and 2-bit) causes signif-
icant distribution shifts, resulting in errors of missing or
incorrect critical key identification.

1. Introduction

Large language models (LLMs) and multi-modality large
models can comprehend and generate text, audio, image,
and video like humans, showing the strong capability of
assisting and interacting with humans. LLM inference effi-
ciency such as throughput and latency is critical to enhance
user experience and reduce cost. To improve the inference
efficiency of LLMs, previously processed KV tokens are
cached to avoid redundant recomputation. However, the
memory usage of the KV cache linearly grows with the
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number of batch size and sequence length, so the KV cache
becomes the new bottleneck of LLM serving systems with
large batching requests and long context. Valuable long con-
text generation applications include multi-turn dialogues,
long document understanding, and OpenAl ol-like level-2
reasoning. Commercial companies are releasing their sup-
ports for long context generation and KV cache-based ser-
vices like prompt caching for better capability and efficiency
(OpenAl, 2024; DeepSeekl 2024)). Efficient KV cache man-
agement and compression can accelerate LLM inference
and reduce hardware resource consumption, making it a
foundational technique for advancing both enterprise-scale
LLM deployment and personalized Al agents.

KV cache quantization is one of the most stable and eas-
ily deployable KV cache compression methods to reduce
the memory footprint and improve throughput (Yuan et al.,
2024). INT8/FP8 KV cache with dynamic asymmetric
token-wise (per-token-asym) or channel-wise (per-channel-
asym) quantization can achieve lossless compression in
most practical applications. However, lower-bit KV cache
quantization easily leads to model accuracy degradation.

Intra-layer mixed precision KV quantization methods re-
tain important KV tokens with high precision to reduce
KV cache quantization errors and quantize other cache in
the same layer with uniformly low precision such as 2-bit.
KIVI (Liu et al., [2024e)), IntactKV (Liu et al., [2024c)), and
KVQuant (Hooper et al., [2024) statically keep prefix and
initial KV cache blocks with high precision. They need
specially designed operators for hardware like GPUs and
require more careful KV cache management. Besides, the
assumption that the static prefix and recent KV is important
may not always hold as demonstrated in Figure [2] where
low-precision quantization (4-bit and 2-bit) leads to dra-
matic attention distribution shift in sensitive models like
Qwen?2.5-7B-Instruct. Existing static and uniform KV preci-
sion methods including KIVI 4-bit cannot effectively handle
these non-sparse retrieval heads. The only viable and effi-
cient solution is to increase KV cache quantization precision
of the whole model or some critical and sensitive layers.

In contrast, fine-grained methods, such as QAQ (Dong et al.}
2024), MiKV (Yang et al.,|2024b), and ZipCache (He et al.,
2024b)), dynamically identify critical KV cache and update
their precision on-the-fly to improve accuracy. However,
they cannot be easily integrated with flash attention (Dao
et al.||2022) and vLLM (Kwon et al., 2023)), because of the
intra-layer fine-grained KV cache precision difference and
additional deployment efforts. In addition, the online com-
putation and control flow logic for critical token identifica-
tion introduce overhead and do not fit into static graph-based
inference acceleration methods.

There are still several issues to improve the inference
throughput and maximum supported context length with KV

cache quantization under constrained hardware resources:
1) Can we further almost losslessly compress KV cache
with hardware-friendly and mixed precision quantization in
a plug-and-play way? 2) Are there any other inherent model
properties such as attention patterns (Tang et al., 2025} [Xiao
et al.,2025) that can help better trade-off memory reduction
and model accuracy? 3) There are normally multiple de-
ployed LLMs in the industrial service systems and Artificial
Intelligence (AI) agents. How to adaptively tune the KV
cache quantization precision considering the accuracy re-
quirement of requests and the LLM sensitivity to KV cache
quantization?

To address these issues, we thoroughly study the sensitiv-
ity of LLM transformer layers to KV cache quantization
and theoretically find out that error accumulation caused
by KV cache quantization is strongly correlated with
attention patterns in Section [4.T]and #.4] According to
our observation of the sensitivity of key and value cache
in the same layer in Section[4.2]and [4.3]and the layer-wise
difference of transformer layers in Section[4.5] we propose
to quantize coarse-grained key and value cache in the
same layer with different precision and automatically
search for the optimal layer-wise KV cache quantiza-
tion precision pairs based on the inherent importance
of intermediate layers in Section [5| During online serv-
ing, the offline calibrated layer-wise KV cache quantization
precision pairs are directly loaded without any additional
overhead to improve inference throughput and latency. Our
contributions are summarized as follows:

* We study the underlying mechanism of why key cache
normally is more important than value cache. The
LLM accuracy degradation with low-bit key cache
quantization is mainly caused by error accumulation
and the layer-wise attention error distribution shift. We
find out that the sensitivity of LLMs and intermediate
layers to KV cache quantization is the model property
and independent of input prompts.

* We propose to automatically search for the hardware-
friendly layer-wise KV cache precision pairs such as
K8V4 and K4V2 with multi-objective optimization
(MOO) under certain memory or accuracy constraints
for efficient online inference. The intra-layer prun-
ing and inter-layer clustering are used to significantly
reduce the search space and the offline tuning cost.

* We empirically demonstrate that our mixed-precision
KV tuning framework KVTuner can achieve almost
lossless KV cache quantization with equivalent 4-bit
even 3.25-bit precision in mathematical reasoning tasks
for most LLMSs with 21.25% inference throughput im-
provement.
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Table 1: The error accumulation caused by low-bit KV cache quantization (KIVI-2) potentially leads to wrong responses of
mathematical reasoning tasks. The input prompt is combined with 15-shot Chain-of-Thoughts (CoTs) (Wei et al., [2023)
from GSMSK training dataset for Llama2-13B-chat-hf model generation. The official KIVI CUDA kernel and code are used

to generate the output.

KV cache | Results with 15-th input prompt In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of the remaining enrolled in jazz dance, and the rest
precision | enrolled in hip-hop dance. What percentage of the entire students enrolled in hip-hop dance?
FP16 Let X be the number of students enrolled in hip-hop dance. The number of students enrolled in contemporary dance is 20% of 20 = 4. The number of stu-
dents enrolled in jazz dance is 25% of the remaining = 25% of (20 - 4) = 25% of 16 = 4. Therefore, the number of students enrolled in hip-hop dance is
20 - 4 - 4 = «20-4-4=12»12 . The percentage of the entire students enrolled in hip-hop dance is 12/20 x 100% = 60% . #### 60%.
KIVI-4 Let X be the number of students enrolled in hip-hop dance. The number of students enrolled in contemporary dance is 20% of 20 = 4. The number of stu-
dents enrolled in jazz dance is 25% of the remaining = 25% of (20 - 4) = 25% of 16 = 4. Therefore, the number of students enrolled in hip-hop dance is
20 - 4 - 4 = «20-4-4=12»12 . The percentage of the entire students enrolled in hip-hop dance is 12/20 x 100% = 60% . #### 60%.
KIVI-2 Let X be the number of students 'who enrolled in hip-hop dance. The number of students 'who enrolled in contemporary dance is 20% of 20 = 4. The number
of students who enrolled in jazz dance is 25% of 16 = 4. Therefore, the total number of students \who enrolled in hip-hop dance is 20 + 4 + 4 =28 . The
percentage of the entire students who enrolled in hip-hop dance is 28/20 = «28/20=14»14% . #### 14.
2. Related Work 3. Background

KV cache management and compression methods include
paged KV cache (Kwon et al.l [2023), prefilling-decoding
(PD) disaggregation (Qin et al.| [2024), quantization (Liu
et al., 2024ejc; |Hooper et al., 2024} [Zhang et al., [2024c;
Yang et al., 2024b; |[He et al., 2024bja; Dong et al., [2024),
eviction (Zhang et al.| 2023} |Ge et al., 2024} Liu et al.|
2023} |Li et al.l 2024a; |Adnan et al.|[2024)), merging (Zhang
et al.}2024bj Wang et al.} [2024;|Wan et al.| 2024;|Liu et al.}
2024b)), low-rank decomposition (Kang et al., [2024; Sun
et al., 20244a)), offloading (Sheng et al.,[2023; Zhang et al.,
2024al), prefetching (Lee et al. 2024b)), and retrieval (Tang
et al,[2024). Among them, KV cache quantization is orthog-
onal to most other KV cache management and compression
methods, so it has been integrated with eviction, retrieval,
and transferring (Tang et al., [2024; [Liu et al., |2024d).

Model and activation quantization methods such as GPTQ
(Frantar et al. [2022), SmoothQuant (Xiao et al., [2023)),
AWQ (Lin et al.| 2024a), SpinQuant (Liu et al.| [2024{), and
QServe (Lin et al.| 2024b)) are also used to reduce model
memory usage and inference latency with low-bit computa-
tion units. Model pruning and layer skipping reduce compu-
tational cost by directly pruning unimportant layers or heads
(Ma et al., 2023} |Zeng et al., 2023} |[Elhoushi et al., 2024).

Speculative decoding is another promising direction for
lossless LLM inference acceleration by reducing the LLM
inference iteration times and KV cache memory movement
cost in the memory-bounded decoding stage. LLMs verify
multiple tokens speculated with smaller models (L1 et al.|
2024b)), self-partial layers (Cai et al., 2024} Liu et al.|[2024a;
Gloeckle et al.} 2024} |Stern et al.,[2018)), or other training-
free algorithms (Zhao et al., 2024) in one forward step. In
addition, Triforce (Sun et al.| [2024b) is proposed to inte-
grate KV cache compression with hierarchical speculative
decoding to improve long context generation efficiency.

3.1. Transformer and KV Cache

In LLMs, there are multiple intermediate transformer layers
stacked and executed to generate final output responses.
For the [-th transformer layer, given i-th D-dimensional
input hidden state ! € RP, the I-th query, key, and value
feedforward neural network layers generate g = Wéwé,
k. = Wizl and v, = W'zl with the corresponding
weight matrices Wf], WZ, and ij, respectively. Then
the self-attention scores a! are computed with the current
query embedding and all key embeddings until the ¢-th step.
Finally, the [-th self-attention layer generates the output
state oﬁ, which is forwarded to downstream sub-layers in
the [-th transformer layer, with the softly weighted value
embeddings V! using the attention scores a':

g K"

VD

a! = softmax , ol = alz-Vl, €))

where K'=concat(K';, |, k!)and V'=concat(V!, | vl)
are the key and value embeddings generated in the prefilling
and decoding stage in [-th transformer layer until ¢-th step.
They will still be re-used in subsequent generation steps
for self-attention computation. Therefore, we need to store
them as KV cache in each layer independently to remove the

additional computational cost of KV cache re-computation.

3.2. KV Cache Quantization

Although storing KV cache can reduce the re-computation
cost, the KV cache may become the new inference memory
and latency bottleneck in the large batch size and long con-
text scenario. KV cache quantization can effectively address
these problems. The round-to-nearest B-bit quantization
and dequantization along the channel or token dimension to
input X € R9*P are defined as

X —z

Q(X)zround( >,X:Q(X)-s+z, )
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where the offset z =
w. We measure the relative KV cache and

attention output errors and the absolute attention score er-
v -v'|
i

N
), and el = mean (‘O|olc|7 ‘), where

min(X) and the scale s =

e )
ror as ¢&. — mean | K=X1) ¢! — mean
k= &) =

l l

e, = mean(|a! — a

the attention score with dequantized key cache &é =
1l T

softmax (qi\‘;% > and the attention output with dequan-

. . Al
tized KV cache oi = aﬁV .

4. Observation
4.1. Error Accumulation

Due to the sequential nature of LLMs along both the model
layer and token sequence dimensions, the previous layer
output with KV cache quantization errors is the input of the
current layer and the previous step model output token with
errors is the input of the input and subsequent transformer
layers. Therefore, KV cache quantization leads to two-
dimensional error accumulation. The error in the [-th layer
and i-th token e} depends on previous 1 ~ [ — 1 layers and
1 ~ i — 1 steps, as defined in

l 1:1—1 1:L 1:L
ei:fe(e Y€1, € ) 3)

i

The KV cache quantization error of a single token and layer
may be ignorable. However, the error accumulation over the
whole model and long context length is noticeable and may
lead to token flipping and generation error, which is similar
to model quantization (Lee et al., 2024a)). The error accu-
mulation caused by low-precision KV cache quantization
is a general problem in domain knowledge QA, Al Gener-
ated Contents (AIGC), coding, and mathematical reasoning
tasks, which may lead to critical factual errors and loss of
instruction following ability.

Accumulated errors and intermediate token flipping can ren-
der the entire mathematical and logical reasoning process
ineffective, resulting in unnecessary computational over-
head in long-context reasoning models like OpenAl ol. As
demonstrated in Table |1} KIVI-4 has exactly the same re-
sponse with half-precision KV cache of an example from
the GSM8K 15-shot dataset, while the first three generated
sentences with low-precision KIVI-2 are highly similar to
original generation except for minor differences. Addition-
ally, there is a small token flipping from — to 4, which
leads to the arithmetic operation error in the fourth sen-
tence with KIVI-2. The wrong 20 + 4 + 4 = 28 instead of
20 —4 — 4 = 12 finally leads to the arithmetic error 28/20 =
«28/20=14»14% and the completely wrong final answer 14.

Table 2: Word-perplexity of different KV cache quantization
precision pairs with the huggingface transformers KIVI-
HQQ implementation on the wikitext dataset and Im-eval-
harness.

Model KV8 K8V4 K8V2 K4v8 KV4  K4v2 K2v8 K2v4 Kv2
Llama3-8B-Instruct 9.95 9.94 10.04 9.99 9.99 10.11 SilgER 3148 37.29
Llama2-7B-chat-hf 11.60 11.60 11.67 11.61 11.62 11.67 13.86 13.92 14.92
Llama2-13B-chat-hf 10.04 10.05 10.08 10.06 10.07 10.11 13.30 13.37 14.25

Mistral-7B-Instruct-v0.3 8.28 8.27 8.35 831 8.29 8.44 12.61 12.71 15.18
Qwen2.5-3B-Instruct 10.60 10.59 11.36 11.11 1111 12.28 147.03 151.30  251.89
Qwen2.5-7B-Instruct 9.56 9.39 945 220.83 23503 149.15 186633 1831.33 4016.10

Qwen2.5-Math-7B-Instruct  168.92  169.60 175.34 588.34 599.02 725.10 | 1746.07 1760.31 1829.26
Qwen2.5-14B-Instruct 6.65 6.67 7.19 6.81 6.83 7.32 16.05 16.37 18.22
Qwen2.5-32B-Instruct 6.68 6.85 6.34 6.47 6.52 6.43 9.13 9.20 9.56

4.2. Sensitivity to Quantization Mode and Precision

KV cache quantization errors strongly correlate with the
quantization mode and precision as in Table ] In terms
of relative key error ey, the per-channel-asym quantization
mode consistently outperforms the per-token-asym counter-
part under the same precision for key cache, because key
cache has strong channel-wise outliers (Liu et al.| [2024e;
Hooper et al.| [2024)), more detailed experiment results can
be found in Table E} Therefore, for specific KV cache,
the quantization mode modification may lead to the shift
of importance of key and value to attention output errors.
As shown in Table [d] the Pareto-optimal intra-layer KV
cache quantization precision pairs significantly differ be-
tween these two modes. Therefore, the KV cache preci-
sion pairs need to be adapted to quantization modes. More
detailed experimental settings and results are available in
Appendix [B]and [D.T]due to space limitations.

4.3. Why Key Cache Is Generally More Important?

We discover the diverse model and transformer layer sensi-
tivity to KV cache quantization mode and pairs, which is
mainly caused by attention distribution shift as in Figure
In this section, we thus analyze the reason why key cache
is normally more important than value cache from both the
empirical and theoretical perspectives.

(a) K8 eq 1.8x107° (b) K4 €4 2.5x10™% (c) K2 €4 1.2x1073

Figure 3: Layer-wise attention score error of per-token-
asym KV cache quantization with simulated offline quanti-
zation and dequantization (without error accumulation) of
the Llama-3.1-8B-Instruct model and the first 20 prompts
in the zero-shot GSM8K dataset.

Intermediate Attention Errors. Following the settings
in Table[9] we visualize the simulated layer-wise attention
score errors of Llama-3.1-8B-Instruct with the per-token-
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Table 3: Layer-wise relative attention output error (e,)
of per-token-asym KV Quant. method on Llama-3.1-8B-
Instruct on the first 20 prompts from the GSM8K dataset.

Precision ‘KVS K8V4 K8V2 K4V8 KV4 K4V2 K2V8 K2V4 KV2
Relative Attention Output Error (e,) ‘ 0014 0.100 0401 0.168 0207 0.453 0.882 0.892 0.962

asym KV cache quantization mode in Figure[3] More results
of diverse LLMs and datasets are available in Appendix [F
Decreasing the key cache quantization precision from 8-bit
to 4-bit and from 4-bit to 2-bit leads to 13.9x and 4.6 x
average attention score error degradation in Figure [3] re-
spectively. It may result in attention distribution shift in the
token levels of specific sensitive heads as in Figure 2] and
thus degrade the final accuracy. A similar phenomenon oc-
curs in the final output token probability when implementing
KV cache eviction (Adnan et al., [2024)).

As shown in Table |3] the relative attention output errors
of high-precision key cache quantization with the same
overall memory usage e.g. K4V2 is significantly lower than
the high-precision value quantization e.g. K2V4, which
empirically validates that key cache is more important than
value cache during KV cache quantization of intermediate
transformer layers. More detailed experiment setting and
results can be found in Figure[I3]and [T4]

Final Generation Errors. We also study the final LLM
generation performance with error accumulation enabled
during decoding. Low-precision KV cache in all intermedi-
ate layers are quantized with the same KV precision pairs
such as K8V4 and K4V2. We utilize the KIVI implemen-
tation with the HQQ backend in huggingface transformers
v4.46.2 (Wolf et al.||2020), which supports popular LLMs
with different scales and proposes, and measure the word-
perplexity with Im-evaluation-harness (Gao et al., [2024)) in
Table 2]

As shown in Table 2] both KV8 and K8V4 quantization
demonstrate similar perplexity levels across all models. Sim-
ilarly, KV4 and K4V2 quantization demonstrate comparable
patterns. These results suggest that we can achieve equiva-
lent performance using either 6-bit (K8V4) or 3-bit (K4V2)
KV cache quantization while maintaining accuracy levels
similar to those of KV8 or KV4 quantization, respectively.
In contrast, K4V8 and K2V4 quantizations lead to substan-
tial increases in perplexity scores, resulting in significant
degradation of generation quality. A noticeable decline
in generation quality occurs when reducing the precision
of the key cache rather than the value cache. The 5-bit
K8V?2 precision pair achieves performance equal to or better
than the higher 6-bit K4V 8 precision pair while achieving
an additional 12.5% reduction in memory usage. These
LLMs demonstrate varying levels of sensitivity to KV cache
quantization. Most models experience significant perplexity
increases only with int2 key cache quantization, with two no-

table exceptions: Qwen2.5-{7B, Math-7B }-Instruct. These
two LLMs are sensitive even to int4 key cache quantization,
indicating a lower tolerance for precision reduction. Based
on these findings, we conclude that the key cache plays a
more critical role than the value cache during quantization.
This characteristic can be leveraged to optimize memory
usage while maintaining model effectiveness.

4.4. Correlation of KV Quantization Errors and
Attention Patterns

As shown in Figure 4] heads with high KV cache quantiza-
tion errors typically exhibit non-sparse attention patterns.
The sparsity patterns of the attention heads are correlated
with the head-wise and layer-wise sensitivity to KV cache
quantization, Highly sparse streaming heads are generally
more robust to KV cache quantization than retrieval heads.
The proof of Lemma [I]is available in Appendix

Lemma 1. Only attention heads with sparse and concen-
trated patterns demonstrate consistent robustness to low-
precision KV cache quantization.

The optimal strategy to mitigate attention shift and enhance
accuracy is to increase key quantization precision, specif-
ically reducing gA K in highly sensitive layers. This ap-
proach is recommended when dynamic fine-grained token or
page-level KV cache quantization for better accuracy is not
feasible, as such methods remain challenging to implement
on existing hardware.

—BF16 030
Kkva
Kva
- K2

0 10 20 3 4 50 6 70 0 10 20 3 4 50 60 70
Key position Key position

(a) Layer-2 streaming head (b) Layer-13 retrieval head

Figure 4: Token-level attention distribution shift with
the per-token-asym key cache quantization(LLlama-3.1-8B-
Instruct, GSM8k)

4.5. Layer-Wise Sensitivity to KV Cache Quantization

According to the layer-wise attention score and relative out-
put errors of different prompts and KV cache quantization
precision pairs of Llama-3.1-8B-Instruct in Figure [3 and
[[3] transformer layers sensitive to KV cache quantization
remain consistent across different input prompts. The ob-
served shifts in layer-wise error distribution primarily stem
from variations in key cache quantization precision. Both
Qwen2.5-7B-Instruct and Mistral-7B-Instruct-v0.3 exhibit
similar behavioral patterns in this respect. Further analysis
results can be found in Appendix [F] We can thus conclude
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that layer-wise sensitivity to KV cache quantization is an
inherent characteristic of LLMs.

KV cache quantization errors are accumulated over both
the model layer and generation sequence dimensions, and
the sensitive layer will further amplify errors and lead to
dramatic model performance degradation. We can perform
an offline search to identify the optimal coarse-grained KV
cache quantization configuration, determining the most ef-
fective precision pairs for each layer, particularly for sensi-
tive layers, to achieve a balance between memory reduction
and generation efficiency without incurring any overhead
during online inference.

5. Method

KVTuner is an adaptive tuning framework for hardware-
friendly mixed-precision KV cache quantization. It opti-
mizes layer-wise KV precision pairs by considering their
inherent sensitivity properties, aiming to achieve a better
trade-off between inference efficiency and model accuracy.

Instead of making online decisions about fine-grained token
or page-level KV cache quantization precision for improved
model accuracy, we conduct offline search to identify the
Pareto-optimal quantization precision settings for coarse-
grained KV cache in each transformer layer using multi-
objective optimization algorithms. Here, we refer to the
entire low-bit KV cache being quantized with a specific pre-
cision pair, such as K8V4 or K4V2. This approach ensures
that no additional overhead is introduced during dynamic
quantization and online inference. Due to the flexibility
introduced by layer-wise KV cache quantization precision
tuning, KVTuner is able to accommodate more hardware
and accuracy constraints of different deployed LLMs com-
pared to uniform 8-bit or even lower precision quantization.
Moreover, KVTuner accelerates LLM inference and reduces
memory footprint, while still maintaining lossless or slightly
lossy final model generation.

5.1. Problem Formulation

The offline layer-wise KV precision pair tuning problem
can be formulated as a discrete combinatorial optimization
task, considering hardware limitations and accuracy loss
constraints. It can be solved using multi-objective optimiza-
tion algorithms. We aim to minimize the quantized KV
cache memory usage across all transformer layers while
minimizing the final model accuracy loss, subject to the
maximum )M memory and A A accuracy loss constraints:

min (fn(P), fo(P)) s.t. fin(P) < M, fo(P) < A4, (4)
where the search space P € ST is the KV cache precision

pairs in L layers. The layer-wise search space S is defined
as the KV cache precision pair (P}, P!) in the I-th layer.

fm(P) = % captures the average equivalent quanti-
zation bits of all KV cache, f,(P) = Arppm (K Viaiy) —
Arrm (KVp) measures the final LLM accuracy loss with
the KV precision as P compared with LLM inference us-
ing 16-bit half precision KV cache. For instance, we can
limit the average KV cache quantization precision to 2.5-bit,
while optimizing the equivalent quantization precision and
inference accuracy.

5.2. Framework

To reduce the overhead of online fine-grained KV cache
mixed-precision quantization tuning, we propose offline
calibration of the optimal coarse-grained KV cache quan-
tization precision pairs for each layer or head using multi-
objective optimization algorithms (Akiba et al.,2019;[Zhang
& Li,2007). These pre-calibrated settings are then directly
applied during online quantization. The efficiency of of-
fline calibration is crucial for practical applications due to
the large combinatorial search space of KV cache quanti-
zation pairs across multiple transformer layers. Therefore,
as demonstrated in Figure[I] we propose the intra-layer and
inter-layer search space pruning algorithms to accelerate the
search process while preserving optimization opportunities.
After the efficient preprocessing, the final LLM inference
accuracy is utilized to search the Pareto optimal layer-wise
KV precision pairs P capturing complex dependencies of
the nonlinear error accumulation.

5.3. Automatic Layer-Wise KV Cache Quantization
Precision Pair Search

As analyzed in Section [4.2] and [4.3] the model-wise and
layer-wise sensitivity to KV cache quantization mode and
precision is the inherent model property and is independent
of the input prompts. Therefore, we can search for the
optimal layer-wise KV cache quantization precision pairs
offline to eliminate the additional online decision-making
overhead with high generalization. If the candidate layer-
wise KV precision pairs are {2, 4,8} x {2,4, 8}, then the
number of possible combinations is 9L where the L is the
number of transformer layers. For example, the Llama-
3.1-8B-Instruct model with 32 layers has about 3.4 x 103,
which is intractable. Therefore, we design the following
two-level search space pruning algorithm to reduce P from
ST to SpG, where S), is the pruned candidate set in a group
and G is the number of clustered layer groups.

INTRA-LAYER KV CACHE QUANTIZATION PRECISION
PAIR PRUNING

KV cache quantization errors in each layer accumulate
across both the model layers and generation token dimen-
sions. Therefore, we must control the layer-wise error by
pruning KV cache quantization pairs to limit the final model
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error. For all candidate KV cache quantization pairs in each
layer, we prune those that are not part of the Pareto frontier,
considering both the equivalent KV cache quantization pre-
cision and the relative attention output errors. For example,
the precision pairs KV8, K8V4, KV4, K4V2, and KV2 are
Pareto efficient for most layers in Llama-3.1-8B-Instruct in
Figure[I3] except for the O-th layer, where K4 V8 results in
smaller errors than K8V4.

INTER-LAYER CLUSTERING

Although the above intra-layer pruning already significantly
reduces the search space to SpL such as 532 ~ 2.3 x 10?2 in
Llama-3.1-8B-Instruct, it is still too computationally costly
for searching. Therefore, we further propose the inter-layer
clustering algorithm based on relative attention output errors
and the pruned candidate KV quantization pairs to SPG
such as 5 = 15625. The initial step involves partitioning
layers based on distinct candidate sets of pruned KV cache
quantization precision pairs. These candidate sets serve
as indicators of how individual layers respond differently
to specific KV cache quantization precision configurations.
The subsequent step involves clustering layers that share
the same candidate set, using quantization sensitivity as
the clustering metric. This sensitivity is quantified with
the relative attention output errors produced by the pruned
precision pairs.

CALIBRATION DATASET DESIGN

To effectively evaluate different quantization settings, we
develop an approach that amplifies KV cache quantization
error accumulation and distinguishes the performance of
KV precision pairs during the calibration process. This
approach utilizes dequantized KV cache for self-attention
computation during the prefilling stage, enabling error ac-
cumulation across model layers. Furthermore, we utilize
long-context generation and challenging calibration datasets
such as mathematical reasoning. In these tasks, minor errors
propagating in decoding steps may result in intermediate
generation token flipping and substantial mistakes in final
answers as demonstrated by Table|[T]

6. Experimental Results

The detailed experimental settings are available in Section
The intra-layer and inter-layer KV precision pairs prun-
ing results of various LLMs are available in Appendix
The proposed pruning algorithm can significantly reduce
the search space to SPG and speedup convergence of MOO
search. The final model accuracy on mathematical reason-
ing datasets and the throughput improvement validate the
effectiveness of KVTuner.

Table 4: Intra-layer KV cache quantization precision pair
pruning results of special transformer layers. The pruned
Pareto efficient KV cache precision pairs in most layers are
{KV8, K8V4, KV4, K4V2, KV2}, so we omit them in the
table. Value is always quantized with the per-token-asym
mode. (G of Mistral-7B-Instruct-v0.3 is 2~4, 6, 7~10,
14, 18, 27, and 29. G5 of Qwen2.5-32B-Instruct is 5 ~
10,12,14,16,18 ~ 21, 23,26 ~ 28, and 32.

Model name L Key quant. mode KV cache precision pairs Layer ids
per-token-asym  KV8, K4V8, KV4, K4V2, KV2 0
Llama-3.1-8B-Instruct 32 KV8, K4V8, KV4, K2V4, KV2 0
per-channel-asym ¢’ g 4vg| Kv4, KaV2, KV2 1,2,3,7,29, 31
per-token-asym KV, K4V8, KV4, K24, KV2 0
Mistral-7B-Instruct-v0.3 32 KVS, K4V8, KV4, K2V4, KV2 0
per-channel-asym e vg' 14y, Kv4, K4V2, KV2 e
por-token-asym VS, K8VA, KSV2 K4V2, KV2 0
Qwenz5-3BInstruct 36 KV8, K8V4, K8V2, KV4, K4V2, KV2  18,27,29
o ; T KV8,K4V8,KV4, K2V4,KV2 0,1,2,4 34,35
per-channel-asym  y vg' 1c4vs. K4, K4V2, KV2 3,6,11,13,23
— KV8, K8V4, K8V2, K4V2, KV2 0
per-token-asym e’ gv4, KSV2, KV4, K4V2, KV2 3,13,27
Quen2.5-7B-Instruct 28— neTasym  KVS, KAVS, KV4, K2V4, KV2 0,1,2.3
KV8, K4V8, KV4, K4V2, KV2 6
per-token-asym None
Qwen2.5-14B-Instruct 48 KV8, K4V, KV4, K2V4, KV2 0,1,2,3,4
per-channel-asym g vg' 1K 4vs. K4, K4V2, KV2 5,6,8,9,12
per-token-asym None
KV8, K4V8, KV4, K2V4, KV2 0,1,2,3,4,11
Qwen2.5-32B-Instruct 64 pannel-asym  KVS, KAVS, KV4, K4V2, KV2 Gy
KV8, K8V4, KV4, K2V4, KV2 63

6.1. Pareto-Optimal KV Cache Precision Pair Search

KIVI. The mixed precision KIVI quantization mode can
maintain high accuracy. As shown in Figure[Saj KV Tuner
with KIVI effectively maintains Llama-3.1-8B-Instruct per-
formance while reducing the equivalent quantization preci-
sion to 3.06-bit. In addition, KVTuner also finds out four
settings including lower-precision 4.91-bit in the Pareto
frontier whose memory usage and accuracy are better than
KV8. Most sampled settings are close to the Pareto fron-
tier, indicating that Llama-3.1-8B-Instruct is more robust
to low-precision KV quantization. These demonstrate that
KVTuner increases the flexibility of KV cache quantization
and can achieve lower precision and even better precision
than uniform KV precision.

Per-token-asym. According to Figure [5b] when using
the per-token-asym quantization mode on the sensitive
Qwen2.5-7B-Instruct model, the Pareto frontier identified
by KVTuner consistently outperforms uniform precision
quantization. Especially, KVTuner can achieve KV8 accu-
racy with the equivalent 3.92-bit KV precision, while the
uniform KV4 accuracy significantly degrades to around 0%.
Therefore, even leveraging the simple and commonly used
per-token-asym mode (Lin et al.,[2024b}; Sheng et al.| 2023),
KVTuner can reduce the memory footprint with the main-
tained accuracy of models with high knowledge density.

6.2. Mathematical and Scientific Reasoning Accuracy

Apart from the in-context few-shot GSMS8K datasets, we
also utilize them as the internal reasoning steps in a multi-
turn way to imitate OpenAl ol like reasoning systems in
Table[5] KIVI-2 and KIVI-4 result in dramatic accuracy loss
in Qwen2.5-{3B, 7B }-Instruct due to their high sensitivity
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(a) Llama-3.1-8B-Instruct
with KIVI

Figure 5: Pareto frontier on the first 200 GSMS8K 4-shot
prompts. Red points indicates the accuracy of 9 uniform
layer-wise KV cache precision pairs including KV8, K8V4,
K4V8, KV4, K4V2, and K2V4. For Qwen2.5-7B-Instruct,
we can easily see that K2V8, KV4, and other lower pre-
cision pairs lose the capability of mathematical reasoning,
obtaining around 0% accuracy. However, KVTuner still
maintain nearly lossless overall 4-bit KV cache quantiza-
tion.

(b) Qwen2.5-7B-Instruct with
per-token-asym

Table 5: Mathematical reasoning accuracy comparison of
different KV cache precision settings with the KIVI and per-
token-asym quant. mode on the GSM8K few-shot CoT and
CoT as multiturn dataset. We highlight the average scores
with significant accuracy degradation in red and those with

in orange. Notably, for the
Qwen2.5-3B-Instruct model using KIVI quantization mode,
all configurations within the 4-bit to 6-bit equivalent preci-
sion range exhibit lower accuracy on the calibration dataset
compared to a configuration with an equivalent precision of
3.44-bit. As aresult, we choose this 3.44-bit configuration
as the highest-accuracy representative for cases where the
equivalent precision is constrained to <6-bit.

Few-shot CoT Few-shot as multiturn

Quant. method  Preeision | 4 hor gshot 16-shot | 4-shot  S-shot 16-shot | AYTE
Llama-3.1-8B-Instruct

BFI6 BFI6 0763507741 _0.7854 [ 0.8355 08309 08332 | 08038

KV8 07635 07710 07908 | 0.8340 08302 08279 | 0.8029

KV4 07240 07506 07354 | 0.8211 08180 0.8097 | 0.7765

Per-token-asym KV2 00174 0.019  0.0250 | 0.0167  0.019  0.0197 | 00195

KVTuner-C5.44 | 0.7604 0.7726  0.7726 | 0.8287 0.8385  0.8309 | 0.8006
KVTuner-C3.59 | 0.7210 0.7316  0.7407 | 0.8021 0.8014  0.7991 0.7660

KIVI-8 0.7733  0.7748  0.7756 | 0.8347 0.8317 0.8294 | 0.8033
KIVI-4 0.7566 0.7718  0.7839 | 0.8370 0.8241  0.8332 | 0.8011
KIVI KIVI-2 0.6073  0.6080  0.5929 | 0.6649 0.6543  0.6687

KVTuner-C4.91 | 0.7506 0.7665 0.7657 | 0.8173 0.8188  0.8378 0.7928
KVTuner-C3.25 | 0.7483  0.7566  0.7604 | 0.8362 0.8256  0.8279 0.7925
Qwen2.5-3B-Instruct

BF16 BF16 0.6020  0.6490  0.7020 | 0.5679 0.6005  0.6490 | 0.6284
KVv8 0.5959 0.6573  0.7081 | 0.5686 0.6080  0.6323 | 0.6284

Kv4 0.1888 0.1721  0.2312 | 0.2229 0.2616  0.2464 | 0.2205

Per-token-asym KV2 0.0099 0.0121  0.0106 | 0.0106 0.0091 0.0129 | 0.0109

KVTuner-C5.06 | 0.6058 0.6664 0.6823 | 0.5914 0.6133  0.6490 | 0.6347
KVTuner-C4.00 | 0.6156 0.6482  0.6672 | 0.5815 0.6118  0.6422 | 0.6278

KIVI-8 0.5974  0.6619  0.7096 | 0.5648 0.5989  0.6346 | 0.6279
KIVI-4 0.6156  0.6550  0.7066 | 0.5732 0.6073  0.6414 | 0.6332
KIVI KIVI-2 0.0546  0.0576  0.0675 | 0.047 0.0478  0.0591 0.0556

KVTuner-C3.44 | 0.5989 0.6429  0.7089 | 0.5701 0.5997 0.6475 | 0.6280
KVTuner-C3.17 | 0.6065 0.6444  0.6998 | 0.5512 0.5891 0.6406 | 0.6219
Qwen2.5-7B-Instruct

BF16 BF16 0.8059 0.8287  0.8218 | 0.7081 0.7339  0.7544 | 0.7755
KV8 0.7998 0.8203  0.8196 | 0.7134 0.7384  0.7354 | 0.7712

Kv4 0.0106  0.0121  0.0121 0.003  0.003  0.0061 0.0078

Per-token-asym KVv2 0.0068 0.0099  0.0076 | 0.0083 0.0106 0.0106 | 0.0090
KVTuner-C5.00 | 0.7885 0.8302 0.8203 | 0.6914 0.7445 0.7468 | 0.7703

KVTuner-C4.00 | 0.7847 0.8112  0.7726 | 0.6929 0.7331  0.7407 | 0.7559

KIVI-8 0.8021 0.8271  0.8302 | 0.7066 0.7354  0.7506 | 0.7753

KIVI-4 0.0735  0.1137  0.1554 | 0.0667 0.0705 0.1463 | 0.1043

KIVI KIVI-2 0.0379  0.0402  0.0356 | 0.0326 0.0258  0.0235 0.0326

KVTuner-C5.96 | 0.8218 0.8309 0.8150 | 0.6907 0.7248 0.7513 | 0.7724
KVTuner-C3.92 | 0.5959 0.6664  0.6558 | 0.5588 0.6156  0.6035

Table 6: Scientific reasoning accuracy comparison of dif-
ferent KV cache precision settings with the per-token-asym
KV quantization mode on the GPQA Extended dataset.

GPQA Extended GPQA Extended

Precision ‘ 5-shot_10-shot _20-shot | Average Precision ‘ 5-shot_10-shot _20-shot | Average
Llama-3.1-8B-Instruct Mistral-7B-Instruct-v0.3
BF16 0.3095 03114 0.2985 | 0.3065 BF16 0.2930 02784  0.2766 | 0.2827
KV8 03242 0.3022  0.3059 0.3108 KV8 02985 0.2839  0.2784 0.2869
Kv4 03095  0.3168  0.3077 0.3113 Kv4 0.3040  0.2839  0.3022 0.2967
KV2 0.1996  0.2198  0.2473 KV2 0.2857 02106 0.2344
KVTuner-C5.43 | 0.3187  0.3077  0.3187 0.3150 || KVTuner-C5.38 | 0.3004  0.2839  0.2912 0.2918
KVTuner-C3.59 | 0.3223  0.3205  0.3059 0.3162 || KVTuner-C3.78 | 0.3260  0.2857  0.3040 0.3052
Qwen2.5-3B-Instruct Qwen2.5-7B-Instruct
BF16 03059 0.3095  0.3150 0.3101 BF16 03168 03352 0.3297 0.3272
KV8 03005 03059 03187 | 03114 KVS 03242 03333 03407 | 03327
KV4 02564 02711 02692 KV4 00586 0.0641  0.0751 | 0.0659
KV2 0.0971  0.0806  0.1026 0.0934 KV2 02216 0.1941  0.1996
KVTuner-C5.06 | 0.2985 03040  0.3278 0.3101 KVTuner-C5.0 | 03315 0.3297  0.3187 0.3266
KVTuner-C3.64 | 0.2949  0.3059  0.2985 0.2998 KVTuner-C4.0 | 03333  0.3223  0.3205 0.3254

to low-precision KV quantization. KVTuner with KIVI can
nearly losslessly quantizate KV cache to 3.92-bit, 3.17-bit,
and 5.96-bit of the three models, respectively, further re-
ducing the memory footprint compared with KIVI-4 and
KIVI-8. In addition, we find out an interesting observation:
KVTuner enables longer context and lower KV precision
for better CoT and multi-turn mathematical reasoning ac-
curacy than short-context and original BF16 precision KV.
Most LLMs benefit from longer CoT and KVTuner enables
nearly lossless lower-precision KV quantization. We ob-
serve that KVTuner significantly reduces the performance
gap between the per-token-asym and KIVI quantization
modes.

We extend our evaluation to the GPQA dataset with few-
shot CoTs, as detailed in Table @ KVTuner successfully
enables lower than 4-bit, such as 3.59-bit, KV cache quanti-
zation with minimal performance degradation across various
models. These results demonstrate the effectiveness of our
method in maintaining high mathematical reasoning accu-
racy while significantly reducing memory usage.

6.3. Long Context Generation Accuracy

We compare KVTuner on the sensitive Qwen2.5-7B-Instruct
model with the baselines KIVI-8, KIVI-4, our proposed vari-
ant KIVI-K8V4, and per-token-asym ones in the 20 Long-
Bench datasets (Bai et al., 2024)). The averaged scores are
available in Table[/| KVTuner pushes KV cache quantiza-
tion for the nearly lossless long context generation to 3.92-
bit, outperforming the uniform KV precision. KVTuner
with both KIVI and per-token-asym quantization methods
achieve high accuracy and KV compression rates simultane-
ously.

6.4. Throughput

‘We measure the maximum throughput and the correspond-
ing batch size under specific input prompt length with the
implementation of the KIVI GPU kernel, which supports
Llama series models. We follow the same settings and defi-
nitions of KIVI. Throughput is defined as the the number of
tokens generated per second (measured end-to-end, includ-
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Table 7: Accuracy comparison between offline searched
layer-wise KV cache precision using KVTuner in Table 3]
and [6] and uniform KV precision settings of the sensitive
Qwen2.5-7B-Instruct on 20 LongBench long context gener-
ation benchmarks.

KIVI
BF16 KV8 K8V4  KV4 | KVTuner-C5.96 KVTuner-C3.92
0.7956 | 0.7992 0.8001 0.7723 0.7956 0.7903
Per-token-asym
BF16 KV8  K8V4  KV4 KVTuner-C5.0 ~ KVTuner-C4.0
0.7956 | 0.7971  0.7953 0.8005 0.7960

ing quantization/dequantization overhead). For example, if
the batch size is 128 and one generation step takes 50ms,
the throughput is 128 x 1000 / 50 = 2560 tokens/s.

The profiling and layer-wise KV cache precision tuning are
completely offline and no online overhead for precision se-
lection is introduced. The layer-wise FLOP cost difference
is mainly caused by efficiency difference of the KV cache
precision pairs. The model-level efficiency reflects the over-
all effects of layer-wise efficiency of all KV cache precision
pairs. The memory movement cost from CPUs to GPUs
and from GPU HBM to GPU cache linearly increases with
the KV cache size in most case and attention is normally
memory bounded. We also report the total model-level
throughput comparison of Llama-3.1-8B-Instruct using the
searched configuration in Table5]as below. Compared with
KIVI-KVS, KVTuner-C3.25 can improve decoding through-
put by 16.79%~21.25%.

Table 8: Throughput comparison between offline searched
layer-wise KV cache precision using KVTuner in Table 3]
and uniform KV precision settings with KIVI of Llama-3.1-
8B-Instruct.

BS inputLen | KV8(baseline) K8V4 KV4 K4V2 | KVTuner-C4.91 KVTuner-C3.25
64 128 3836 4193 4567 4697 4240 +1053% 5
16 512 1102 1205 1275 1304 1239 2419
8 1024 549 597 632 645 600 +9.22%

6.5. Detailed Analysis

By analyzing the detailed configurations in the Pareto fron-
tier identified for Llama-3.1-8B-Instruct, we observe that:

* In most cases, all layer groups adopt a quantization
configuration where the precision of the key is higher
than the precision of the value. This supports our ear-
lier observation from uniform quantization that the key
plays a more critical role in quantization.

* In other cases, in certain specialized layer groups, the
value is set at a higher precision than the key for certain
specialized layer groups. This aligns with the patterns
identified in Table ] which highlight specific layer
groups may require higher precision for values.

* KVTuner tends to allocate higher precision to groups
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Figure 6: Pareto frontier of Llama-3.1-8B-Instruct with
the per-token-asym KV quantization mode and without the
proposed two-stage search space pruning on the first 200
GSMS8k 4-shot prompts.
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with larger quantization errors. Reducing the quan-
tization precision of the key for a crucial group of
layers can significantly degrade the performance. For
instance, in Llama-3.1-8B-Instruct, the layer group
[8 ~ 11, 14 ~ 17, 20, 30] is particularly sensitive
to the reduction of the key precision, and if the pre-
cision of the key is reduced from 4-bit to 2-bit, the
performance would drop from 0.67 to 0.495.

6.6. Ablation Studies

According to Figure [6f when using the per-token-asym
quantization mode on the Llama-3.1-8B-Instruct model, the
search results deteriorate significantly if the proposed intra-
layer and inter-layer search space pruning algorithms are
not applied. In comparison with the counterpart with search
space pruning as pre-processing in Figure[9a] this highlights
search space pruning is helpful for MOO search conver-
gence and maintaining quantization performance.

7. Conclusion

KVTuner enables efficient and adaptive layer-wise mixed-
precision KV cache quantization via sensitivity-aware op-
timization techniques. It systematically reduces KV cache
quantization errors by prioritizing key cache precision while
balancing memory efficiency and inference accuracy. Exper-
imental results demonstrate that KVTuner achieves nearly
lossless compression at 3.25-bit for Llama-3.1-8B-Instruct
and 4-bit for sensitive Qwen2.5-7B-Instruct. KVTuner also
demonstrates that employing longer CoTs with lower and
mixed precision KV cache quantization yields superior per-
formance compared to shorter CoTs utilizing higher pre-
cision KV cache. This improvement is evident in both
memory efficiency and accuracy, particularly in the con-
text of mathematical reasoning tasks. KVTuner also greatly
narrows the performance difference between the simple per-
token-asym and accurate KIVI quantization modes, even
when using overall similar low-precision settings.
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Impact Statement

This paper thoroughly studies the layer-wise sensitivity of
transformers to KV cache quantization methods, which is
the inherent property of LLMs. Low-precision KV cache
quantization may lead to significantly token-level atten-
tion distribution shift in heads with non-sparse and non-
concentrated attention patterns. The attention head related
property may also be applied to LLM weight and activa-
tion quantization and other KV cache compression fields.
The proposed automatic KV cache precision pairs tuning
algorithm makes inference acceleration of LLMs with low-
precision KV cache possible, which can help reduce the
deployment cost and carbon footprint. Low-precision KV
cache quantization with ignorable LLM accuracy loss is an
important direction to reduce the KV cache memory usage
and cost in online inference, KV cache offloading (Sheng
et al.,|2023; |Zhang et al.,|20244)), storage (Jin et al.||2024),
transferring (Liu et al., 2024d)), and more LLM inference
related applications.
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A. Proof of Lemmal/l]

Lemma [I] claims that only attention heads with sparse and concentrated patterns demonstrate consistent robustness to
low-precision KV cache quantization. Its proof is below.

Proof. Given the query token ¢ € R and key cache K € RP*S, the attention score without errors is a; =
eXp(qaKi)

]‘5:1 exXp(aK;)

. The key asymmetric uniform quantization error AK € R5*P ~ AN(0, 02) follows normal distribu-

] K)—min(K .. L. . L.
tion, where o = % Therefore, low precision quantization leads to exponential larger quantization errors.

Then, the ¢-th attention score with key errors is

. exp(q(K; +AK;))  exp(gKi)exp(gAK;)) exp(qK;))

i = =

S S - )
>j—1exp(a(K; + AKj))  >77_ exp(qK;)exp(gAK ;) ZLGXP(Q&)%

&)

If the key quantization error vector AK ; with low quantization precision B is noticeable, the inner product of query and
error vector gA K ; is also not ignorable. There are two cases where a; equals to a; for all tokens. In other words, the
attention distribution before and after key quantization are identical.

Case 1) eXquAK")

qAKl)

exp = 1, where each key token quantization errors have the same inner product result with the query token

gAK; = gAK ; which normally does not happen.

Case 2) There is a dominating key token . If j # 4, exp(qK;) > exp(qK ;) and % ~ 0, then
i exp(qAK;)) L SP@AK)) ©)
R e K;) ~ A
21 exp(qAKj)% exp(qAK;))

Other dominated key token thus has the attention score @; = 0. The exactly identical attention distribution with a dominating
key token may be a special case, but it indicates that attention heads with a small amount of dominated key tokens, which
have highly attention scores and result in sparse and concentrated attention patterns, are consistently robust to low-precision
KV cache quantization. O

B. Effects of KV Cache Quantization Mode and Precision

In this section, we analyze the effects of KV cache quantization mode and precision. We collect the full precision query
tensor in the decoding phase and KV cache in both prefilling and decoding stages of the Llama-3.1-8B-Instruct model when
processing the first 20 mathematical GSM8K zero-shot prompts without KV cache quantization. After that, we quantize KV
cache along the channel or token dimension with uniform precision to compute errors of KV cache and attention score and
output vectors of each self-attention layer as defined in Section[3.2] caused by KV cache quantization without any error
accumulation. Finally, we average the simulated errors over different prompts and all layers in Table[J]to study the inherent
sensitivity of KV cache to quantization mode and precision.

The non-accumulated relative attention output errors e, of INT8 KV cache quantization with the per-token-asym or per-
channel-asym are lower than 3%. Minor single-token errors may cause slight shifts in intermediate attention patterns and
final output distributions, yet these shifts are typically insufficient to alter the generated output tokens. However, when
implementing extremely low-precision 2-bit KV2 cache quantization, the relative key quantization error e, increases to
40.1% or 77.5%, which may lead to substantial attention distribution shift for non-sparse retrieval heads as demonstrated in
Figure[d e, increases dramatically to 81.4% with the per-channel-asym mode even 96.2% with the per-token-asym mode.
The noticeable errors may thus lead to noticeable token flipping and generation errors as in Table|T]

The relative key error ey, of the INTS8 per-token-asym key quantization is 0.012280, which is 2.5 x larger than the per-channel-
asym counterpart 0.004869. Dynamically asymmetric quantization along the channel dimension leads to significantly
smaller error of both key cache and attention score compared with token dimension quantization, indicating that key cache
is strongly sensitive to quantization dimensions. The phenomenon can be explained with the strong channel-wise outliers
of key cache (Liu et al.| |2024e} [Hooper et al.,|2024)). While value cache can not benefit from switching the quantization
dimension, as the relative value errors of the channel or token dimensions over different precision are quite close.
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Table 9: Key and value cache quantization relative error analysis of different precision and quantization methods. We collect
BF16 KV cache of 20 prompts from the GSM8K zero-shot dataset with Llama-3.1-8B-Instruct and then perform offline
quantization to compute the mean error between BF16 and dequantized KV cache.

KV cache precision KV quant mode  Relative e,  Relative e, €q Relative e,
KV per-channel-asym  0.004869 0.007754  0.000013  0.027686
per-token-asym 0.012280 0.007865  0.000018  0.014589
per-channel-asym  0.080991 0.125457  0.000172  0.158429
per-token-asym 0.196476 0.126894  0.000251  0.206909
per-channel-asym  0.401151 0.604678  0.000868  0.814023
per-token-asym 0.774668 0.607898  0.001166  0.961792

Kv4

KVv2

As shown in Figure[7] there are clear layer-wise diversities of KV quantization errors e, and e, with different quantization
modes including per-token-asym and per-channel-asym and different precision like INT8, INT4, and INT2. In addition,
changing the quantization dimension or mode can result in the significant distribution shift of layer-wise key quantization
error. For example, the most sensitive layer with the per-token-asym quantization mode is layer-29, while it changes to
layer-11 and layer-13 with the per-token-asym mode. Statically retaining the first or last several layers with more sparse
budgets (Tang et al.| 2024) may not general well in KV cache quantization. Therefore, we need an automatic KV cache
quantization tuning framework to adaptively adopt to these layer-wise differences and configuration modifications.

C. Experimental Settings

KVTuner is an automatic KV cache quantization precision tuning framework and can be applied to any quantization mode.
We choose two representative and efficient KV cache quantization algorithms KIVI (Liu et al.,[2024e)) and per-token-asym
with uniform KV8, KV4, or KV2 precision pairs in all layers as baselines. Specifically, for the KIVI quantization method, we
set the residual length to 32 and the group size to 32. KVTuner is currently implemented based on huggingface transformers,
but it can be applied to inference frameworks such as vLLM (Kwon et al.,[2023)), Megatron (Shoeybi et al.,2019), LMDeploy
(Contributors), 2023), and SGLang (Zheng et al., |2024). To ensure compatibility, we integrate KV cache quantization
methods including KIVI, per-token-asym, and KVTuner within the Im-evaluation-harness (Gao et al.| |2024)), allowing for
seamless adaptation and reproducibility of KVTuner.

We select three popular and recently released LLMs series Llama3.1 (Dubey et al.l 2024), Mistral-v0.3 (Jiang et al.|
2023)), and Qwen2.5 (Yang et al.}2024a). Among them, Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, and Qwen2.5-
7B-Instruct represent the most studied model size. To cover more LL.Ms application scenarios with different scales,
Qwen2.5-3B-Instuct and its quantized version Qwen2.5-3B-Instruct-AWQ are selected for personal devices with limited
GPU memory, while Qwen2.5-{14B, 32B }-Instuct with larger model scale and better performance are also tested. We also
test Qwen2.5-Math-7B-Instruct for mathematical reasoning tasks.

We cover 5 general AIGC and 2 mathematical reasoning tasks available in Im-evaluation-harness . 1) General tasks:
CEVAL(Huang et al.||2023), MMLU (Hendrycks et al., |2021), TriviaQA (Joshi et al.,[2017), RACE (Lai et al., 2017), and
TruthfulQA (Lin et al.} 2022). 2) Math, science, and logic tasks: GSM8K {0-shot, 4-shot, 8-shot, 16-shot} (Cobbe et al.
2021), GSM8K multi-round with Im-evaluation-harness (Gao et al.,[2024), GPQA (Rein et al.| 2023]).

For the final layer-wise KV cache quantization precision pair searching with multi-objective optimization, we use the
open-sourced and widely used Optuna framework (Akiba et al.,[2019) and MOEA/D (Zhang & Li, 2007) algorithm. In
which case, we treat the LLM inference accuracy under different layer-wise KV precision pairs and input prompts as
block-box. The intra-layer and inter-layer search space pruning only takes several minutes but significantly improves
sampling efficiency of the downstream Optuna.

We first preprocess the available quantization precision options for each layer group and store them in an array. The indices
of this array are then treated as integer parameters, which are optimized by Optuna through multi-objective optimization.
The first objective is to maximize the accuracy on the first 200 samples of the GSM8K dataset, while the second objective
is to minimize the equivalent quantization precision or memory usage of KV cache. For each combination of model and
quantization mode, we set a soft constraint on the equivalent precision at 4-bit and 6-bit for optuna, conducting 200 search
iterations for each setting. The total time cost of offline KV cache precision pair tuning with Optuna mainly depends on the
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Figure 7: Layer-wise relative key errors e and value errors e, of Llama-3.1-8B-Instruct with the per-token-asym and
per-channel-asym quantization modes, KV cache precision as 8§, 4, and 2-bit, and the same settings in Table
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hardware and operator implementation efficiency.

D. Search Space Pruning and Multi-objective Optimization results
D.1. Intra-Layer and Inter-Layer Search Space Pruning Results
D.1.1. INTRA-LAYER PARETO OPTIMAL KV CACHE PRECISION PAIR PRUNING

The intra-layer KV cache quantization precision pair pruning based on Pareto frontier are available in Table[d] The calibration
dataset is the first 20 prompts from the zeroshot GSM8K dataset. The Pareto optimal KV cache precision pairs in most layers
are the key-first set {KV8, K8V4, KV4, K4V2, KV2}, indicating that the observation that key cache is more important than
value cache holds.

When both key and value cache are quantized along the token dimension, only the first layer in Llama-3.1-8B-Instruct and
Mistral-7B-Instruct-v0.3 prefers other KV precision pairs and all layers in Qwen2.5-{14B, 32B }-Instruct select the key-first
set. In contrast, K8V2 outperforms KV4 in four important layers of Qwen2.5-{3B, 7B }-Instruct, indicating that uniform
4-bit key quantization may lead to model accuracy degradation as in Table[I3]

When utilizing the KIVI-like key per-channel-asym and value per-token-asym quantization mode, more layers show diverse
preference of Pareto optimal KV cache quantization precision pairs. In these layers, K4V8 and K2V4 outperform K8V4 and
K4V2, which means that lower precision key is better than lower precision value in terms of attention errors. It indicates
that per-channel key quantization can effectively reduce quantization errors.

D.1.2. INTER-LAYER CLUSTERING BASED ON ATTENTION ERRORS

After the intra-layer KV cache quantization precision pair pruning, we apply the inter-layer clustering among the layers with
the same precision pair set. The clustering algorithm is DBSCAN (Ester et al.,|1996) with the hyper-parameter epsilon=0.05
and min_samples=2. As demonstrated in Table[I0] we successfully reduce the exponential component of search space size
from the number of transformer layers L e.g. 28~64 to the number of clustered layer groups G e.g. 4~8. Utilizing the
two-level search space pruning, the total number of combinations of candidate KV cache precision pairs is significantly
reduced from 97 to 5¢ or 6¢. In Llama-3.1-8B-Instruct, 9% = 932 ~ 3.4 x 10%°, while 5¢ = 5% = 15625.

In the layer-wise relative attention output errors with per-token-asym KV cache quantization of Llama-3.1-8B-Instruct in
Figure the highly sensitive layers include layer-{0, 1, 2, 3, 4, 23, 24, 25, 27, 28, 29}, while the insensitive layers include
layer-{8, 9, 10, 11, 13, 14, 15, 20, 30}. Layers in these two classes are correctly clustered into different groups. Similar
phenomenon can also be observed in Qwen2.5-7B-Instruct per-token-asym and KIVI-like quantization modes in Figure
[16] and [T8] respectively. Therefore, we can conclude that the proposed multi-objective Pareto frontier based intra-layer
pruning and inter-layer clustering algorithms successfully reduce the search space by considering the inherent layer-wise
sensitivities.

D.2. Searched layer-wise KV precision pairs

The final searched layer-wise mixed precision KV cache quantization precision pairs of different LLMs and KV quantization
modes are available in Table[TT} Some clustered layer groups in Table [[0]choose the same KV cache quantization pairs under
the given memory consumption and/or accuracy degradation constraints. The number of utilized KV cache quantization
precision pairs is reduced from 6 ~ 8 to 2 ~ 5 in the tested Llama-3.1-8B-Instruct, Qwen2.5-3B-Instruct, and Qwen2.5-7B-
Instruct models. In addition, the significantly diverse layer-wise KV precision pair distribution in Table[TT]indicates that
there are not clear heuristic rules based on layer depths to identify layer importance and sensitivity to KV cache quantization.
Therefore, we need to measure the model accuracies considering their complicated nonlinear dependencies to layer-wise KV
cache precision pairs and utilize accuracies to distinguish the whole model level KV cache precision pair combinations.

D.3. Pareto Frontier with the GSMS8K Calibration Dataset

We use the open-sourced package optuna (Akiba et al.,2019) with the MOEA/D algorithm (Zhang & Lil 2007) for the final
search with the model memory usage and inference accuracy of the first 200 4-shot GSM8K prompts. The multi-objective
search of the Pareto optimal layer-wise KV cache quantization precision pairs of Llama-3.1-8B-Instruct, Mistral-7B-Instruct-
v0.3, Qwen2.5-3B-Instruct, and Qwen2.5-7B-Instruct with the KIVI and per-token-asym quantization modes are available
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Table 10: Inter-layer clustering results by clustering among the layers with the same pruned intra-layer KV cache quantization
precision pairs. For example, layers 14 and 20 demonstrate higher sensitivity than layers 3, 13, and 27 as visualized in
Figure[16] They are clustered into different group, validating the effectiveness of our intra-layer pruning and inter-layer
clustering.

Model name L Key quant. mode G Grouped layer ids

{0}, {1~4,7, 13, 18, 25, 27, 31}, {5, 6, 12, 21, 26, 28}, {8~11, 14~17, 20, 30},
{19, 22}, {23, 24, 29}

{0}, {1~3,7, 29,31}, {4, 25,27}, {5, 21, 23, 24}, {6, 8~12, 14~16, 18~20, 22,
26, 28, 30}, {13, 17}

per-token-asym 5 {0}, {1, 2}, {3,4,23,31}, {5, 6}, {7~22, 24~30}

{0, 1, 31}, {2~4}, {6, 27, 29}, {7, 8, 10, 18}, {9, 14}, {5, 21~26, 28, 30},
{11~13, 15, 17, 19, 20}, {16}

{0}, {1,3~6,8,9, 12, 13, 15, 20}, {2, 14, 23, 35}, {7, 11, 16, 25, 28, 32}, {10, 19,

=)}

per-token-asym
Llama-3.1-8B-Instruct 32

per-channel-asym 6

Mistral-7B-Instruct-v0.3 32 per-channel-asym 8

P % per-token-asym 8 24, 26,33}, {17, 30, 31, 34}, {21, 22}, (18,27, 29}
: {0, 11, (2, 4}, (34, 35}, {3, 6, 11, 13, 23}, (5. 7, 25, 32, 33}, {8, 16, 18, 21, 22,
per-channel-asym 8 24,26,27,301, {9, 10, 14, 15, 17, 19, 20, 29, 31}, {12, 28}
pertokemasym 8 {0}, {1, 2,4, 5,25}, {6, 19}, {7, 10, 11, 15, 23}, {8, 24, {9, 12, 16~18, 21, 22,
Qwen?2.5-7B-Instruct 28 26}, {14, 20}, {3, 13, 27)
10,2}, (1,3}, (4, 5, 12, 22~25}, {7, 9, 10, 13, 14, 16, 18~21, 27}, {8, 26}, {11,
per-channel-asym 7 15,171, {6}
sorokonasym 6 {0~2, 6, 11, 12, 19, 23~25, 41}, (3~5, 8}, {7, 10, 15}, (9, 13, 14, 31, 38, 39},
OQwen2.5- 14B-Instruct i (16~18, 20, 21, 27, 28, 30, 32~37, 40, 42~44, 46, 47}, (22, 26, 29, 45)
] {0, 2], (L 3, 41, {5, 6, 8, 9, 12}, {7, 10, 13, 15~21, 23, 24, 26~33, 35~38,
per-channel-asym 7 44~ATY, {11, 25, 41, 42}, {14, 39, 40, 43}, {22, 34}
portokonasym 4 10,2, 11, 12, 15, 33, 54, 57}, (1, 5, 1~10, 13, 14, 17~32, 34~53, 55, 56, 58~63),
Qwen?2.5-32B-Instruct 64 (3,4}, {6, 16}

{0~47, {11}, (5~10, 12, 14, 16, 18~23, 26~28, 32}, {13, 15, 17, 22, 24, 25,
29~31, 33~62}, {63}

W

per-channel-asym

in Figure[§]and[0] In order to validate the effectiveness of the proposed two-stage intra-layer and inter-layer search space
pruning, we disable the pre-processing process and directly use the original full S* search space in Figure

For each combination of model and quantization mode, we set a soft constraint on the equivalent precision at 4-bit and
6-bit for optuna, conducting 200 search iterations for each setting. The search results are then merged for visualization. In
cases where the two-stage intra-layer and inter-layer search space pruning is not applied, we set the maximum equivalent
quantization precision to 6-bit and similarly perform 200 search iterations. Specifically, for the KIVI quantization method,
we set the residual length to 32 and the group size to 32.

Note that for Qwen-2.5-7B with the KIVI quantization mode, the result from 200 search iterations appeared abnormal.
Therefore, we extended the search to 500 iterations to obtain the final result.

E. Correlation of Model- and Layer-wise KV Cache Quantization Sensitivity with Attention
Patterns

According to the layer-wise attention score errors of Llama-3.1-8B-Instruct in Figure [3|and Qwen2.5-7B-Instruct in Figure
[I6] we can observe the clear layer-wise difference in the same LLM. In this section, we try to explain the reason of the
difference from the attention pattern perspective as in Figure[TT|and[T2] In which, we visualize block level attention scores
of the first 4 heads with block size 4 in the prefilling and decoding stages, and horizontal and vertical axes represent the
key and query dimensions respectively. Yellow, green, and purple points indicate high, medium, and low attention scores,
respectively. We find out that the more complex and dynamic attention patterns usually lead to larger attention score errors
and sensitivity to KV cache quantization of intermediate transformer layers and the whole LLMs.

Take Llama-3.1-8B-Instruct as an example, layer 12 and 13 are in the group with high attention score errors, while layer 0
and 31 are in the medium error group and layer 2 and 23 are in the low error group. Analyzing the attention patterns of these
layer in the below Figure we can conclude that heads in the layer 12 and 13 have dynamic and non-sparse attention
patterns, which are called as retrieval heads (Tang et al.l 2025} Xiao et al.l 2025). In contrast, heads in layer 0, 2, 23 and 31
have more static attention patterns like attention sink and recent window, which are called as streaming heads (Xiao et al.|
2025} [2024).
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Figure 8: Pareto frontier of different models with the KIVI quantization mode on the first 200 data slices of the 4-shot
GSMSK dataset.
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Figure 9: Pareto frontier of different models with the per-token-asym quantization mode on the first 200 data slices of the
4-shot GSM8K dataset.
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Table 11: Detailed searched layer-wise KV cache quantization precision pairs of different LLMs and KV cache quantization
modes by KVTuner.

Model name Quant. mode Equivalent precision Quant. precision Layer ids

K4V8
3.59 Kv4
per-token-asym K4v2
K8V4
KVv4
K8V4
Kv4
K4Vv2
Kv2
KIVI K8V4
KVv4
4.90 K4v2
K2v4
KVv2 13,17
K8V4 17, 18, 27,29-31, 34
K8V2 0
Kv4 7,
per-token-asym K4v2 1
KV8 0
5.06 K8V4 1
K4v2 2,
K4V8 0-
3
3
2
1
0-

12, 14-17, 20, 21, 26, 28, 30

13,18, 19, 22-25, 27, 29, 31

11, 13-18, 20, 23-25, 27, 29-31
, 12, 19,21, 22, 26, 28

o =l—wo
Q;Lg

w

NWG\}O\L&‘

Llama-3.1-8B-Instruct 3.25 12, 14-16, 18-24. 26, 28, 30

5,27
12, 14-16, 18-20, 22, 25-28, 30
,29,31
,23,24

8-
7,
7-
6.
7
7,29,31
8-
2.
8-
7

OUI?—‘;bOU\»—'—-
—

4.00 0,11, 19, 21, 22, 24-26, 28, 32, 33

10,
-6, 8,9, 12, 13-16, 20, 23, 35

s

6, 8-10, 12, 13, 15, 17-20, 24, 26, 27, 29-31, 33, 34
11, 14, 16, 21-23, 25, 28, 32, 35

3—
7,
1
Qwen2.5-3B-Instruct K4v2 5
3.17 Kv4
K2v4
KVv2
KV8 1
KV4 3,5-7,11, 13, 23, 25,32, 33
3.44 K4v2 8-10, 14-22, 24, 26, 27, 29-31
K2v4 34-35
KV2 2,4,12,28
KV8
K8Vv2
Kv4

—11, 13-27,29-33
35

4

2,28

5

KIVI

, 13,27
9-12, 14-23, 26
4,5,8,24,25

2,14, 16-18,20-22, 24, 26
3,27

4.00

0
3,1
6,7
per-token-asym K4v2 1,2,
K8V4 8,9,1
5.00 K8V2 0,3, 1
KVv4 1,2,4-
Qwen2.5-7B-Instruct KV8 0,2
4,5
1,3
0,2
4,5
1
1
6

s 7y

7,10, 11, 15,19, 23, 25
11,15, 17

12,22-26
9,
9,

5 O,

3.92 Kv4
KV2
KV8
K8V4

5.96 K4v2
K2v4
KVv2

6.
, 8,
,7,9,10,13, 14, 16, 18-21, 27
7,9, 10, 13, 14, 16, 18-21, 27
12,22,23,24,25

5

15,17

5

>

KIVI
1

s

o0 W

, 26

5

Compared with Llama-3.1-8B-Instruct which has the high ratio of heads with static attention patterns, Qwen2.5-7B-Instruct
consists of many heads with mixture of dynamic retrieval heads and other static patterns. It may explain why Qwen2.5-7B-
Instruct is more unstable to KV cache quantization as in Table@ Layer 5, 12, 21, and 27 have similar attention patterns,
but the relative strength of retrieval and streaming heads leads to the difference of layer-wise sensitivity to KV cache
quantization.

However, the sensitivity to KV cache quantization is the inherent model property which can be learned offline. Therefore, it
is necessary to apply layer-wise mixed precision KV cache quantization and maintain high precision of key cache than value
cache with multi-objective optimization KV precision pair tuning as proposed in this work. KVTuner thus makes equivalent
4-bit and even lower KV cache quantization nearly lossless in the sensitive models like Qwen2.5-7B-Instruct.

E.1. More KV Cache Quantization Results on General and Mathematical Reasoning Datasets

The experimental results of the selected 5 LLMs on the general and mathematical reasoning datasets with uniform KV
cache quantization precision pairs are available in Table[I2]and[I3] To simulate the Openai o1 like long CoT reasoning
process, the few-shot CoTs in the GSMS8K dataset are treated as a multi-turn conversation, which is enabled with the flags
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LKV cache bits Equivalent KV cache bits

(a) Llama-3.1-8B-Instruct (b) Qwen2.5-3B-Instruct

Figure 10: Pareto frontier of different models with the per-token-asym quantization model on the first 200 data slices of the
4-shot GSMB8K dataset without intra-layer and inter-layer search space pruning.

Sfewshot_as_multiturn and apply_chat_template in Im-evaluation-harness. In which cases, questions are provided as user
content and answers are provided as assistant responses instead of directly using the given standard answers. Table [T4]
summarizes the results of 8 LLMs including Qwen2.5-{14, 32B }-Instruct under the fewshot_as_multiturn setting.

There are limited long output mathematical reasoning datasets in Im-evaluation-harness (Gao et al.| 2024)) and the evaluation
of the long context generation is an open question. Therefore, we enable KV cache quantization in both the prefilling and
decoding stages to amplify the effects to final generation results caused by KV cache quantization error accumulation, which
makes distinguishing different quantization methods easier. For the KIVI quantization mode, we utilize the HQQ quantizer
from HuggingFace’s implementation, with both the residual length and group size set to 32.

According to Table[_l;Zl, B], and @ most LLMs, including Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.3, Qwen2.5-{ 14B,
32B}-Instruct, are robust to low-bit KV cache quantization. Although error accumulation caused by KV cache quantization
starts from the prefilling stage, the high KV cache quantization precision pair KV8 with KIVI or per-token-asym quantization
mode are still generally lossless, except Qwen2.5-Math-7B-Instruct. The uniform KV cache quantization precision pairs
KV4 or even K4V2 with the KIVI quantization mode can achieve nearly lossless 4x or even 5.3 x KV cache compression,
respectively. KV4 with the simple per-token-asym mode also results in negligible accuracy loss in Llama-3.1-8B-Instruct
and Mistral-7B-Instruct-v0.3 as shown in Table[I2] KIVI does outperform the per-token-asym quantization mode in the
low-precision settings such as KV4, K4V2, and KV2, especially in Qwen2.5-3B-Instruct-AWQ and Qwen2.5-7B-Instruct as
demonstrated in Figure [I3]

As shown in Figure the larger Qwen2.5-{14B,32B }-Instruct models are robust than the smaller Qwen2.5-{3B, 7B,
Math-7B }-Instruct and the weight quantized Qwen2.5-3B-Instruct-AWQ models. In addition, comparing Qwen2.5-3B-
Instruct-AWQ and Qwen2.5-3B-Instruct, we can conclude that model weight quantization with AWQ does not affect the
model-level sensitivity to KV cache quantization. The increasing GSM8K accuracy with the longer CoTs under the half
precision BF16 KV cache setting indicates that most Qwen2.5 models benefit from longer CoTs. We also obverse that
16-shot CoTs with K4V2 KV cache precision outperforms the 4-shot CoTs with BF16 KV cache precision on the larger
Qwen2.5-{14B,32B }-Instruct models. It indicates that longer CoT with lower and mixed precision KV cache outperforms
uniform precision counterparts as in Section[6.2] In other words, mixed precision key cache quantization with higher
precision key can achieve both memory usage and inference accuracy improvement than equal precision key and value
cache quantization.
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(f) Layer-31 with mixture of retrieval and streaming heads (medium attention
Score errors)

Figure 11: Selected layer-wise attention patterns of Llama-3.1-8B-Instruct model and the first prompt in the 0-shot
GSMSK dataset. Many layers and heads of Llama-3.1-8B-Instruct have simple and streaming attention patterns which
highly concentrated and sparse attention scores. As a result, the attention score errors in these layers are medium or low.
In contrast, layers with retrieval or mixed attention patterns, whose attention scores are non-sparse, normally show high
attention score errors. We also observe that the attention patterns of query heads in the same group and sharing the same
key cache are highly similar, which may indicate that we can apply attention head group-wise KV cache management for
better accuracy.
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(a) Layer-0 with mixture of recent window, re-access, and retrieval heads
(high attention score errors

aaaaa Heaa 1 Heaa 2 Head3

(b) Layer-1 with mixture of recent window and re-access patterns (medium
attention score errors)

(d) Layer-12 with mixture of retrieval and streaming heads (medium
attention score errors)

(e) Layer-21 with mixture of retrieval heads and attention sinks (medium
attention score errors)

(f) Layer-27 with mixture of retrieval heads and attention sinks (high atten-
tion score errors)

Figure 12: Selected layer-wise attention patterns of Qwen2.5-7B-Instruct model and the first prompt in the 0-shot GSM8K
dataset. Most layers and heads of Qwen2.5-7B-Instruct have complex attention patterns, such as retrieval, and mixture of
retrieval and recent or attention sink patterns. These non-sparse and non-concentrated attention patterns result in the high
sensitivity of Qwen2.5-7B-Instruct to KV cache compression including low-precision quantization and even model weight
and activation quantization.
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Table 12: Final generation accuracy comparison of different KV cache quantization modes and precisions and Llama-3.1-
8B-Instruct and Mistral-7B-Instruct-v0.3 on the AIGC and mathematical datasets. KV cache quantization is enabled during
both prefilling and decoding stages to amplify the effects of error accumulation.

.. .. . GSM8K
Quant. method  Precision | CEVAL MMLU TriviaQA RACE TruthfulQA Oshol A<shol  8-shol _16-shot ‘ Average
Llama-3.1-8B-Instruct

BF16 BF16 0.5386  0.6802 0.5161  0.4469 0.6267 0.2866 0.7635 0.7741 0.7854 0.6020
KV8 0.5416  0.6798 0.5162  0.4469 0.6304 0.2752 0.7597 0.7657 0.7809 0.5996

K8Vv4 0.5394  0.6792 0.5138 0.4498 0.6450 0.2858 0.7695 0.7794  0.7923 0.6060

K8V2 0.4807  0.6381 0.4989 0.4383 0.6499 0.2358 0.7074 0.7036  0.7195 0.5636

KIVI K4V38 0.5327  0.6694 0.5144 0.4488 0.5851 0.2623 0.7566 0.7566 0.7710 0.5885
KVv4 0.5245  0.6689 0.5135 0.4498 0.6132 0.2782  0.746 0.7589  0.7680 0.5912

K4V2 0.4703  0.6236 0.5016 0.4450 0.5373 0.2464 0.6694 0.6694 0.6854 | 0.5387

K2V4 0.3247  0.4628 0.4761 0.3675 0.4639 0.0978 0.1122 0.1054 0.0842 | 0.2772

KV2 0.2771  0.3600 0.4584 0.3301 0.3182 0.0508 0.0432 0.0318 0.0250 | 0.2105

KV8 0.5342  0.6800 0.5175 0.4459 0.6206 0.2805 0.7657 0.7809  0.7801 0.6006

K8V4 0.5386  0.6776 0.4709 0.4450 0.6169 0.3154 0.7733 0.7688 0.7847 0.5990

K8V2 0.4792  0.6183 0.4984 0.4239 0.5887 0.1501 0.6391 0.6262  0.6550 0.5199
Per-token-asym K4V38 0.5163  0.6579 0.5123 0.4411 0.6781 0.2517 0.7180 0.7293  0.7240 0.5810
KV4 0.5141  0.6570 0.4849 0.4325 0.6340 0.2782 0.7240 0.7202 0.7157 0.5734

K4v2 0.4413  0.5910 0.4779  0.4306 0.5447 0.1289 0.5709 0.5633 0.5519 | 0.4778

K2V4 0.2400  0.2350 0.0249  0.2593 0.3268 0.0212 0.0159 0.0296 0.0212 | 0.1304

KV2 0.2444  0.2338 0.0052 0.2478 0.2277 0.0227 0.0174 0.0197 0.0273 | 0.1162

Mistral-7B-v0.3

BF16 BF16 0.3923  0.5911 0.6081 0.4057 0.4296 0.0766 0.3389 0.3753 0.3601 0.3975
KV8 0.3945  0.5901 0.6072 0.4115 0.4259 0.0735 0.3412 0.3639 0.3624 0.3967

K8V4 0.3945  0.5909 0.6068  0.4067 0.4394 0.0781 0.3457 0.3723  0.3669 0.4001

K8V2 0.3819  0.5776 0.6042  0.4086 0.4370 0.0675 0.3404 0.3518 0.3609 0.3922

KIVI K4V8 0.3990 0.5875 0.6069 0.4048 0.4308 0.0697 0.3442 0.3563 0.3738 0.3970
KV4 0.3945  0.5886 0.6074  0.4105 0.4455 0.0751 0.3434 0.3662 0.3586 0.3989

K4V2 0.3752  0.5753 0.6035  0.4000 0.4223 0.0705 0.3434 0.3397 0.3616 0.3879

K2v4 0.3128  0.4926 0.5982 0.3847 0.3917 0.0637 0.0978 0.0910 0.0773 | 0.2789

KV2 0.2905 0.4571 0.5920 0.3885 0.4688 0.0478 0.0766 0.0644 0.0516 | 0.2708

KV8 0.3900 0.5892 0.6071 0.4067 0.4284  0.072 0.3419 0.3745 0.3571 0.3963

K8V4 0.3967  0.5897 0.6040 0.4057 0.4357 0.0751 0.3533 0.3715 0.3707 0.4003

K8V2 0.3692  0.5760 0.5797 0.4029 0.3929 0.0675 0.3328 0.3381 0.3548 0.3793
Per-token-asym K4Vv8 0.3871  0.5862 0.6070 0.4077 0.4259 0.0629 0.3450 0.3578 0.3692 0.3943
KV4 0.3871  0.5865 0.5994 0.4048 0.4321 0.072 0.3450 0.3556  0.3685 0.3946

K4V2 0.3618 0.5672 0.5774  0.4086 0.3623  0.0599 0.3048 0.3389 0.3571 0.3709

K2v4 0.2786  0.4360 0.4688 0.3914 0.3268 0.0303 0.0334 0.0281 0.0212 | 0.2238

KV2 0.2741  0.3926 0.4045 0.4019 0.2999 0.0281 0.0265 0.0167 0.0220 | 0.2074
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Table 13: Final generation accuracy comparison of different KV cache quantization modes and precisions and Qwen2.5
LLMs on the AIGC and mathematical datasets. KV cache quantization is enabled during both prefilling and decoding stages
to amplify the effects of error accumulation.

Quant. method  Precision | CEVAL MMLU TriviaQA RACE Truthful QA 0shot 4—sh§tSM881fshot T6shot ‘ Average
Qwen2.5-3B-Instruct-AWQ

BF16 BF16 0.7125  0.6382 0.2299  0.3904 0.4700 0.4867 0.5815 0.6353  0.6861 0.5367
KV8 0.7073  0.6389 0.2283  0.3885 04761 0.4882 0.5762 0.6361 0.6816 0.5357

K8Vv4 0.7080  0.6388 0.2321  0.3895 0.4871 0.4852 0.5625 0.6315 0.6823 0.5352

K8V2 0.6872  0.6204 0.2225 0.3856 0.4847 0.4928 0.5368 0.6058  0.6641 0.5222

KIVI K4V8 0.7125  0.6275 0.2326  0.3923 0.4761 0.4814 0.5580 0.6096  0.6550 0.5272
Kv4 0.7013  0.6249 0.2322  0.4048 04627 0.4761 0.5474 0.6240 0.6368 0.5234

K4v2 0.6709  0.6038 0.2216  0.3885 0.4700 0.4519 0.5284 0.5732 0.6171 | 0.5028

K2v4 0.3566  0.3626 0.1986  0.2995 0.4186 0.0197 0.0099 0.0099 0.0091 | 0.1872

KVv2 0.3507  0.3203 0.1983 0.2727 0.4308 0.0136 0.0144 0.0144 0.0136 | 0.1810

KV8 0.7043  0.6379 0.2248  0.3866 04798 0.4913 0.5823 0.6331 0.6740 0.5349

K8V4 0.6969  0.6364 0.2402  0.3837 0.4676 0.4784 0.5671 0.6209 0.6717 0.5292

K8V2 0.4926  0.4979 0.0100 0.3732 04749 03616 0.3798 0.4200 0.4640 | 0.3860
Per-token-asym K4V8 0.2489  0.2306 0.0000 0.2258 0.1591  0.0008 0 0 0.0008 | 10.0962
KVv4 0.2377  0.2325 0.0000 0.2220 0.1469 0 0 0.0015 0.0015 | 0.0936

K4v2 0.2600  0.2323 0.0000 0.2258 0.0979  0.0038 0 0 0 | 0.0911

K2V4 0.2318  0.2335 0.0001  0.2201 0.1677 0.0023 0.0083 0.0045 0.0099 | 0.0976

KVv2 0.2489  0.2372 0.0000 0.2249 0.1310 0.0023 0.0053 0.0106 0.0061 | 0.0963

Qwen2.5-7B-Instruct

BF16 BF16 0.7949  0.7178 0.3239  0.4612 0.5104 0.7233 0.8059 0.8287 0.8218 0.6653
KV8 0.7949  0.7174 0.3235 0.4603 0.5092  0.721 0.7915 0.8249  0.8302 0.6637

K8V4 0.7979  0.7174 0.3222  0.4651 0.5104 0.7119 0.7915 0.8180 0.8226 0.6619

K8V2 0.7734  0.7035 0.3165 0.4459 0.4994 0.6581 0.7832 0.8059 0.8105 0.6440

KIVI K4V8 0.5780  0.5024 0.2757 0.3311 0.3660 0.0136 0.0076 0.0038 0.003 | 10.2312
KVv4 0.5802  0.5028 0.2761  0.3206 0.3758 0.0182 0.0068 0.0038 0.003 | 0.2319

K4v2 0.5245  0.4704 0.2754  0.3167 0.3745 0.0152 0.0099 0.0053 0.0038 | 0.2217

K2v4 02719  0.2645 0.2742  0.2507 0.2399 0.0053 0.0015 0.0008 0.0008 | 0.1455

KVv2 0.2756  0.2568 0.2741  0.2632 0.2338  0.0099 0.0038 0.0023 0 | 0.1466

KV8 0.7883  0.7119 0.3192  0.4593 0.4957 0.7149 0.8044 0.8052 0.8203 0.6577

K8V4 0.7920 0.7117 0.2978 0.4545 0.5018 0.7111 0.7847 0.8044  0.8067 0.6516

K8V2 0.7169  0.6757 0.1127 0.4488 0.4957  0.577 0.7233 0.7453  0.7513 | 0.5830
Per-token-asym K4V 0.2192  0.2305 0.0000 0.2220 0.0318 0 0 0 0 | 0.0782
KVv4 0.2400  0.2327 0.0000 0.2115 0.0171  0.0008 0.0015 0 0 | 0.0782

K4v2 0.2400  0.2301 0.0001 0.2172 0.0245 0.0023  0.0008 0 0 | 0.0794

K2V4 0.2273  0.2347 0.0001  0.2077 0.0575 0.0061 0.0068 0.0015 0.0015 | 0.0826

KVv2 0.2489  0.2376 0.0000 0.2230 0.1346  0.0045  0.003 0.0076 0.0015 | 0.0956

Qwen2.5-Math-7B-Instruct

BF16 BF16 0.4881  0.5383 0.0074  0.3464 04015 0.4109 0.8863 0.8870 0.8840 0.5389
KV38 0.4844  0.5379 0.0072  0.3397 0.3966 0.4041 0.8878 0.8878  0.8772 0.5359

K8Vv4 0.4874  0.5361 0.0071  0.3445 0.4002 0.4102 0.8886 0.8870 0.8840 0.5383

K8V2 0.4606  0.5291 0.0071  0.3426 04162 0.4139 0.8779 0.8802 0.8696 0.5330

KIVI K4Vs 0.4428  0.5061 0.0073  0.2660 0.4100 0.0834 0.1501 0.2024 0.1259 | 0.2438
KVv4 0.4368  0.5070 0.0074  0.2718 0.4284 0.0879 0.1516 0.1895 0.1236 | 0.2449

K4v2 0.4294  0.4862 0.0069 0.2699 04100 0.0819 0.1145 0.1433  0.1024 | 0.2272

K2V4 0.2712  0.2780 0.0059 0.2230 0.3941 0.0152 0.0061 0.0023  0.0008 | 0.1330

KVv2 0.2741  0.2757 0.0057 0.2220 0.3501 0.0167 0.0023  0.003 0 | 0.1277

KV38 0.3975  0.5905 0.6064 0.4038 0.4308 0.0728 0.3457 0.3685 0.3571 0.3970

K8Vv4 0.3878  0.5891 0.6035 0.4010 0.4443  0.0735 0.3450 0.3616 0.3632 0.3966

K8V2 0.3522  0.5590 0.5452  0.3971 0.3452 0.0462 0.3116 0.3397  0.3359 0.3591
Per-token-asym K4V 0.3804  0.5822 0.6016 0.4010 0.3831 0.0667 0.3252  0.351 0.3381 0.3810
KVv4 0.3767  0.5803 0.5967 0.4038 0.3953  0.0622 0.3093 0.3146 0.3404 0.3755

K4v2 0.3470  0.5463 0.5372  0.3943 04211 0.0462 0.2631 0.2752  0.2911 | 0.3468

K2V4 0.2429  0.2401 0.0262  0.2900 0.2693 0.0121 0.0038 0.0045 0.0083 | 0.1219

KVv2 0.2363  0.2351 0.0110 0.2766 0.1787 0.0121 0.0061 0.0091  0.0091 | 0.1082
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Figure 13: Layer-wise relative attention output error e, of per-token-asym KV cache quantization with simulated offline
quantization and dequantization (without error accumulation) of the Llama-3.1-8B-Instruct model and the first 20 prompts
in the 0-shot GSMS8K dataset. When the key quantization precision decreases to 2-bit, the layer-wise relative attention
output error distribution significantly shifts. Especially, the errors of layer-3 and layer-1 are significantly larger than other
layers.

F. Layer-wise Attention Score and Relative Output Error

In this section, we visualize more layer-wise attention errors with KV cache quantization covering different LLMs, datasets,
and KV cache quantization mode and precision. We select the first 20 prompts from the mathematical reasoning dataset
GSMSK (Cobbe et al [2021)) and the AIGC multi-turn conversation dataset multiturn-softage (SoftAge-All[2024). Tested
LLMs include Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, and Mistral-7B-Instruct-v0.3. The layer-wise sensitivity to KV
cache quantization of different LLMs are consistent to different prompts and datasets. Key cache quantization generally
leads to the layer-wiser attention output error distribution shift. When the layer-wise attention error distribution significantly
changes, the final model accuracy also dramatically degrades. For example, the perplexity and final generation accuracy of
Qwen?2.5-7B-Instruct dramatically degrades when the key quantization precision decreases to 4-bit and 2-bit with the KIVI
or per-token-asym quantization mode as demonstrated in Table[2][5] and[f] The attention distribution of it also significantly
shifts as shown in Figure [T6][T7] and[I8] The most

As visualized in Figure[I2] most layers of Qwen2.5-7B-Instruct have a high ratio of non-sparse retrieval heads, which are
sensitive to low-precision key cache quantization as analyzed in Section[.4] As a result, 4-bit or 2-bit key quantization
leads to noticeable errors of attention score and critical KV identification in these layers with medium attention errors such
as layer-1, 12, and 21.
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Figure 14: Layer-wise attention score errors e, and relative attention output error e, of per-token-asym KV cache
quantization with simulated offline quantization and dequantization (without error accumulation) of the Llama-3.1-8B-
Instruct model and the first 20 prompts in the AIGC multiturn softage dataset. When the key quantization precision
decreases to 2-bit, the layer-wise relative attention output error distribution significantly shifts. Especially, the errors of
layer-3, layer-1, and layer-27 are significantly larger than other layers.

29



KVTuner: Sensitivity-Aware Layer-Wise Mixed-Precision KV Cache Quantization

0.00014

0.0007
10 A
0.00012 / 0.0006
= 5 A 5 /\
gos § 000010 \ £ 0.0005 A /
g A ¢ /\/ \
§ o6 3 0.00008 A & 0.0004 4 A
5 $ \ ] \ \
E § 000008 V| 500003 | |
£o4 H 2
0.00004 0.0002 41
02
0.00002 0.0001
0 5 10 15 20 25 30 0o 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer id Layer id Layer id

(a) K8 eq: 4.0 x 107°

(b)Kd e,: 6.7 x 107°

(©)K2 eq: 3.26 x 107*

0.020 A MA 4
g 4 4 ‘
0 0018 > H ]
kK ki s
2 00164 A 4 9
i H i
3 0.014 3 3 v
S s s
g 0.012 t g g
0.010 ‘
10 15 20 25 30 10 15 20 25 30
Layer id Layer id Layer id
(d) KV8 e,: 0.008 (e) K8V4 e: 0.110 (f) K8V2 e,: 0.418
022 I 0300 065
L 020 ! L 0275 _ 0.60
£ : £ 1 R
& 0187 | So02501- A —{ 2055
H 2 2
3 0167 / 02251 § 0507 A
goaa Zo200] Zoas
3 3 3
§o1 ’ ‘ 50175 § 0.40 V/
g 0.10 \ g g
£ ’ £ 0150 £035
0.08 v
0.125 14 ‘ v 0.30 Vv
0.06
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer id Layer id Layer id
(g) K4V8 e,: 0.138 (h) KV4 e,: 0.187 (1) K4V2 e,: 0.484
35 35
3.0
L 3.0 5 3.0 5
E % qg) 25
25 L5 B
: : 3
520 S20 520
o Rl ||
; 15 A g 15 A g 15 I
S0l |8 H
Ea ER | Zo
05 \~ 05
] | 0s
0 5 10 15 20 25 30 4 5 1 15 20 25 30

Layer id

(G) K2V8 e,: 1.092

Layer id

(k) K2V4 e,: 1.103

Layer id

(1) K2V2 e,: 1.148

Figure 15: Layer-wise attention score errors e, and relative attention output error e, of key per-channel-asym and value
per-token-asym quantization with simulated offline quantization and dequantization (without error accumulation) of the
Llama-3.1-8B-Instruct model and the first 20 prompts in the AIGC multiturn softage dataset. When the key quantization
precision decreases to 2-bit, the layer-wise relative attention output error distribution significantly shifts. Especially, the
errors of layer-2 and 27 are significantly larger than other layers.
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Figure 16: Layer-wise attention score e, and relative attention output error e, of per-token-asym KV cache quantization
with simulated offline quantization and dequantization (without error accumulation) of the Qwen2.5-7B-Instruct model and
the first 20 prompts in the 0-shot GSMS8K dataset. When the key quantization precision decreases to 4-bit or 2-bit, the
layer-wise relative attention output error distribution significantly shifts. It also explains the performance degradation of
Qwen2.5-7B-Instruct in the wikitext and other datasets. Especially, the errors of layer-3 and 13 are significantly larger than
other layers. Note that in the 8-bit key cache quantization precision, only the first layer-0 and last layer-27 show significantly
high errors, while in the 4-bit and 2-bit key cache quantization precision, the attention output errors of layer-3, 7, 10, 13, and
23 become noticeable compared with the first and last layers. Although these layers have relative simpler attention patterns
as demonstrated in Figure[T2} the low-precision 4-bit and 2-bit key cache quantization results in significantly token-level
attention distribution shift.
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Figure 17: Layer-wise attention score e, and relative attention output error e, of per-token-asym KV cache quantization
with simulated offline quantization and dequantization (without error accumulation) of the Qwen2.5-7B-Instruct model and
the first 20 prompts in the AIGC multiturn softage dataset. The layer-wise attention error shift is similar to Figure [T6]
indicating that the layer-wise sensitivity to KV cache quantization is independent of the input prompts and even domains.
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Figure 18: Layer-wise attention score e, and relative attention output error e, of key per-channel-asym and value
per-token-asym quantization with simulated offline quantization and dequantization (without error accumulation) of the
Qwen2.5-7B-Instruct model and the first 20 prompts in the AIGC multiturn softage dataset. Key quantization along the
channel dimension significantly affects the distribution of critical layers for 4-bit and 2-bit precision compared with those in
Figure|T_7} The averaged attention output errors e, under the same KV precision pairs also dramatically reduced.
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Figure 19: Layer-wise attention score e, and relative attention output error e, of per-token-asym KV cache quantization
with simulated offline quantization and dequantization (without error accumulation) of the Mistral-7B-Instruct-v0.3 model
and the first 20 prompts in the 0-shot GSM8K dataset. When the key quantization precision decreases to 2-bit, the layer-wise
relative attention output error distribution significantly shifts. Especially, the errors of layer-1, 2, 3, and 4 are significantly
larger than other layers.
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Table 14: KIVI-HQQ KV cache quantization results of different precision and LLM models on the GSM8K few-shot CoTs
as multiturn conversation dataset.

Precision GSMBK Average GSMBK
4-shot  8-shot 16-shot 4-shot  8-shot 16-shot
Llama-3-8B-Instruct Qwen2.5-7B-Instruct
BF16 0.7794 0.8006 0.7847 0.7882 | 0.6998 0.7377  0.7506 0.7294
KV8 0.7801 0.8006 0.7824 0.7877 | 0.6801 0.7369  0.7460 0.7210
K8V4 0.7688 0.7862  0.7809 0.7786 | 0.6793  0.724  0.7468 0.7167
K8V2 0.7566 0.7763  0.7642 0.7657 | 0.6801 0.7491 0.7437 0.7243
K4V8 0.7445 0.7695  0.7498 0.7546 | 0.0076 0.0038 0.0053 0.0056
KV4 0.7422  0.7688 0.7384 0.7498 | 0.0038 0.0053 0.0023 0.0038
K4V2 0.7346  0.7437 0.7430 0.7404 | 0.0061 0.0023 0.0038 0.0041
K2V4 0.0152 0.0167 0.0159 0.0159 | 0.0045 0.0045 0.0023 0.0038
KV2 0.0159 0.0144 0.0152 0.0152 | 0.0023 0.0015 0.003 10.0023
Mistral-7B-Instruct-v(.3 Qwen2.5-Math-7B-Instruct
BF16 0.5019 0.4890 0.4973 0.4961 | 0.8901 0.8666 0.8658 0.8742
KV8 0.5042 0.4890 0.4966 0.4966 | 0.8901 0.8658 0.8666 0.8742
K8V4 0.5064 0.4890 0.4913 0.4956 | 0.8931 0.8688 0.8628 0.8749
K8V2 0.4837 0.4663 0.4632 0.4711 | 0.8719 0.8741 0.8491 0.8650
K4V8 0.4754 0.4701 0.4534 0.4663 | 0.0500 0.0576 0.0697 0.0591
KV4 0.4875 0.4754 0.4822 0.4817 | 0.0455 0.0516 0.0796 0.0589

K4Vv2 0.4428 0.4503 0.4579 104503 | 0.0425 0.0516 0.0607 0.0516

Average

K2V4 0.0258 0.0288 0.0250 0.0265 | 0.0023 0 0 0.0008
KV2 0.0190 0.0220 0.0208 0.0206 | 0.0023 0.0008 0.0015 0.0015
Qwen2.5-3B-Instruct Qwen2.5-14B-Instruct

BF16 0.5732  0.5997 0.6459 0.6063 | 0.7536 0.7862 0.8180 0.7859
KV38 0.583 0.6035 0.6353 0.6073 | 0.7491 0.7877 0.8158 0.7842
K8V4 0.5603 0.5967 0.6513 0.6028 | 0.7551 0.7953 0.8264 0.7923
K8V2 0.5133 0.5481 0.5997 0.5537 0.743 0.7733  0.8029 0.7731
K4V38 0.5118 0.5057 0.5049 0.5075 | 0.7430 0.7779 0.7998 0.7736
KV4 0.5080 0.4845 0.4837 0.4921 | 0.7339 0.7908 0.8112 0.7786
K4V2 0.4587 0.4124 04170 0.4294 | 0.7475 0.7733  0.7953 0.7720
K2Vv4 0.0083 0.0061 0.0136 | 0.0093 | 0.0220 0.0144 0.0174 0.0179

KV2 0.0061 0.0076  0.0076 0.0071 | 0.0288 0.0152 0.0167 0.0202

Qwen2.5-3B-Instruct-AWQ Qwen2.5-32B-Instruct

BF16 0.5656 0.6209 0.6399 0.6088 | 0.7619 0.7809 0.7961 0.7796
KV8 0.5686 0.6149  0.6550 0.6128 | 0.7650 0.7877 0.8021 0.7849
K8V4 0.5747  0.608 0.6406 0.6078 | 0.7726  0.7801  0.7998 0.7842
K8V2 0.5466 0.5694 0.6149 0.5770 | 0.7384 0.7703 0.7877 0.7655
K4V38 0.4845 0.4564 0.4443 0.4617 | 0.7597 0.7794 0.8135 0.7842
KV4 0.4845 0.4807 0.4352 0.4668 | 0.7680 0.7718 0.8097 0.7832
K4V2 0.4177 0.3730 0.3518 0.3808 | 0.7559 0.7733 0.7801 0.7698
K2V4 0.0114 0.0091 0.0053 0.0086 | 0.0379 0.0281 0.0311 0.0324

KV2 0.0167 0.0114 0.0129 0.0137 | 0.0258 0.0136 0.0311 0.0235

35



	Introduction
	Related Work
	Background
	Transformer and KV Cache
	KV Cache Quantization

	Observation
	Error Accumulation
	Sensitivity to Quantization Mode and Precision
	Why Key Cache Is Generally More Important?
	Correlation of KV Quantization Errors and Attention Patterns
	Layer-Wise Sensitivity to KV Cache Quantization

	Method
	Problem Formulation
	Framework
	Automatic Layer-Wise KV Cache Quantization Precision Pair Search

	Experimental Results
	Pareto-Optimal KV Cache Precision Pair Search
	Mathematical and Scientific Reasoning Accuracy
	Long Context Generation Accuracy
	Throughput
	Detailed Analysis
	Ablation Studies

	Conclusion
	Proof of Lemma 1
	Effects of KV Cache Quantization Mode and Precision
	Experimental Settings
	Search Space Pruning and Multi-objective Optimization results
	Intra-Layer and Inter-Layer Search Space Pruning Results
	Intra-Layer Pareto Optimal KV Cache Precision Pair Pruning
	Inter-Layer Clustering based on Attention Errors

	Searched layer-wise KV precision pairs
	Pareto Frontier with the GSM8K Calibration Dataset

	Correlation of Model- and Layer-wise KV Cache Quantization Sensitivity with Attention Patterns
	More KV Cache Quantization Results on General and Mathematical Reasoning Datasets

	Layer-wise Attention Score and Relative Output Error

