
Deep Learning for Compute in Memory
Anonymous Author(s)

ABSTRACT
Compute inMemory (CIM) accelerators for neural networks promise
large efficiency gains, allowing for deep learning applications on
extremely resource-constrained devices. Compared to classical dig-
ital processors, computations on CIM accelerators are subject to a
variety of noise sources such as process variations, thermal effects,
quantization, and more. In this work, we show how fundamental
hardware design choices influence the predictive performance of
neural networks and how training these models to be hardware-
aware can make them more robust for CIM deployment. Through
various experiments, we make the trade-offs between energy ef-
ficiency and model capacity explicit and showcase the benefits
of taking a systems view on CIM accelerator and neural network
training co-design.

ACM Reference Format:
Anonymous Author(s). 2020. Deep Learning for Compute in Memory. In
Online ’21: tinyML Research Symposium, March 22–26, 2020, Online. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Neural network applications are moving more and more away
from data-centers into the end-users’ devices such as smartphones,
drones, wearables, and other IoT devices. This so-called edge com-
puting offers distinct advantages compared to centralized com-
puting in the cloud such as data-privacy, low-latency, and no de-
pendence on internet connectivity at all. On the other hand, edge
devices can be extremely resource-constrained. Applications for
edge computing range from hearing-aids, always-on applications
like key-word spotting to battery-driven security cameras. For all
of these applications, we aim to maximize “AI Performance per
Watt”, where AI performance is a task-dependent metric such as ac-
curacy or false detection rate. In trying to optimize AI performance
per Watt, efforts are usually split across researchers or engineers
working on optimizing hardware (operations per Watt) and the
machine learning community that is trying to optimize models for
a given hardware (AI performance per operations). In this paper, we
propose taking a unified view on the co-optimization of hardware
and neural networks based on a differentiable hardware simulator
for highly efficient Compute in Memory (CIM) architectures. CIM
computations require orders of magnitudes less energy and are sub-
stantially faster in applications where the classical von Neumann
architecture hits its limits due to excessive memory transfers [22].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
tinyML Research Symposium ’21, March 22–26, 2021, Online
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Neural networks are a prime example of such applications. Mak-
ing predictions with a neural network requires the loading of large
weight matrices into memory, as well as the transportation of inter-
mediate computations. Even on specialized digital hardware, such
as GPUs or TPUs, the working memory of their parallel processors
needs to be constantly updated from off-chip memory, incurring
high energy costs and latencies. The flip side of CIM computations
is that they are fundamentally different from standard digital com-
putations. Several sources of noise, such as thermal fluctuations
and process variations might cause an analog processor to compute
a different function between subsequent executions and between
two seemingly identical chips. Whereas in digital processors, these
noisy physical processes are abstracted away into digital units of
zero and one and paired with digital error correction, CIM com-
putations are inherently noisy. As such, when mentioning a “CIM
chip” in this work, we refer to a mixed-signal integrated circuit.

Neural networks, on the other hand, have proven to be quite
tolerant of or even benefit from certain types of noise injections. In
dropout [16], for example, injecting Bernoulli or Gaussian noise into
the network’s activations serves to avoid overfitting. Together, the
memory intensive nature and noise resilience of neural networks
promise large gains in efficiency when the model is executed on
CIM hardware, opening up new possibilities for deploying large
neural networks on resource-constrained devices.

In this work, we show that accessing the advantages of CIM
computation for neural networks requires noise-aware training
and careful consideration of several aspects of hardware and neural
network architecture co-design. We provide an overview of how
design choices influence predictive performance in the context
of minimizing energy expenditure. Empirical results validate our
argumentation and provide intuition about the design space on
CIFAR-10 [10] and the google speech commands dataset [20].

2 HARDWARE
CIM array. When designing hardware for neural network accel-

eration, the measure of success is operations per Watt. Compute
in Memory architectures for neural networks amortize expensive
memory access by computing individual input-weight multiplica-
tions in memory. Instead of moving inputs, weights, and instruc-
tions to a digital compute unit in sequence, a matrix-vector mul-
tiplication in-memory is performed in one cycle without moving
weights. In typical CIM accelerators, each element of a weight ma-
trixwi, j is placed on the intersection between a word-line, which
carries the input activation information, and the bit-line, across
which the result of the multiplication with the input xi and that
particular column of the weight matrix is read out. See Figure 1
for a visualization of how convolutions are mapped to a series of
matrix-vector multiplications within a CIM array. Since all columns
are computed and read-out in parallel, a whole matrix-vector mul-
tiplication is performed in one cycle.

Different designs for realizing this approach in hardware have
been proposed. Major dimensions that have been explored include

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

tinyML Research Symposium ’21, March 22–26, 2021, Online Anon.

Figure 1: Above: One convolutional kernel applied to an in-
put patch. This results in one scalar entry in one ofM output
feature maps. Below: CIM array crossbar design. The flat-
tened kernel corresponds to one column of the array, the
flattened input patch is presented on the word-lines.

the choice of analog compute domain (Charge, Current, Voltage
based) as well as memory technologies (SRAM, MRAM, RRAM).
In this work, we consider the combination of SRAM and charge
domain computation as a consequence of general consideration of
technologymaturity and sensitivity to process-voltage-temperature
variations. Furthermore we restrict the individual bit-cell operation
to binary input activations x and weightsw : x ,w ∈ {0, 1}. We show
in section 3.3 how binary matrix-vector multiplications can be used
to enable multi-bit computations.

During a matrix-vector multiplication, the word-lines are acti-
vated, causing the capacitors in the bit-cells to charge dependent
on the value of the input and stored weight according to the XNOR
operation. Next, all capacitors in a column are shorted together,
modifying the voltage on the corresponding bit line: For cells whose
XNOR operation evaluates to 0, the bit-line voltage remains un-
touched, whereas for 1, the voltage increases by redistributing the
accumulated charges over those XNOR cells. For a CIM arraywithN
rows, the pop-count lies between 0 (all cells 0) and N (all cells 1). In
Section 3.2 we make explicit how we map matrix-vector multiplica-
tions within a neural network to a CIM array with these capabilities.
The SRAM-based charge domain approach has shown to exhibit a
high-fidelity linear relationship between voltage and pop-count [1],
however, due to cap mismatch and thermal effects, this relation-
ship is subject to noise. Furthermore, the maximal voltage increase
across a bit-line is independent of the number of word-lines within
the array. As the chip size increases, a difference in one pop-count
corresponds to a smaller absolute difference of voltage as measured
at the bit-line. Computation on a CIM array is therefore subject to a

signal-to-noise ratio influenced by the maximum voltage difference,
array size, and noise magnitudes.

ADC. After a linear operation, a neural network layer’s output is
optionally transformed via operations such as batch normalization
[6], pooling, or passed through a non-linearity. Since we consider
binarization of the input to the next layer, applying batch normal-
ization to the result of the previous layer is equivalent to a simple
comparison of the pop count with a specific threshold [14, 18].

The combination of applying a convolution followed by batch
normalization and subsequent binarization for the next layer is
therefore equivalent to comparing the bit-line voltage to a thresh-
old voltage. This binary operation is performed using a comparator
hardware element. Other digital operations, such as fusing compu-
tations across several CIM arrays, average pooling, or performing
argmax across columns at the output layer require access to the
actual pop count. This digitization operation is performed using an
analog-to-digital converter (ADC) with b bit resolution. An ADC
digitizes the bit-line voltage to one of 2b values in [0,N]. Depending
on the number of rows N in the array, b bits might not be enough to
distinguish individual pop count values, resulting in quantization
noise. The energy costs of ADC evaluations increase exponentially
with the required bit-width b [11]. The optimal bit-width b will
therefore be a trade-off between quantization noise tolerance and
energy constraints. We show how quantization noise as a conse-
quence of applying ADC with limited bit-widths influences neural
network performances in Section 5.4.

CIM Chip. A fundamental step in designing a CIM accelerator is
to map a given neural network to its components. More specifically,
one has to choose the number of individual CIM arrays to place
into the accelerator and how to map layers of a neural network to
the individual arrays. We consider three scenarios: CIM arrays with
the same size as a layer’s kernel volume, CIM arrays with a prede-
termined number of rows (non-shared) and a CIM chip with one
shared CIM array of fixed size (shared). Whereas in the first two
cases, we assume to have as many arrays available as required for a
given network architecture, the shared scenario requires unloading
and loading weights in order to compute the output of the network.
For a general-purpose CIM chip, the size of an arbitrary neural
network will possibly exceed any fixed number of available CIM
arrays. The shared and non-shared approaches therefore represent
two extremes, in between which there is a chip configuration with
several CIM arrays, of which some are shared. The first approach
will serve as a baseline to study the other two.

We show experimentally that the number and size of CIM arrays
amongst other factors significantly influence the predictive perfor-
mance of a neural network. Product design decisions will have to
weigh these predictive performance characteristics with the power
profile of the resulting chip to find an acceptable balance.

Not considered. We explicitly do not take into account analog
implementations of neural network elements other than matrix-
vector multiplication and batch normalization in the binary case
since those are the expensive operations in traditional neural net-
work design. If a neural network contains elements other than these,
their analog hardware implementations will have to be modeled or
assumed to be performed in the digital domain.

Deep Learning for Compute in Memory tinyML Research Symposium ’21, March 22–26, 2021, Online

3 METHOD
3.1 Hardware Simulation
A generic pre-trained neural network experiences a significant drop
in predictive performance when naively mapped to a CIM chip (Sec-
tion 5.1). Even if the pre-trained model has been trained to perform
well when quantized to binary values, the differences between an
all-digital computation and computations within a CIM chip cause
the model to drop in performance (see Tables 1 and 2). To avoid
a drop in performance when deploying a neural network, we aim
to train models that are robust to the CIM specific differences to
the digital domain. To expose the training procedure to these CIM
noises and to understand the impact of hardware design choices on
neural network performance, we develop a CIM simulator in three
steps:

(1) Low-level SPICE simulations of a CIM array.
(2) Abstraction of the low-level noise model into a high-level

differentiable CIM array simulator.
(3) Integration of the array simulator into a CIM chip simulator.

SPICE simulations. The SPICE simulations include a CIM array
of N word lines and a single bit line. The cell weights are randomly
initialized to 0 or 1. Subsequently, all rows are activated in sequence
by switching the corresponding word-line such that XNOR eval-
uates to 1. For each in this way activated word-line, the bit-line
voltage corresponding to a pop-count from 0 to N is being read out.
After this bit-line voltage vs. pop-count characterization is done at
a typical case, Monte Carlo simulations generate bit-line voltage
variations at each individual pop-count in [0,N] according to the
hardware noise model.

CIM array simulation. Given the insights from these low-level
simulations, we can characterize the CIM array noises acting on
the clean pop-count computation a for a particular column into
three zero-mean normally distributed sources α , β and γ such that

ã = αa + β + γ . (1)

These noise sources originally influence computation in the voltage
domain. We therefore translate a standard deviation σ ′ϵ from the
voltage domain into the pop count domain through Equation (2).
∆v corresponds to the maximum voltage difference across a bit-line.
N corresponds to the number of rows in the CIM array.

σϵ =
σϵ ′ · N

∆v

[
V · Pcnt

V

]
(2)

These noise sources are distinguished depending on their origin and
how they affect a. Firstly, CIM computations are stochastic across
the distribution of all CIM arrays produced. Stochasticity enters
at the point of manufacturing in the form of process variations.
For a given instantiation of a CIM array, a sample from these noise
sources is drawn and influences the array’s subsequent computa-
tions in a deterministic manner. Specifically, α covers charge cap
variations and affects the pop-count computation as data-dependent
multiplicative noise N(0,σα (a)). β subsumes additive noises such
as offset variations. Secondly, γ subsumes noise sources such as
thermal fluctuations that are applied to every read-out of a CIM
array’s column. The magnitude of these noise sources is determined
by the entirety of hardware design and assumptions modeled in

step 1. Here we only consider noise sources of these types, however
future iterations of the simulator will include noise sources whose
characteristics fall in-between, such as 1/f noise and non-linearities.

CIM chip simulation. We consider a simulated CIM array to be
integrated into a simulation of a whole CIM chip. On the level of the
chip simulation, we control how input activations and elements of
each layer’s weight matrix are routed to the CIM array(s). Algorithm
1 explains in detail the simulated process of executing a convolution
operation on a CIM chip in the non-shared setting (i.e. we assume
access to an arbitrary number of arrays of fixed size). The execution
of a fully connected layer is analogous, without the additional step
of flattening the kernel and each input patch.

Depending on the size of the convolutional or fully connected
layer in relation to the CIM array(s) size, the CIM chip operates
differently. When the kernel volume does not exceed the height of
the array, the ADC operates as a comparator to directly produce the
binary input to the following layer. See Figure 1 for a visualization
of the CIM convolution for this case. Alternatively, the matrix-
vector operation is split across several CIM arrays and the partial
pop-counts are digitized using the ADC to be summed in digital.

Since ADC evaluations require a lot of energy, a guiding design
principle for hardware-software co-design lies in designing neural
network architectures with small kernel volumes. We explore CIM-
friendly architecture design in Section 5.6. Alternatively to a small
kernel volume, increasing the array height reduces the number of
costly ADC evaluations at the expense of lower SNR and reduced
resolution (c.f. Equation (2) and experiments in Section 5.3).

If the number of output channels exceeds the number of columns
in a CIM array, the output channels will be mapped to different
arrays and the corresponding input patch presented to each of these
arrays. Since CIM noises are assumed to be independent across
columns, this horizontal splitting of the kernel is not explicitly
modeled in the non-shared scenario.

In the shared CIM array scenario, however, Algorithm 1 is modi-
fied slightly. Firstly, after the execution of a layer, its kernel needs
to be unloaded to free the array for the execution of the subsequent
layer. Secondly, horizontally splitting the kernel requires unloading
and loading these different kernel parts and computing all output
feature maps in multiple steps. In the non-shared case, process vari-
ation noises α and β induce systematic error only across the entries
of a feature map. In the shared case, however, the same column
is re-used multiple times also between layers, between different
feature maps (horizontal splitting), and across partial convolutions
when splitting vertically. In the experimental section, we show that
this systematic error for a given CIM chip influences predictive
performance significantly.

3.2 Hardware Aware Training
The guiding principle for training neural networks for CIM ap-
plication is to expose, during training, the neural network to the
environment it will be exposed to at test time. If a network is trained
to perform well across the distribution of all possible chips dur-
ing training, then it will perform well on a test chip that is drawn
from the same distribution as the multitude of simulated CIM chips
during training, provided they approximate reality well enough.

tinyML Research Symposium ’21, March 22–26, 2021, Online Anon.

Algorithm 1 Binary non-shared CIM propagation; Evaluation

Require: x ∈ {0, 1}cin×h×w : Binary input. w ∈

{0, 1}cout×cin×k×k : Binary weights. N ,M : Height, width
of CIM array(s). b: ADC/DAC bit-width. θ ∈ Rcout : Thresholds.
L = k · k · cin : Flattened input patch size.
K ← ⌈L/N ⌉: Number of required CIM arrays.
Splitw into K partswq ∈ {0, 1}cout×cin,q×k×k .
for q in K do
α ′q ∼N(0,σ 2

α), β
′
q ∼N(0,σ 2

β): Process variations.
Lq ← k · k · cin,q : Volume of partial kernels.
wq ← reshape(wq ;Lq , cout)

end for
for input patch xp do
xp ← reshape(xp ;L) Flatten input patch
if L > N then
Split flattened xp into K parts xp,q ∈ {0, 1}Lq
for q in K do

Present xp,q on word lines
oq = PCNT

Lq
i (XNOR(xp,q,i ,wq,i))

γ ′q ∼N(0,σ 2
γ): I.i.d noise.

õp,q = α ′q · oq + β
′
q + γ

′
q

end for
õp ←

∑K
q ADCb (õp,q): Digitize and sum in digital.

ĥp ← õp > θ : Digital threshold comparison.
else

Present xp on word lines
op = PCNT L

i (XNOR(xp,i ,wi))

γ ′∼N(0,σ 2
γ): I.i.d noise.

õp = α ′0 · o + β
′
0 + γ

′

ĥp ← õp > DACb (θ): Comparator.
end if
Store feature map entries ĥp corresponding to xp .

end for
return ĥ

This argument also applies to low-bit quantization. Here, we
choose PBNN [14] for training binary layers and RQ [12] for multi-
bit quantization of a network’s first layer. At the core of both meth-
ods lies the idea of modeling a network’s weights as random vari-
ables, whose support lies in the possible values that the quantized
weight can take on at test time. Instead of quantizing weights dur-
ing training directly, a probabilistic treatment circumvents the need
for the biased straight-through estimator [2] for gradient computa-
tion. Instead, RQ uses the concrete distribution [8, 13] to sample
weights while slowly annealing the variance of the distribution dur-
ing training. PBNN avoids sampling by directly approximating the
result of the layer’s linear operation with a Gaussian distribution
(central limit theorem). For the integration of CIM aware training
with quantization aware training, we focus in this work on the
binary layers alone. We leave fine-tuning multi-bit layers to future
work, which requires defining the partial derivative of each bit of
an integer’s binary representation with respect to the integer value.

For the training of high-performing binary models for CIM de-
vices, we extend PBNN to be CIM aware. Algorithm 2 describes the

CIM training procedure from the view-point of an implementation
in a deep learning framework.

During training with PBNN, weights ŵ and activations x̂ are
assumed to lie in {−1,+1}. As such, we need to map the Gauss-
ian pre-activations â ∼ N(µa ,σ 2

a) that are a result of the CLT
approximation, to a pop-count of XNOR operations performed in
the {0, 1} domain for weightsw and activations x . At test time, the
transformation between domains is described by (3) for a kernel
j - corresponding to a column j in a CIM array. At training time,
the equivalent Gaussian pre-activation pop-count a is obtained by
applying the same transformation to the Gaussian pre-activations
a = N(

µa
2 +

Nin
2 ,

1
4σ

2
a).

PCNTNin
i (xnor (xi ,wi j)) =

1
2

Nin∑
i

x̂i · ŵi j +
Nin

2
(3)

After mapping PBNN computation to the equivalent CIM array
computation, we can proceed to integrate the simulation noise
model described by Equation (1). During forward propagation, the
noise sources α , β and γ are sampled and applied to a feature map
of Gaussian pre-activations a.

As part of taking a systems view on the simulation, we explicitly
model the situation in which the length of the flattened kernel
exceeds the number of rows N in a CIM array. In this case, we
simulate the ADC and quantize a to 2b evenly spaced values be-
tween 0 and N . During training, a is a Gaussian random variable,
requiring us to either sample from a using the reparameterization
trick [9] before rounding or to consider probabilistic alternatives
such as RQ. In preliminary experiments for the range of bit-widths
we experimented with (c.f. Section 5.5), we observed no advantage
from using RQ. Therefore, we use sampling in combination with the
straight-through estimator and avoid the computationally expen-
sive probabilistic relaxation of RQ. Upon adding all quantized partial
pre-activations, we undo the transformation of (3) and formulate
the probability of stochastic binary activations as the difference
to the threshold θ . In case of a sufficiently large CIM array, we
proceed with the PBNN binarization procedure of computing the
probability mass that lies above the threshold θ .

3.3 Multi-bit computations
As we show in Section 5.5, applications require the input and first
layer’s weights to be in multi-bit precision to avoid unacceptable
loss of predictive performance. In practice, it will depend on the
input size, required bit-widths, and power profiles of the hardware
whether or not the first layer should be executed as part of an up-
stream digital processor or within the CIM chip. A convolution with
input and kernel quantized to a uniform grid can be implemented
as integer multiplications and additions with proper treatment of
grid scales and zero-offsets. See [7] for a discussion of the involved
arithmetic. For integer convolution on binary CIM hardware, an in-
teger convolution can be implemented as a weighted sum of binary
convolutions as formalized in Equation (4). For the ith scalar entry
in x , xi,bx−1 corresponds to the value of the last bit in its binary
representation consisting of bx bits. On CIM hardware, each binary
operation is executed on a CIM array, digitized using ADCs and

Deep Learning for Compute in Memory tinyML Research Symposium ’21, March 22–26, 2021, Online

Algorithm 2 Binary non-shared CIM propagation; Training

x̂ ∈ {−1,+1}cin×h×w : Binary input. w ∈ Rcout×cin×k×k : Bi-
nary weight probabilities. N ,M : Height, width of array(s). b:
ADC/DAC bit-width. f : Convolutional operation. L = k ·k ·cin :
Flattened input patch size. K ← ⌈L/N ⌉: Number of required
CIM arrays. θ ,w = batch_normalization(x ,w) if L > N then

Split x̂ into K parts xq ∈ {−1,+1}cin,q×h×w

Split w̃ into K parts w̃q ∈ R
cout×cin,q×k×k

for q in K do
Lq ← k · k · cin,k : Volume of partial kernel.
aq = N(f (x̂q ,wq), f (x̂

2
q , (1 −wq)

2)): CLT.
a′q ∼ aq : Sample partial Gaussian pre-activations.

oq =
1
2aq +

Lq
2 : Transform to pop-count equivalent.

α ′q ∼ N(0,σ 2
α), β

′
q ∼ N(0,σ 2

β),γ
′
q ∼ N(0,σ 2

γ)

õq = α ′q · oq + β
′
q + γ

′
q

end for
ô =

∑K
q ADCb (õq): Digitize and sum pop-count.

â = 2 · ô − L: Transform to {−1,+1} domain.
ĥ = Bin(â − θ): Stochastic binary activations.

else
µa ,σ

2
a ← f (x̂ ,w), f (x2, (1 −w)2)): CLT

µo ,σ
2
o ←

1
2 µa +

L
2 ,

1
4σa : Pop-count equivalent

α ′ ∼ N(0,σ 2
α), β

′ ∼ N(0,σ 2
β),γ

′ ∼ N(0,σ 2
γ)

µõ ,σ
2
õ ← α ′µo + β

′ + γ ′,α ′2σo
µâ ,σ

2
â ← 2 · µõ − L, 4 · σ 2

õ : To {−1,+1} domain.
ĥ = Bin(1−Φ(DACb (θ), µâ ,σ 2

â)): Stoch. activations.
end if
return ĥ

in-digital scaled and summed for computation of the final result.
Nin∑
i

xi ·wi =

Nin∑
i
(2bx−1xi,bx−1 + · · · + 20xi,0)·

(2bw−1wi,bw−1 + · · · + 20wi,0) (4)

=

bx−1∑
j=0

2j
k∑

k=0
2bw−1

Nin∑
i

xi, j ·wi,k (5)

4 RELATEDWORK
Hardware-aware training of machine learning models has been dis-
cussed in a variety of works [5, 15, 21, 22]. [5, 19, 22] discuss how to
fine-tune a neural network to a specific instance of manufactured
hardware. Whereas such a strategy can be expected to result in
a very high-performing model, it would incur high overhead dur-
ing manufacturing. Furthermore, any deployment of a new neural
network to that chip after manufacturing would require on-device
training [5] including the transfer of the dataset.

This work relates most closely to [21] and [15]. In [21], the au-
thors introduce a stochastic hardware model for a binary CIM array
based on MRAM. They study the impact of stochastic hardware
on the predictive performance of models trained with or without
noise awareness. Crucially, the authors consider arbitrarily sized

arrays, an assumption that does not hold in practice. In this work,
we show the importance of extending the CIM array model to a
model of a CIM chip, taking array sizes, systematic errors, and ADC
quantization noise into account.

The authors of [15] consider independent Gaussian noise added
to every linear operation in a recurrent neural network that is
motivated by a general “neuromorphic” computing chip. They show
how applying noise during training makes the model robust during
test time, but make no concrete assumptions about the hardware.

5 EXPERIMENTS
We study the CIFAR-10 dataset on a small VGG architecture de-
scribed in [3]. For an application that is more relevant to deployment
on CIM hardware, we include experiments with the speech com-
mands dataset [20] on the tpool2 architecture [17]. Finally, we also
present a new architecture for the speech commands dataset that
is optimized for deployment on CIM hardware. VGG results are re-
ported on the validation set. Whenever a VGGmodel is evaluated in
a CIM setting, we report the average and standard deviation across
20 evaluations of the dataset on a given model. For the speech
commands dataset, we perform an 80:10:10 split into training, val-
idation, and test sets and report accuracies across 20 evaluations.
In this CIM configuration, every data point is evaluated on the
simulation of a different CIM chip. Since the exact magnitude of
the noise sources cannot be disclosed, we assume σ̄α and σ̄β to be
the most likely values upon testing of a manufactured chip. Unless
otherwise mentioned, σα = σ̂α , σβ = 3 · σ̂β for accentuated noise
effect, σγ = 0.5 · σ̂β and each models’ first layer is assumed to be
computed in digital high-precision. For the shared CIM approach,
we assume M = 128. For each of the CIM-aware trained models,
we fine-tune a pre-trained no-noise binary model. In line with [14]
we perform batch norm reestimation before evaluating a model.

To study the properties of CIM hardware for neural networks we
consider three scenarios: CIM arrays with the same size as a layer’s
kernel volume (N = Nin), CIM arrays with a fixed number of rows
(non-shared) and a CIM chip with one shared CIM array of fixed
size (shared). See Section 2 for a motivation for these scenarios.

First, we discuss the ability of CIM-aware training to provide
models that are robust to CIM hardware execution. Subsequently,
we show how the simulator can be used to understand CIM noise
characteristics and drive decision making during hardware design.

5.1 CIM-aware training
In Tables 1 and 2 we see how models trained with a specific config-
uration of the simulator behave in other configurations. The first
row shows how a non fine-tuned model suffers greatly from being
deployed in a CIM environment. Comparing with the diagonal en-
tries, we see that CIM-aware fine-tuning can recover performance
to different degrees. The performance degradation in the N = Nin
scenario is due to the low signal-to-noise ratio of computations for
large Nin (c.f. Equation (2)): Nin for VGG small, for example, ranges
from 1152 in the second convolutional layer to 8192 in the first fully
connected layer. For N = 512 (and N = 1024), the SNR is fixed and
comparably high. The SNR for the non-shared scenario is influenced
by ADC quantization noise (Figures 3a and 3b) in addition to the
SNR from the bit-line resolution. The shared CIM scenario benefits

tinyML Research Symposium ’21, March 22–26, 2021, Online Anon.

(a) N = Nin (b) N = 512, non-shared

Figure 2: CIFAR-10 validation accuracy on VGG small for
each noise configuration is written next to each line. Higher
accuracy is colored darker. Learned offset results are plotted
for two strengths of regularization λ. The x-axis enumerates
the CIM executed layers of the VGG small model.

(a) CIFAR-10 (b) Speech commands

Figure 3: ADC bit-width variations

from the increased SNR, however, the systematic error across the
network significantly reduces the model’s predictive performance.

Even though CIM-aware training can recover a large fraction of
the lost accuracy, the difference to the non-shared scenario empha-
sizes the potential benefits of providing more than one CIM arrays
per chip to avoid systematic errors to some degree.

5.2 Optimizing for σβ
Here we show for the VGG small model that a differentiable hard-
ware simulator can be used to drive decisionmaking in the hardware
design or manufacturing process. We assume that the magnitude of
σβ can be influenced by modifying the amount of resources spent
(consider offset calibration during manufacturing or enhanced cir-
cuit designs). In the following experiments, we make σβ a learnable
parameter per CIM array (initialized at σ̂β) and add to the cross-
entropy loss function the KL-divergence of N(0,σβ) to the maxi-
mum noise distribution N(0, 3 · σ̂β) with regularization strength
λ. The likelihood maximization objective will try to reduce σβ ,
whereas the KL-divergence will try to increase it.

In Figure 2a, we see that for the same regularization strength, the
N = Nin scenario tolerates less noise across the network’s middle
layers. Where in the N = 512 case these layers have a bounded
SNR, in the N = Nin case, the large number of required rows for
those layers makes the model less tolerant to σβ . The fact that some
layers shown in Figure 2b are more tolerant to noise than others
might be exploited by spending significant resources only on some
CIM arrays on a chip and map the noise-tolerant layers to the less
expensively calibrated arrays.

Table 3 shows the impact of different magnitudes of σ̂β in the
shared scenario. The optimization procedure has to find a trade-off
for the noise magnitude between all layers, depending on λ.

5.3 Column length
Increasing the number of rows N in a CIM array reduces the signal-
to-noise ratio in exchange for a smaller number K of required ADC
evaluations for a given neural network layer with kernel volume L
(c.f. Algorithm 1). Table 4 shows the effect on accuracy of doubling
the number of rows from 512 to 1024. For the VGG small model,
this amounts to a 44% reduction in ADC evaluations. The cost of
reducing ADC evaluations is a reduced SNR which in turn causes a
non-negligible drop in performance.

5.4 ADC bit width
Energy expenditure for ADC evaluations scales with the required
bit-width [11]. Determining the minimal required bit-width there-
fore is an important factor in optimizing the AI performance per
Watt of the CIM chip. Figure 3 shows the impact of reducing the
ADC bit width on accuracy. A minimum of 6 bits is necessary to
avoid a significant drop, which is in line with existing analyses [18].

5.5 First layer quantization
As part of taking a holistic systems view on CIM aware neural
network training, we address the common assumption in quantized
neural network training to keep the first layer (and often also the
last layer) of a network in high precision. The required bit-width for
the data and the first layer’s weights will differ depending on the
dataset and model. Here, we investigate the required bit-width for
the first layer in VGG small and the tpool2 architecture, while keep-
ing the rest of the model binary. For CIFAR-10, images are already
quantized to 8 bits. Figure 5 shows the impact on validation accu-
racy of quantizing only the input or only the first layer’s weights.
Tables 6 show the impact of quantizing both, input and first layer
weights for a selection of bit-width combinations. Dependent on ac-
curacy requirements in relation to compute resources, practitioners
will have to choose among possible bit-width combinations.

Those results assumed digital computations. Now we evaluate
the VGG model on a CIM chip, including the multi-bit first layer. In
Section 3.3 we discussed howmulti-bit convolutions can be mapped
to binary CIM hardware. For all experiments in Table 5, the model
has been trained for the respective bit-with of the first layer and the
other binary layers, however without CIM-aware training. Since we
focus on the first layer’s influence, we keep the rest of the model’s
CIM hyperparameters fixed.

When computing the quantized first layer in digital, the model
achieves 89.28± 0.31% accuracy. The second row shows the impact
of only the multiplicative noise α . Whereas in the binary layers
of the VGG small model, the pop count for a CIM array usually
falls into the middle of the range between 0 and 512 (assuming
approximately half of the feature map entries to be 0), each of the
first layer’s 6 × 2 binary convolutions falls into the range [0, 27].
Since α is data-dependent, each of these binary convolution falls
into a regime in which the multiplicative noise is larger, given the
assumed hardware model. The remaining entries in Table 5 show
how adding i.i.d noise γ in combination with ADC quantization
noise and systematic error β influence performance to different
extends. In the end, the effects of these noise sources in contrast
with the energy expenditure of a digital alternative will depend on
the underlying hardware model.

Deep Learning for Compute in Memory tinyML Research Symposium ’21, March 22–26, 2021, Online

Table 1: Validation accuracy of binarized VGG small on CIFAR-10. Training scenarios vs. evaluation scenarios.

Evaluated on
No Noise N = Nin N = 512, non-shared N = 512, shared

Tr
ai
ne
d
on No noise 90.36% 74.21 ± 0.87% 86.32 ± 0.39% 70.13 ± 0.38%

N = Nin 90.00% 78.82 ± 0.73% 89.57 ± 0.20% 76.79 ± 0.39%
N = 512, non-shared 90.42% 76.98 ± 0.48% 87.47 ± 0.17% 71.61 ± 0.29%
N = 512, shared 89.50% 79.04 ± 0.48% 86.07 ± 0.37% 80.21 ± 0.21%

Table 2: Validation accuracy of binarized tpool2 on the speech commands dataset. Training scenarios vs. evaluation scenarios.

Evaluated on
No Noise N = Nin N = 1024, non-shared N = 1024, shared

Tr
ai
ne
d
on No noise 86.33% 72.10 ± 0.60% 65.76 ± 0.67% 43.87 ± 0.85%

N = Nin 85.09% 78.75 ± 0.55% 70.38 ± 0.55% 55.47 ± 0.68%
N = 1024, non-shared 83.59% 76.60 ± 0.42% 76.21 ± 0.49% 59.26 ± 0.68%
N = 1024, shared 79.11% 73.27 ± 0.55% 70.21 ± 0.53% 67.36 ± 0.72%

Figure 4: CIM-NN Architecture. The upper numbers describe feature map dimensions after every layer (with padding). The
numbers below characterize the height, width, and the number of channels, as well as the stride of the (convolutional) layers.

Table 3: Validation accuracy of small VGG model on the
CIFAR-10 dataset in the shared scenario. We compare mod-
els trained with different noise magnitudes σβ , as well as
learned noise magnitudes under regularization.

σβ Accuracy

0 · σ̂β 89.54 ± 0.25%
1 · σ̂β 88.28 ± 0.26%
2 · σ̂β 85.39 ± 0.32%
3 · σ̂β 80.21 ± 0.21%
1 · λ : 1.44 · σ̂β 87.06 ± 0.33%
2 · λ : 1.81 · σ̂β 85.74 ± 0.50%

Table 4: Validation accuracy of VGG small on CIFAR-10 for
different number of rows per CIM array. In brackets: mean
accuracy gained through CIM aware training.

non-shared shared
N =512 87.47±0.17%(+1.15) 80.21±0.21%(+10.08)
N =1024 82.42±0.25%(+2.25) 73.35±0.42%(+16.59)

Table 5: Validation accuracy for CIFAR-10 on VGG small
when evaluating a quantized, not CIM-aware trained model
in the non-shared scenario. The data and input weights are
quantized to 6 and 2 bits. We vary ADC bit-width and σβ for
the first layer. Other layers are set to σβ = 3 · σ̂β and b = 6.

Scenario Accuracy

First layer Digital 89.28 ± 0.31%
σβ =0,σγ =0, no ADC 57.10 ± 0.61%
σβ =0,σγ =0.5σ̂β , no ADC 55.91 ± 0.54%
σβ =0,σγ =0.5σ̂β ,b=8 55.01 ± 0.72%
σβ =0,σγ =0.5·σ̂β ,b=6 40.04 ± 0.49%
σβ =1·σ̂β ,σγ =0.5·σ̂β , no ADC 46.11 ± 0.58%

Table 6: Joint weight and input quantization

(a) CIFAR-10

bx \bw 2 3

6 90.04% 90.68%
7 90.04% 90.40%

(b) Speech commands

bx \bw 2 3

6 84.41% 84.02%
7 83.72% 85.35%

tinyML Research Symposium ’21, March 22–26, 2021, Online Anon.

(a) CIFAR-10 (b) Speech commands

Figure 5: Separate first layer weight and input quantization

Table 7: CIM-NNmodel. CIM results are fine-tuned from the
digitalmodel.We assumeN =1024,M =128 in the shared case.

Scenario Accuracy

Digital, first layer full precision 88.50%
Digital, first layer bx =4;bw =2 88.21%

Non-shared; first layer full precision 85.49 ± 0.33%
Shared; first layer full precision 84.69 ± 0.45%

5.6 CIM-friendly architecture
Apart from improving the CIM hardware and fine-tuning a given
neural network, we can optimize the architecture itself for CIM
deployment. Here, we present a CIM-specific network architecture
for the speech commands dataset. The major bottleneck we address
is the number of required ADC evaluations by reducing the kernel
volumes L to be smaller than the number of rows N in a CIM array.
Operating ADCs as binary comparators requires less energy and
requires only one DAC evaluation for the threshold per input patch
(c.f. Algorithm 1). Figure 4 fully specifies the architecture of the
new CIM-NN model. At every layer, the kernel volume is less than
N = 1024 by standardizing the shape of the convolutional filters for
all except the first layer. We keep the total number of computations
per filter to be less than 1024. This is easy for the first layer, as the
input depth is usually 3 or smaller. This is helpful, as we can choose
large kernel sizes and strides early in the network to additionally
keep the memory requirements for storing binary feature maps
less than 3.1KB. Table 7 shows the accuracies of the model under
different scenarios. We observe that without the need for ADCs, due
to the CIM friendly architecture, the difference in performance drop
between the shared and non-shared scenario is reduced. Crucially,
the validation accuracy drops only by a small amount on average
after fine-tuning (3.01% and 3.81% drop) compared to the original
tpool2 architecture (10.12% and 18.97% drop).

6 CONCLUSION
In this workwe presented argumentation and empirical justification
for a systems view on CIM hardware-aware training of neural
networks. We analyzed different aspects of CIM hardware elements
and their influence on neural network predictive performance. We
showed how a differentiable hardware simulator can be used to
inform hardware design and how the co-design of software and
hardware for a neural network accelerator allows for informed
decision-making along all stages of development. Additionally, we
introduced a CIM-optimized neural network architecture for the
speech commands dataset. This hardware-aware design of neural

network architectures can be further improved upon by extending
recent advances in neural architecture search [4] to the CIM domain.
Not only the architecture but hardware properties itself (c.f. Section
5.2) can bemade part of the search space. Together, hardware design,
neural network architecture design, and hardware-aware training
set the cornerstones for optimizing AI performance per Watt.

REFERENCES
[1] Amogh Agrawal, Akhilesh Jaiswal, Deboleena Roy, Bing Han, Gopalakrishnan

Srinivasan, Aayush Ankit, and Kaushik Roy. 2019. Xcel-RAM: accelerating binary
neural networks in high-throughput SRAM compute arrays. IEEE Transactions
on Circuits and Systems I: Regular Papers (2019).

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or
propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

[3] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830
(2016).

[4] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture
Search: A Survey. Journal of Machine Learning Research 20, 55 (2019), 1–21.

[5] Sujan Kumar Gonugondla, Mingu Kang, and Naresh Shanbhag. 2018. A
42pJ/decision 3.12 TOPS/W robust in-memory machine learning classifier with
on-chip training. In 2018 IEEE International Solid-State Circuits Conference-(ISSCC).
IEEE, 490–492.

[6] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[7] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2704–2713.

[8] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[9] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[10] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. Technical Report. Citeseer.

[11] Erik Lauwers and Georges Gielen. 1999. A power estimation model for high-
speed CMOS A/D converters. In Design, Automation and Test in Europe Conference
and Exhibition, 1999. Proceedings (Cat. No. PR00078). IEEE, 401–405.

[12] Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and
Max Welling. 2018. Relaxed quantization for discretized neural networks. arXiv
preprint arXiv:1810.01875 (2018).

[13] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2016. The concrete distri-
bution: A continuous relaxation of discrete random variables. arXiv preprint
arXiv:1611.00712 (2016).

[14] Jorn WT Peters and Max Welling. 2018. Probabilistic binary neural networks.
arXiv preprint arXiv:1809.03368 (2018).

[15] Minghai Qin and Dejan Vucinic. 2018. Training Recurrent Neural Networks
against Noisy Computations during Inference. In 2018 52nd Asilomar Conference
on Signals, Systems, and Computers. IEEE, 71–75.

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[17] Raphael Tang and Jimmy Lin. 2017. Honk: A PyTorch Reimplementation of Convo-
lutional Neural Networks for Keyword Spotting. arXiv preprint arXiv:1710.06554
(2017).

[18] Hossein Valavi, Peter J Ramadge, Eric Nestler, and Naveen Verma. 2019. A 64-Tile
2.4-Mb In-Memory-Computing CNN Accelerator Employing Charge-Domain
Compute. IEEE Journal of Solid-State Circuits 54, 6 (2019), 1789–1799.

[19] Naveen Verma, KyongHo Lee, Kuk Jin Jang, and Ali Shoeb. 2012. Enabling system-
level platform resilience through embedded data-driven inference capabilities in
electronic devices. In 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 5285–5288.

[20] Pete Warden. 2017. Launching the speech commands dataset. Google Research
Blog (2017).

[21] Bonan Zhang, Lung-Yen Chen, and Naveen Verma. 2019. Stochastic data-driven
hardware resilience to efficiently train inference models for stochastic hardware
implementations. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 1388–1392.

[22] Jintao Zhang, Zhuo Wang, and Naveen Verma. 2017. In-memory computation
of a machine-learning classifier in a standard 6T SRAM array. IEEE Journal of
Solid-State Circuits 52, 4 (2017), 915–924.

	Abstract
	1 Introduction
	2 Hardware
	3 Method
	3.1 Hardware Simulation
	3.2 Hardware Aware Training
	3.3 Multi-bit computations

	4 Related work
	5 Experiments
	5.1 CIM-aware training
	5.2 Optimizing for
	5.3 Column length
	5.4 ADC bit width
	5.5 First layer quantization
	5.6 CIM-friendly architecture

	6 Conclusion
	References

