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Abstract

In classification, deep learning models are considered superior in terms of prediction accuracy
compared to standard statistical models. However, these models are often overconfident in
their predictions, which inhibits their use in safety critical applications where mistakes can
lead to disastrous consequences. To address this issue, several uncertainty quantification
methods have been proposed to introduce more reliable predictions and better calibration.
In this paper, we focus on a universal uncertainty quantification method called test-time
augmentation (TTA). We then present a weighted version of test-time augmentation (WTTA)
that introduces weights to the algorithm to generate better augmentations. Our approach
is then illustrated with various models and data sets. In a simulation study, we show that
the WTTA approach produces better uncertainty estimates as we are able to compare to
the real uncertainties in the data. Furthermore, the method is applied to two benchmark
data sets used in the development of machine learning models. Although, it is a rather
simple post-process method, WTTA is arguably able to outperform the standard TTA and
temperature scaling methods in terms of calibration error and prediction accuracy, especially
in small data sets.

1 Introduction

Deep learning models are more popular than ever in many fields of science, and for good reason: the prediction
accuracy of these high complexity models is unmatched. However, in many fields such as medical imaging,
the ability to understand the decision made by this type of black-box model may be the most essential part
for the expert (Nair et al.l 2020)). This lack of trust in the model and its predictions is a serious limiting
factor in high-risk application domains (for examples, see Molnar| (2022)).

Uncertainty quantification (UQ) is a crucial part of the analysis if the decision made by the model is critical
(for a comprehensive review, see /Abdar et al.[(2021)). Without UQ, the predictions are typically overconfident
(Guo et all 2018). There exist various different ways of introducing uncertainty estimation into the analysis,
for example by using additional models especially for uncertainty, by transforming the original (deterministic)
model into stochastic or by combining several different models at inference (Gawlikowski et al.l |2023). While
these types of approaches yield good results, their implementation is highly dependent on the model at hand,
and thus they lack a general method for estimating uncertainty.

Typically, UQ methods in deep learning can be divided into four subcategories based on their way of
managing the uncertainty of the model. Single network deterministic methods, Bayesian methods, Ensemble
methods, and Test-time augmentation methods |Gawlikowski et al.| (2023). Although comparisons between
all subcategories could be made, it might not be sensible as the methods differ greatly in terms of model
construction, memory consumption, and implementation. Here, we focus on post-process methods, meaning
that they can be implemented after the initial model is trained.

Instead of creating additional deep learning models or transforming existing ones, one option is to alternate
input data with so-called Test-time augmentation (TTA) to quantify the uncertainty of the predictions
(Kimural 2021)). TTA is based on the idea that we can generate multiple predictions for a single observation
by alternating the input data in a reasonable way (Gawlikowski et al., 2023). In other words, these augmented
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data points enables the exploration of the space of possible predictions for that observation, thus capturing
the uncertainty of the prediction.

In this paper, we propose weighted test-time augmentation (WTTA) as a post-processing step for a standard
statistical analysis with various models and data sets. While TTA certainly brings many advantages to the
analysis, there still isn’t a consensus on how accurately the method quantifies the uncertainty. Moreover, the
impact of different properties of the data on the augmented predictions, for example skewness, measure scale,
or model complexity, is rather unknown. Our aim is to tackle these challenges by first creating controlled
data sets to explore the data uncertainty and its quantification. Second, various different models and real-life
data are analyzed to show the practicality of TTA and WTTA for different fields of study.

The novelties of the article are the following:

e We introduce WTTA, a general model-agnostic method that can be implemented with ease for
post-process analysis without requiring original data for model fitting.

o The WTTA method improves the uncertainty measure of the prediction. This is shown with simulated
data where comparisons to the known uncertainty distribution can be made.

o WTTA is illustrated with both tabular and image data as well as with different machine learning
models, such as neural networks and random forests.

e We show that, in addition to providing uncertainty quantification, WTTA also improves prediction
accuracy.

o WTTA with weighted means is shown to be a robust method for out-of-distribution samples.

All the scenarios are written with R and they can be found in Github E In Section |2} we go through the
related work. In Section [3] the WTTA method is described for both tabular and image data. In Section
we analyze several simulated data sets, where the underlying uncertainty structures are known. In Section
we analyze a real-life tabular data set of wine classification (Aeberhard & Forina, [1992), and in Section
we study image classification with the MNIST data set (Deng), |2012). In Section |5, we provide some
closing remarks.

2 Related work

TTA is widely used in image analysis because there is a natural connection between image transformations,
such as flipping, cropping and turning, and data augmentation (Ayhan & Berens, [2022; |Lyzhov et al.| [2020)).
It can be said that the roots of the TTA approach are in medical image analysis (Ronneberger et al., |2015)).
One common application for TTA is in segmentation analysis, where the general aim is to find the edges of
certain images within images (Nalepa et al., [2020; |Wang et al., [2019ajb)). One of the most recent work on
TTA was written by [Hekler et al|(2023), where the authors implemented and compared a traditional TTA
approach to other post-hoc calibration methods, showing that TTA results in better calibration. Furthermore,
TTA can be used to estimate confidence in a classifier’s predictions (Bahat & Shakhnarovich, [2020).

The selection of the augmentations is not self-explanatory and requires attention to various factors of the
problem at hand (Shanmugam et al., |2021). Moshkov et al.| (2020) utilized TTA in segmentation analysis
in conjunction with majority voting to create the final output segmentation mask. [Lyzhov et al| (2020)
introduced a greedy policy search to learn augmentation policies, that improved robustness and provided
better uncertainty estimation. [Kim et al.| (2020]) proposed a method for learning a loss predictor from the
training data for instance-aware test-time augmentation selection.

Interestingly, TTA is utilized not only to capture uncertainty, but also to improve the accuracy of the
predictions (Moshkov et al., 2020]). There have been many experiments, with various models and data sets,
which have shown improved accuracy (Shanmugam et al., 2021). However, while the net accuracy is generally

Thttps://anonymous.4open.science/r/WITA_uncertainty_estimation-A4EC/
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improved, there is a chance that correct predictions can flip incorrectly, which depends on the nature of the
problem, the size of the training data, and other factors (Shanmugam et al., [2021)).

Several calibration methods for deep learning models have been studied to tackle the common problem of
overconfidence (for a recent survey, see Wang| (2024)). Calibration is especially necessary in safety critical
applications such as medical imaging (Caruana et al., |2015). Common post-process methods for calibration
include histogram binning (Zadrozny & Elkanl [2001)), isotonic regression (Zadrozny & Elkanl 2002) and Platt
scaling, which includes temperature scaling (Platt et al., [1999).

With TTA, Ayhan & Berens| (2022)) were able to produce well calibrated probabilistic outputs for state-of-the-
art neural networks. |Ashukha et al.| (2020) further showed that TTA improves calibration to in-distribution
data and enhances detection of out-of-distribution data.

3 Method

The basic idea behind TTA is to create and utilize multiple samples from a single observation in order to
measure predictive uncertainty. These new samples are generated by augmenting the original data point.
With these augmented samples, it is possible to capture the uncertainty as they can be viewed as different
realizations of the original. The general procedure of TTA is visualized in Figure

In practice, TTA is a relatively simple method, as it is independent of the model type. Furthermore, it does
not require original or additional data, and the underlying model remains unaltered. However, there are some
common pitfalls in the implementation of TTA. First, the augmented samples have to represent the data
distribution well. Second, if the augmented samples differ greatly from the original data point, the method
can generate extroneous noise to the predictions, thus lowering the predictive accuracy.

Augmentation Summary

Figure 1: A visualization of test-time augmentation method for single observation X;. First, augmentations
of the observation X7, X3,..., X} are generated from a specified augmentation distribution. Next, the
augmentations are used as inputs for the pre-trained model and outputs Y7*, Y5, ..., Yy

are received. Finally, summary statistics of the output distribution are evaluated.

3.1 TTA with tabular data

In TTA, the augmentation of the data is carried out after the training of the model. With tabular data, the
choices for the augmentation distributions are highly dependent on the variables’ distributions. As TTA
estimates the aleatoric uncertainty of the data point, the chosen distribution or function must closely represent
the data in such a way that out-of-distribution points will not be generated (Ayhan & Berens, 2022]).

Let X; € R™ represent the ith input vector with dimension m and let Y; € [0, 1] be the corresponding
classification output from a pre-trained posterior model p(Y|X, 6). Augmentations of the original inputs X PR
J=1,2,..., Ngug, where Ng,4 is the number of augmentations per input, are generated from an augmentation
distribution,

X ~G(X,1),

where t € RP is a set of parameters for the augmentation. One fairly simple way to implement the TTA
method is to generate the augmentations from a Gaussian distribution N(u,oT) such that the mean vector
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1 € R™ is set as the data point under examination, u = X;. The new set of augmented observations are thus
randomly generated via
X[ ~N(X;, o).

The augmented observations X, are then used as inputs in the pre-trained model to evaluate the outputs
Y;;. The final prediction is then combined from these augmented predictions, typically by taking their mean.
However, experimental results have shown that the simple average may not be the optimal approach for
predictive accuracy (Shanmugam et al., [2021)). In this paper, the augmented predictions are combined with
the weighted mean

. 1 Naug .
V= 2w,
N, J

aug j:l

where the weights w; = are the inverses of the squared Euclidean distances to the original data

I S
X=X 120
point X;.

Furthermore, the augmented predictions can be investigated with other sample statistics. In this paper, the
sample variance S2 is used to find the edge of the decision plane.

3.2 TTA with image classification

When analyzing image data, such as the MNIST or the ImageNet data sets, the simple approach of augmenting
each single pixel value separately is insufficient. Neighboring pixels are highly dependent and altering their
values without considering this correlation produces unrealistic realizations of the data. With TTA, the
augmented observations should resemble the data (Ayhan & Berens, [2022).

Fortunately, in the field of image classification, various different types of image transformations have been
utilized over the years. In the most typical cases, flipping, cropping and scaling are a convenient way to
generate augmentations (see eg. (Shanmugam et al.,2021))). An important aspect to consider is how much
the images can be reasonably transformed. For example, in digit classification, digits cannot be rotated too
much without mixing up different classes (e.g., "6" and "9").

4 Experiments

The WTTA approach is next studied with three different experiments to highlight the performance of the
method with varying models and data types. A quick summary of each experiment is listed below.

1. A simulation study: WTTA is studied with simulated data in two scenarios, a simpler and a more
complex one, so that the augmentation uncertainty can be compared with the known variation in
data generation.

2. A wine classification study with multinomial logistic regression: WTTA is applied to a simple real-life
data set with a relatively low number of observations.

3. An image classification study with neural networks: This study considers image classification with the
benchmark MNIST data set to highlight the benefit of using WTTA with neural networks, showing
the range of models the method is capable of managing.

4.1 A simulation study with random forests

In this study, we generate a simulated data set to present the advantages of the WTTA approach. The main
benefit of utilizing fully controlled simulated data is that the the data generation method is known and
comparisons to this otherwise hidden information can therefore be made directly. This is especially beneficial
when examining uncertainty which is generally unattainable with real-life data.

Next, we carry out two simulation scenarios:
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e A simple data set where X is an n x 2 matrix of the simulated values of two explanatory variables
and Y is an n x 1 vector of binary outputs. An n x 1 vector P of probability values represents the
variation in the generation of the output Y.

¢ A more complex data set where X is an n x 5 matrix. The output vector Y is similar to the output
in the previous scenario.

In both scenarios, a total of 1500 observations are simulated. These are divided equally into training,
validation, and test data sets.

Algorithm 1 Data simulation

1: procedure SIM(n, X, o, seed)

2 set.seed(seed)

3 Generate X; ~ Unif(0,1,n) and X5 ~ Unif(0, 1, n)

4 Create the n x 2 matrix X = [Xl Xg] with rows X
5: for i =1tondo

6 Calculate the squared distance d; = min(||X; — X(;|?)
7 Calculate the probability p; = exp(—g—;)

8 Generate output y; ~ Bern(p;)

9 end for

10: Set Y = {y;} and P = {p;}.

11: return X,Y, P

12: end procedure
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Figure 2: One example data set (n = 1000) simulated with Algorithm [I| using the function f(z) = 2|x — 0.5]
to create the V-shape X, = {(z, f(z))]|0 < z < 1} in the generation of the output Y. The probabilities P
are shown on the left panel and the final generated output values Y are shown on the right panel.

4.1.1 Analysis with two-dimensional input

First we analyze data with only two explaining variables. The motivation for this simple scenario is that the
data and the WTTA process can be visualized in a plane. In Figure [3] top left panel, the probabilities of
generating the output value 1 for each data point are visualized, indicating a V-shape in the plane. Note
that these probabilities correspond to the true uncertainty of the points since the output variable Y is then
generated based on these probabilities.

First, in total of 4 types of augmentations is implemented, each with different value for parameter 6: & = 1,
6 =0.1, 6 =0.01 and & = 0.001. The impact of the value is clearly visualized in Figure [3| middle and bottom
row, where the color of the point refers to the mean over the augmented predictions. Generally, the higher the
value of &, the more blurry the predictions become. These can further be compared to the original predictions
(Figure [3] top right) where the predictions are made without any augmentation to the data points. Without
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any additional information, it seems that augmentations with 6 = 0.01 and 6 = 0.001 (Figure [3| bottom row)
are clearly superior to the other augmentations, as they are more similar to the real probabilities behind the
data.

Next, the optimal value for parameter & is searched over a discrete grid. In Figure [4] the value of mean sum
of squares error is evaluated with varying values for &. In this instance, the lowest value is achieved when
6 = 0.03. Furthermore, we can clearly see that augmentation improves the total MSE of the model when
parameter ¢ is set & < 0.08.

With the optimal value for parameter &, the final comparison between the original model and WTTA can be
made. As was already mentioned, WTTA improves the MSE from 0.0802 to 0.0778, the method also improves
the uncertainty error of the model from 0.0172 to 0.0118 (Table . Note that the uncertainty error in Table
is evaluated by comparing the true underlying probability of belonging to class 1 to its estimated value.
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Figure 3: The true probabilities and the corresponding predicted values in a single example data set
(n = 500) with two-dimensional input. Original predictions refer to the predictions made by the RF-model
and augmented predictions refer to the mean of the WTTA predictions, with varying values of parameter &.

4.1.2 Analysis with five-dimensional input

Next we analyze a more complex scenario where five explatory variables are simulated from distributions with
varying skewness. The sampling of the first two variables is achieved with an asymmetric Laplace distribution



Under review as submission to TMLR

Random forest Random forest + WTTA

Prediction error 0.0802 0.0778
MSE 0.0172 0.0118

Table 1: Performance of random forest and random forest with WTTA in the simulation scenario with

two-dimensional input.
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Figure 4: The MSE values with varying values of parameter ¢ in the simulation scenario with two-dimensional

input. The red line refers to the prediction error without WTTA.

with skew parameter £ = 0.3, using the r-package LaplacesDemon [Statisticat & LLC.| (2021). The last three

variables are simulated from a uniform distribution.

Similarly to the previous example, a single scale parameter ¢ needs to be determined for the augmentation.
Once again the optimal value for & is sought by running the augmentation with varying 6 and evaluating the
sum of squares error. In Figure [5] we observe that the minimizer is at & = 0.3. Furthermore, WT'TA with
this optimal value for & improves both the MSE and uncertainty error of the model significantly: MSE lowers
from 0.1204 to 0.1161 and uncertainty error lowers from 0.0171 to 0.0119 (Table .
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Figure 5: The MSE values with varying values of parameter & in the simulation scenario with five-dimensional

input. The red line refers to the prediction error without WTTA.

Random forest Random forest + WTTA

MSE 0.1204 0.1161
Uncertainty error 0.0171 0.0119

Table 2: Performance of random forest and random forest with WTTA in the simulation scenario with

five-dimensional input.
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4.2 Wine classification study with multinomial logistic regression

In this study, we analyze a data set containing a chemical analysis of wine from three different cultivars
Aeberhard & Forinal (1992). This tabular data set contains 13 explanatory variables and one categorical
response variable that refers to the wine cultivar. The data size is relatively small (n = 178) and the data is
further divided into a training set (120 observations) and a test set (58 observations). All the 13 explanatory
variables are continuous with varying scales. Before fitting a model, we standardize the variables with their
z-scores to make it straightforward to utilize simple augmentation with a single scale parameter.

Next, we fit a multinomial logistic regression model to the training set. To implement the model, we use the
r-package nnet and its function multinom Venables & Ripley| (2002]). We implement a k-fold cross-validation
method with & =5 to optimize the model hyperparameter ¢ using the r-package modelr Wickhaml (2022).

Repeat the following process for each 6 € {0.05,0.1,0.15,...0.5}

e For each of the k folds we

1. Train the model with the remaining & — 1 folds.
2. Apply the WTTA procedure for the selected fold with a single value for &.
3. Evaluate the performance of the model via MSE

o Calculate the average performance over all folds

e The optimal value for & is selected via the smallest MSE

In Figure [6] we observe the optimal value for parameter 6 = 0.25. Moreover, we can see that WTTA improves
the results, in terms of prediction error, approximately when & < 0.44.

0.025

0.020

0.015 1

0.25 0.50 0.75 1.00

a>

Figure 6: The MSE values with varying values of parameter & over 5-fold cross validation in the wine
classification scenario. The red line refers to the prediction error without WTTA.

4.3 Image classification study with neural networks

In this study, we examine both the standard TTA and the WTTA method with an image data set. We select
the MNIST data set, which consists of black and white images of handwritten digits with the corresponding
classes [Deng| (2012)). The size of each image is 28x28 pixels. The training set of the data consists of 60000
images and the testing set has 10000 images, providing a relatively sizeable number of observations.

Generally, neural networks (NN) are the most suitable models to implement with such image data with their
overwhelming prediction accuracy. In this study, we implement a general sequential NN model in R using
Keras |Allaire & Chollet| (2022)). The NN consists of three hidden layers with 256, 128, and 64 neurons. The
last layer has 10 outputs, corresponding to the digit classes 0-9.
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Implementation of the TTA method with image data in R is carried out with image transformation tools
provided by the OpenlmageR package [Mouselimis| (2023)).

In addition, comparisons are made to existing calibration methods. Here, temperature scaling is used as a
post-processing method to tackle the problem of overconfidence, where the final activation softmax function
is rescaled with parameter T"

ez/T

softmax(z) = —=——,
> el T

where z are logits of the final layer.

In contrast to previous examples in this paper, where tabular data was utilized, MNIST data set is an image
data set, where each variable corresponds to a value for each pixel. Previous examples of augmentation
presented in this paper are not applicable as the neighboring pixels are highly dependent. Next, we have
constructed an augmentation formula based on existing methods on images:

e Two tuning parameters are defined: amax and spax corresponding to maximum angle of rotation and
maximum shift to the position of the image.

o Set values for ayanq from uniform distribution Unif(—amax, Gmax) and values for sy and s, from
Unif(—Smax; Smax)-

e Generate new image by first rotating the image by an angle of a;ang and shifting the image in
x-coordinate by sy and y-coordinate by s,.

e Pixel-wise distances between the generated images and the original image are calculated. With
weighted augmentations each augmentation has an associated weight that is the inverse of the
corresponding distance value.

In this study, we set the parameters amax = 10 and spax = 3 in order to produce 100 realistic augmented
observations for each original observations that stay within the image frame. Alternatively these values could
be determined with k-fold cross-validation method similarly to previous examples. However, with such a
large number of observations in the testing set, this would result in high computation time.

In Table [3] we can observe that TTA and WTTA, when compared to the ordinary model, perform poorly
with mean squared error. However, the total number of incorrect predictions goes down with WTTA.

Furthermore, various models with different sizes of training data are examined to explore the impact of
training data to the prediction accuracy. Five sets of data are sampled from the original training data set
with sizes 5000, 10000, 20000 and 30000, and with each set a similar NN model is fitted.

The MSEs of varying size of training sets are compared in Figure [7]] We can observe that lowering the size of
training data set worsens the MSE of each approach as expected, but weighted TTA performs better than
the ordinary prediction with sizes 5000 and 10000.

Finally, TTA methods are examined in thresholded environment. We set a threshold raster from 1 to 0.6 by
increments of 0.02 and analyze MSE and accuracy in each instance. Here the TTA and WTTA are compared
to temporal scaling methods, named as Templ, Temp2 and Temp3 with varying value for parameter T' (see
Figures |8l and E[) We can clearly observe, that TTA and WTTA are better calibrated than Standard method.
The calibrated predictions of the temperature scaling methods are in-between these two, providing some
benefits to the standard approach.

5 Discussion and conclusion

In this paper, we presented the weighted test-time augmentation method for uncertainty quantification with
various data sets and models. The method has several merits, as exemplified by our study scenarios: WTTA
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NN NN + TTA NN + WTTA
MSE 0.0268 0.0694 0.0375
Classification error  3.30% 3.54% 3.26%

Table 3: Performance of neural network, NN with TTA and NN with WTTA in the image classification
scenario.
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Figure 7: The MSE values with varying size of training sets in the image classification scenario.
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Figure 8: The thresholded values of MSE with different methods over full training data set in the image
classification scenario.

improves uncertainty prediction as well as prediction accuracy in most cases, it can be implemented for all
types of prediction models, and it does not require the original training data.

First, a simulation study was carried out to present the method with an easy-to-follow example, where
comparisons to the "true" uncertainty could be made. In terms of both prediction and uncertainty error we
were able to show that WTTA improves on ordinary model prediction.

10
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Figure 9: The thresholded values of accuracy with different methods over full training data set in the image

classification scenario.
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Figure 10: The thresholded values of MSE with different methods over training data set of size 10000 in the
image classification scenario.

Second, a wine classification study was examined. In this example, we approximated the optimal value of the
WTTA deviation parameter & with 5-fold cross-validation. We showed that WTTA outperforms standard
prediction, and that an optimal value for & could be found.

11
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Figure 11: Thresholded values of accuracy with different methods over training data set of size 10000 in the
image classification scenario.

Third, the commonly used data set MNIST is selected as an example, as it consists of image data. With
images, the augmentation process of WTTA is carried out by randomly shifting and rotating the images and
by using weights for each augmented observation. In terms of MSE, nonaugmented prediction turned out
to perform better than the WTTA. However, the total number of incorrect predictions was slightly lower
with WTTA. Morever, different sizes of training data were examined to explore the impact of the amount of
training data to the WTTA. It was found that the lower the size of the training set, the better the WTTA
method performed in terms of MSE.

In conclusion, WTTA proved to be useful method for uncertainty quantification with relatively low effort.
The method was most effective with small data sets, such as in examples 1 and 2. This seems sensible as the
augmentation process is similar to generating more data. Although with the MNIST data set, the WTTA
was slightly worse than the ordinary prediction method in terms of MSE, the number of incorrect predictions
was lower. This, together with confusion matrices, seems to indicate that WTTA predicts the borderline
cases better than the ordinary prediction. However, the augmentation process always adds a certain amount
of noise to the prediction that appears in the MSE, thus producing worse MSE overall. Still, the WTTA
method would benefit from further research, especially in setting the optimal transformation function and
defining the weights for each augmentation.

While the current approach of utilizing Gaussian distribution provides valid results in most of the cases,
studying the impact of other alternatives could provide even more robust uncertainty measures.
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Figure 12: Example outcome images of the augmentation procedure.

0 1 2 3 4 5 6 7 3 9
0 971 1 0 1 0 1 1 1 3 1
1 0 1128 3 0 0 1 0 0 3 0
2 2 1 1017 1 1 0 1 4 5 0
3 0 1 3 986 0 7 0 6 3 4
4 0 1 3 0 965 0 4 1 1 7
5 1 0 0 8 1 875 2 1 2 2
6 5 2 1 0 1 2 946 0 1 0
7 0 0 6 1 1 0 0 1016 2 2
8§ 2 0 3 4 3 3 2 4 950 3
9 3 2 0 3 8 3 1 ) 1 983

Table 4: Confusion matrix with ordinary prediction with training set a size of 60000.

0 1 2 3 4 5 6 7 8 9
0 974 1 0 0 0 2 1 1 1 0
10 1124 2 3 0 0 3 0 3 0
2 4 0 1017 1 1 0 1 6 2 0
3 0 0 1 1002 0 0 0 4 2 1
4 2 1 2 1 955 0 4 3 2 12
5 2 0 0 7 1 878 1 1 1 1
6 4 2 0 1 1 5 945 0 0 0
7T 1 1 9 4 0 0 0 1007 2 4
8 6 1 2 4 1 5 0 3 950 2
9 4 3 0 4 2 2 2 5 2 985

Table 5: Confusion matrix with weighted augmented prediction with training set a size of 60000.
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Table 6: Confusion matrix with ordinary prediction with training set a size of 10000.
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Table 7:  Confusion matrix with weighted augmented prediction with training set a size of 10000.
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