
Under review as submission to TMLR

A Close Look At World Model Recovery in Supervised Fine-
Tuned LLM Planners

Anonymous authors
Paper under double-blind review

Abstract

Supervised fine-tuning (SFT) improves end-to-end classical planning in large language mod-
els (LLMs), but do these models also learn to represent and reason about the planning
problems they are solving? Due to the relative complexity of classical planning problems
and the challenge that end-to-end plan generation poses for LLMs, it has been difficult
to explore this question. In our work, we devise and perform a series of interpretability
experiments that holistically interrogate world model recovery by examining both internal
representations and generative capabilities of fine-tuned LLMs. We find that: a) Supervised
fine-tuning on valid action sequences enables LLMs to linearly encode action validity and
some state predicates. b) Models that struggle to use output probabilities for classifying ac-
tion validity may still learn internal representations that separate valid from invalid actions.
c) Broader state space coverage during fine-tuning, such as from random walk data, yields
more accurate recovery of the underlying world model. In summary, this work contributes
a recipe for applying interpretability techniques to planning LLMs and generates insights
that shed light on open questions about how knowledge is represented in LLMs.

1 Introduction

Reliable automation of complex workflows with large language models (LLMs) depends on their ability to
successfully generate plans. LLMs that plan can help humans write software, recommend contingencies
in the face of emergencies, and contribute to open-ended scientific discovery. However, current pretrained
LLMs have significant difficulty with generating plans in zero-shot and few-shot settings (Valmeekam et al.,
2024). Performance decreases as problem complexity increases beyond what is seen during training and
LLMs hallucinate intermediate steps of plans even when arriving at the goal (Momennejad et al., 2023).
This has driven interest in fine-tuning to improve the planning abilities of LLMs (Pallagani et al., 2022;
Hirsch et al., 2024). There is reason for optimism; supervised fine-tuning (SFT) and reinforcement learning
(RL) fine-tuning, the two major LLM fine-tuning paradigms, have been used to greatly enhance the reasoning
capabilities of LLMs in other domains, such as math problem solving and coding abilities. LLMs explicitly
fine-tuned to solve difficult problems that require deliberation show noticeable improvements over their
non-reasoning counterparts when evaluated on planning benchmarks (Valmeekam et al., 2025).

An important question is whether LLMs that are effective planners after fine-tuning are also representing
and reasoning about planning problems. One way in which LLMs might reason about a planning problem
is by using a world model to decide which actions to take while forming a plan. There is evidence that
suggests that LLMs do not natively reason this way about planning problems (Hirsch et al., 2024). However,
a popular hypothesis is that, under favorable training conditions, LLMs can learn to use world models to
make predictions. Recent work (Toshniwal et al., 2022; Li et al., 2022) studies world model recovery in
board-game-playing transformers, equating recovery in Othello and Chess with the identification of internal
representations that encode the game’s state.

Compelling evidence that LLMs may be recovering world models to some extent is now accruing. For ex-
ample, they appear to learn internal representations of meaning that are updated during dialogue (Li et al.,
2021), as well as linear representations of numbers (Kadlčík et al., 2025) and even their own hallucina-

1

Under review as submission to TMLR

tions (CH-Wang et al., 2023). Xie et al. (2024) shows that for a synthetic logic puzzle domain, LLMs learn
to reason from fine-tuning while also learning interpretable representation essential to solving the puzzles.
There are previous studies which suggest a different perspective: transformers are liable to learn shortcut
solutions to automata (Liu et al., 2022; Vafa et al., 2024) and logical reasoning problems (Zhang et al., 2022),
motivating our close look in the classical planning setting.

In this work, we raise the following question in the context of classical planning: Does SFT with exam-
ples of plans induce world model recovery in LLMs? We adapt two popular definitions of world model
recovery (Toshniwal et al., 2022; Vafa et al., 2024):

1. Internal representations: We say that a fine-tuned LLM has recovered a planning world
model if it has learned representations that encode the truth values of state predicates and
validity of actions in states.

2. Generation: We say that a fine-tuned LLM has recovered a planning world model if it
only assigns high probability to sequences of valid actions and low probability to sequences
containing invalid actions.

Our paper develops a framework for studying world model recovery under these definitions in clas-
sical planning, and contributes new insights to this ongoing debate by fine-tuning a collection
of gemma2-9b-instruct (Team et al., 2024) models with SFT on end-to-end plan generation. To quan-
tify world model recovery from the lens of internal representation quality (1), we train linear probes
on the hidden states of fine-tuned LLMs to predict the truth values of state predicates and the validity
of actions at intermediate steps of plans. We also quantify world model recovery from the perspective of
LLMs as generative models (2) by adopting a metric that classifies valid actions and invalid actions using
generated token probabilities. To develop our understanding of which aspects of the fine-tuning process
impact world model recovery, we fine-tune LLMs using three different data distributions and also explore
fine-tuning with a chain-of-thought-style technique where intermediate states are generated between actions.
Our experiments, which span two classical planning environments, show that

1. Supervised fine-tuning directly on sequences of valid actions is sufficient for an LLM to learn internal
representations that linearly encode action validity and the truth values for some (but not all) state
predicates.

2. LLMs that have difficulty with using predicted probabilities to distinguish between valid and invalid
actions, may still have high quality internal representations capable of making this distinction.

3. Fine-tuning on planning data with good state space coverage (e.g., generated by random walks)
generally achieves superior world model recovery.

Our results are discussed in further detail in Section 6. The rest of this paper is organized as follows. Section
2 provides technical background on classical planning. We describe our SFT setup in Section 3 and the
evaluation task and metrics in Section 4. Then, Section 5 introduces our two planning environments and
presents planning performance results. Our interpretability results are provided in Section 6. We review
related literature in Section 7 and then conclude in Section 8.

2 Goal-directed deterministic classical planning

In this section, we introduce the goal-directed deterministic classical planning problem. An example of this
type of planning problem is Blocksworld. In a Blocksworld instance, there is a goal—a particular stack of
blocks to create—and an initial state—the current location of each block on a flat surface. A Blocksworld
plan is a sequence of actions that assembles the target block stack by manipulating blocks one at a time.
An action is valid in Blockworld when all of its logical preconditions are satisfied. For example, we can only
pick up a block if we aren’t already holding another one and if that block has no other block on top of it.
Valid Blocksworld plans create the desired block stack by only taking valid actions.

2

Under review as submission to TMLR

GOAL:
 (at p1 l1-1)
 (at p0 l0-0)
 (at p3 l0-0
 (at p2 l1-1)

INITIAL STATE:
 (at p0 l1-1)
 (at p2 l0-0)
 (at p1 l1-1)
 (at a0 l0-0)
 (at p3 l0-1)

ACTION 0:
 (fly-airplane a0 l0-0 l1-1)

ACTION 1:
 (load-airplane p0 a0 l1-1)

ACTION 2:
 (fly-airplane a0 l1-1 l0-1)

ACTION 3:
 (fly-airplane a0 l0-0 l1-1)

ACTION 3:
 (load-airplane p1 a0 l0-1)

ACTION 3:
 (fly-airplane a0 l0-0 l0-1)

ACTION 3:
 (fly-airplane a0 l0-1 l0-0)

(a)

GOAL:
 (at p1 l1-1)
 (at p0 l0-0)
 (at p3 l0-0
 (at p2 l1-1)

INITIAL STATE:
 (at p0 l1-1)
 (at p2 l0-0)
 (at p1 l1-1)
 (at a0 l0-0)
 (at p3 l0-1)

ACTION 0:
 (fly-airplane a0 l0-0 l1-1)

ACTION 1:
 (load-airplane p0 a0 l1-1)

ACTION 2:
 (fly-airplane a0 l1-1 l0-1)

STATE PREDICATE 3:
 (at a0 l1-1)

STATE PREDICATE 3:
 (in p1 a0)

STATE PREDICATE 3:
 (at p0 l1-1)

ACTION 3:
 (fly-airplane a0 l0-1 l0-0)

STATE PREDICATE 3:
 (in p0 a0)

(b)

Figure 1: Overview of our interpretability experiments examining world model recovery in supervised fine-
tuned LLM planners. We examine both internal representations and generative capabilities to assess how
well models capture environment dynamics. (a) We study whether planning LLMs proficient at planning
can also classify actions as valid or invalid. (b) We also investigate whether the internal representations of
planning LLMs linearly encode truth values of state predicates. We find that: 1) supervised fine-tuning on
valid action sequences enables linear encoding of action validity and certain state predicates; 2) models may
learn internal representations that distinguish valid from invalid actions even when output probabilities fail
to do so; and 3) broader state space coverage during fine-tuning (e.g., random walk data) improves recovery
of the underlying world model.

More formally, each planning environment is described by a planning domain, a set of initial states, and a
set of goal states. Planning domains are specified by: a) the states and actions, and b) all state constraints
that determine when a certain action is considered valid, and c) a description of all state transitions that
result from taking an action. Each planning instances is described by one initial state paired with one goal
state. In this work, it is assumed that a PDDL file that provides these details for each planning domain is
available. We use STRIPS-like representations of planning problems based on propositional logic, where the
domain consists of objects, predicates, and action sets. States are collections of statements that are either
true or false. The object set contains all of the objects in the planning environment (e.g., blocks, arm, a
table). Predicates are propositional statements about objects in the environment (on ?x, ?y), i.e., they
are functions of objects. We apply predicates to a specific set of objects to create a statement that is either
true or false, e.g., (on block1, block2)—either block1 is on block2 and thus the truth value is true, or it
is not and the value is false. A unique setting of truth values for all predicates describes a single state in
the planning environment. The set of all possible actions that can be taken in the environment is called the
action set. Each action has its own set of logical preconditions—predicates that must be true for the action
to be valid in a state—and action effects—predicates that become false or true after the action is taken. A

3

Under review as submission to TMLR

plan that optimally solves a planning instance is the shortest sequence of valid actions from the initial state
to the goal state.

3 Supervised fine-tuning for end-to-end plan generation

We study end-to-end plan generation with LLMs, a setting where LLMs are tasked with generating the
entire sequence of actions to arrive at a goal state starting from an initial state, without relying on sophis-
ticated interactions with external solvers. This is a challenging reasoning problem for LLMs, as demon-
strated by benchmarks in both the classical setting (Valmeekam et al., 2023; 2024) and the natural language
planning setting (Zheng et al., 2024). Other work seeking to improve planning performance has explored
alternative paradigms such as LLM-Modulo (Kambhampati et al., 2024), translation of natural language to
PDDL (Zuo et al., 2024), and hybrid integrations of search algorithms such as Monte Carlo Tree Search
with LLMs (Schultz et al., 2024; Chen et al., 2024). We focus on plan generation because our goal is to
study LLM world model recovery, not to improve planning performance, and we argue plan generation is
the simplest and most fundamental application of LLMs to planning for our investigation.

Inspired by recent successes in fine-tuning for reasoning, we use SFT to teach gemma2-9b-instruct how to
do end-to-end classical plan generation. A fine-tuning dataset D of i = 1, . . . , |D| consists of plans, which are
tuples of text (gi, si, ai

1, . . . , ai
n), where gi is a goal state, si is an initial state, and ai

1, . . . , ai
n are a sequence

of valid actions that make up an entire plan. Each sequence (gi, si, ai
1, . . . , ai

n) is encoded as text using
STRIPS-like notation (see Figure 1 for an example). A state si is a list of the predicates that are true at
the current plan step. While enforcing adherence to a rigid STRIPS-like format in our prompts is arguably
unnatural for LLMs that are trained to reason using “natural” language, a strict format helps both to ease
the assessment of the intermediate steps of generated plans and to apply our world model recovery metric
(Section 4).

Choice of base LLM: Our fine-tuning approach loosely follows Pallagani et al. (2022), thus, we call our
fine-tuned LLMs “Plansformers”. We use gemma2-9b-instruct as the base LLM, which has been pretrained
on vast amounts of code and math (highlighted in Pallagani et al. (2022); Huang et al. (2024) as critical
for plan generation) and general text, and fine-tuned with instruction-following data. After fine-tuning,
our Plansformers achieve near perfect in-distribution plan generation performance (Section 6). We also
attempted training a GPT-2 size transformer from scratch (Radford et al., 2018; 2019) and fine-tuning
Llama 3 (Dubey et al., 2024) on our training datasets, but these models struggled to approach a reasonable
level of performance (similar observations with Llama 3 in Li et al. (2024))1. We encode examples for
SFT using gemma2-9b-instruct’s instruction template and tokenize each input sequence using the default
tokenizer. The next-token prediction fine-tuning objective is computed over the entire sequence.

3.1 Training data distributions

Each SFT training example for end-to-end plan generation contains a plan. The mechanism used to generate
these training plans is a critical design choice in our empirical study, because LLMs are known to be sensitive
to the training distribution used when fine-tuning to enhance reasoning (Zhang et al., 2022). The most
common approach is to use optimal or near-optimal plans generated using a traditional plan solver (Pallagani
et al., 2022). However, recent studies on LLM world model recovery in board games found that training on
optimal actions is not conducive to learning good world model representations. Rather, random valid actions
appear to achieve the best recovery (Li et al., 2022; Vafa et al., 2024). Random plans can be generated by
sampling a random walk starting from any state. In our study, we fine-tune LLMs on both optimal plan
data and random walk plan data. We additionally fine-tune LLMs on enhanced random walk plans modified
to increase state space coverage (described in detail next). We visually compare these three data generating
processes in Figure 2.

1) Optimal plans: We obtain these planning problem instances by randomly generating their PDDL files
using the pddlgenerators library (Seipp et al., 2022). Then, we use the heuristic solver in the popular Fast

1Although not used in our work, Qwen2-7B-Instruct (Team, 2024) is used in the recent fine-tuning study by Huang et al.
(2024).

4

Under review as submission to TMLR

State A

Action 2

State B

Action 2

Action 1

Action 1

State C

1/2 1/2

1/2 1/2

Start

(a) Random walk

State A

Action 2

State B

Action 2

Action 1

Action 1

State C

1/2 1/2

1

Start

(b) Random walk++

State A

Action 2

State B

Action 2

Action 1

Action 1

State CGoal

Start

(c) Optimal

Figure 2: A toy example that illustrates how plans for supervised fine-tuning are generated by the three
different data generating processes. a) Random walk: In each state, there are two possible actions, and
a uniform random walk samples one with 50% probability assigned to each. Action 2 in State B transitions
deterministically back to State A, creating a cycle. A random walk plan starting from State A (bold) may
never reach State C before a maximum number of allowed steps: It may start with Action 2 in State A,
then Action 2 in State B, then Action 2 in State A, then Action 2 in State B, etc. b) Random Walk++:
To create cycle-free random walks which explore the state space better, we invalidate Action 2 in State B,
because it leads back to State A, a state which has already been traversed. Thus, Action 1 in State B is
selected with 100% probability. In this example, this leads to generating the plan in bold, which is the same
as the optimal plan (c). c) Optimal: Given an initial state (State A) and goal state (State C), we use a
heuristic-search-based planner to obtain plans. The plan in bold is used for training, which we spell out
here: Action 2 in State A, then Action 1 in State B, which leads to State C.

Downward planner2 (Pallagani et al., 2022; Li et al., 2024; Huang et al., 2024) as a source of ground truth
plans. We refer to these plans as “optimal plans” hereafter.

2) Random Walk plans: Random walks are generated by starting at one random initial state s0 and
uniformly at random sampling a valid action a up to a maximum number n ∼ Unif(2, 5) of steps. Once the
maximum steps have been reached, the final state sn reached by the random walk becomes the new goal
state g for that plan. We then set the initial state of the next random walk to be the final state from the
previous random walk, i.e., s′

0 = sn. We repeat this process until we obtain a desired number of random
walk plans.

3) Random Walk++ plans: We observed that vanilla random walks in the considered planning domains
tend to contain a high number of state cycles. A state cycle occurs when, after taking a valid action and
transitioning from state a to state b, the next valid action causes a transition from state b back to a. A high
prevalence of state cycles in random walk data leads to poor state space coverage—the training data fails
to explore regions of the state space far from the initial states. Concretely, we calculated that for random
walks generated with maximum steps n ∼ Unif(2, 11) the median plan has a ratio of unique states visited

2www.fast-downward.org/

5

www.fast-downward.org/

Under review as submission to TMLR

to plan length of 80%, and the minimum observed ratio across all plans is 40%. We can remove state cycles
by keeping track of the states that have been visited so far in a random walk and invalidating valid actions
that would transition the random walk to a previously visited state. These plans, like optimal plans, have
no cycles by design. As with (2) Random Walk plans, after a maximum number n of steps, the final reached
state sn is set to be the new goal state g, and the random walk continues from an initial state s′

0 = sn.

3.2 State chain-of-thought (State-CoT)

Recent work has hypothesized that training LLMs to directly predict the effects of actions can reduce
hallucinations during planning (e.g., invalid actions) (Schultz et al., 2024) and improve decision making
for action selection (Huang et al., 2024) by enhancing groundedness and coherence. In the context of our
investigation, it is natural to ask whether fine-tuning the LLM on sequences consisting of actions interleaved
with next states (gi, si

0, ai
1, si

1, ai
2, si

2, . . . , ai
N) enhances world model recovery. Augmenting sequences with

fully observed intermediate states closely resembles chain-of-thought (CoT) prompting strategies for planning
such as Reasoning via Planning (RAP) (Hao et al., 2023), which helps LLMs display stronger reasoning
abilities. While our augmentation approach is most similar to Huang et al. (2024), instead of interleaving
the actions with the entire state, they interleave the change to the previous state. While this is to mitigate
severely increasing sequence length when the number of tokens required to encode each state is high, which
can lead to out-of-memory issues, we did not need this with our setup (see Figure 1 for a visual). In our
experiments, we refer to models trained with state chain-of-thought augmented sequences with (-State-CoT).

4 Evaluating world model recovery

Our study aims to provide a holistic view on world model recovery in Plansformer LLMs by using two
distinct yet complementary strategies for evaluating world model recovery: a) linear probing to assess internal
representations, and b) action validity classification based on generated token probabilities. Linear probes
themselves have limited capacity to fit complex functions; thus, they help quantify whether an LLM has
learned to organize its internal representation of state predicates and action validity in a simple (i.e., linear)
way. By contrast, generated token probabilities provide an extrinsic perspective on the recovery of the world
model implicitly learned by the LLM (Vafa et al., 2024).

We do not believe it is obvious that we should observe strong world model recovery in Plansformers. First,
the LLMs are only fine-tuned on valid plans. We do not make use of any plans that contain invalid actions
during training, yet we prompt LLMs with sequences containing invalid actions at test time. Second, in
LLMs trained without State-CoT and hence only on sequences of valid actions, it is not obvious that they
will learn to internally represent and track the truth values of state predicates at intermediate steps of
generated plans.

4.1 Extraction of activations and logits

The metrics are all computed over data extracted by prompting our fine-tuned LLMs on test instances and
greedily decoding a plan. We restrict our interpretability analyses to valid plans, i.e., plans where each
greedily decoded action is valid, discarding invalid generated plans. Note that only a small fraction of
generated plans are invalid, as shown in Table 1. We describe how we collect that data now (Figure 3).

1. We first evaluate each LLM on all R tests plan; for plan i ∈ {1, . . . , R}, we prompt it with the goal
gi and initial state si

0 and generate a complete plan pi := ai
1, . . . , ai

N of length n.

2. After the LLM generates the plan, we randomly select an intermediate step j ∼ Unif(0, N − 1) of
that plan.

3. At that intermediate step, we enumerate all possible valid and invalid next actions (suppose there
are M i of them) and create M i partially completed plans by concatenating the partial plan pi

j with
each possible next action ai,m

j+1, m = 1, . . . , M i.

6

Under review as submission to TMLR

Plansformer

GOAL : (at p 2 l 1 - 1) ...SOT STATE : (at p 3 l 0 - 0) EOT SOT...

Goal Initial state

(fly airplane- a 0 l 1 - 1 l 1 - 0) (fly airplane- a 0 l 1 - 0 l 1 - 1)

(fly airplane- a 0 l 1 - 0 l 1 - 0)

(load airplane- p 2 a 0 l 1 - 1)
Randomly selected

intermediate plan step j = 0

next actions at step j = 1

-1.2 -0.9 -0.2

Action validity classification
Score is average of action token logits

-0.32 ... -0.1-0.8...

Linear probes: Per layer hidden states,
averaged over action token positions

Figure 3: To compute our world model recovery metrics, we extract activations and logits from Plansformer
LLMs prompted on held-out test problem instances. From each LLM-generated plan with N actions for
test instance i, we create M partial plans consisting of a goal, initial state, the generated actions between
steps 0, . . . , j, j ∼ Unif(0, N − 1), and the M possible next actions at step j + 1. We extract M sets of
hidden states and logits at the token positions corresponding to the appended actions, including ‘(’ and
‘)’ tokens. Here, we visualize an example where j = 0.

4. Then, we prompt the LLM again, this time with M i partial plans, pi
jai,m

j+1.

5. At all token positions corresponding to action ai,m
j+1, we extract both a) hidden states for training

linear probes, and b) token logits.

4.2 Linear representation probes

Using the activations extracted following the recipe detailed in Section 4.1, we train two types of linear
probes: action validity linear probes and state predicate linear probes.

Action validity linear probes: We train layer-wise logistic regression probes to predict action validity
from activations. With the data from Section 4.1, we create a probe training dataset of size L×R×M where
L is the number of LLM layers (excluding embedding and unembedding layers) and M = maxi=1,...,R M i.
The activations correspond to all action tokens ai,m

j+1 between the ‘(’ and ‘)’ tokens (inclusive). Each
entry in the dataset is an activation vector averaged over action tokens paired with a corresponding binary
action validity label. The input to each logistic regression probe (Belinkov, 2022) are the activation vectors
averaged over action tokens from layer l ∈ L of the LLM prompted with partial plan pi

jai,m
j+1, and the output

of each probe is the probability that ai,m
j+1 is valid, which we compare against the binary labels.

State predicate linear probes: In classical planning, each state is defined as a unique setting of (a
potentially large number of) state predicate truth values. Let |S| be the number of such predicates. To
examine whether our LLMs internally represent the state while planning, we train multiple logistic regression
probes, one for each state predicate. Each of the |S| probes takes as input the activation vectors averaged
across action tokens from LLM layer l ∈ L, where the LLM has been similarly prompted with partial plan
pi

jai
j+1. This probe predicts the probability that the state predicate after applying ai

j+1 is true. Probes are
trained by aggregating activations and binary labels into a dataset of size L × R. For both the layer l action
validity and state probes, we randomly split the data 80/20 into train/test, and use test F1 as the evaluation
metric. Our logistic regression probe uses 10K maximum iterations to ensure convergence, does not fit an
intercept, and uses auto-balancing.

4.3 Generative metric

We also quantify world model recovery by using generated token probabilities for the appended actions to
the partial plan to classify these actions as valid or invalid. In detail, we use data extracted in Section 4.1 to
create a dataset of size R × M , where each entry in the dataset is the average of the token logits assigned to

7

Under review as submission to TMLR

the valid and invalid actions ai,m
j+1 appended to partial plan pi

j . Each action is paired with its binary validity
label. As our quantitative classification metric, we compute the fraction of test plans for which all valid
actions are ranked higher than invalid actions, sorting actions by their average token log probabilities.

5 Planning environments

We finetune and evaluate gemma2-9b-instruct on two popular planning domains, Blocksworld and the
more challenging Logistics. In the Blocksworld domain, there is a collection of blocks, a flat table, and a set
of rules for stacking and unstacking blocks. Our in-distribution data for Blocksworld consists of instances
with 3-5 blocks. In any given state, the available actions are: (put-down ?x), (pick-up ?x), (stack ?x,
?y), (unstack ?x,?y). The total number of available actions depends on the number of blocks in the
planning instance. The Logistics domain resembles a delivery problem, where the goal is to move packages
from one set of locations to another. We use a simplified domain which only has cities, airplanes, and
packages (with airports and trucks removed to reduce the size of each state when encoded as text), with
rules governing the movement of airplanes as well as when packages can be loaded or unloaded. Here,
the available actions in any given state are: (fly-airplane ?a ?loc1 ?loc2), (load-airplane ?pkg ?a
?loc), (unload-airplane ?pkg ?a ?loc). We generate in-distribution data with 3-4 packages, thus, the
number of available actions per state is also variable.

Training details: We generate 6 fine-tuning datasets. For Blocksworld, there are 80,190 random walk plans
(1013 unique goal states), 60,962 random walk++ plans (1,013 unique goal states), and 21,851 optimal plans
(500 unique goal state). For the Logistics domain, there are 81K random walk plans (3K unique goal states),
81K random walk++ plans (3K unique goal state), and 16.2K optimal plans (320 unique goal states). We
reserve 166 held out planning problems to use as in-distribution test data. Models with State-CoT have a
maximum plan length of 5 to avoid excessively increasing the training sequence length, which caused training
instability. All models are trained with default LoRA parameter efficient fine-tuning (Hu et al., 2022) for
4 epochs and an initial learning rate of 3e-4. Models without State-CoT use a batch size of 4 whereas
models with State-CoT use a batch size of 2, and all models use gradient accumulation of 16. We repeat
each fine-tuning run with three different random seeds and present our results as averages over seeds with
standard deviations.

Planning performance results: After fine-tuning, all LLMs are able to achieve an average goal reach rate
of at least 92% and an average valid plan rate of at least 95% on the unseen in-distribution plan instances
(Table 1). For most LLMs and random seeds, performance is nearly perfect (nearly ∼100% valid plan rate
and ∼0% bad action rate). This sets the stage for us to analyze whether LLMs proficient at in-distribution
planning have also partially, or fully, recovered the underlying planning domain model.

6 Main results

In the previous section, we demonstrated that our supervised fine-tuned LLM planners achieve near optimal
planning performance on held-out, in-distribution test instances. Now, we conduct interpretability studies
to explore whether these same LLMs have also recovered a planning world model.

6.1 Plansformers learn linear representations of action validity

The probe test F1 scores on held-out, in-distribution test plans, visualized in Figure 4, indicate that Plans-
formers learn to encode the validity of actions linearly. We also see that across models, linear probe scores
tend to plateau around the middle layers, indicating that intermediate and upper layers better encode
action validity than lower layers. No significant difference in action validity probe performance when us-
ing State-CoT is observed. Across the fine-tuning setups we explored, random walk++ training data—the
exploration-enhanced random walk plans—achieves the best reliability across training seeds (e.g., Figure 4d).

8

Under review as submission to TMLR

Table 1: Planning performance. Plans are generated using greedy decoding, and each result shows mean
and std. dev. over three training run random seeds. Goal reached is the percent of plans where the
last state of the generated plan is the goal state, and valid is the percent of plans that have no invalid
actions (LLMs are known to occasionally generate plans that reach goals while “hallucinating” intermediate
invalid actions (Momennejad et al., 2023)). Bad state shows the percent of plans where models trained
with State-CoT predict an incorrect state transition. All of our gemma2-9b-instruct Plansformer variants
achieve nearly perfect planning goal reach rate and valid plan rates on in-distribution test plans.

Training data Model type Goal reached↑ (%) Valid↑ (%) Bad state↓ (%)
BlocksWorld (3-5 blocks, R = 166 plans)

Random walk Plansformer 99±0 99±0 -
Random walk Plansformer+State-CoT 97±3 99±1 1±1

Random walk++ Plansformer 100±0 100±0 -
Random walk++ Plansformer+State-CoT 99±1 99±1 0±1

Optimal Plansformer 100±1 100±1 -
Optimal Plansformer+State-CoT 92±11 95±8 3±4

Logistics (3-4 packages, 1 airplane, 2 cities, 2 locations, R = 166 plans)
Random walk Plansformer 95±8 99±1 -
Random walk Plansformer+State-CoT 96±3 95±4 4±4

Random walk++ Plansformer 99±2 99±1 -
Random walk++ Plansformer+State-CoT 100±0 100±0 0±0

Optimal Plansformer 99±1 99±1 -
Optimal Plansformer+State-CoT 98±2 100±1 1±1

6.2 Plansformers learn to linearly encode the truth values of certain state predicates

Plansformers—LLMs fine-tuned on sequences of valid actions—learn internal representations that linearly
encode the validity of the next action. Do they also learn linear representations of state predicates at
intermediate plan steps, without direct supervision? Figure 5 visualizes state probe F1 scores for Plans-
formers without State-CoT, fine-tuned on random walk data. Given the large number of predicates (e.g., in
Blocksworld with 3-5 blocks there are 36 state predicates), for presentation clarity we aggregate the predicate
F1 scores across objects. In Blocksworld (Figure 5a), the F1 scores suggest that the internal representations
linearly encode most state predicates besides (on ?obj1, ?obj2). A similar trend appears in Logistics,
where the predicate (at ?pkg, ?loc), which has two arguments that varies across objects, has the low-
est F1 scores. Since we only have a single airplane a0 in our Logistics environment, the predicates (at
?airplane, ?loc) and (in ?pkg, ?airplane) always have one argument fixed. Overall, state predicate
probe scores are high for certain predicates and low for others, and we observe a trend where simpler (i.e.,
fewer arguments) state predicates have the higher scores. One caveat here is that our binary classification
probing tasks (both action validity and state predicate) have highly imbalanced labels, where the majority
(often >90%) of the labels are 0 (false). For this reason, we automatically re-balanced labels when train-
ing our logistic regression probes. The state predicate (arm-empty) has a roughly even label distributions
and attains by far the highest probe scores. Our results, which show uneven probe accuracy across state
predicates, suggest only partial world model recovery in our Plansformers.

6.3 Training on random walks enhances action validity classification

Whereas in Sections 6.1 and 6.2 we presented the results of our linear probe metrics for evaluating world model
recovery in Plansformers, here we examine our generative action validity classification results. Examining the
action token probabilities shows that fine-tuning with uniform (unmodified) random walk plans achieves the
best results by a significant margin (Table 2, Figure 7). On average, LLMs fine-tuned on random walk plans
score all valid actions as more probable than the invalid actions ∼80% of the time, compared to ∼29% for
training with random walks with enhanced exploration (random walk++) and just ∼9% for optimal plans.

9

Under review as submission to TMLR

0 1
Layer

0.0

0.2

0.4

0.6

0.8

1.0
F1

 sc
or

e
Blocksworld

Random walk++
Random walk
Optimal

(a)

0 1
Layer

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Blocksworld

Random walk++-State-CoT
Random walk-State-CoT
Optimal-State-CoT

(b)

0 1
Layer

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Logistics

Random walk++
Random walk
Optimal

(c)

0 1
Layer

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Logistics

Random walk++-State-CoT
Random walk-State-CoT
Optimal-State-CoT

(d)

Figure 4: Action validity linear probe results. We train linear probes on internal representations of
Plansformers to predict the validity of next actions from an intermediate plan step. Each line plot shows
mean and 95% confidence intervals across three training seeds. (a) and (c) are models fine-tuned without
State-CoT, whereas (b) and (d) use State-CoT. Across all fine-tuning configurations, probe F1 scores reach
∼1.0 by the intermediate and highest layers.

Table 2: Action classification results. Percent of test plans where, when prompted at a randomly selected
plan step, all subsequent valid actions are ranked higher than invalid actions. Actions are scored by averaging
over the action token log probabilities. Highlighted cells are statistically significant (p ≤ 0.05) results from
a Mann-Whitney U -test comparing the distributions of action ranks between Random walk and Random
walk++ training data.

Model type Random walk Random walk++ Optimal
Blocksworld (3-5 blocks)

Plansformer 76±1 30±1 9±1

Plansformer+State-CoT 90±1 20±4 19±4

Logistics (3-4 packages, 1 airplane, 2 cities, 2 locations)
Plansformer 80±12% 29±5% 4±1%

Plansformer+State-CoT 73±12% 37±2% 4±0%

To test whether the difference in action classification performance between random walk and random walk++
data is statistically significant, we ran a Mann-Whitney U-test. Three out of four cases had statistically
significant (p ≤ 0.05) differences—only the Logistics environment with State-CoT had p > 0.05 (p = 0.12).

10

Under review as submission to TMLR

0 1
Layer

0.0

0.2

0.4

0.6

0.8

1.0
F1

 sc
or

e
Blocksworld

arm-empty
on-table ?obj
holding ?obj
on ?obj1 ?obj2

(a)

0 1
Layer

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Logistics

at a0 ?loc
in ?pkg a0
at ?pkg ?loc

(b)

Figure 5: State predicate linear probe results. We predict the truth values of state predicates at
intermediate plan steps using linear probes trained on Plansformer activations without State-CoT. The
Plansformers are fine-tuned on uniform random walk data. Probe scores for individual predicates are aver-
aged over objects for presentation clarity. The scores vary widely by predicate, e.g., in Blocksworld (5a) the
(arm-empty) predicate is predicted perfectly while (on ?obj1, obj2) is not predicted with good accuracy.

0 1
Layer

0.0

0.2

0.4

0.6

0.8

1.0
F1

 sc
or

e
Blocksworld

Random walk++
Random walk
Optimal

Figure 6: Out-of-distribution action
validity linear probes. Testing on
Blocksworld instances with 6 blocks. The
internal representation quality is main-
tained on OOD plans.

Kernel density estimates of the mean valid action token log
probabilities, aggregated across planning environments, are vi-
sualized in Figure 7. Fine-tuning with optimal plans fails to
encourage the LLM to generate valid action tokens with higher
probabilities than invalid actions (Figure 7). This conflicts
with the action validity probing results (Figure 4), which show
that these LLMs do possess internal representations that lin-
early encode action validity. Our results here corroborate with
findings from other LLM interpretability studies that reveal
that the internals of LLMs “know more than they say”, e.g.,
about the correctness of their predictions (Orgad et al., 2024;
Liu et al., 2025).

The action validity classification results for optimal data are in
line with observations made in Toshniwal et al. (2022) about
legal chess move prediction performance. Using only human
chess games as training data for a transformer is limiting be-
cause it only has “meaningful” legal moves rather than exam-
ples of all legal moves. It is possible that fine-tuning with
random walk plans achieves the best results here because it
pushes the LLM to assign high probability to any valid action. The gap in performance between random
walk and random walk++ data here may be explained by the fact that we remove cycles in training plans
by disallowing certain valid actions, as we show in Figure 2. While we expect it is possible to improve our
fine-tuning approach so that this performance drop goes away, we leave exploring this to future work.

6.4 Does better world model recovery imply better OOD generalization?

Up to now, our analysis has been on held-out in-distribution plans. Do the LLMs that demonstrate better
in-distribution world model recovery, as judged by our linear probing and action classification metrics, also
generalize to out-of-distribution (OOD) plans? Although we do not go so far as to explicitly test for a causal
link between the linear internal representations from Section 6.1-6.2 and the LLM’s predictions, strong OOD
performance would provide some evidence that the LLM might be using a world model to plan, as world

11

Under review as submission to TMLR

12 10 8 6 4 2 0 2
Valid action mean log probability

0.0

0.2

0.4

0.6

0.8

1.0

1.2
KD

E
Random walk++
Random walk
Optimal

(a)

12 10 8 6 4 2 0 2
Valid action mean log probability

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

KD
E

Random walk++-State-CoT
Random walk-State-CoT
Optimal-State-CoT

(b)

Figure 7: Kernel density estimates for valid actions. Each data point in the density estimate is the
average over a valid action’s token log probabilities. Note that we only include alternative actions to the
greedily decoded action in these density estimates; models always assigned ∼ 0 log probability to the greedily
decoded action tokens. We combined Blocksworld and Logistics results to create each density estimate. The
vertical dashed line shows the gold standard—assigning an average log probability of 0 to each token of a
valid action. Density to the right of 0 is an artifact from the KDE fit. Plansformers fine-tuned with optimal
plans cannot distinguish valid and invalid actions, assigning negligible probability to both valid actions (aside
from the greedily decoded action) and invalid actions. Plansformers fine-tuned on uniform random walks
excel under this metric.

Table 3: Out-of-distribution generalization planning performance. We evaluate LLMs fine-tuned on
Blocksworld problems with 3-5 blocks on OOD instances with 6 blocks, from the PlanBench (Valmeekam
et al., 2024) benchmark. We modify their instances to use STRIPS-like text formatting. The LLMs fine-
tuned on random walks with enhanced state exploration are more robust to distribution shifts.

Training data Model type Goal reached↑ (%) Valid ↑ (%)
Random walk Plansformer 0±0 52±39

Random walk++ Plansformer 76±7 76±7

Optimal Plansformer 60±29 60±24

models encode environment transition dynamics which are unaffected by variations such as an increase in
the number of objects.

The results so far show that LLMs fine-tuned on random walk data achieve the best results across both
metrics, edging out random walk++ data on the action classification metric. For this experiment, we use
BlocksWorld problem instances from the PlanBench benchmark (Valmeekam et al., 2024) with exactly 6
blocks (a total of 48 instances), one more than the maximum number of blocks seen during fine-tuning. We
evaluate the LLMs fine-tuned on BlocksWorld without State-CoT on this OOD data. Table 3 shows the
planning performance. Interestingly, Plansformers fine-tuned with random walk++ data are the best, with
only a drop in goal reach rate from 100% in-distribution to 76% OOD, whereas LLMs fine-tuned on uniform
random walks fail to reach any goals (0% OOD goal reach rate). Likewise, the KDE fit to the valid action
token probabilities for random walk++ data is mostly unchanged on OOD data (Figure 8b), while the KDE
fit to random walk data shows a strong leftwards shift (Figure 8a). In our setup, Plansformers fine-tuned
on uniform random walks lose the ability to distinguish valid and invalid actions by probability on the OOD
split. It is plausible this is because the distribution shift from the random walk training data to the OOD
test data is largest; our intervention on the data generation process (random walk++) has a significant
effect on OOD performance. However, all models maintain good linear action validity probe scores on OOD
data (Figure 6), even the Plansformers trained on random walk data, highlighting again a mismatch between
internal representation quality and generative capabilities.

12

Under review as submission to TMLR

7 6 5 4 3 2 1 0 1 2
Valid action mean log probability

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

KD
E

ID
OOD

(a) Random walk

6 5 4 3 2 1 0 1
Valid action mean log probability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KD
E

ID
OOD

(b) Random walk++

12 10 8 6 4 2 0 2
Valid action mean log probability

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

KD
E

ID
OOD

(c) Optimal

Figure 8: ID vs. OOD kernel density estimates for valid actions: Out-of-distribution Blocksworld
planning instances with 6 blocks, compared across training data used for fine-tuning (a-c). We overlay the
ID and OOD KDE plots for valid actions. Plansformers fine-tuned on random walk data (8a) show a collapse
(leftward shift) in their ability to distinguish between valid and invalid actions by token probabilities. Fine-
tuning on random walk++ data (8b, no shift) and optimal plan data (8c, slight rightward shift) display a
robustness to distribution shift. Note that the model fine-tuned on optimal data (8c) has poor performance
under this metric in both ID and OOD settings.

7 Related Work

Various recent studies, which we review here, have also explored whether transformers and LLMs learn
representations that encode meaningful aspects of the world in other contexts (Li et al., 2021; Gurnee &
Tegmark, 2023). Advances in the capabilities of LLMs has spurred interest in this question, since its implica-
tions are significant (Yildirim & Paul, 2024). Related empirical studies have examined transformers trained
on sequential decision making tasks but have been limited to using relatively small transformers trained from
scratch on board games (Toshniwal et al., 2022; Li et al., 2022; Nanda et al., 2023; Yuan & Søgaard, 2025;
Yun et al., 2023; Jenner et al., 2024; Karvonen, 2024) and navigation-style problems (Ivanitskiy et al., 2023;
Dedieu et al., 2024; Vafa et al., 2024; Brinkmann et al., 2024). It is not clear whether the observations from
those studies extend to the planning problems we are interested in, whose complexity necessitate the use of
pretrained language models (Li et al., 2024). An interpretability study by Men et al. (2024) asks whether
fine-tuned llama2-7b-chat and vicuna-7b models have and use a look-ahead planning mechanism, but
simplify the planning task significantly by converting it into a fill-in-the-blank classification problem.

One-step action validity has been used to evaluate world model recovery previously, e.g., in chess by looking
at the top-k predicted next moves of chess-playing transformers, where k is equal to the true number of
all valid moves for a chess piece at a particular board state (Toshniwal et al., 2022; Schultz et al., 2024).
Other, more complex tasks for inspecting world model recovery such as multi-move lookahead (Jenner et al.,
2024; Men et al., 2024) and world model compression and distinction (Vafa et al., 2024) have also been
proposed in the literature. In our fully observable and deterministic classical planning problems, the PDDL
model contains a complete description of the domain’s transition dynamics. In fact, it is known that PDDL
models can be equivalently represented as deterministic finite automata (DFA) (Toropila & Barták, 2010),
and Vafa et al. (2024) introduced the idea that a generative model has implicitly recovered a world model
described by a DFA when the model generates a sequence with positive probability if and only if it is also
valid in the DFA. Applying this metric in our classical planning framework would be a natural extension of
the generative one-step action classification metric we employ, which we leave for follow-on investigation.

The most closely related work to ours is Hirsch et al. (2024). They perform experiments investigating planning
world model recovery in pretrained language models, finding that such models have a poor ability to both 1)
predict the effects of actions and 2) predict the validity of actions. Our work differs in various aspects of the
experimental setup and thereby also in our findings. First, they conduct their study on pretrained models
without fine-tuning, and as our work shows, after fine-tuning with carefully curated training data we observe
(partial) world model recovery in LLMs. Second, they only examine model predictions; as our work shows,
it is important to also analyze internal representations, which may not agree with extrinsic metrics based on

13

Under review as submission to TMLR

model predictions. While Hirsch et al. (2024) and our own work find that planning performance degrades on
OOD data, our findings are more optimistic, as we show that our LLMs have internal representations robust
to these (small) distribution shifts, and that enhancing exploration in random walk training data improves
OOD planning performance.

8 Conclusion

Does supervised fine-tuning LLMs on examples of plans (so-called Plansformers) learn to recover the planning
world model? Our work investigated this question empirically with the open model gemma2-9b-instruct by
designing and conducting a series of rigorous experiments across two planning environments and with met-
rics that look at both internal representation quality and generative properties. Our results are optimistic,
showing that we can fine-tune LLMs to be proficient planners and to partially recover the planning world
model on held-out, in-distribution planning problems. This includes observing a strong ability to linearly
predict action validity from internal representations and an ability to predict the truth values of certain state
predicates at intermediate plan steps, despite only being trained to predict valid actions. The story is more
complicated for out-of-distribution (OOD) planning problems. OOD experiments show that internal repre-
sentations maintain their linearly encoding of action validity, but the planning performance and generative
world model recovery metric for Plansformers fine-tuned on random walks, the best in-distribution model,
collapses. This collapse is mitigated by an intervention on the random walk data generation process that
enhances the state space coverage in the resultant training set (random walk++).

The results of our study should be taken in the context of key limitations. First, we only show the existence
of internal representations that encode action validity and state predicate truth values, but do not go so far
as to show a causal link between these representations and the model’s predictions. Ultimately, it is unclear
if the representations we found in fine-tuned LLMs are implicated in the LLM’s planning process. Second, it
is unknown whether our findings generalize to LLMs that have significantly more parameters. Third, there
are a large number of experiment design decisions that were made to conduct our study, and while we do
discuss and justify many of them, we were not able to control for the effects of all of them. Fourth, our
investigation focuses on plans encoded with a constrained, STRIPs-based text template instead of natural
language, which may inhibit LLMs from fully making use of their commonsense knowledge learned during
pretraining.

To conclude, we believe the findings of our work are optimistic about the viability of fine-tuning to enhance
planning in LLMs, and encourage the exploration of advanced strategies such as reinforcement learning
fine-tuning (Huang et al., 2024) to further push the OOD performance of end-to-end LLM planners.

References
Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational Linguistics,

48(1):207–219, 2022.

Jannik Brinkmann, Abhay Sheshadri, Victor Levoso, Paul Swoboda, and Christian Bartelt. A mechanistic
analysis of a transformer trained on a symbolic multi-step reasoning task. arXiv preprint arXiv:2402.11917,
2024.

Sky CH-Wang, Benjamin Van Durme, Jason Eisner, and Chris Kedzie. Do androids know they’re only
dreaming of electric sheep? arXiv preprint arXiv:2312.17249, 2023.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision without
process. Advances in Neural Information Processing Systems, 37:27689–27724, 2024.

Antoine Dedieu, Wolfgang Lehrach, Guangyao Zhou, Dileep George, and Miguel Lázaro-Gredilla. Learning
cognitive maps from transformer representations for efficient planning in partially observed environments.
arXiv preprint arXiv:2401.05946, 2024.

14

Under review as submission to TMLR

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pp. arXiv–2407, 2024.

Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv preprint arXiv:2310.02207,
2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. arXiv preprint arXiv:2305.14992, 2023.

Eran Hirsch, Guy Uziel, and Ateret Anaby-Tavor. What’s the plan? evaluating and developing planning-
aware techniques for llms. arXiv preprint arXiv:2402.11489, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Sukai Huang, Trevor Cohn, and Nir Lipovetzky. Chasing progress, not perfection: Revisiting strategies for
end-to-end llm plan generation. arXiv preprint arXiv:2412.10675, 2024.

Michael Igorevich Ivanitskiy, Alex F Spies, Tilman Räuker, Guillaume Corlouer, Chris Mathwin, Lucia
Quirke, Can Rager, Rusheb Shah, Dan Valentine, Cecilia Diniz Behn, et al. Structured world representa-
tions in maze-solving transformers. arXiv preprint arXiv:2312.02566, 2023.

Erik Jenner, Shreyas Kapur, Vasil Georgiev, Cameron Allen, Scott Emmons, and Stuart Russell. Evidence
of learned look-ahead in a chess-playing neural network. arXiv preprint arXiv:2406.00877, 2024.

Marek Kadlčík, Michal Štefánik, Timothee Mickus, Michal Spiegel, and Josef Kuchař. Pre-trained language
models learn remarkably accurate representations of numbers. arXiv preprint arXiv:2506.08966, 2025.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant Bhambri,
Lucas Paul Saldyt, and Anil B Murthy. Position: Llms can’t plan, but can help planning in llm-modulo
frameworks. In Forty-first International Conference on Machine Learning, 2024.

Adam Karvonen. Emergent world models and latent variable estimation in chess-playing language models.
arXiv preprint arXiv:2403.15498, 2024.

Belinda Z Li, Maxwell Nye, and Jacob Andreas. Implicit representations of meaning in neural language
models. arXiv preprint arXiv:2106.00737, 2021.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg.
Emergent world representations: Exploring a sequence model trained on a synthetic task. arXiv preprint
arXiv:2210.13382, 2022.

Wenjun Li, Changyu Chen, and Pradeep Varakantham. Unlocking large language model’s planning capabil-
ities with maximum diversity fine-tuning. arXiv preprint arXiv:2406.10479, 2024.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers learn
shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Jiarui Liu, Jivitesh Jain, Mona Diab, and Nishant Subramani. Llm microscope: What model internals reveal
about answer correctness and context utilization. arXiv preprint arXiv:2510.04013, 2025.

Tianyi Men, Pengfei Cao, Zhuoran Jin, Yubo Chen, Kang Liu, and Jun Zhao. Unlocking the future:
Exploring look-ahead planning mechanistic interpretability in large language models. arXiv preprint
arXiv:2406.16033, 2024.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid Palangi,
Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large language models
with cogeval. Advances in Neural Information Processing Systems, 36:69736–69751, 2023.

15

Under review as submission to TMLR

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models of
self-supervised sequence models. arXiv preprint arXiv:2309.00941, 2023.

Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and Yonatan
Belinkov. Llms know more than they show: On the intrinsic representation of llm hallucinations. arXiv
preprint arXiv:2410.02707, 2024.

Vishal Pallagani, Bharath Muppasani, Keerthiram Murugesan, Francesca Rossi, Lior Horesh, Biplav Srivas-
tava, Francesco Fabiano, and Andrea Loreggia. Plansformer: Generating symbolic plans using transform-
ers. arXiv preprint arXiv:2212.08681, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin, Daniel Hennes,
Jeremy Shar, Cannada Lewis, Anian Ruoss, et al. Mastering board games by external and internal planning
with language models. arXiv preprint arXiv:2412.12119, 2024.

Jendrik Seipp, Álvaro Torralba, and Jörg Hoffmann. PDDL generators. https://doi.org/10.5281/zenodo.
6382173, 2022.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving
open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2, 2024.

Daniel Toropila and Roman Barták. Using finite-state automata to model and solve planning problems.
PlanSIG2010, pp. 171, 2010.

Shubham Toshniwal, Sam Wiseman, Karen Livescu, and Kevin Gimpel. Chess as a testbed for language
model state tracking. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
11385–11393, 2022.

Keyon Vafa, Justin Y Chen, Jon Kleinberg, Sendhil Mullainathan, and Ashesh Rambachan. Evaluating the
world model implicit in a generative model. arXiv preprint arXiv:2406.03689, 2024.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning
abilities of large language models-a critical investigation. Advances in Neural Information Processing
Systems, 36:75993–76005, 2023.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati.
Planbench: An extensible benchmark for evaluating large language models on planning and reasoning
about change. Advances in Neural Information Processing Systems, 36, 2024.

Karthik Valmeekam, Kaya Stechly, Atharva Gundawar, and Subbarao Kambhampati. A systematic evalua-
tion of the planning and scheduling abilities of the reasoning model o1. Transactions on Machine Learning
Research, 2025.

Chulin Xie, Yangsibo Huang, Chiyuan Zhang, Da Yu, Xinyun Chen, Bill Yuchen Lin, Bo Li, Badih Ghazi,
and Ravi Kumar. On memorization of large language models in logical reasoning. arXiv preprint
arXiv:2410.23123, 2024.

Ilker Yildirim and LA Paul. From task structures to world models: what do llms know? Trends in Cognitive
Sciences, 2024.

16

https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173

Under review as submission to TMLR

Yifei Yuan and Anders Søgaard. Revisiting the othello world model hypothesis. arXiv preprint
arXiv:2503.04421, 2025.

Tian Yun, Zilai Zeng, Kunal Handa, Ashish V Thapliyal, Bo Pang, Ellie Pavlick, and Chen Sun. Emergence
of abstract state representations in embodied sequence modeling. arXiv preprint arXiv:2311.02171, 2023.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On the paradox
of learning to reason from data. arXiv preprint arXiv:2205.11502, 2022.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on natural language
planning. arXiv preprint arXiv:2406.04520, 2024.

Max Zuo, Francisco Piedrahita Velez, Xiaochen Li, Michael L Littman, and Stephen H Bach. Plane-
tarium: A rigorous benchmark for translating text to structured planning languages. arXiv preprint
arXiv:2407.03321, 2024.

17

	Introduction
	Goal-directed deterministic classical planning
	Supervised fine-tuning for end-to-end plan generation
	Training data distributions
	State chain-of-thought (State-CoT)

	Evaluating world model recovery
	Extraction of activations and logits
	Linear representation probes
	Generative metric

	Planning environments
	Main results
	Plansformers learn linear representations of action validity
	Plansformers learn to linearly encode the truth values of certain state predicates
	Training on random walks enhances action validity classification
	Does better world model recovery imply better OOD generalization?

	Related Work
	Conclusion

