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ABSTRACT

Anomaly detection is crucial yet challenging in industrial production, especially
in multi-class scenarios. Existing high-performance unsupervised methods of-
ten suffer from low efficiency and high model complexity. While lightweight
discriminator-based detectors have been proposed, they are typically designed
for single-class detection and exhibit significant performance degradation when
extended to multi-class tasks. To address these limitations, we propose a novel
Contrastive Learning-based multi-class Anomaly Detection (CLAD) method. Our
approach first encodes multi-class normal images to generate normal samples in the
feature space, then synthesizes anomalous samples in this encoded space. We then
employ an adapter network to compress the samples and leverage contrastive learn-
ing to effectively cluster normal and anomalous samples across multiple classes.
Finally, a discriminator network is used for anomaly classification and score predic-
tion. By leveraging anomaly sample generation and a two-stage training process,
our framework achieves state-of-the-art performance on the MVTec and VisA
datasets under the discriminator-based paradigm. Our key contributions include a
novel framework for multi-class anomaly detection, efficient sample generation
techniques, and a comprehensive evaluation of model configurations.

1 INTRODUCTION

Anomaly detection is a critical task in modern industrial production, serving as a key component
for ensuring product quality and safety. In practice, detecting anomalies in complex manufacturing
processes involves identifying rare, unseen, and often subtle deviations from the expected behavior.
Unsupervised anomaly detection methods have gained popularity due to their ability to learn from
unlabeled data, making them particularly suitable for real-world applications where obtaining an-
notated samples is costly and time-consuming. However, the majority of existing approaches are
predominantly designed for single-class anomaly detection, which significantly limits their practical
applicability in multi-class scenarios where the detection task involves distinguishing between a
diverse set of normal and anomalous conditions. Current unsupervised methods can be broadly catego-
rized into two types: reconstruction-based and embedding-based approaches. Reconstruction-based
methods, such as UniAD You et al. (2022) and DiAD He et al. (2024), rely on learning to reconstruct
normal samples accurately, identifying anomalies based on reconstruction errors. While effective
in single-class settings, these methods often struggle with multi-class detection due to their limited
generalization capabilities across different normal classes. On the other hand, embedding-based
methods like GLASS Chen et al. (2024) and SimpleNet Liu et al. (2023) aim to capture the feature
representations of normal samples, yet they are seldom explored in multi-class contexts and often fail
to distinguish between complex patterns of normal and anomalous samples.

To bridge this gap, we introduce a novel framework called Contrastive Learning-based Anomaly
Detection (CLAD), which leverages contrastive learning to enhance feature embedding and distin-
guish between normal and anomalous samples across multiple classes. Unlike traditional methods
that rely solely on the reconstruction or simplistic feature embedding strategies, CLAD employs
a two-stage training process. The first stage utilizes contrastive learning to learn discriminative
feature representations by contrasting normal samples against synthesized anomalies, specifically
tailored for each class. The second stage refines these learned representations through fine-tuning,
effectively adapting the model to multi-class anomaly detection tasks. Our approach addresses two
critical challenges in multi-class anomaly detection. First, we tackle the issue of efficiently generating
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Figure 1: Motiovation. Given the complexity and difficulty of learning multi-class high-dimensional
patch feature distributions, which often contain redundant information for anomaly detection, we
propose the CLAD method. CLAD focuses on eliminating this redundancy through dimensionality
reduction while employing supervised contrastive learning to construct feature distributions with clear
inter-class boundaries and compact intra-class structures, making them more suitable for effective
anomaly detection.

representative anomaly samples for each class by adapting existing anomaly generation techniques
to multi-class settings. This strategy enables the model to learn a robust decision boundary that
separates normal and anomalous patterns across different classes. Second, we introduce a supervised
contrastive learning strategy that constructs feature distributions based on patch-level class labels,
allowing the model to capture fine-grained distinctions between classes.

We conduct extensive experiments on the MVTec Bergmann et al. (2019) and VisA Zou et al. (2022)
datasets to validate the effectiveness of CLAD. Our results show that CLAD significantly outperforms
state-of-the-art methods in unsupervised multi-class anomaly detection. Key contributions of our
work include:

• A novel framework that combines contrastive learning with feature embeddings for robust multi-
class anomaly detection.

• An effective anomaly sample generation technique tailored for multi-class scenarios, enhancing
the model’s ability to learn discriminative features.

• Comprehensive evaluation of model configurations and backbones, providing insights into opti-
mizing anomaly detection performance.

2 RELATED WORK

Multi-class Anomaly Detection. Current research in multi-class anomaly detection (MUAD)
focuses on utilizing diffusion models to generate reference images and applying Vision Transformer
(ViT) models for improved performance in multi-class tasks. Specifically, AnoDDPM is one of the
earliest models to apply diffusion models for anomaly detection in medical imaging, leveraging their
superior image generation and reconstruction capabilities to effectively recover complex features
across multiple classes. This allows the model to handle different types of anomalies rather than
solely learning features for a single class. Additionally, DiffusionAD enhances anomaly detection
through an anomaly synthesis strategy, generating abnormal samples and combining denoising with
segmentation networks. However, these methods still face challenges when reconstructing large-scale
defects, particularly in handling complex backgrounds or extensive anomalies. DiAD improves this
by employing a semantic-level image generation strategy that preserves the semantic information of
images, enabling better reconstruction of complex and large anomaly regions, and thereby increasing
detection accuracy. This multi-class anomaly detection approach offers new insights into addressing
the limitations of existing diffusion models in anomaly localization.

ViT processes the entire image using self-attention mechanisms, capturing long-range dependencies
between image patches. This ability allows it to better identify distinguishing features across multiple
categories. Traditional anomaly detection methods typically rely on pyramidal structures (multi-
resolution) to extract multi-level features, while ViT, with its straightforward architecture, extracts
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rich multi-scale features at each layer, making it well-suited for addressing complex anomalies in
multi-class scenarios.

For instance, methods like InTra and AnoVit have applied ViT in image reconstruction and anomaly
detection, typically capturing image features through ViT encoders to detect anomalies. However,
most of these methods utilize standard Transformer architectures and lack in-depth exploration of the
specific advantages of Transformers. Recent studies indicate that using a pure ViT architecture for
multi-class anomaly detection yields significant performance improvements. For example, DINO
pre-trained ViT features perform exceptionally well in multi-class anomaly detection tasks, effectively
capturing anomalies of various scales within images, thus reducing information leakage. Furthermore,
ViT’s hierarchical query decoder allows it to handle both global and local anomalies simultaneously,
enhancing robustness and precision in detecting complex anomalies.

Despite their successes, these methods often suffer from complex model designs, resulting in time-
consuming inefficiencies. The Runtang Model addresses this issue with a simple contrastive architec-
ture based on convolutional models.

Efficient Anomaly Detection Methods. EfficientAD exemplifies the focus on high efficiency rather
than single-class detection. This method improves performance through various strategies while
maintaining a manageable model complexity.

GLASS integrates Global Anomaly Synthesis (GAS) and Local Anomaly Synthesis (LAS) to syn-
thesize anomalies at both feature and image levels, thereby enhancing detection capabilities across
a wider range of anomaly types. GAS uses gradient ascent-guided Gaussian noise for subtle de-
fect detection, while LAS overlays distinct abnormal textures on normal images to manage more
pronounced anomalies and increase synthesis diversity.

However, these methods involve complex model designs or optimization strategies. Recent works,
such as SimpleNet, present a new direction with a simpler discriminator-based architecture.

SimpleNet combines unsupervised learning and synthetic anomaly generation, using normal samples
for training while generating diverse abnormal samples to enhance model performance. This model
excels in inference speed and detection accuracy, demonstrating strong adaptability for effective
surface defect detection in industrial applications.

Contrastive Anomaly Detection Methods. ReConPatch employs a contrastive learning framework
to extract patch features from pre-trained models, constructing distinguishable feature representations.
By training a linear transformation instead of the entire network, ReConPatch effectively adjusts
feature representations, making them more targeted for anomaly detection tasks.

3 THE CONTRASTIVE LEARNING BASED METHOD FOR MULTI-CLASS
ANOMALY DETECTION

3.1 OVERVIEW

The overall architecture of the model is shown in the figure. The model consists of three main compo-
nents: a feature extractor EΦ, a dimensional reduction adaptor Aϕ, and a discriminator Dψ with clas-
sification capabilities. The training process is divided into three phases: training set preparation, first-
stage contrastive learning, and second-stage fine-tuning. Given an AD dataset that contains N classes
C = {C1, C2, ..., CN}, in one of the class set Xi = {(XTrain

i,normal), (X
Test
i,normal, X

Test
i,anomaly))}. For

convenient training, we first use EΦ preprocess all images for training into patch features Xp =
EΦ(X). The images for training contain all classes training set images XTrain

i,normal, i ∈ (1, 2, ..., N),
and the anomaly images fused by the dtd Cimpoi et al. (2014) dataset images and the foreground zone
in all normal images in training datasets. All image class labels are maintained as patch labels, and
anomaly patches also have an anomaly class label, the patch labels denoted as Lp. The patch features
Xp encoded by Aϕ is denoted as XA = Aϕ(Xp). With both classification and discrimination ability,
the patch classifies prediction denoted as XC = Dϕ,c(XA), the patch anomaly score prediction
denoted as XS = Dϕ,s(XA). We optimize a mixed objective of

L = Lcontrast(XA, Lp) + Lvar(XA, Lp) + Lc(XC , Lp) + Ld(XS , Lp) (1)
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Figure 2: The CLAD method framework, consists of three main components: an Encoder EΦ,
a dimensionality reduction Adaptor EΦ, and a Discriminator EΦ with classification capabilities.
The Encoder includes a backbone and a patch feature fuser, which is frozen during training. The
dataset comprises both anomaly detection datasets and locally anomalous images, as well as globally
anomalous features, following the structure of the Glass method. The Adaptor and Discriminator
receive patch features for training, where contrastive Lcontrastand variance losses Lvar are applied to
the Adaptor’s output, and classification loss Lc and discriminative Ld is applied to the Discriminator,
which is responsible for the classification and discriminative task.

Where Lcontrast is the contrastive loss, Lvar is the class distribution variance loss, Lc is the patch
classification loss, Ld is the patch discriminative loss. In the following, we introduce the details of
the model and losses.

3.2 FEATURE EXTRACTOR AND PATCH FEATURE DATASET PREPARATION

Due to the first contrastive learning phase, which can only train on less patch feature batch size, we
first preprocess the image dataset to patch feature dataset.

The patch feature extract process The feature map for image xi ∈ Xtrain extracted by Φ denoted
as Φi,j = Φj(xi) ∈ RHj ,Wj ,Cj . The vector at location (h,w) is represented as Φh,wi,j ∈ RCj . Similar
to PatchCore and Glass, we aggregate the neighborhood features through adaptive average pooling,
the locally aware vector sh,wi,j ∈ RCj is obtained from the neighborhood features of Φh,wi,j considering
a neighborhood size of p. The set of vectors sh,wi,j constitutes the feature map si,j . By upsampling to
a higher resolution feature map and merging si,j from different levels, the concatenated feature map
ti ∈ RHm∗Wm∗Cd . The channel size is processed by concat C =

∑
j∈J Cj and adopts an adaptive

average pooling to destination dimension Cd.

The composition of the patch feature training dataset In this patch feature training dataset, we
not only have the normal images in the training dataset of all classes about the AD dataset but also
have the anomaly images synthesis with the DTD Cimpoi et al. (2014) dataset. In this process, we
follow the stratege similar GLASS Chen et al. (2024). The synthesized anomaly images fuse from
normal images in the training set and DTD textures, with Perlin masks. The Perlin anomaly mask
is generated by Perlin noise. With each normal image two Perlin binary masks as m1 and m2, a
foreground mask as mf . The final mask is constructed as:

mi =


(m1 ∧m2) ∧mf 0 ≤ pm ≤ α

(m1 ∨m2) ∧mf α < pm ≤ 2α

m1 ∧mf 2α < pm ≤ 1

(2)

With random number pm U(0, 1), α set to 1/3 in the experiments. The DTD image randomly selected
from the DTD dataset will be augmented. The augmentation methods denote as T = {T1, ..., TK},
K = 9. In the augmented process, three methods will be chosen to form TR ∈ T . The augmented
texture image is denoted as x′′

i = TR(x
′
i). In the fusion process, we adopt a transparency coefficient

β ∼ N(µm, ρ2m) to adjust the AD training set image xi proportion with the synthetic image under
the anomaly mask. The local anomaly image xi+ is fused as:

xi+ = xi ⊙mi + (1− β)x′′
i ⊙mi + βxi ⊙mi (3)
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where mi is derived by inverting the anomaly mask mi. Only the fusion region patch features are
extracted and used in the following training process to construct the patch feature training dataset.

3.3 THE MODEL FRAMEWORK AND ANOMALY FEATURE SYNTHESIS STRATEGY

In the model framework the feature extractor EΦ contracts by backbone and feature fuser, and the
dimensional reduction adaptor Aϕ contracts by a three-layer MLP with batch norm between them.
The discriminator Dψ also contrasts by three layers of MLP, the output of discriminator contract
by two-part [XC , XS ], one is the patch classification result in XC , another is the patch anomaly
scoreXS . In the training process, we use the anomaly features extracted from the anomaly images
xi+ produced by normal images and the dtd textures, and in the training process, we also do another
fusion with normal features in the feature-level, which use the same β proportion as 3 to fuse the
normal features with the anomaly feature extract from xi+.

Xpa = (1− β)xdtd + βxpn (4)

Except for the local anomaly strategy, we also adopt a global anomaly feature. In this process, we
add Gaussian noise on the patch feature Xp extracted from the feature extractor and correct the noise
direction to the gradient ascends direction. Same as Glass, in this process we add Gaussian noise on
Xp at each dimension with noise ϵ ∼ N(µ, σ2), denote as Xpga = Xp + ϵ. For effective training,
we will correct the noise direction to the gradient ascent direction, as:

Xpga = Xpga + η
∇Lgas(Xpga)

||Lgas(Xpga)||
(5)

Lgas =
∑

fBCE(Xpga, 1) (6)

To project Xpga onto the set Np = Xpga|r1 < ||Xpga −Xp||2 < r2, the gradient ascent distance is
ϵ = Xpga−Xp, the truncated distance ϵ̂ is given by:

ϵ̂ =
α

||ϵ||
ϵ, where α =


r1 ||ϵ|| < r1
r2 ||ϵ|| > r2
||ϵ|| otherwise

(7)

Finally, the global anomaly feature Xpga = Xp + ϵ̂.

3.4 CONTRASTIVE LEARNING METHOD AND TRAINING OBJECTIVES

In this method, we hope to eliminate the noise in the feature, with no help in anomaly detection,
through the decline of the feature dimension. As the multi-class feature distribution is complicated,
we also hope to separate the feature distributions into different classes. So we introduce the supervised
contrastive learning aim to separate different classes distribution in the hidden space encoded by the
dimensional reduction adaptorAϕ. With the contrastive learning target XA, the batch size is denoted
as B, For each pair of samples i and j, where i, j ∈ {1, 2, . . . , B}, the Euclidean distance between
their means is computed, resulting in a B ∗B distance matrix:

Dmean(i, j) = ∥µi − µj∥2, i, j ∈ {1, 2, . . . , B} (8)

Based on the labels, we calculate a B ×B matrix, which indicates whether the samples in the pair
have the same label:

label_equal(i, j) =
{
1, if labeli = labelj
0, if labeli ̸= labelj

, i, j ∈ {1, 2, . . . , B} (9)

label_not_equal(i, j) = 1− label_equal(i, j) (10)

For positive sample pairs (those with the same label), we compute the Euclidean distance between
them and use the normal sample indicator is_normal and the label equality indicator label_equal to
weigh the distances. The positive sample pair loss is defined as the distance between the samples
multiplied by these indicators:

Lpos(i, j) = Dmean(i, j) · label_equal(i, j), i, j ∈ {1, 2, . . . , B} (11)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For negative sample pairs (those with different labels), we compute the Euclidean distance and apply
a margin M (distance threshold) to ensure that smaller distances between negative pairs receive a
higher penalty. The negative sample pair loss is calculated as the difference between the margin and
the pairwise distance, multiplied by the indicators for label inequality.

Lneg(i, j) = max(0,M −Dmean(i, j)) · label_not_equal(i, j), i, j ∈ {1, 2, . . . , B} (12)

To emphasize more difficult sample pairs, we compute weights for the positive and negative sample
pairs using an exponential function. The weight formulas wpos and wneg depend on the loss values
and are adjusted by the hyperparameters α and γ:

wpos(i, j) = α · (1− exp(−Lpos(i, j)))γ , i, j ∈ {1, 2, . . . , B} (13)

wneg(i, j) = α · (1− exp(−Lneg(i, j)))γ , i, j ∈ {1, 2, . . . , B} (14)

The calculated weights wpos and wneg are applied to the positive and negative sample pair losses,
resulting in the weighted positive and negative sample pair losses:

Lweighted_pos(i, j) = wpos(i, j) · Lpos(i, j), i, j ∈ {1, 2, . . . , B} (15)

Lweighted_neg(i, j) = wneg(i, j) · Lneg(i, j), i, j ∈ {1, 2, . . . , B} (16)

Finally, the weighted losses for all sample pairs in the batch are summed and averaged by dividing by
B2, producing the average loss, which serves as the:

Lcontrast =
1

B2

B∑
i=1

B∑
j=1

(Lweighted_pos(i, j) + Lweighted_neg(i, j)) (17)

In the function Lvar, a variance regularization term is introduced to designed to reduce intra-class
variance in the learned feature space. Let µi represent the mean vector of class i, indicating the
feature center of the class. The variance of the sample features for each class i can be expressed as:

σ2
i =

1

Ni

Ni∑
j=1

(
z
(i)
j − µi

)2
(18)

where Ni is the number of samples in class i, and z
(i)
j denotes the feature of the j-th sample belonging

to class i. The overall variance regularization loss is the average of variances across all classes:

Lvariance =
1

C

C∑
i=1

σ2
i (19)

where C is the number of classes. This regularization encourages the feature representations of
samples within the same class to be more compact, thereby improving intra-class consistency.

The classification loss function Lc(XC , Lp) utilizes the Cross-Entropy Loss, which is commonly
used in classification tasks. After XA passes through Dψ, the logits for classification will obtained.
The cross-entropy loss is then computed between the predicted logits and the true labels, with C
as the number of classes, making it suitable for standard classification problems where we need to
distinguish between normal and anomalous classes.

LCE = −
B∑
i=1

C∑
c=1

LPi,c
log(XCi,c

) (20)

The Hinge loss function is designed specifically for anomaly detection using a hinge loss approach.
In this case, anomalous samples (labeled as 15) and normal samples are treated separately:

For the anomaly detection case, the hinge loss is computed separately for anomalous and normal
samples. For anomalous samples zi, we want the anomaly score si to stay below a threshold δ, while
for normal samples, the score should be higher than −δ. The hinge loss for anomalous samples is:
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Figure 3: The effect picture. Because of intricate multi-class distribution in high dimensions, is
hard to learn, and redundant information is unnecessary for anomaly detection. We propose the
CLAD method, which decreases the patch feature dimension and uses surprised contrastive learning
to formulate a distinct separate and compact distribution

.

Lanomalous = max(0, δ − si) (21)

For normal samples, the hinge loss is:

Lnormal = max(0, si + δ) (22)

The total hinge loss is the mean of both losses:

LHinge =
1

N

( ∑
i∈anomalous

Lanomalous +
∑

i∈normal

Lnormal

)
(23)

3.5 TWO-STAGE TRAINING PROCESS

The introduction of contrastive learning has led to a significant decrease in the number of features
that can be trained simultaneously. Therefore, after the contrastive learning phase, we believe that the
feature distribution in the space outputted by the Adaptor is already relatively reasonable, and the
presence of the contrastive learning loss would reduce training efficiency. Thus, we choose to disable
the contrastive learning loss in the second stage while retaining the other losses:

L = Lc(XC , Lp) + Ld(XS , Lp) (24)

Experimental results indicate that through this approach, our algorithm achieves current state-of-the-
art performance. Further ablation experiments confirm the effectiveness of each component in the
process.

4 EXPERIMENT

4.1 SETUPS FOR MULTI-CLASS UNSUPERVISED AD

Task Setting. This work focuses on training all classes in the AD dataset, with none of the truth
anomaly images reachable. In the inference process, we use only one model to detect all classes of
normal or anomalous images. Both anomaly detection and localization are required.
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MVTec-AD dataset. The MVTec-AD dataset Bergmann et al. (2019) is designed for unsupervised
anomaly detection in industrial scenarios. It contains 5,354 high-resolution images across 15 cate-
gories (5 textures, 10 objects) from various industrial domains. The data set is divided into a training
set of 3,629 anomaly-free images and a test set of 1,725 images with normal and abnormal samples.
In the test set, pixel-level annotations for anomalies are provided, allowing the evaluation of both
detection and localization tasks. This comprehensive dataset fills a critical gap in industrial anomaly
detection research, offering a standardized benchmark for algorithm development and assessment in
realistic production environments.

VisA dataset. The VisA (Visual Anomaly) dataset, introduced by Zou et al. (2022), is a compre-
hensive resource for visual anomaly detection research. It comprises 10,821 high-resolution images,
including 9,621 normal and 1,200 anomalous samples featuring 78 types of anomalies. The dataset
is structured into 12 subsets, each representing a distinct object. These objects are categorized into
complex structures, multiple instances, and single instances. This diverse composition allows for
a thorough evaluation of anomaly detection algorithms in various complexities and scenarios of
objects. VisA is valuable for developing and testing robust visual inspection methods in industrial
and research applications.

Evaluation Metrics for AD. Similar to (Deng & Li, 2022; Zavrtanik et al., 2021; Bergmann et al.,
2020), we use threshold-independent measures, including mean Area under the Receiver Operating
Curve (mAU-ROC) to evaluate binary classification ability and mean Area Under the Per-Region-
Overlap Bergmann et al. (2020) (mAU-PRO) to weigh regions of different sizes equally. Note that
mAU-ROC is used in image-level (anomaly classification) and pixel-level (anomaly segmentation)
evaluations. The maximum pixel-level value is regarded as the image-level anomaly score Deng &
Li (2022); You et al. (2022). The models are evaluated ten times evenly for all methods, and the
result corresponding to the maximum pixel-level mAU-ROC value is taken as the final result. We
demonstrate and emphasize using all metrics for evaluation.

Comparision Methods. As MUAD is a relatively new task, we mainly evaluate the published
UniAD You et al. (2022) methods. We also compare with the latest augmentation-based DRAEM
Zavrtanik et al. (2021), reconstruction-based RD Deng & Li (2022), and Embedding-based Sim-
pleNet Liu et al. (2023). Since the above methods only report results under the SUAD setting, we
retrain them to obtain MUAD results by official codes.

Training. In this study, we employ WideResNet50 as the backbone network for CLAD. The input
images are resized to 256x256, followed by center-cropping to 224x224, without applying any data
augmentation. We use the AdamW optimizer with a learning rate set to 0.0002. The training is
divided into two stages: In the first stage, a batch size of 8000 patch features is used, and the model is
trained for 200 epochs. The best-performing model from this stage is then fine-tuned in the second
stage, with a batch size of 100,000 patch features for 2000 epochs. All images are trained together,
using their labels during training but not during testing. The backbone remains frozen throughout the
training process. The entire experiment is conducted on dual 3090 GPUs.β is set to 0.5, γ is set to
-0.8.

4.2 COMPARATIVE EXPERIMENTS ON DIFFERENT DATASETS

We evaluate the CLAD method with state-of-the-art approaches using both image-level and pixel-level
metrics (see Table 1) on the MVTec AD dataset. The proposed CLAD method performs favorably
against all the evaluated schemes. CLAD achieves better image-level results than DiAD with SoTA
results on mAU-ROCsp/mAU-ROCpx/mAUPROpx 97.5/97.0/96.0. In addition, CLAD achieves a
performance gain of +0.3 ↑/+0.2 ↑/+5.3 ↑ using the mean metric.

We have a few findings from these empirical results. First, classifying information can help model
learning and improve performance. Second, an appropriate compact class distribution and a clear
distinction between different class distributions can benifit the performance. Third, diverse anomaly
and tiny can also help to have better performance.

The VisA dataset contains more complex structures, multiple and large variations of objects, and more
images. The quantitative results in (see Table 2) show that CLAD consistently performs well against
state-of-the-art schemes. CLAD surpasses UniAD by mAU-ROCsp/mAU-ROCpx/mAUPROpx of
+2.2 ↑/-2.2 ↑/+9.4 ↑, and show the potential of CLAD.
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Category CFLOW-AD SimpleNet RD UniAD DiAD CLAD

bottle 99.9/97.3/92.2 100.0/97.6/90.1 99.7/97.8/94.8 99.8/98.1/95.3 99.7/98.4/- 100.0/97.0/96.0
cable 90.8/89.9/79.4 99.0/96.7/87.3 88.2/84.9/78.9 96.6/97.0/86.6 94.8/96.8/- 98.2/95.4/93.8
capsule 87.8/98.5/93.4 98.3/98.4/96.0 98.3/98.8/96.0 87.5/98.7/92.5 89.0/97.1/- 91.3/98.2/97.9
carpet 99.4/98.9/94.7 97.0/98.9/91.3 99.0/99.0/95.9 99.9/98.6/95.2 99.4/98.6/- 98.9/98.2/97.6
grid 89.4/93.6/82.5 96.4/96.1/87.1 99.2/99.3/97.6 99.2/97.0/92.1 98.5/96.6/- 97.5/96.8/95.7
hazelnut 100.0/98.6/95.8 100.0/98.3/93.3 100.0/98.7/96.5 99.9/98.3/94.6 99.5/98.3/- 100.0/97.9/96.7
leather 100.0/99.3/98.3 100.0/99.2/95.3 100.0/99.4/98.1 100.0/99.1/97.6 99.8/98.8/- 100.0/98.5/98.0
metal nut 98.0/96.0/88.8 98.7/97.9/92.1 99.8/94.4/92.4 98.5/93.4/80.9 99.1/97.3/- 99.4/97.4/96.7
pill 85.1/96.5/90.9 91.5/96.4/85.3 98.6/97.5/96.1 94.2/95.1/94.7 95.7/95.7/- 92.2/97.8/97.5
screw 71.6/97.0/89.3 81.8/96.3/86.8 98.3/99.4/97.2 92.4/98.9/94.2 90.7/97.9/- 91.4/97.5/97.1
tile 99.8/96.0/86.8 99.9/96.6/83.1 99.4/95.3/86.2 100.0/92.6/81.6 96.8/92.4/- 99.6/95.1/93.0
toothbrush 83.9/98.2/85.8 91.7/98.2/81.2 99.2/99.0/93.0 90.3/98.6/87.9 99.7/99.0/- 96.9/97.8/97.1
transistor 92.5/84.6/74.1 98.2/94.5/82.6 94.8/85.6/74.8 100.0/97.7/94.4 99.8/95.1/- 98.6/96.5/92.5
wood 98.9/94.4/91.0 99.9/95.6/80.2 99.6/95.6/92.0 98.8/93.7/89.6 99.7/93.3/- 99.5/92.8/90.5
zipper 96.2/98.1/93.1 99.8/99.7/95.6 99.8/98.5/95.6 95.3/97.0/91.4 95.1/96.2/- 99.6/98.2/97.7
Avg 92.7/95.8/89.0 95.4/96.7/87.6 96.9/95.9/92.0 96.8/96.8/91.0 97.2/96.8/90.7 97.5/97.0/96.0

Table 1: Comparison with SOTA methods on MVTec-AD dataset for multi-class anomaly detection
with mAUROCspmax(Max)/mAUROCpx(Max)/mAUPROpx(Max) metrics.

Category CFLOW-AD SimpleNet UniAD DiAD CLAD

candle 93.7/99.2/96.7 95.9/97.7/92.5 97.7/99.3/94.8 92.8/97.3/89.4 97.5/97.39/96
capsules 57.8/94.6/81.4 77.0/95.9/70.0 73.8/98.4/81.2 58.2/97.3/77.9 72/95.3/95
cashew 96.3/99.1/94.8 93.4/98.7/85.0 93.4/99.0/91.4 91.5/90.9/61.8 93.6/98.4/97.8
chewinggum 97.5/99.2/94.9 98.1/98.3/83.1 99.2/99.3/88.4 99.1/94.7/59.5 97.3/97.2/96.2
fryum 92.5/97.6/94.9 87.3/96.5/83.3 91.1/97.3/85.5 89.8/97.6/81.3 95.6/90.9/88.8
macaroni1 82.0/97.7/95.2 79.9/97.7/90.9 88.1/99.4/95.9 85.7/94.1/68.5 91.6/97.6/96.7
macaroni2 67.1/97.5/95.0 67.8/92.9/84.7 81.5/98.3/92.9 62.5/93.6/73.1 73.5/92.3/91.7
pcb1 94.9/99.2/96.9 92.5/98.8/81.1 96.3/99.4/90.5 88.1/98.7/80.2 91.8/97.6/96.7
pcb2 92.8/96.7/88.1 94.1/97.5/84.2 93.7/98.4/86.3 91.4/95.2/67.0 92.9/95.2/93.2
pcb3 81.5/96.4/91.1 89.4/97.8/83.7 90.0/98.5/86.2 86.2/96.7/68.9 91.4/97/95.6
pcb4 98.9/96.8/85.6 98.6/96.6/82.8 99.4/97.6/85.3 99.6/97.0/85.0 98.7/95.6/92.9
pipefryum 97.8/99.2/97.0 87.6/99.1/83.8 97.0/99.0/94.0 96.2/99.4/89.9 96/98.9/98.4
Avg 87.2/97.8/94.8 87.7/96.9/82.4 88.8/98.3/85.5 86.8/96.0/75.2 91/96.1/94.9

Table 2: Comparison with SOTA methods on VISA dataset for multi-class anomaly detection with
mAUROCspmax(Max)/mAUROCpx(Max)/mAUPROpx(Max) metrics.
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5 CONCLUSION AND LIMITATION

In this work, we are the first to introduce a feature embedding-based discriminative approach into
multi-class anomaly detection. By leveraging dimensionality reduction and contrastive learning,
we propose the CLAD method, which achieves state-of-the-art performance using only an MLP.
Our results demonstrate the effectiveness of feature embedding-based approaches, offering a novel
perspective distinct from reconstruction-based multi-class anomaly detection methods. This provides
a new pathway for advancing the development of multi-class anomaly detection algorithms.

REFERENCES

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Mvtec ad–a comprehensive
real-world dataset for unsupervised anomaly detection. In CVPR, 2019.

Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Uninformed students: Student-
teacher anomaly detection with discriminative latent embeddings. In CVPR, 2020.

Qiyu Chen, Huiyuan Luo, Chengkan Lv, and Zhengtao Zhang. A unified anomaly synthesis strategy
with gradient ascent for industrial anomaly detection and localization. arXiv:2407.09359, 2024.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, 2014.

Hanqiu Deng and Xingyu Li. Anomaly detection via reverse distillation from one-class embedding.
In CVPR, 2022.

Haoyang He, Jiangning Zhang, Hongxu Chen, Xuhai Chen, Zhishan Li, Xu Chen, Yabiao Wang,
Chengjie Wang, and Lei Xie. A diffusion-based framework for multi-class anomaly detection. In
AAAI, 2024.

Zhikang Liu, Yiming Zhou, Yuansheng Xu, and Zilei Wang. Simplenet: A simple network for image
anomaly detection and localization. In CVPR, 2023.

Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu, Yu Zheng, and Xinyi Le. A unified model for
multi-class anomaly detection. NeurIPS, 2022.
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