
Where to Begin? On the Impact of Pre-Training and
Initialization in Federated Learning

John Nguyen Jianyu Wang Kshitiz Malik Maziar Sanjabi Michael Rabbat

Meta AI
{ngjhn,jianyuwang,kmalik2,maziars,mikerabbat}@meta.com

Abstract

An oft-cited challenge of federated learning is the presence of heterogeneity. Data
heterogeneity refers to the fact that data from different clients may follow very
different distributions. System heterogeneity refers to the fact that client devices
have different system capabilities. A considerable number of federated optimization
methods address this challenge. In the literature, empirical evaluations usually
start federated training from random initialization. However, in many practical
applications of federated learning, the server has access to proxy data for the
training task that can be used to pre-train a model before starting federated training.
We empirically study the impact of starting from a pre-trained model in federated
learning using four standard federated learning benchmark datasets. Unsurprisingly,
starting from a pre-trained model reduces the training time required to reach a
target error rate and enables the training of more accurate models (up to 40%) than
is possible when starting from random initialization. Surprisingly, we also find that
starting federated learning from a pre-trained initialization reduces the effect of
both data and system heterogeneity. We recommend that future work proposing
and evaluating federated optimization methods evaluate the performance when
starting from random and pre-trained initializations. We also believe this study
raises several questions for further work on understanding the role of heterogeneity
in federated optimization.

1 Introduction

Federated learning (FL) has emerged as a popular distributed machine learning paradigm for privately
training a shared model across many participants while the training data never leaves the participant
devices. This paper empirically investigates the impact of model initialization on federated optimiza-
tion methods. Previous empirical evaluations of FL methods start federated training from a randomly
initialized model. Transfer learning from pre-trained models has become common practice in natural
language processing [31, 6] and computer vision [12, 7], yielding state-of-the-art results on many
tasks and enabling faster model convergence in the centralized setting. Although public proxy data is
available at the server in many applications, few prior works studied the impact of starting federated
training from a pre-trained model.

In cross-device FL [18], the primary setting considered in this paper, a central server coordinates
a large number of client devices (possibly on the order of hundreds of millions). Each device
possesses a local dataset, and the data at different devices follow different distributions, leading to
the data heterogeneity challenge [18]. Moreover, client devices have different system capabilities,
leading to system heterogeneity. Finally, devices communicate with the server over low-bandwidth
communication links making the performance bottleneck.

Workshop on Federated Learning: Recent Advances and New Challenges, in Conjunction with NeurIPS 2022
(FL-NeurIPS’22). This workshop does not have official proceedings and this paper is non-archival.

Pre-trained Random

60.0

65.0

70.0

75.0

CIFAR-10

FedAdam Proximal
FedAdam SGD
FedAdam MineLite

FedAvg Proximal
FedAvg SGD
FedAvg MineLite

FedAvgM Proximal
FedAvgM SGD
FedAvgM MineLite

30.0

35.0

40.0

45.0

50.0

55.0

CIFAR-10
Pre-trained Random

23.0

24.0

25.0

Stack Overflow

FedAdam Proximal
FedAdam SGD
FedAdam MineLite

FedAvg Proximal
FedAvg SGD
FedAvg MineLite

FedAvgM Proximal
FedAvgM SGD
FedAvgM MineLite

15.0

16.0

17.0

18.0

19.0

20.0

Stack Overflow

Pre-trained Random

85.0

90.0

FEMNIST

FedAdam Proximal
FedAdam SGD
FedAdam MineLite

FedAvg Proximal
FedAvg SGD
FedAvg MineLite

FedAvgM Proximal
FedAvgM SGD
FedAvgM MineLite

75.0

80.0

85.0

90.0

FEMNIST
Pre-trained Random

24.0

25.0

26.0

Reddit

FedAdam Proximal
FedAdam SGD
FedAdam MineLite

FedAvg Proximal
FedAvg SGD
FedAvg MineLite

FedAvgM Proximal
FedAvgM SGD
FedAvgM MineLite

5.0

10.0

15.0

20.0

Reddit

Figure 1: The test set accuracy on four datasets with random and pre-trained weights. We represent
SGD by solid lines, PROXIMAL by dashed lines, and MIMELITE by dotted lines. See Section 3.3
and Table 4 in Appendix B for comparison characteristics of each method.

The predominant approach to federated training builds on local update methods such as FEDAVG [26],
where a device performs several local updates (e.g., one epoch of SGD on their local training
set) before transmitting an update to the server. Although this reduces communication overhead,
it can also exacerbate data heterogeneity. Several approaches have been proposed to address this
challenge [24, 14, 32, 36, 19, 20, 41, 1]. However, few prior works examine the impact of initialization
on federated training.

Contributions. In this work, we consider the question: How does model initialization (random
or pre-trained) impact the behavior of federated optimization methods? We perform an extensive
empirical study, comparing 15 variations of federated optimization methods on four commonly-used
FL benchmark datasets. Our study reveals three key findings:

1. Although optimizers designed to address heterogeneity typically lead to better performance
when starting from a random initialization, when starting from pre-trained model we observe
that (cf. Fig. 1): (i) there is not as big a difference between optimizers in terms of accuracy
after a fixed number of rounds, and (ii) using an adaptive optimizer at the server, such as
FEDADAM, is more important than using any method for addressing heterogeneity.

2. Starting from a pre-trained model significantly reduces the difference between having non-
IID vs IID data at clients. Furthermore, when starting from a pre-trained model, the number
of local epochs per round can be significantly increased without degrading the final accuracy.

3. The initial loss is not always lower when starting from a pre-trained model. However,
the largest Hessian eigenvalue (i.e., local Lipshitz constant, or smoothness) is consistently
smaller at initialization when starting from a pre-trained model, compared to when starting
from a random initialization.

Some of our empirical observations are consistent with existing FL theoretical convergence guarantees.
Our findings also highlight that some aspects of FL are not captured with the existing theory,
suggesting directions for future work.

Initializing FL with a pre-trained model can increase final model accuracy and reduce the number
of rounds required to achieve a target accuracy. Pre-training leads to communication savings and
reduces the overall training time. Figure 2 demonstrates the benefit of pre-training across several
datasets (hyperparameters were tuned separately for each dataset–initialization pair; see Section 3 for
details of the experimental setup).

Our findings are reproducible using the open-source federated learning framework FLSim [8].
Informed by these findings, we present several recommendations for future research on federated
optimization.

2

Algorithm 1 FedOpt framework
1: Input: initial global model x0, server and client step sizes ηs, ηc, local epochs E, rounds T
2: for each round t = 1, . . . , T do
3: Server sends xt−1 to all clients i ∈ St.
4: for each client i ∈ St in parallel do
5: Initialize local model y0i ← xt−1.
6: Each client performs E epochs of local updates via yk+1

i = CLIENTOPT(yki , Fi, ηc). Let
yEi denote the result after performing E epochs of local updates.

7: After local training, client i sends ∆t
i = xt−1 − yEi to the server.

8: end for
9: Server computes aggregate update ∆t = 1

|St|
∑

i∈St pi∆
t
i.

10: Server updates global model xt = SERVEROPT(xt−1,−∆t, ηs, t).
11: end for

2 Problem Formulation and the FEDOPT framework

We consider the following standard optimization formulation of federated training. We seek to find
model parameters w that solve the problem,

min
w∈Rd

f(w) :=

m∑
i=1

piFi(w) (1)

where m is the total number of clients, the function Fi measures the average loss of a model with
parameters w on the ith client’s training data, and pi > 0 is the weight given to client i. Usually pi is
taken to be proportional to the number of samples at client i so that the optimization problem gives
equal weight to all training samples. The goal is to find a model that fits all clients’ data well on
(weighted) average. In FL, only client i can evaluate Fi and its gradient.

All of the methods we consider in this study can be expressed in the general FEDOPT framework
introduced in Reddi et al. [32]; see Algorithm 1. At round t, the server sends its last model xt−1

to a cohort of clients. Each client in the cohort performs E epochs of local training starting from
xt−1 using CLIENTOPT with client learning rate ηc, producing a local model yEi . Then each
client communicates the difference ∆t

i between their local model and the server model, where
∆t

i := xt−1 − yEi . The server computes a weighted average ∆t of the client updates (line 9 in Alg. 1)
and updates its own model via xt+1 = SERVEROPT(xt,∆t, ηs, t), where SERVEROPT(xt,∆t, ηs, t)
is a first-order optimizer, ηs is the server learning rate, and t is the round number.

3 Experimental Setup

3.1 Datasets, Models, and Tasks

To facilitate comparing with other work in the literature, we experiment on four standard FL bench-
mark datasets: CIFAR-10 [22], Federated EMNIST-62 (FEMNIST) [5, 3], Stack Overflow [2] and
pushift.io’s Reddit1 [3]. All datasets have a natural non-IID partitioning of the data except for
CIFAR-10, for which we use the Dirichlet allocation approach of [14] with parameter 0.1 to partition
data across 50 users. For CIFAR-10 and FEMNIST, we train Squeezenet [17] and ResNet18 [11]
models, replacing batch norm with group norm [32, 13]. For Stackoverflow and Reddit pushift.io,
we use the DistilGPT2 [16] and CharLM [21] models. For additional information about the datasets
and models, see Appendix A.1.

3.2 Initialization Strategies

We consider two initialization strategies: random initialization and supervised pre-training.
1A third-party released dataset of Reddit comments from pushshift.io, packaged in the widely-used LEAF

benchmark [3]

3

Random initialization. Most prior federated optimization works use random weights to initialize
the model. We can use the same random initialization strategies used in the standard (centralized)
training of deep networks for each model [17, 16, 11, 21].

Supervised pre-training. In many FL applications, pre-training can be done on a large non-private
proxy dataset available at the server. To facilitate easily reproducing our results, we use publicly
available pre-trained models or pre-train on public data. For tasks using Squeezenet and ResNet18,
we use the version of the model pre-trained on ImageNet, available in the PyTorch Torchvision
library.2 For tasks using DistilGPT2, we use the model weights provided in the HuggingFace library
that has been distilled from a pre-trained GPT2,3 and for tasks using CharLM, we pre-train the model
on WikiText-103 [28] (see Appendix B.2 for details).

Supervised pre-training is just one possibility, and we leave the investigation of other pre-training
strategies (e.g., self-supervised pre-training and meta-learning) as future work; see Section 8.

3.3 Algorithms

We compare federated training with five different CLIENTOPT strategies:

SGD clients perform standard stochastic gradient descent updates;

Proximal [24] clients perform FEDPROX-style local updates; FEDPROX was originally proposed to
reduce client drift due to heterogeneity;

Normalized Averaging [36] clients use FEDNOVA-style updates and aggregation to compensate for
data imbalance across clients;

MIMELITE [20] clients make use of an optimizer state (e.g., momentum buffer) from the server
during local updates to reduce drift due to data heterogeneity;

GD clients perform full-batch gradient updates; in this case, the update ∆t
i returned to the server is a

full-batch gradient on client i’s local training set evaluated at model parameters xt−1.

At the server, we consider three strategies for SERVEROPT. In all strategies, the server treats the
averaged update ∆t as a gradient.

SGD the server updates the global model using stochastic gradient descent; when CLIENTOPT is
also SGD, this is equivalent to FEDAVG [26].

SGD with momentum the server updates the global model using SGD with momentum; when
CLIENTOPT is SGD, this is equivalent to FEDAVGM [14].

Adam the server updates the global model using the Adam optimizer; when CLIENTOPT is SGD,
this is equivalent to FEDADAM [32].

The method commonly referred to as FEDSGD [27] is obtained when CLIENTOPT is full-batch
gradient descent (GD) and SERVEROPT is SGD, with ηc = 1 and E = 1.

We focus on the above choices for CLIENTOPT and SERVEROPT because they are reflective of the
most widely-cited federated optimization methods, and they also represent a diverse set of possible
choices available to the practitioner seeking to deploy cross-device federated training at scale.

3.4 Implementation and Tuning

We repeat each experiment with three different seeds and report the average. For each algorithm,
model, and dataset, we run a hyperparameter sweep to tune client and server learning rates ηℓ and ηg ,
and the proximal penalty parameter µ for FEDPROX; see Appendix A for details. Unless otherwise
specified, each client update entails running one local epoch with fixed batch size per task. We
perform 1050 rounds of training for Stackoverflow, 1000 rounds of training for CIFAR-10, 1082
training rounds for FEMNIST. See Appendix A.2 for additional details on implementation details.
All experiments were performed using the open-source federated learning simulation framework
FLSim [8].

2https://github.com/pytorch/vision
3https://huggingface.co/distilgpt2

4

https://github.com/pytorch/vision
https://huggingface.co/distilgpt2

0 200 400 600 800 1000
Round

5

10

15

20

25

Ac
cu

ra
cy

Stack Overflow

Pretrained
Random

200 400 600 800 1000
Round

5

10

15

20

Ac
cu

ra
cy

Stack Overflow CharLM

Pre-trained
Random

200 400 600 800
Round

16

18

20

22

24

Ac
cu

ra
cy

Reddit CharLM

Pre-trained
Random

0 500 1000 1500 2000
Round

20

40

60

Ac
cu

ra
cy

CIFAR-10 = 0.1

Pretrained
Random

0 100 200 300 400 500
Round

20

40

60

80
Ac

cu
ra

cy
CIFAR-10 = 0.1 ResNet-18

Pre-trained
Random

0 200 400 600 800 1000
Round

20

40

60

80

Ac
cu

ra
cy

FEMNIST

Pretrained
Random

200 400 600 800
Round

70.0

72.5

75.0

77.5

80.0

82.5

Ac
cu

ra
cy

FEMNIST ResNet-18

Pre-trained
Random

Figure 2: While prior works ignore the importance of initialization, using pre-trained models should
be the first step for any practical deployment to save on communication bandwidth and achieve high
model accuracy. This figure shows the advantage of using a pre-trained model for four tasks. For
Stack Overflow and Reddit, we use DistilGPT2. For CIFAR-10 and FEMNIST, we use SqueezeNet.

4 The Impact of Pre-Training in FL

In this section, we illustrate the benefits of pre-training in the federated setting and how pre-training
can impact federated optimization algorithms behavior.

Pre-training changes the ranking of federated optimization algorithms. If one sorts federated
optimization methods based on their performance when starting from a random initialization, the order
is substantially different from when using a pre-trained initialization. We focus on nine combinations
of SERVEROPT and CLIENTOPT, only using local update methods for CLIENTOPT and excluding
full-batch gradient descent. We show the change in performance in Figure 1.

First, observe that the span of final accuracies is much smaller when starting from a pre-trained model.
Second, all methods starting with pre-trained models achieve a better accuracy after the same number
of steps compared to random models. Lastly, observe that the order of methods changes depending
on the initialization. Although no particular method dominates across all workloads in Figure 1,
FEDADAM with SGD for CLIENTOPT performs consistently well when starting from a pre-trained
model, especially on the two larger language modeling workloads, Stack Overflow and Reddit, and
so we focus on studying FEDADAM-SGD below.

A
cc

ur
ac

y

60

65

70

75

80

E = 1 E = 2 E = 4 E = 8

Pre-trained Random

Figure 3: The accuracy for CIFAR-10
using ResNet-18 with increasing number
of local epochs.

Faster convergence to better accuracy when starting
from a pre-trained model. Figure 2 shows that, as one
would hope, when starting from a pre-trained model, it
is possible to achieve much better accuracy after a fixed
number of steps than when starting federated training from
a random initialization. Note that the initial accuracy is not
always substantially higher than a random initialization
(See Table 2).

Pre-training closes the accuracy gap between non-IID
and IID. We study how pre-training and data heterogene-
ity affect convergence without system heterogeneity by
fixing the number of local epochs to Ei = 1. We compare
FEDADAM-SGD under IID and Non-IID data splits. In
Figure 4, we report the average accuracy for FedAdam
[32] on the four datasets. As expected, randomly initial-
ized models perform much worse than their pre-trained
counterparts, and IID partitions yield better quality than
non-IID. Surprisingly, the gap between models trained on IID data and models trained on non-IID
data is significantly smaller when starting with pre-trained weights. Moreover, pre-training reduces
the negative effects of data heterogeneity (i.e., client drift). As a result, we observe that (see Figure 3)

5

A
cc
ur
ac
y

50

60

70

80

Pre-trained Random

Non-IID IID

CIFAR-10

A
cc

ur
ac

y

18
20
22
24
26

Pre-trained Random

Non-IID IID

Stack Overflow

A
cc
ur
ac
y

90

91

92

93

Pre-trained Random

Non-IID IID

FEMNIST

A
cc
ur
ac
y

0

10

20

30

Pre-trained Random

Non-IID IID

Reddit

Figure 4: The average accuracy on 3 different seeds for FEDADAM trained on IID and non-IID data.
For CIFAR-10 Non-IID, we generate 100 non-IID clients using a Dirichlet(0.1). For other three
datasets, we use the natural non-IID client partitions.

FedAvg FedAvgM FedAdam

67.0

68.0

69.0

70.0

CI
FA

R-
10

 P
re

tr
ai

ne
d

SGD Proximal Nova MimeLite

66.0

68.0

70.0

72.0

74.0

76.2

76.5

76.8

77.0

77.2

77.5
FedAvg FedAvgM FedAdam

40.0

42.5

45.0

47.5

50.0

CI
FA

R-
10

 R
an

do
m

SGD Proximal Nova MimeLite

42.5

45.0

47.5

50.0

52.5

52.0

54.0

56.0

58.0

60.0

62.0
FedAvg FedAvgM FedAdam

86.0

87.0

88.0

89.0

90.0

91.0

FE
M

N
IS

T
Pr

et
ra

in
ed

SGD Proximal Nova MimeLite

89.0

90.0

91.0

92.0

89.0

90.0

91.0

92.0
FedAvg FedAvgM FedAdam

82.5

85.0

87.5

90.0

92.5

FE
M

N
IS

T
Ra

nd
om

SGD Proximal Nova MimeLite

88.0

88.5

89.0

85.2

85.4

85.6

85.8

86.0

Figure 5: System heterogeneity results comparing FedAvg, FedAvgM and FedAdam with various
client optimizers. We simulate system heterogeneity by randomly select 30% of clients per round
to perform time-varying local epochs Ei ∼ U(1, 5), the same approach as in [36]. FedProx and
FedNova correspond to FedAvg with Proximal client optimizer and normalized averaging (NOVA),
respectively. We repeat each experiment for 3 different seeds and report the average.

when training from a pre-trained model, increasing the number of local updates does not degrade the
final accuracy, in contrast to training from a random model

FEDADAM GD is as effective as FEDADAM SGD with pre-training. The seminal work of McMa-
han et al. [26] shows that taking local SGD steps before server averaging reduces communication by
10-100× compared to taking a full batch gradient step. To understand how pre-training impacts this
comparison, we compare FEDADAM with SGD and FEDADAM with GD. While local SGD can re-
duce communication, the saving is much less when the models are initialized with pre-trained weights
compared to random weights. Figure 8 in the Appendix shows that with pre-trained initialization,
using GD at the client can yield almost the same result as taking local SGD steps.

Pre-training reduces the impact of system heterogeneity. To study the impact of pre-training
on system heterogeneity, we follow the setup described in [24, 36]. We sample 30% of clients
uniformly at random, and client i performs Ei local epochs where Ei ∼ U(1, 5) while the remaining
70% of the clients perform Ei = 1 epochs; this models the setting where clients have different
processing capabilities and they perform as much work as they can within a given time limit. Figure 5
shows that FEDADAM-SGD consistently outperforms other methods specifically designed for system
heterogeneity (NOVA, PROXIMAL, MIMELITE) when starting from a pre-trained model. Apparently
using an adaptive optimizer at the server is sufficient to correct for the negative effects of systems
heterogeneity when starting from a pre-trained model. On the other hand, when starting from a random
initialization, optimizers specifically designed for system heterogeneity (i.e., FEDNOVA) outperform
SGD (Figure 5 right). Moreover, the accuracy gap between algorithms is more pronounced in the
random initialization setting, whereas in the pre-trained setting, all algorithms converge to more
similar accuracies. Our results suggest that pre-training may reduce the need for algorithms that try
to correct system heterogeneity.

5 Understanding Why Pre-training Helps Federated Optimization

While pre-training unsurprisingly speeds up convergence, the reason for the speedup is less apparent.
In this section, we examine why pre-training is beneficial to federated learning.

Pre-training helps align client updates. To better understand why pre-training alleviates the
heterogeneity challenge, we first investigate the gradient diversity of the updates received from
different clients. We adopt the notion introduced in Yin et al. [40], adapted here to apply to client

6

0 100 200 300 400 500
Round

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
Lo

ss

Random
Pretrained

0 100 200 300 400 500
Round

0

2000

4000

6000

Di
st

an
ce

 fr
om

 In
iti

al
 M

od
el

Random
Pretrained

0 100 200 300 400 500
Round

20

30

40

50

60

70

Ev
al

 A
cc

ur
ac

y

Random
Pretrained

0 100 200 300 400 500
Round

4

5

6

7

8

Gr
ad

ie
nt

 D
iv

er
sit

y

Random
Pretrained

0 100 200 300 400 500
Round

0.0

0.2

0.4

0.6

Co
sin

e(
t,

t
1)

Random
Pretrained

0 100 200 300 400 500
Round

0

2000

4000

6000

L2
 D

ist
an

ce
 fr

om
 F

in
al

 M
od

el

Random
Pretrained

Figure 6: Training and gradient statistics of a Resnet18 on CIFAR-10 with Dirichlet distribution
with parameter 0.1. Top row: Train loss of global model; train accuracy of global model; evaluation
accuracy of global model; evaluation loss of global model. Bottom row: Gradient diversity of client
updates; cosine similarity between client updates; L2 distance of server weights from their final
values at the end of training.

CIFAR-10 FEMNIST Stack Overflow Reddit

Pre-trained 661.99 26.29 151.05 647.19
Random 4843.13 355.51 185.02 1309.68

Table 1: The top eigenvalue of the Hessian matrix for each dataset between the pre-trained and
random initialized models.

updates δi (whereas Yin et al. [40] focus specifically on gradients gi):

GradientDiversity({∆i : i ∈ St}) =
∑

i∈St ||∆i||2

||
∑

i∈St ∆2
i ||

.

In Figure 6, we plot the gradient diversity of client updates ∆i at each round for FEDADAM. In
the pre-trained setting, client updates have significantly lower gradient diversity (see the bottom
left plot in Figure 6). This suggests that when starting from a pre-trained model, the client local
model changes are more similar to each other. On the other hand, clients local model changes from
randomly initialized weights are almost orthogonal, suffering more from the client drift problem.
In addition, when looking at the cosine similarity of consecutive aggregated update vectors in time
(bottom middle), we see that consecutive updates point more consistently in a similar direction at the
beginning of training when starting from a pre-trained model.

From the top middle and bottom right plots in Figure 6, we see that the pre-trained model starts
closer to the final result. We also examine the largest eigenvalue of the Hessian matrix (i.e., local
Lipshitz constant or smoothness) at the beginning of training, a larger value of which suggests a
harder-to-optimizer loss surface. In Table 1, one can observe that pre-trained models always lead to
smaller eigenvalues on different datasets.

Initial loss for pre-trained versus random models. Table 2 shows that pre-training does not always
lead to lower initial loss. For Squeezenet 1.0 on CIFAR-10 and ResNet-18 on FEMNIST, the initial
loss of the randomly initialized models are lower pre-trained models. However, pre-trained model
still converges faster as illustrated in Figure 2.

Connection to theory. Here, we present the existing optimization theory for FEDAVG and discuss how
pre-training helps to improve the model convergence. Following the formulation in Section 3, suppose
that there are total m clients, jointly optimizing a global objective function f(w) =

∑m
i=1 piFi(w),

7

CIFAR-10 FEMNIST

Squeezenet 1.0 ResNet-18 Squeeze 1.0 ResNet-18
Pre-trained 2.71 1.07 3.99 6.58
Random 1.90 1.11 4.31 4.17

Stack Overflow Reddit

CharLM DistilGPT2 CharLM DistilGPT2
Pre-trained 6.78 4.93 5.15 6.34
Random 7.71 9.82 8.61 9.99

Table 2: Loss at beginning of training for various model architectures and datasets. The initial loss of
the pretrained model is not always lower than that of a random initialization.

and that each client’s local loss function Fi(w) is L-Lipschitz smooth. For ease of presentation, we
assume that all clients participate in training and perform K local SGD updates at each round. Then,
under standard assumptions, one can show that after R communication rounds, the expected gradient
norm satisfies (see Theorem V in [19]):

E
∥∥∇f(x̄R)

∥∥2 ≤ O(√
F√

RKm
+

F 2/3ζ2/3

R2/3

)
, (2)

where w̄R represents a weighted sampled model from all previous rounds, ζ is a measure of data
heterogeneity, and F = f(x0)− f∗ denotes the gap between the initial loss value and the optimal
loss value.

In addition, in order for FEDAVG to achieve theO(1/
√
RKm) asymptotic convergence rate, previous

works [37, 39, 19, 35] showed that the number of local updates K should be upper bounded as follows:

K ≤ O
(

R1/3

F 1/3ζ4/3m

)
. (3)

Clearly, if F becomes smaller starting from a pre-trained model, one can use a larger number of local
updates. This corroborates our empirical observations in Figure 3.

When starting from a pre-trained model, the initial gap F is sometimes reduced, as observed in
Table 2. As a result, the optimization error upper bound (2) will be smaller, i.e., we get better
worst-case performance. However a lower initial loss is not always observed in our experiments, so
this does not fully explain our observations, suggesting that we may need to re-think the convergence
theory of local update methods.

6 Recommendations

In this work, we study the effects of pre-training on federated optimization methods. Our results
inform the following recommendations:

1. When evaluating FL algorithms, researchers should experiment with both pre-trained (if available)
and random weights, as the initialization can clearly impact the relative performance of different
methods, and both initialization schemes may be relevant to practice.

2. When deploying FL to a production environment, using adaptive server optimizers such as
FEDADAM together with SGD at the client is a simple and competitive approach when it is possible
to start from a pre-trained model.

3. When there is public data to pre-train a model, the impact of heterogeneity can be reduced. Thus,
when focusing on heterogeneity, it may be worth considering whether or not proxy data is available
for pre-training to motivate the application considered.

7 Related Work

Transfer learning. Model initialization can significantly impact training and final performance.
Previous work studying the loss landscape of deep networks observed significant differences between

8

the landscape around a random initialization and the landscape later in training. In particular, later in
training, the loss can be much more “well-behaved” [23, 10, 9]. Fine-tuning from pre-trained models
is common practice in natural language processing and computer vision, yielding strong performance
on many tasks [31, 7, 6, 12].

Federated Optimization. While a significant amount of research focused on various aspects of
FL, including communication-efficiency [26], data and systems heterogeneity [24, 36], and faster
convergence rate []. Nearly all previous work in this field neglect the importance of initialization. In
our work, we study the impact of initialization on federated optimization in the cross-device setting.
We defer the interested reader to surveys of Kairouz et al. [18] and Wang et al. [37] for additional
background.

Pre-training in Federated Learning. Very few works have studied pre-trained models in federated
learning [30, 15, 42, 25, 34]. Zhao et al. [42] studied pre-training as a mechanism to remedy the
adverse effect of heterogeneity in FL. However, Zhao et al. [42] found that pre-trained initialization
does not alleviate the effect of heterogeneity. In this work, we find that pre-training can alleviate
both data and system heterogeneity. Pillutla et al. [30], Hsu et al. [15], Lin et al. [25], Stremmel and
Singh [34] experimented with pre-trained models but did not study the difference between random
initialization and pre-training, which is the focus of this work. In concurrent and independent works,
Chen et al. [4], Weller et al. [38] find that pre-training closes the accuracy gap between FEDAVG and
centralized learning under non-IID data. Weller et al. [38] studied multilingual language tasks using
large transformer models on synthetically partitioned data, not a realistic setup for large-scale cross-
device federated settings. Chen et al. [4] studied the impact of pre-training on data heterogeneity using
synthetically partitioned image data. Furthermore, Chen et al. [4] proposed a method to pre-train with
synthetic data. In our work, we systematically study both forms of heterogeneity, data-induced and
system-induced, across both visual and language tasks on 15 SOTA federated optimization algorithms.
We offer theoretical and empirical explanations for why pre-training is beneficial to FL.

8 Conclusion and Limitations

Limitations. Depending on the application, it may not be possible to get public data, in which
case random initialization may be the only option. Nevertheless, we believe there is sufficient
prevalence and importance of applications where public data is available for this study to be of broad
interest. When public data is available, it may not necessarily reflect the distribution of all users in the
population. Consequently, pre-training using public data may introduce bias, which warrants further
study, including methods to detect and mitigate such bias. Moreover, we only consider one warm-start
initialization strategy: supervised pre-training. Several other possibilities are worth investigating,
including meta-learning the warm-start initialization and self-supervised pre-training (e.g., if public
data does not come with labels).

Conclusion. In this paper, we present a thorough empirical analysis of initialization on federated
learning by evaluating it on twelve federated learning algorithms across four vision and text tasks.
We find that pre-training on public data can recover most of the accuracy drop from heterogeneity.
We show that client updates starting from pre-trained weights have higher cosine similarity, which
explains why initializing with pre-trained weights can speed up convergence and achieve high
accuracy even in heterogeneous settings. We further show that using simple SGD locally can be as
good as other local optimizers.

References
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and

Venkatesh Saligrama. Federated learning based on dynamic regret. In International Conference
on Learning Representations, 2021.

[2] The TensorFlow Federated Authors. Tensorflow federated stack overflow dataset.
2019. URL https://www.tensorflow.org/federated/api_docs/python/
tff/simulation/datasets/stackoverflow/load_data.

[3] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings.
arXiv preprint arXiv:1812.01097, 2018.

9

https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data

[4] Hong-You Chen, Cheng-Hao Tu, Ziwei Li, Han-Wei Shen, and Wei-Lun Chao. On pre-training
for federated learning. arXiv preprint arXiv:2206.11488, 2022.

[5] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending
mnist to handwritten letters. In 2017 international joint conference on neural networks (IJCNN),
pages 2921–2926. IEEE, 2017.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[8] FLSim Authors. Federated learning simulator (flsim). 2022.

[9] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear
mode connectivity and the lottery ticket hypothesis. CoRR, abs/1912.05671, 2019. URL
http://arxiv.org/abs/1912.05671.

[10] Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The early phase of neural network
training. CoRR, abs/2002.10365, 2020. URL https://arxiv.org/abs/2002.10365.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[12] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking ImageNet pre-training. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2019.

[13] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data quagmire
of decentralized machine learning. In International Conference on Machine Learning, pages
4387–4398. PMLR, 2020.

[14] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[15] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-
world data distribution. In European Conference on Computer Vision, pages 76–92. Springer,
2020.

[16] HuggingFace. Distilgpt2. 2019. URL https://huggingface.co/distilgpt2.

[17] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb
model size. arXiv preprint arXiv:1602.07360, 2016.

[18] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977,
2019.

[19] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

[20] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Shashank J. Reddi,
Sebastian U. Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic
algorithms in federated learning. 2021.

[21] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural
language models. In Thirtieth AAAI conference on artificial intelligence, 2016.

10

http://arxiv.org/abs/1912.05671
https://arxiv.org/abs/2002.10365
https://huggingface.co/distilgpt2

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[23] Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural
nets. CoRR, abs/1712.09913, 2017. URL http://arxiv.org/abs/1712.09913.

[24] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127,
2018.

[25] Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin Wang, Yufen Huang, Mahdi Soltanolkotabi,
Xiang Ren, and Salman Avestimehr. Fednlp: Benchmarking federated learning methods for
natural language processing tasks. arXiv preprint arXiv:2104.08815, 2021.

[26] H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated
learning of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2016.

[27] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics, 2017.

[28] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[30] Krishna Pillutla, Kshitiz Malik, Abdelrahman Mohamed, Michael Rabbat, Maziar San-
jabi, and Lin Xiao. Federated learning with partial model personalization. arXiv preprint
arXiv:2204.03809, 2022.

[31] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[32] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

[33] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25:2951–2959, 2012.

[34] Joel Stremmel and Arjun Singh. Pretraining federated text models for next word prediction. In
Future of Information and Communication Conference, pages 477–488. Springer, 2021.

[35] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis
of local-update sgd algorithms. Journal of Machine Learning Research, 22, 2021.

[36] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

[37] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-
Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field
guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

[38] Orion Weller, Marc Marone, Vladimir Braverman, Dawn Lawrie, and Benjamin Van Durme.
Pretrained models for multilingual federated learning. arXiv preprint arXiv:2206.02291, 2022.

[39] Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heteroge-
neous distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292,
2020.

11

http://arxiv.org/abs/1712.09913

[40] Dong Yin, Ashwin Pananjady, Maximilian Lam, Dimitris S. Papailiopoulos, Kannan Ram-
chandran, and Peter L. Bartlett. Gradient diversity empowers distributed learning. CoRR,
abs/1706.05699, 2017. URL http://arxiv.org/abs/1706.05699.

[41] Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin, and Yang Liu. FedPD: A federated
learning framework with adaptivity to non-iid data. IEEE Transactions on Signal Processing,
69:6055–6070, 2021.

[42] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

12

http://arxiv.org/abs/1706.05699

Table 3: Dataset Statistics

Dataset Train Clients Eval Clients Test Clients Samples/Client
Mean Std

CIFAR-10 100 10 10 500 63
Stack Overflow 10,815 378 1,115 5,821 34,229
FEMNIST 3,150 350 350 272 67
Reddit pushift.io 9,403 4,352 4,352 34 63

A Experiment Details

A.1 Datasets and Models

CIFAR-10. We evaluate a multi-class image classification problem on CIFAR-10 [22] using a
SqueezeNet [17]. We normalize the images by the dataset mean and standard deviation. Following
[14], we partition the dataset using a Dirichlet distribution with parameter 0.1. The statistics on the
number of clients and examples in both the training and test splits of the datasets are in Table 3.

Stack Overflow. Stack Overflow consists of questions and answers from Stack Overflow. We
experiment a next-word-prediction task using a DistilGPT-2 model with a casual LM head. We
perform padding and truncation to ensure that each sentences have 25 words. We then use a GPT-2
tokenizer to encode the tokens.

FEMNIST. Federated EMNIST-62 (FEMNIST) consists of digits and English characters, totaling
62 classes. We evaluate a multi-class image classification problem on the federated version [3] which
partitions the digits by the writer and filter out clients that less than one example. As for the model,
we use a SqueezeNet 1.0 [17]. Since FEMNIST contains grayscale images, we replicated the one
channel value into three channels with the same values.

Reddit pushift.io. Reddit pushift.io contains preprocessed comments posted on the social network
on December 2017. The dataset consists of 1,660,820 users totaling 56,587,343 tokens. Due to
limited compute capabilities, we sub-sampled 9,403 users for training, 4352 for evaluation and 4352
for test. We evaluate a next-word-prediction task using a CharLM [21] model.

A.2 Implementation Details

We implemented all algorithms in Pytorch [29] and evaluated them on a cluster of machines, each
with eight NVidia V100 GPUs. We evaluate our experiments in FLSim 4. For all experiments, we
tune hyperparameters using Bayesian optimization [33]. We select the best hyperparameters based
the final accuracy after a fixed number of rounds for each dataset.

B Algorithms Summary

The FEDOPT framework is shown in Algorithm 1.

In this section, we summarize the differences between the SERVEROPT and CLIENTOPT combinations
used in our experiments.

B.1 Hyperparameter Ranges

Below, we show the range for the client learning rate (ηℓ), server learning rate (ηg). We fixed server
momentum for FEDAVG and FEDADAM β1 at 0.9 and proximal term for PROXIMAL to 0.1.

4https://github.com/facebookresearch/FLSim

13

Table 4: Comparison of characteristics considered in previous work and the methods analyzed in
this paper. Notation: NA = Normalized Averaging, LS = Non-identical Local Steps, GM = Global
Momentum, AS = Adaptive Server Learning Rate, GS = Apply Server Optimizer State Locally.

NA LS GM AS GS

FEDAVG NOVA ✓ ✓ ✗ ✗ ✗
FEDAVG PROXIMAL ✗ ✓ ✗ ✗ ✗
FEDAVG SGD ✗ ✓ ✗ ✗ ✗
FEDAVG GD ✗ ✗ ✗ ✗ ✗
FEDAVG MIMELITE ✗ ✓ ✗ ✗ ✓

FEDAVGM NOVA ✓ ✓ ✓ ✗ ✗
FEDAVGM PROXIMAL ✗ ✓ ✓ ✗ ✗
FEDAVGM SGD ✗ ✓ ✓ ✗ ✗
FEDAVGM GD ✗ ✗ ✓ ✗ ✗
FEDAVGM MIMELITE ✗ ✓ ✓ ✗ ✓

FEDADAM NOVA ✓ ✓ ✓ ✓ ✗
FEDADAM PROXIMAL ✗ ✓ ✓ ✓ ✗
FEDADAM SGD ✗ ✓ ✓ ✓ ✗
FEDADAM GD ✗ ✗ ✓ ✓ ✗
FEDADAM MIMELITE ✗ ✓ ✓ ✓ ✓

β ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99}
ηℓ ∈ [1 · 10−6, 10]

ηg ∈ [1 · 10−6, 10]

B.2 Pre-training CharLM

To pre-train CharLM, we train an the CharLM model [21] using a vocab size of 5000. We train
the model on Wikitext-103 for 100 epochs using AdamW as the optimizer, learning rate = 0.001,
weight-decay = 0.00001, and eps = 1e-8. We will release the code and the pre-train models in the
camera-ready version.

C Additional Results

C.1 Fine-tuning only the last layer

In this section, we present the results for fine-tuning only the last linear layer rather in the model
as commonly done in practice. Figure 7 shows that fine-tuning only the last layer might not yield
optimal model quality and should be consider carefully. While fine-tuning only the last layer can
achieve close to full fine-tuning on Stack Overflow, the performance is much worse on CIFAR-10.

14

0 200 400 600 800 1000
Round

5

10

15

20

25

Ac
cu

ra
cy

Stack Overflow

Full FT
Random
Linear Only

0 200 400 600 800 1000
Round

20

40

60

Ac
cu

ra
cy

CIFAR-10 = 0.1

Full FT
Linear Only
Random

Figure 7: Average accuracy for full fine-tuning, random, and last layer only on Stack Overflow and
CIFAR-10.

0 200 400 600 800 1000
Round

5

10

15

20

25

Ac
cu

ra
cy

Stack Overflow

Pre-trained FedAdam GD
Random FedAdam GD
Pre-trained FedAdam SGD
Random FedAdam SGD

0 200 400 600 800 1000
Round

10

20

30

40

50

60

70

Ac
cu

ra
cy

CIFAR-10 = 0.1

Pre-trained FedAdam GD
Random FedAdam GD
Pre-trained FedAdam SGD
Random FedAdam SGD

Figure 8: The average accuracy for Stack Overflow and CIFAR-10 comparing FEDADAM with SGD
and FEDADAM with full-batch gradient descent (GD).

15

	Introduction
	Problem Formulation and the FedOpt framework
	Experimental Setup
	Datasets, Models, and Tasks
	Initialization Strategies
	Algorithms
	Implementation and Tuning

	The Impact of Pre-Training in FL
	Understanding Why Pre-training Helps Federated Optimization
	Recommendations
	Related Work
	Conclusion and Limitations
	Experiment Details
	Datasets and Models
	Implementation Details

	Algorithms Summary
	Hyperparameter Ranges
	Pre-training CharLM

	Additional Results
	Fine-tuning only the last layer

