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ABSTRACT

While enjoying desirable efficiency and less dependence on domain expertise,
existing neural methods for vehicle routing problems (VRPs) are vulnerable to
adversarial attacks – their performance drops drastically on adversarial instances,
i.e., clean instances with crafted perturbations. To enhance the robustness, we
propose a Collaborative Neural Framework (CNF) w.r.t the adversarial defense of
neural methods for VRPs, which is crucial yet underexplored in literature. Given
a neural method, we adversarially train multiple models in a collaborative manner
to synergistically promote the robustness against attacks, while maintaining (or
even boosting) the standard generalization on clean instances. A neural router is
designed to elegantly distribute instances to each model, which improves over-
all load balancing and collaborative performance. Extensive experiments verify
the effectiveness and versatility of CNF to defend against various attacks for dif-
ferent neural methods. Notably, our trained models also achieve decent out-of-
distribution generalization performance on real-world benchmark instances.

1 INTRODUCTION

Combinatorial optimization problems (COPs) are crucial yet challenging to solve due to the NP-
hardness. Neural combinatorial optimization (NCO) aims to leverage machine learning (ML) to
explore powerful heuristics for solving COPs, and has attracted considerable attention recently (Ben-
gio et al., 2021). Among them, a large number of NCO works develop neural methods for vehicle
routing problems (VRPs) – one of the most classic COPs with broad applications in transporta-
tion (Pillac et al., 2013), logistics (Konstantakopoulos et al., 2022), planning and scheduling (Padrón
et al., 2016), etc. With supervised or reinforcement learning (RL), the neural methods could learn
construction or improvement heuristics for VRPs, which achieve competitive or even superior per-
formance to the conventional algorithms. However, recent studies show that these neural methods
suffer from severe adversarial robustness issue (Geisler et al., 2022), where their performance drops
drastically on clean instances (sampled from the training distribution) with crafted perturbations.

Although the adversarial robustness has been investigated in a couple of recent works (Zhang et al.,
2022; Geisler et al., 2022; Lu et al., 2023), the defensive methods on how to help forge sufficiently
robust neural methods for VRPs are still underexplored. In particular, existing endeavours mainly
focus on the attack side, where they propose different perturbation models to generate adversarial
instances. On the defense side, they simply follow the vanilla adversarial training (AT) (Madry
et al., 2018). Concretely, treated as a min-max optimization problem, they first generate adversarial
instances that maximally degrade the current model performance, and then minimize the empirical
losses of these adversarial variants. However, we empirically observe that they may suffer from
the undesirable trade-off (Tsipras et al., 2019; Zhang et al., 2019) between standard generalization
(on clean instances) and adversarial robustness (against adversarial instances) by simply adhering
to the vanilla AT. As demonstrated in Fig. 1, the vanilla AT improves adversarial robustness of the
neural solver at the expense of standard generalization (e.g., POMO (1) vs. POMO AT (1)). We
also identify a similar issue from the empirical results of Lu et al. (2023). One of the major reasons
is that the training model is not sufficiently expressive (Geisler et al., 2022). We empirically justify
this viewpoint by simply increasing the model capacity (i.e., adversarially training multiple models),
which can partially mitigate the trade-off (e.g., POMO AT (1) vs. POMO AT (3)). However, it is
still an open challenge on how to effectively synergize multiple models to achieve favorable overall
performance on both clean and adversarial instances within a reasonable computational budget.
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Figure 1: Performance of POMO (with vanilla AT) on TSP100 with the attack method in Zhang
et al. (2022). The value in brackets denotes the number of trained models. During inference, we
choose the best result (among all trained models) for each instance, and report the average optimal-
ity (opt.) gap over 1000 instances. The results reveal the vulnerability of existing neural methods to
adversarial attacks, and the existence of the trade-off between standard generalization and adversar-
ial robustness in VRPs. Similar phenomenon could also be observed on CVRP as shown in Table 1.
Details of the attack method and setups can be found in Appendix B.1 and Section 4, respectively.

In this paper, we focus on the defense of neural methods for VRPs, with the aim to concurrently
enhance both the standard generalization and adversarial robustness. Instead of separately training
multiple models, we propose a Collaborative Neural Framework (CNF) to exert the AT on multiple
models in a collaborative manner. Specifically, in the inner maximization optimization of CNF, we
synergize multiple models to further generate the global adversarial instance for each clean instance
by attacking the best-performing model, rather than only leveraging each model to independently
generate their own local adversarial instances. In doing so, the generated adversarial instances are
diverse and strong in benefiting the policy exploration and attacking the models, respectively (see
Section 3). In the outer minimization optimization of CNF, we train an attention-based neural router
to forward instances to models for training, which helps achieve satisfactory load balancing and
collaborative performance. The overview of CNF is illustrated in Fig. 2.

Our contributions are outlined as follows. 1) In contrast to the recent endeavors on the attack side,
we focus on the defense of neural methods for VRPs, which is crucial yet underexplored in literature.
We empirically observe that the defense through the vanilla AT may lead to the undesirable trade-off
between standard generalization and adversarial robustness in VRPs, even if simply increasing the
model capacity (see Fig. 1). 2) We propose a collaborative neural framework (CNF) to concurrently
enhance the performance on both clean and adversarial instances. Specifically, we propose to further
generate global adversarial instances, and design a neural router to distribute instances to each model
for effective training. 3) We evaluate the effectiveness and generalizability of our method against
various attacks on different VRPs, such as the (symmetric and asymmetric) traveling salesman prob-
lem (TSP) and capacitated vehicle routing problem (CVRP). Results show that our framework could
greatly improve the adversarial robustness of neural methods while preserving (or even improving)
the standard generalization. Beyond the expectation, we also observe the boosted out-of-distribution
(OOD) generalization on both synthetic and benchmark instances, which may suggest the favorable
potential of our method in promoting various types of generalization of neural VRP methods.

2 PRELIMINARIES

We first present the definition of VRPs and the neural methods to learn autoregressive construction
heuristics (Kool et al., 2018; Kwon et al., 2020), then we introduce the standard AT (Madry et al.,
2018) and its challenges for the discrete VRPs.

2.1 NEURAL METHODS FOR VRPS

Problem Definition. Without loss of generality, we define a VRP instance x over a graph G =
{V, E}, where V = {vi}ni=1 represents the node set, and (vi, vj) ∈ E represents the edge set with
vi ̸= vj . The solution τ to a VRP instance is a tour, i.e., a sequence of nodes in V . The cost function
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c(·) computes the total Euclidean length of a given tour. The objective is to seek an optimal tour τ∗
with the minimal cost: τ∗ = argminτ∈Φ c(τ |x), where Φ is the set of all feasible tours which obey
the problem-specific constraints. For example, a feasible tour in TSP should visit each node exactly
once, and return to the starting node in the end. For CVRP, each node in V is associated with a
demand δi, and a depot node v0 is additionally set with zero demand. Given the capacity Q for each
vehicle, a tour in CVRP consists of multiple sub-tours, each of which represents a vehicle starting
from the depot, visiting a subset of nodes in V and returning to the depot. It is feasible if each node
in V is visited exactly once, and the total demand in each sub-tour is upper bounded by Q.

Neural Autoregressive Methods. Popular neural methods (Kool et al., 2018; Kwon et al., 2020)
construct a solution to a VRP instance following Markov Decision Process (MDP), where the policy
is parameterized by a neural network with parameters θ. The policy takes the states as inputs,
which are instantiated by features of the instance and the partially constructed solution. Then, it
outputs the probability distribution of valid nodes to be visited next, from which an action is taken
by either greedy rollout or sampling. After a complete tour τ is constructed, the probability of the
tour can be factorized via the chain rule as pθ(τ |x) =

∏S
s=1 pθ(π

s
θ|π<s

θ , x), where πs
θ and π<s

θ
represent the selected node and the partial solution at the sth step, and S is the number of total steps.
Typically, the reward is defined as the negative length of a tour R = −c(τ |x). The policy network
is commonly trained with REINFORCE (Williams, 1992) algorithm. With a baseline function b(·)
to reduce the gradient variance and stabilize the training, it estimates the gradient of the expected
reward L(θ|x) = Epθ(τ |x)c(τ) such that:

∇θL(θ|x) = Epθ(τ |x)[(c(τ)− b(x))∇θ log pθ(τ |x)]. (1)

2.2 ADVERSARIAL TRAINING

Adversarial training is one of the most effective and practical techniques to equip deep learning
models with adversarial robustness against crafted perturbations on the clean instance. In the super-
vised fashion, where the clean instance x and ground truth (GT) label y are given, AT is commonly
formulated as a min-max optimization problem:

min
θ

E(x,y)∼D[ℓ(y, fθ(x̃))], with x̃ = argmaxx̃i∈Nϵ[x][ℓ(y, fθ(x̃i))], (2)

where D is the data distribution; ℓ is the loss function; fθ(·) is the model prediction with parameters
θ; Nϵ[x] denotes the neighborhood around x, with its size constrained by the attack budget ϵ. The
solution to the inner maximization is typically approximated by projected gradient descent (PGD):

x(t+1) = ΠNϵ[x][x
(t) + α · sign(∇x(t)ℓ(y, fθ(x

(t))))], (3)

where α is the step size; Π is the projection operator that projects the adversarial instance back to the
neighborhood Nϵ[x]; x(t) is the adversarial instance found at step t; and the sign operator is used
to take the gradient direction and carefully control the attack budget. Typically, x(0) is initialized
by the clean instance or randomly perturbed instance with small Gaussian or Uniform noises. The
adversarial instance is updated iteratively towards loss maximization until a stop criterion is satisfied.

AT for VRPs. Most ML research on adversarial robustness focuses on the continuous image do-
main (Goodfellow et al., 2015; Madry et al., 2018). We would like to highlight two main differences
in the context of discrete VRPs (or COPs). 1) Imperceptible perturbation: The adversarial instance
x̃ is typically generated within a small neighborhood of the clean instance x, so that the adversarial
perturbation is imperceptible to human eyes. For example, the adversarial instance in image related
tasks is typically bounded byNϵ[x] : ∥x− x̃∥p ≤ ϵ under the lp norm threat model. When the attack
budget ϵ is small enough, x̃ retains the GT label of x. However, it is not the case for VRPs due to the
nature of discreteness. The optimal solution could be significantly changed even if only a small part
of the instance is modified. Therefore, the subjective imperceptible perturbation is not a realistic goal
in VRPs, and we do not exert such an explicit imperceptible constraint on the perturbation model.
2) Accuracy-robustness trade-off : The standard generalization and adversarial robustness seem to
be conflicting goals in image related tasks. With increasing adversarial robustness the standard gen-
eralization tends to decrease, and a number of works intend to mitigate such accuracy-robustness
trade-off in this domain (Tsipras et al., 2019; Zhang et al., 2019; Wang et al., 2020; Raghunathan
et al., 2020; Yang et al., 2020b). By contrast, a recent work (Geisler et al., 2022) claims the existence
of neural solvers with high accuracy and robustness in COPs. They demonstrate that a sufficiently
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Figure 2: The overview of the proposed framework. Suppose we train M = 3 models on a batch
(B = 3) of clean instances. The inner maximization generates local (x̃) and global (x̄) adversarial
instances within T steps. In the outer minimization, a neural router θr is jointly trained to distribute
instances to the M models for training. Specifically, based on the logit matrix P predicted by the
neural router, each model selects the instances with TopK-largest logits (e.g., red ones). The neural
router is optimized to maximize the improvement of collaborative performance after each training
step of Θ. For simplicity, we omit the superscripts of instances in the outer minimization.

expressive model does not suffer from the trade-off given the problem-specific efficient and sound
perturbation model, which guarantees the correct GT label of the perturbed instance. Empirically,
by following the vanilla AT, we observe the undesirable trade-off may still exist (as shown in Fig.
1), which is mainly due to the insufficient model capacity under the specific perturbation model.

3 COLLABORATIVE NEURAL FRAMEWORK

In this section, we first present the motivation and overview of the proposed method, and then intro-
duce the technical details. Overall, we propose a collaborative neural framework to synergistically
promote adversarial robustness among multiple models, while maintaining decent standard general-
ization. Since conducting AT for deep learning models from scratch is computationally expensive
due to the extra inner maximization steps, we use the model pretrained on clean instances as a
warm-start for subsequent AT steps. The overview of the proposed method is illustrated in Fig. 2.

Motivation. Motivated by the empirical observations that 1) existing neural methods for VRPs
suffer from the severe adversarial robustness issue; 2) undesirable trade-off between adversarial ro-
bustness and standard generalization may exist when following the vanilla AT (even if increasing
the model capacity), we propose to adversarially train multiple models in a collaborative manner to
mitigate the above-mentioned issues within a reasonable computational budget. It then raises the re-
search question on how to effectively and efficiently train multiple models under the AT framework,
involving a pair of inner maximization and outer minimization, which will be detailed in the fol-
lowing parts. Note that despite the accuracy-robustness trade-off is a well-known research problem
in the literature of adversarial ML, most works focus on the continuous image domain. Due to the
needs for GT labels or the dependence on the imperceptible perturbation model, their methods (e.g.,
TRADES (Zhang et al., 2019), Robust Self-Training with AT (Raghunathan et al., 2020)) cannot be
directly adapted to the discrete VRP domain. We refer to Appendix E for further discussions.

Overview. Given the pretrained model θp, CNF deploys the AT on its M copies (i.e., Θ(0) =

{θ(0)j }Mj=1 ← θp) in a collaborative manner. At each training step, it first solves the inner maximiza-
tion optimization to synergistically generate the local (x̃) and global (x̄) adversarial instances, on
which the current models underperform. Then, in the outer minimization optimization, we jointly
train a neural router θr with all models Θ by RL in an end-to-end manner. By adaptively distributing
all instances to different models for training, the neural router could reasonably exploit the overall
capacity of models and thus achieve satisfactory load balancing and collaborative performance. Dur-
ing inference, we discard the neural router θr and use the trained models Θ to solve each instance.
The best solution among them is returned to reflect the final collaborative performance. We present
the pseudocode of CNF in Algorithm 1, and elaborate each part in the following subsections.
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Algorithm 1 Collaborative Neural Framework for VRPs
Input: training steps: E, number of models: M , attack steps: T , batch size: B, pretrained model: θp;
Output: robust model set Θ(E) = {θ(E)

j }
M
j=1;

1: Initialize Θ(0) = {θ(0)1 , · · · , θ(0)M } ← θp
2: for e = 1, . . . , E do
3: {xi}Bi=1 ← Sample a batch of clean instances
4: Initialize x̃

(0)
i,· , x̄

(0)
i ← xi, ∀i ∈ [1, B]

5: for t = 1, . . . , T do ▷ Inner Maximization

6: x̃
(t)
i,j ← Approximate the solutions of max ℓ(x̃

(t−1)
i,j ; θ

(e−1)
j ), ∀i ∈ [1, B], ∀j ∈ [1,M ]

7: θ
(e−1)

b(i) ← Choose the best-performing model for x̄(t−1)
i from Θ(e−1), ∀i ∈ [1, B]

8: x̄
(t)
i ← Approximate the solutions of max ℓ(x̄

(t−1)
i ; θ

(e−1)

b(i) ), ∀i ∈ [1, B]

9: end for
10: X ←

{
{xi, x̃

(T )
i,j , x̄

(T )
i }, ∀i ∈ [1, B], ∀j ∈ [1,M ]

}
▷ Outer Minimization

11: R← Evaluate X on Θ(e−1)

12: P̃ ← Softmax(f
θ
(e−1)
r

(X ,R))
13: Θ(e) ←Train Θ(e−1) on TopK(P̃) instances
14: R′ ← Evaluate X on Θ(e)

15: θ
(e)
r ← Update neural router θ(e−1)

r with the gradient∇
θ
(e−1)
r

L using Eq. (6)
16: end for

3.1 INNER MAXIMIZATION

The inner maximization aims to generate adversarial instances for training in the outer minimization,
which should be 1) effective in attacking the models Θ; 2) diverse to benefit the policy exploration
for VRPs. Typically, an iterative attack method generates local adversarial instances for each model
only based on its own parameter (e.g., the same θ in Eq. (3) is repetitively used throughout the
generation). Such local attack (line 6) only focuses on degrading each individual model, failing to
consider the ensemble effect of multiple models. Due to the existence of multiple models in CNF, we
are motivated to further develop the global attack (line 7-8), where each adversarial instance could
be generated using different model parameters. Concretely, given each input (clean) instance x, we
generate the global adversarial instance x̄ by attacking the corresponding best-performing model
in each iteration of the inner maximization. In doing so, compared with the sole local attack, the
generated adversarial instances are more diverse to successfully attack the models Θ (see Appendix
E for further discussions). Without loss of generality, we take the attacker from Zhang et al. (2022)
as an example, which directly maximizes the variant of the reinforcement loss as follows:

ℓ(x; θ) =
c(τ)

b(x)
log pθ(τ |x), (4)

where b(·) is the baseline function (as shown in Eq. (1)). On top of it, we generate the global
adversarial instance x̄ such that:

x̄(t+1) = ΠN [x̄(t) + α · ∇x̄(t)ℓ(x̄(t); θ
(t)
b )], θ

(t)
b = argminθ∈Θc(τ |x̄(t); θ), (5)

where x̄(t) is the global adversarial instance and θ
(t)
b is the best-performing model (w.r.t. x̄(t)) at

step t. If x̄(t) is out of the range, it would be projected back to the valid domain N by Π, such
as the min-max normalization for continuous variables (e.g., node coordinates) or another rounding
operation for discrete variables (e.g., node demands). Here we discard the sign operator in Eq. (3)
to relax the imperceptible constraint in VRPs. More details are presented in Appendix B.1.

In summary, the local attack is a special case of the global attack where the same model is chosen as
θb in each iteration. While the local attack aims to degrade a single model, the global attack could
be viewed as explicitly attacking the collaborative performance of multiple models Θ, which takes
into consideration the ensemble effect by attacking θb. In CNF, we involve adversarial instances that
are generated by both the local and global attacks to pursue better adversarial robustness. We also
collect clean instances as done in Zhang et al. (2022) to preserve the standard generalization.
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3.2 OUTER MINIMIZATION

After the adversarial instances are generated by the inner maximization, we collect a set of instances
X with |X | = N , which includes clean instances x, local adversarial instances x̃ and global adver-
sarial instances x̄, to train M models. Here a key problem is that how are the instances distributed
to models for their training, so as to achieve satisfactory load balancing (training efficiency) and
collaborative performance (effectiveness)? To solve this, we design an attention-based neural router,
and jointly train it with the models Θ to maximize the improvement of collaborative performance.

Concretely, we first evaluate the N instances on each model to obtain a cost matrix R ∈ RN×M .
The neural router θr takes as inputs the instances X andR, and outputs a logit matrix fθr (X ,R) =
P ∈ RN×M , where f is the decision function. Then, we apply Softmax function along the first
dimension of P to obtain the probability matrix P̃ , where the entity P̃ij represents the probability
of the ith instance being selected for the outer minimization of the jth model. For each model,
the neural router distributes the instances with TopK-largest predicted probabilities as a batch for
training (line 10-13). In doing so, all models have the same amount (K) of training instances, which
explicitly ensures the load balancing (see Appendix E). We also discuss other strategies of instance
distributing, such as sampling, instance-based choice, etc. More details can be found in Section 4.2.

After the models Θ are trained with the distributed instances, we further evaluate the N instances
on each model, obtaining a new cost matrix R′ ∈ RN×M . To pursue desirable collaborative per-
formance, it is expected that the neural router can reasonably exploit the overall capacity of models.
Since the action space is huge and the models are changing throughout the training, we resort to
reinforcement learning (based on trial-and-error) to optimize parameters of the neural router θr (line
14-15). Specifically, we set (minR−minR′) as the reward signal, and update θr by gradient ascent
to maximize the expected return with the following approximation:

∇θrL(θr|X ) = Ej∈(1,...,M),i∈TopK(P̃·j),P̃ [(minR−minR′)i∇θr log P̃ij ], (6)

where the min operator is applied along the last dimension of R and R′, since we would like to
maximize the improvement of collaborative performance after training with the selected instances.
Intuitively, if an entity in (minR−minR′) is positive, it means that, after training with the selected
instances, the collaborative performance of models on the corresponding instance is increased. Thus,
the corresponding action taken by the neural router should be reinforced, and vice versa. For exam-
ple, in Fig. 2, if the reward entity for the first instance x1 is positive, the probability of this action
(i.e., the red one in the first row of P) will be reinforced after optimization. Note that the unselected
(e.g., black ones) will be masked out in Eq. (6). In doing so, the neural router learns to effectively
distribute instances that may benefit the boost of collaborative performance. More details of the
model structure and the analysis of the learned routing policy are presented in Appendix C.

4 EXPERIMENTS

In this section, we empirically verify the effectiveness and generalizability of the proposed frame-
work against attacks specialized for VRPs, and conduct further analyses to provide the underlying
insights. Specifically, our experiments focus on two attack methods (Zhang et al., 2022; Lu et al.,
2023), since the accuracy-robustness trade-off exists when conducting vanilla AT to defend against
them. We conduct the main experiments on POMO (Kwon et al., 2020) with the attack generator
from Zhang et al. (2022), and further demonstrate the generalizability of the proposed framework
on MatNet (Kwon et al., 2021) with the attack generator from Lu et al. (2023). More details of the
experimental setups, data generation and additional empirical results are presented in Appendix D.

Baselines. 1) Traditional VRP methods: we solve TSP instances by Concorde and LKH3 (Hels-
gaun, 2017), and CVRP instances by hybrid genetic search (HGS) (Vidal, 2022) and LKH3. 2) Neu-
ral methods: we compare our method with the pretrained base model POMO (∼1M parameters),
and its variants training with various defensive methods, such as the vanilla adversarial training
(POMO AT), the defensive method proposed by the attacker (Zhang et al., 2022) (POMO HAC),
and the diversity training (Kariyappa & Qureshi, 2019) from the literature of the adversarial robust-
ness with ensembles (POMO DivTrain). Specifically, POMO AT adversarially trains the models
by first generating local adversarial instances in the inner maximization, and then minimizing their
empirical risks in the outer minimization. POMO HAC further improves the outer minimization
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Table 1: Performance evaluation over 1K test instances. The bracket includes the number of models.

n = 100 n = 200
Uniform (100) Fixed Adv. (100) Adv. (100) Uniform (200) Fixed Adv. (200) Adv. (200)
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

T
SP

Concorde 0.000% 0.3m 0.000% 0.3m – – 0.000% 0.6m 0.000% 0.6m – –
LKH3 0.000% 1.3m 0.002% 2.1m – – 0.000% 3.9m 0.005% 5.8m – –
POMO (1) 0.144% 0.1m 35.803% 0.1m 35.803% 0.1m 0.736% 0.5m 63.477% 0.5m 63.477% 0.5m
POMO AT (1) 0.365% 0.1m 0.390% 0.1m 0.330% 0.1m 2.151% 0.5m 1.248% 0.5m 1.154% 0.5m
POMO AT (3) 0.255% 0.3m 0.295% 0.3m 0.243% 0.3m 1.884% 1.5m 1.090% 1.5m 1.011% 1.5m
POMO HAC (3) 0.135% 0.3m 0.344% 0.3m 0.316% 0.3m 0.683% 1.5m 1.308% 1.5m 1.273% 1.5m
POMO DivTrain (3) 0.255% 0.3m 0.297% 0.3m 0.254% 0.3m 1.875% 1.5m 1.093% 1.5m 1.026% 1.5m
CNF Greedy (3) 0.187% 0.3m 0.314% 0.3m 0.280% 0.3m 0.868% 1.5m 1.108% 1.5m 1.096% 1.5m
CNF (3) 0.118% 0.3m 0.236% 0.3m 0.217% 0.3m 0.614% 1.5m 0.954% 1.5m 0.952% 1.5m

C
V

R
P

HGS 0.000% 6.6m 0.000% 14.6m – – 0.000% 0.4h 0.000% 1.2h – –
LKH3 0.538% 18.1m 0.344% 23.0m – – 1.116% 0.5h 0.761% 0.6h – –
POMO (1) 1.209% 0.1m 3.983% 0.1m 3.983% 0.1m 2.122% 0.6m 16.173% 0.8m 16.173% 0.8m
POMO AT (1) 1.456% 0.1m 0.882% 0.1m 0.935% 0.1m 3.249% 0.6m 1.384% 0.6m 1.435% 0.6m
POMO AT (3) 1.256% 0.3m 0.767% 0.3m 0.809% 0.3m 2.919% 1.8m 1.253% 1.8m 1.296% 1.8m
POMO HAC (3) 1.085% 0.3m 0.829% 0.3m 0.848% 0.3m 1.974% 1.8m 1.374% 1.8m 1.367% 1.8m
POMO DivTrain (3) 1.254% 0.3m 0.754% 0.3m 0.809% 0.3m 2.946% 1.8m 1.220% 1.8m 1.302% 1.8m
CNF Greedy (3) 1.112% 0.3m 0.785% 0.3m 0.821% 0.3m 1.969% 1.8m 1.316% 1.8m 1.353% 1.8m
CNF (3) 1.073% 0.3m 0.730% 0.3m 0.769% 0.3m 2.031% 1.8m 1.193% 1.8m 1.198% 1.8m

by optimizing a hardness-aware instance-reweighted loss function on the mixed dataset, including
both clean and local adversarial instances. POMO DivTrain improves the ensemble diversity by
minimizing the cosine similarity between the gradients of models w.r.t. the input. We further com-
pare our method with CNF Greedy by replacing the neural router with the heuristic greedy selection
method. More implementation details of baselines are provided in Appendix D.1.

Training Setups. CNF starts with a pretrained model, and then adversarially trains its M copies in a
collaborative way. We consider two scales of training instances n ∈ {100, 200}. For the pretraining
stage, the model is trained on clean instances following the uniform distribution. We use the open-
source pretrained models1 for n = 100, and retrain the models for n = 200. Following the original
training setups from Kwon et al. (2020), Adam optimizer (Kingma & Ba, 2015) is used with the
learning rate of 1e − 4, the weight decay of 1e − 6 and the batch size of B = 64. To achieve full
convergence, we pretrain the models on 300M and 100M clean instances for TSP200 and CVRP200,
respectively. After obtaining the pretrained model, we use it to initialize M = 3 models, and further
adversarially train them on 5M and 2.5M instances for n = 100 and n = 200, respectively. To
save the GPU memory, we reduce the batch size to B = 32 for n = 200. The optimizer setting is
the same as the one in the pretraining stage, except that the learning rate is decayed by 10 for the
last 40% training instances. For the mixed data collection, we collect B clean instances, MB local
adversarial instances and B global adversarial instances in each training step.

Inference Setups. For neural methods, we use the greedy rollout with x8 instance augmentations
following Kwon et al. (2020). We report the average gap over the test dataset containing 1K in-
stances. Concretely, the gap is computed w.r.t. the traditional VRP solvers (i.e., Concorde for TSP,
and HGS for CVRP). If multiple models exist, we report the collaborative performance, where the
best gap among all models is recorded for each instance. The reported time is the total time to solve
the entire dataset. We consider three evaluation metrics: 1) Uniform (standard generalization): the
performance on clean instances whose distributions are the same as the pretraining ones; 2) Fixed
Adv. (adversarial robustness): the performance on adversarial instances generated by attacking
the pretrained model. It mimics the black-box setting, where the attacker generates adversarial in-
stances using a surrogate model due to the inaccessibility to the current model and the transferability
of adversarial instances; 3) Adv. (adversarial robustness): the performance on adversarial instances
generated by attacking the current model. For methods with multiple (M ) models, it generates MK
adversarial instances, from which we randomly sample 1K instances to construct the test dataset. It
is the conventional white-box metric used to evaluate adversarial robustness in the literature of AT.

4.1 PERFORMANCE EVALUATION

The results are shown in Table 1. We have conducted t-test with the threshold of 5% to verify the
statistical significance. The results of traditional VRP methods on the metric of Adv. is not shown
since the generated adversarial dataset is different for each neural method. For all neural meth-
ods, we report the inference time on a single GPU. Moreover, for neural methods with multiple

1https://github.com/yd-kwon/POMO
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Figure 3: Ablation studies on TSP100. The metrics of Uniform and Fixed Adv. are reported.

(M ) models (e.g., POMO AT (3)), we further develop an implementation of parallel evaluation on
multiple GPUs, which could reduce their inference time by almost M times. From the results, we
observe that 1) traditional VRP methods are relatively more robust than the neural methods against
crafted perturbations, demonstrating the importance and necessity of improving adversarial robust-
ness for neural methods; 2) the evaluation metrics of Fixed Adv. and Adv. are almost consistent in
the context of VRPs; 3) our method consistently outperforms baselines, and achieves high standard
generalization and adversarial robustness concurrently. For our method, we further give an exam-
ple about the performance of each model on TSP100 as shown in Fig. 5. Although not all models
perform well on both clean and adversarial instances, the collaborative performance is quite good,
demonstrating the capability of CNF in reasonably exploiting the overall capacity of models.

4.2 ABLATION STUDY

We conduct extensive ablation studies on TSP100 to demonstrate the effectiveness and sensitivity of
our method. Note that the setups are slightly different from the training ones (e.g., half the training
instances). The detailed results and setups are presented in Fig. 3 and Appendix D.1, respectively.

Ablation on Components. We investigate the role of each component in our method by removing
them separately. As demonstrated in Fig. 3(a), despite both components contribute to the collabora-
tive performance, the neural router exhibits a bigger effect due to its favorable potentials to elegantly
exploit training instances and model capacity, especially in the presence of multiple models.

Ablation on Hyperparameters. We investigate the effect of the number of trained models, which is
a key hyperparameter of our method, with respect to the collaborative performance. The results are
shown in Fig. 3(b), where we observe that increasing the number of models could further improve
the collaborative performance. However, we use M = 3 in the main experiments due to the trade-off
between performance and computational complexity. We refer to Appendix D.5 for more results.

Ablation on Routing Strategies. We further discuss different routing strategies, including neu-
ral and heuristic ones. Specifically, given the logit matrix P predicted by the neural router, there
are various ways to distribute the instances: 1) Model choice with TopK (M-TopK): each model
chooses potential instances with TopK-largest logits, which is the default strategy (K = B) in CNF;
2) Model choice with sampling (M-Sample): each model chooses potential instances by sampling
from the probalility distribution (i.e., scaled logits); 3/4) Instance choice with TopK/sampling (I-
TopK/I-Sample): in contrast to the model choice, each instance chooses potential model(s) either
by TopK or sampling. The probability matrix P̃ is obtained by taking Softmax along the first and
last dimension of P for model choice and instance choice, respectively. Unlike the model choice,
instance choice cannot guarantee load balancing. For example, the majority of instances may choose
a dominant model (if exists), leaving the remaining models underfitting and therefore weakening the
collaborative performance; 5) Random: the instances are randomly distributed to each model; 6)
Self-training: each model is trained on the adversarial instances generated by itself. The results in
Fig. 3(c) show that M-TopK performs the best among all strategies. Moreover, as discussed above,
we empirically observe that the dominant model tends to appear when using I-TopK or I-Sample.

4.3 OUT-OF-DISTRIBUTION GENERALIZATION

In contrast to other domains, the set of valid problems is not just a low-dimensional manifold in
a high-dimensional space, and hence the manifold hypothesis (Stutz et al., 2019) does not apply to
VRPs (or COPs). Therefore, it is critical for neural methods to perform well on adversarial instances
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Table 2: Generalization evaluation on synthetic TSP datasets. The model is only trained on n=100.

Cross-Distribution Cross-Size Cross-Size & Distribution
Rotation (100) Explosion (100) Uniform (50) Uniform (200) Rotation (200) Explosion (200)
Gap Time Gap Time Gap Time Gap Time Gap Time Gap Time

Concorde 0.000% 0.3m 0.000% 0.3m 0.000% 0.2m 0.000% 0.6m 0.000% 0.6m 0.000% 0.6m
LKH3 0.000% 1.2m 0.000% 1.2m 0.000% 0.4m 0.000% 3.9m 0.000% 3.3m 0.000% 3.5m
POMO (1) 0.471% 0.1m 0.238% 0.1m 0.064% 0.1m 1.658% 0.5m 2.936% 0.5m 2.587% 0.5m
POMO AT (1) 0.640% 0.1m 0.364% 0.1m 0.151% 0.1m 2.667% 0.5m 3.462% 0.5m 2.989% 0.5m
POMO AT (3) 0.508% 0.3m 0.263% 0.3m 0.085% 0.1m 2.362% 1.5m 3.176% 1.5m 2.688% 1.5m
POMO HAC (3) 0.204% 0.3m 0.107% 0.3m 0.038% 0.1m 1.414% 1.5m 2.184% 1.5m 1.718% 1.5m
POMO DivTrain (3) 0.502% 0.3m 0.255% 0.3m 0.078% 0.1m 2.356% 1.5m 3.176% 1.5m 2.707% 1.5m
CNF (3) 0.193% 0.3m 0.084% 0.3m 0.036% 0.1m 1.383% 1.5m 2.055% 1.5m 1.672% 1.5m

when striving for a broader Out-of-Distriburion (OOD) generalization in VRPs (see Appendix E).
In this section, we further evaluate the OOD generalization performance on unseen instances from
both synthetic and benchmark datasets. The empirical results demonstrate that raising robustness
against adversarial instances by CNF favorably promotes various types of generalization, indicating
the potential existence of neural VRP solvers with high generalization and robustness concurrently.
The data generation and full results could be found in Appendix D.2 and D.3, respectively.

Synthetic Datasets. We consider three generalization settings, i.e., cross-distribution, cross-size,
and cross-size & distribution. The results are shown in Table 2, from which we observe that simply
conducting the vanilla AT somewhat hurts the OOD generalization, while our method could signif-
icantly improve it. Since adversarial robustness is known as a kind of local generalization prop-
erty (Goodfellow et al., 2015; Madry et al., 2018), the improvements in OOD generalization could
be viewed as a byproduct of defending against adversarial instances and balancing the trade-off.

Benchmark Datasets. We further evaluate all methods on the real-world benchmark instances,
such as TSPLIB (Reinelt, 1991) and CVRPLIB (including Set-X (Uchoa et al., 2017) and Set-
XML100 (Queiroga et al., 2022)). The results are shown in Appendix D.3, where we observe that
our method performs well on most of the instances. We also present the results of Omni-VRP (Zhou
et al., 2023), which is a recent work leveraging the meta-learning techniques (Finn et al., 2017;
Nichol et al., 2018) to directly deal with the OOD generalization issue of neural VRP methods.
Note that its results are only for reference due to different problem settings.

4.4 VERSATILITY

To demonstrate the generalizability of CNF, we further evaluate it against another attack method (Lu
et al., 2023). Specifically, they attack MatNet (Kwon et al., 2021) by lowering the cost of a partial
asymmetric TSP (ATSP) instance. When simply following the vanilla AT, the undesirable trade-off
could be also observed in the empirical results of Lu et al. (2023), while our method is able to
train models with both high standard generalization and adversarial robustness. The detailed attack
method, training setups, and results are presented in Appendix B.3, D.1 and D.4, respectively.

5 CONCLUSION

This paper studies the crucial yet underexplored adversarial defense of neural VRP methods. We
propose a collaborative neural framework (CNF) to adversarially train multiple models in a collabo-
rative manner, which could achieve high standard generalization and adversarial robustness simulta-
neously. Our work demonstrates the favorable potential of defending against adversarial instances in
promoting various types of generalization of neural VRP methods. We hope our insights could help
the community to build a more robust and generalizable neural VRP solver. The limitation of this
work is the increased computational complexity due to the need of synergistically training multiple
models. Fortunately, based on the empirical results, the CNF with 3 models have already achieved
decent performance. It could even outperform the vanilla AT trained with 5 models, demonstrating
a better trade-off between performance and computational complexity. Interesting future research
directions may include: 1) designing efficient and effective attack methods for other COPs; 2) pur-
suing better adversarial robustness with fewer computation resources, such as the conditional com-
putation (Jacobs et al., 1991; Shazeer et al., 2017) and sharing parameters (Xin et al., 2021a) for
the encoder-decoder-based architecture; 3) explicitly considering OOD generalization when dealing
with adversarial robustness, or vice versa; and 4) investigating whether large language models (Yang
et al., 2023) are able to (robustly) approximate optimal solutions to COPs.
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REPRODUCIBILITY STATEMENT

We promise that the source code, test datasets (i.e., instances and optimal solutions), and pretrained
models will be made public for research reproducibility. The experimental setups for training and
evaluation as well as the hyperparamters are detailedly described in Section 4 and Appendix D.

APPENDIX

The Appendix is organized as follows. In Appendix A, we give a comprehensive review of the
related works. In Appendix B, we give an introduction to the attack methods for vehicle routing
problems (VRPs). In Appendix C, we present the details and further analyses about the neural
router. In Appendix D, we describe the experimental setups, data generation and additional empirical
results. In Appendix E, we conclude our paper with further discussions.

A RELATED WORK

Neural Methods for VRPs. Most neural methods for VRPs learn construction heuristics, which
are mainly divided into two categories, i.e., autoregressive and non-autoregressive ones. Autore-
gressive methods sequentially construct the solution by adding one feasible node at a step. Vinyals
et al. (2015) proposes the Pointer Network (Ptr-Net) to solve TSP with supervised learning. Sub-
sequent works train Ptr-Net with reinforcement learning (RL) to solve TSP (Bello et al., 2017) and
CVRP (Nazari et al., 2018). Kool et al. (2018) introduces the attention model (AM) based on the
Transformer architecture (Vaswani et al., 2017) to solve a wide range of COPs including TSP and
CVRP. Kwon et al. (2020) further proposes the policy optimization with multiple optima (POMO),
which improves upon AM by exploiting solution symmetries. Regarding non-autoregressive meth-
ods, the solution is constructed in a one-shot manner, without iterative forward passes through the
model (decoder). Joshi et al. (2019) leverages the graph convolutional network to predict the proba-
bility of each edge appearing on the optimal tour (i.e., heat-map) using supervised learning. Recent
works (Fu et al., 2021; Qiu et al., 2022; Sun & Yang, 2023) further improve its performance and scal-
ability by using advanced training paradigms (e.g., RL), search strategies (e.g., active search (Bello
et al., 2017; Hottung et al., 2022) and Monte-Carlo Tree Search (Silver et al., 2016)) and models
(e.g., diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020)). We refer to Ma et al. (2019);
Kwon et al. (2021); Xin et al. (2021a); Kim et al. (2022); Choo et al. (2022); Grinsztajn et al. (2022)
for further advances on learning construction heuristics, and to Dai et al. (2017); Selsam et al.
(2019); Yolcu & Póczos (2019); Ahn et al. (2020) for other COPs.

On the other hand, some neural methods learn improvement heuristics to refine an initial feasible
solution iteratively, until a termination condition is satisfied. In this line of research, the classic local
search methods (e.g., 2-opt (Croes, 1958), large neighborhood search (LNS) (Shaw, 1998)) and spe-
cialized heuristic solvers for VRPs (e.g., Lin-Kernighan-Helsgaun (LKH) (Helsgaun, 2000; 2017))
are usually exploited (Chen & Tian, 2019; Lu et al., 2020; Hottung & Tierney, 2020; d O Costa
et al., 2020; Wu et al., 2021; Wang et al., 2021; Ma et al., 2021; Xin et al., 2021b; Kim et al., 2021;
Hudson et al., 2022). In general, the improvement heuristics could achieve better performance than
the construction ones, but at the expense of much longer inference time.

Robustness of Neural Methods. There is a recent research trend on the robustness of neural meth-
ods for COPs (Varma & Yoshida, 2021; Geisler et al., 2022; Lu et al., 2023), with only a few works
on VRPs (Zhang et al., 2022; Geisler et al., 2022; Lu et al., 2023). In general, they primarily focus
on attacking neural construction heuristics by introducing effective ways to generate adversarial
instances that are underperformed by the current model. Following the AT paradigm, Zhang et al.
(2022) perturbs node coordinates of TSP instances by solving an inner maximization problem (simi-
lar to the fast gradient sign method (FGSM) (Goodfellow et al., 2015)), and trains the model with an
instance-reweighted loss function. Geisler et al. (2022) proposes an efficient and sound perturbation
model, which ensures the optimal solution to the perturbed TSP instance could be easily derived. It
adversarially inserts several nodes into the clean instance by maximizing the cross-entropy over the
edges, so that the predicted route is maximally different from the derived optimal one. Lu et al.
(2023) leverages a no-worse optimal cost guarantee (i.e., by lowering the cost of a partial problem)
to generate adversarial instances for asymmetric TSP. However, existing methods mainly follow the
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Figure 4: An illustration of generated adversarial instances (i.e., the grey ones). (a) An adversarial
instance generated by Zhang et al. (2022) on CVRP, where the triangle represents the depot node. A
deeper color denotes a heavier node demand; (b) An adversarial instance generated by Geisler et al.
(2022) on TSP, where the red nodes represent the inserted adversarial nodes; (c) An adversarial
instance generated by Lu et al. (2023) on ATSP, where the cost of an edge is in half.

vanilla AT (Madry et al., 2018) to deploy the defense, leaving a considerable gap to further consol-
idate the robustness. More advanced AT variants, such as TRADES (Zhang et al., 2019), AT with
ensemble (Tramèr et al., 2018; Pang et al., 2019; Yang et al., 2020a), and AT in RL (Pinto et al.,
2017) may be of interest, but it is non-trivial to adapt them to the discrete COP domain due to their
dependence on the imperceptible perturbation model (see Appendix E). In this paper, we specialize
a general collaborative neural framework to learn robust neural methods for VRPs.

B ATTACK METHODS

In this section, we first give a definition of the adversarial instance in VRPs, and then present the
details of recently proposed attack methods for neural VRP solvers, including perturbing input at-
tributes (Zhang et al., 2022), adversarially inserting new nodes (Geisler et al., 2022), and lowering
the cost of a partial problem instance to ensure no-worse theoretical optimum (Lu et al., 2023). They
could generate instances that are underperformed by the current model.

We define the adversarial instance as the instance that 1) is obtained by the perturbation model
G within the neighborhood of the clean instance, and 2) is underperformed by the current model.
Formally, given a clean VRP instance x = {xc, xd}, where xc ∈ Nc is the continuous attribute
(e.g., node coordinates) within the valid range Nc, and xd ∈ Nd is the discrete attribute (e.g.,
node demand) within the valid range Nd, the adversarial instance x̃ is found by the perturbation
model G around the clean instance x, on which the current model may be vulnerable. Tech-
nically, the adversarial instance x̃ can be constructed by adding crafted perturbations γxc , γxd

to
the corresponding attribute of the clean instance, and then project them back to the valid domain:
x̃c = ΠNc

(xc+α·γxc
), x̃d = ΠNd

(xd+α·γxd
), where Π denotes the projection operator (e.g., min-

max normalization), and α denotes the attack budget. The crafted perturbations could be obtained
by various perturbation models, such as the one in Eq. 7, e.g., γc = ∇xc

ℓ(x; θ), γd = ∇xd
ℓ(x; θ),

where θ is the model parameters, ℓ is the loss function. We omit the attack step t for notation sim-
plicity. An illustration of the adversarial instance generated by each attack method is shown in Fig.
4. Below, we follow the notations from the main paper, and introduce each attack method in details.

B.1 ATTRIBUTE PERTURBATION

The attack generator from Zhang et al. (2022) is applied to attention-based models (Kool et al.,
2018; Kwon et al., 2020) by perturbing attributes (e.g., node coordinates) of input instances. As
introduced in Section 3, it generates adversarial instances by directly maximizing the reinforcement
loss variant (so called the hardness measure in Zhang et al. (2022))). We take the perturbation on
the node coordinate as an example. Suppose given the clean instance x (i.e., x̃(0) = x) and model
parameter θ, the solution to the inner maximization could be approximated as follows:

x̃(t+1) = ΠNc [x̃
(t) + α · ∇x̃(t)ℓ(x̃(t); θ(t))], (7)

where x̃(t) is the (local) adversarial instances and θ(t) is the model parameters, at step t. Here we use
Nc to represent the valid domain of node coordinates (i.e., unit square U(0, 1)) for simplicity. After
each iteration, it checks whether x̂(t) = x̃(t) + α · ∇x̃(t)ℓ(x̃(t); θ(t)) is within the valid domain Nc

or not. If it is out of Nc, the projection operator (i.e., min-max normalization) is applied as follows:

ΠNc
(x̂(t)) =

x̂(t) −min x̂(t)

max x̂(t) −min x̂(t)
(maxNc −minNc). (8)
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Note that it originally only focuses on TSP, where the node coordinates are perturbed. We further
adapt it to CVRP by perturbing both the node coordinates and node demands. The implementation
is straightforward, except that we set the valid domain of node demands asNd = {1, . . . , 9}. For the
perturbations on node demands, the projection operator applies another round operation as follows:

ΠNd
(x̂(t)) = ⌈ x̂(t) −min x̂(t)

max x̂(t) −min x̂(t)
(maxNd −minNd)⌉. (9)

B.2 NODE INSERTION

An efficient and sound perturbation model is proposed by Geisler et al. (2022), which, given the
optimal solution y to the clean instance x sampled from the data distributionD, guarantees to directly
derive the optimal solution ỹ to the adversarial instance x̃ without running a solver. The attack is
applied to the GCN (Joshi et al., 2019), which is a non-autoregressive construction method for TSP. It
learns the probability of each edge occurring in the optimal solution (i.e., heat-map) with supervised
learning. Following the AT framework, the objective function could be written as follows:

min
θ

E(x,y)∼D max
x̃

ℓ(fθ(x̃), ỹ), with x̃ ∈ G(x, y) ∧ ỹ = h(x̃, x, y), (10)

where ℓ is the cross-entropy loss; G is the perturbation model that describes the possible perturbed
instances x̃ around the clean instance x; and h is used to derive the optimal solution ỹ based on
(x̃, x, y) without running a solver. In the inner maximization, the adversarial instance x̃ is generated
by inserting several new nodes into x (below we take inserting one new node as an example), which
adheres to below proposition and proof (by contradiction) borrowed from Geisler et al. (2022):

Proposition 1. Let Z /∈ V be an additional node to be inserted, w(E) is an edge weight, and P,Q
are any two neighbouring nodes in the original optimal solution y. Then, the new optimal solution
ỹ (including Z) is obtained from y through inserting Z between P and Q if ∄(A,B) ∈ E \ {(P,Q)}
with A ̸= B s.t. w(A,Z) + w(B,Z)− w(A,B) ≤ w(P,Z) + w(Q,Z)− w(P,Q).

Proof. Let (R,S) ∈ E \ {(P,Q)} to be two neighboring nodes of Z on ỹ. Assume w(P,Z) +
w(Q,Z) − w(P,Q) < w(R,Z) + w(S,Z) − w(R,S) and the edges (P,Z) and (Q,Z) are not
contained in ỹ (i.e., Z is inserted between R and S rather than P and Q).

Below inequalities hold by the optimality of y and ỹ:

c(ỹ)− w(R,Z)− w(S,Z) + w(R,S) ≥ c(y). (11)

c(y) + w(P,Z) + w(Q,Z)− w(P,Q) ≥ c(ỹ). (12)
Therefore, we have

c(y) + w(P,Z) + w(Q,Z)− w(P,Q) ≥ c(ỹ) ≥ c(y) + w(R,Z) + w(S,Z)− w(R,S), (13)

which leads to a contradiction against the assumption (i.e., w(P,Z) + w(Q,Z) − w(P,Q) <
w(R,Z) + w(S,Z)− w(R,S)). The proof is completed.

They use a stricter condition ∄(A,B) ∈ E \ {(P,Q)} with A ̸= B s.t. w(A,Z) + w(B,Z) −
w(A,B) ≤ w(P,Z) + w(Q,Z) − w(P,Q) in the proposition, since it is unknown which nodes
could be R and S in ỹ. Moreover, for the metric TSP, whose node coordinate system obeys the
triangle inequality (e.g., euclidean distance), it is sufficient if the condition of Proposition 1 holds
for (A,B) ∈ E \ ({(P,Q)} ∪ H) with A ̸= B where H denotes the pairs of nodes both on the
Convex HullH ∈ CH(E) that are not a line segment of the Convex Hull. It is due to the fact that the
optimal route ỹ must be a simple polygon (i.e., no crossings are allowed) in the metric space. This
conclusion was first stated for the euclidean space as ”the intersection theorem” by Cutler (1980)
and is a direct consequence of the triangle inequality.

Based on the above-mentioned proposition, the optimization of inner maximization involves: 1)
obtaining the coordinates of additional node Z by gradient ascending (e.g., maximizing l such that
the model prediction is maximally different from the derived optimal solution ỹ); 2) penalizing if Z
violates the constraint in Proposition 1. Unfortunately, the constraint is non-convex and hard to find
a relaxation. Instead of optimizing the Lagrangian (which requires extra computation for evaluating
fθ), the vanilla gradient descent is leveraged with the constraint as the objective:

Z ← Z − η∇Z [w(P,Z) + w(Q,Z)− w(P,Q)− (min
A,B

w(A,Z) + w(B,Z)− w(A,B))], (14)

17



Under review as a conference paper at ICLR 2024

where η is the step size. After we find Z satisfying the constraint, the adversarial instance x̃ and the
corresponding optimal solution ỹ could be constructed directly. Finally, the outer minimization takes
(x̃, ỹ) as inputs to train the robust neural solvers. This attack method could be easily adopted by our
proposed framework, where θ is replaced by the best model θb when maximizing the cross-entropy
loss (i.e., maxx̃ ℓ(fθb(x̃), ỹ)) in the inner maximization optimization. However, due to the efficiency
and soundness of the perturbation model, it does not suffer from the undesirable trade-off following
the vanilla AT (Geisler et al., 2022). Therefore, we mainly focus on other attack methods (Zhang
et al., 2022; Lu et al., 2023) in our experiments.

B.3 NO-WORSE THEORETICAL OPTIMUM

The attack method specialized for graph-based COPs is proposed by Lu et al. (2023). It resorts
to the black-box adversarial attack method by training a reinforcement learning based attacker, and
therefore could be used to generate adversarial instances for both differentiable (e.g., learning-based)
and non-differentiable (e.g., heuristic or exact) solvers. In this paper, we only consider the learning-
based neural solvers for VRPs. Specifically, it generates the adversarial instance x̃ by modifying the
clean instance x (e.g., lowering the cost of a partial instance) under the no worse optimum condition,
which requires c(ỹ) ≤ c(y) if we are solving a minimization optimization problem. The attack is
successful (w.r.t. the neural solver θ) if the output solution to x̃ is worse than the one to x (i.e.,
c(τ̃ |x̃; θ) > c(τ |x; θ) ≥ c(y) ≥ c(ỹ)). The training of the attacker is hence formulated as follows:

max
x̃

. c(τ̃ |x̃; θ)− c(τ |x; θ),

s.t. x̃ = G(x, T ; θ), c(ỹ) ≤ c(y),
(15)

where G(x, T ; θ) represents the deployment of the attacker G trained on the given model (or solver)
θ to conduct T modifications on the clean instance x. It is trained with the objective as in Eq.
(15) using the RL algorithm (i.e., Proximal Policy Optimization (PPO) (Schulman et al., 2017)).
Specifically, the attack process is modelled as a MDP, where, at step t, the state is the current
instance x̃(t); the action is to select an edge whose weight is going to be half; and the reward is the
increase of the objective: c(τ (t+1)|x̃(t+1); θ)− c(τ (t)|x̃(t); θ). This process is iterative until T edges
are modified. We use ROCO to represent this attack method in the remaining of this paper.

ROCO has been applied to attack MatNet (Kwon et al., 2021) on asymmetric TSP (ATSP). As shown
in the empirical results of Lu et al. (2023), conducting the vanilla AT may suffer from the trade-off
between standard generalization and adversarial robustness. To solve the problem, we further apply
our method to defend against it. However, it is not straightforward to adapt ROCO to the inner max-
imization of CNF, since ROCO belongs to the black-box adversarial attack method, which does not
directly rely on the parameters (or gradients) of the current model to generate adversarial instances.
Concretely, we first train an attacker Gj using RL for each model θj , obtaining M attackers for M
models (Θ = {θj}M−1

j=0 ) in CNF. For the local attack, we simply use Gj to generate local adversarial
instances for θj by Gj(x, T ; θj). For the global attack, we decompose the generation process (i.e.,
modifying T edges) of a global adversarial instance x̄ as follows:

x̄(t+1) = G
(t)
b (x̄(t), 1; θ

(t)
b ), θ

(t)
b = argminθ∈Θc(τ |x̄(t); θ), (16)

where x̄(t) is the global adversarial instance; θ(t)b is the best-performing model (w.r.t. x̄(t)); and G
(t)
b

is the attacker corresponding to θ
(t)
b , at step t ∈ [0, T −1]. Since the model θj is updated throughout

the optimization, to save the computation, we fix the attacker Gj and only update (by retraining) it
every E epochs using the latest model. More details and results could be found in Appendix D.4.

C NEURAL ROUTER

In this section, we present the model structure of the neural router and the learned routing policy.

C.1 MODEL STRUCTURE

Without loss of generality, we take the TSP as an example, where an instance consists of coordinates
of n nodes. The attention-based neural router takes as inputs N instances X ∈ RN×n×2 and the
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Figure 5: Left panel: Performance of each model θj and the overall collaboration performance of
Θ, with M = 3. Right panel: A demonstration (i.e., attention map) of the learned routing policy
for the model θ0. The horizontal axis is the index of the training instance. Concretely, 0-2: clean
instances x; 3-11: local adversarial instances x̃; 12-14: global adversarial instances x̄. The vertical
axis is the epoch of the checkpoint. A deeper color represents a higher probability to be chosen.

cost matrix R ∈ RN×M , where M is the number of models in CNF. The neural router first embeds
the raw inputs into h-dimensional (i.e., 128) features as follows:

FI = Mean(W1X + b1), FR = W2R+ b2, (17)

where FI ∈ RN×h and FR ∈ RN×h are features of instances and cost matrices, respectively;
W1,W2 are weight matrices; b1, b2 are biases; and the Mean operator is taken along the second
dimension of inputs. Then, a single-head attention layer (i.e., glimpse (Bello et al., 2017)) is applied:

Q = WQ([FI , FR]), K = WK(Emb(M)), (18)

where [·, ·] is the horizontal concatenation operator; Q ∈ RN×h is the query matrix; K ∈ RM×h is
the key matrix; WQ,WK are the weight matrices; and Emb(M) ∈ RM×h is a learnable embedding
layer representing the features of M models. The logit matrix P ∈ RN×M is calculated as follows:

P = C · tanh(QKT

√
h

), (19)

where the result is clipped by the tanh function with C = 10 following Bello et al. (2017). When
the neural router is applied to CVRP, we only slightly modify Q by further concatenating it with the
features of the depot and node demands, while keeping others the same.

C.2 LEARNED ROUTING POLICY

Below, we try to briefly interpret the learned routing policy. We first show the performance of
each model θj ∈ Θ in the left panel of Fig. 5, which is trained on TSP100 following the training
setups described in Section 4. Although not all models perform well on both clean and adversarial
instances, the collaborative performance of Θ is quite good, demonstrating the capability of CNF in
reasonably exploiting the overall capacity of models. We further give a demonstration (i.e., attention
map) of the learned policy in the right panel of Fig. 5. We take the first model θ0 as an example,
which performs well on clean instances. For simplicity and readability of the results, the batch size is
set to B = 3, and therefore the number of input instances X into the neural router is 15 (see Section
3 and 4). The neural router then distributes B = 3 instances to each model (if with model choice
routing strategies). Note that the instances for different epochs are not the same, while the types
remain the same (e.g., instances with ids 0-2 are clean instances). From the results, we observe that
1) the learned policy tends to distribute clean instances and (local and global) adversarial instances
to the selected model at the beginning of training, when the model is vulnerable to adversarial
instances; 2) clean instances are likely to be selected at the end of training, when the model is
relatively robust to adversarial instances while trying to mitigate the trade-off.

D EXPERIMENTS

D.1 EXTRA SETUPS

Setups for Baselines. All experiments are conducted on a machine with NVIDIA V100S-PCIE
cards and AMD EPYC 7513 CPU at 2.6GHz. As shown in Section 4, we compare our method with
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several strong traditional and neural VRP methods. Following the conventional setups in the com-
munity (Kool et al., 2018; Kwon et al., 2020; Hottung et al., 2022), for specialized heuristic solvers
such as Concorde, LKH3 and HGS, we run them on 32 CPU cores for solving TSP and CVRP in-
stances, while running neural methods on one GPU card. Below, we provide the implementation
details of baselines. 1) Concorde: We use Concorde2 Version 03.12.19 with the default setting, to
solve TSP instances. 2) LKH3 (Helsgaun, 2017): We use LKH33 Version 3.0.8 to solve TSP and
CVRP instances. For each instance, we run LKH3 with 10000 trails and 1 run. 3) HGS (Vidal,
2022): We run HGS4 with the default hyperparameters to solve CVRP instances. The maximum
number of iterations without improvement is set to 20000. 4) For POMO (Kwon et al., 2020), in
addition to the open-source pretrained model, we further train it using the vanilla AT framework
(POMO AT). Specifically, following the training setups as presented in Section 4, we use the pre-
trained model to initialize M models, and train them individually using local adversarial instances
generated by each model. 5) POMO HAC (Zhang et al., 2022) further improves upon the vanilla
AT. It constructs a mixed dataset with both local adversarial instances and clean instances for train-
ing afterwards. In the outer minimization, it optimizes an instance-reweighted loss function based
on the instance hardness. Following their setups, the weight for each instance xi is defined as:
wi = exp(F(H(xi))/T )/

∑
j exp(F(H(xj))/T ), where F is the transformation function (i.e.,

tanh). T is the temperature controlling the weight distribution. It starts from 20 and decreases lin-
early as the epoch increasing. The hardnessH is computed the same as Eq. (4). 6) POMO DivTrain
is adapted from the diversity training (Kariyappa & Qureshi, 2019), which studies the adversarial
robustness of multiple models (e.g., ensembles) in the image domain by proposing a novel method
to train an ensemble of models with uncorrelated loss functions. Specifically, it improves the en-
semble diversity by minimizing the cosine similarity between the gradients of (sub-)models w.r.t.
the input. Its loss function is formulated as: L = ℓ+λ log(

∑
1≤a<b≤M exp(<∇xℓa,∇xℓb>

|∇xℓa||∇xℓb| )), where
ℓ is the original loss function, M is the number of models, ∇xℓa is the gradient of the loss function
(on the ath model) w.r.t. the input x, and λ = 0.5 is a hyperparameter controlling the importance
of gradient alignment during training. 7) CNF Greedy: the neural router is simply replaced by the
heuristic method, where each model selects K hardest instances. We use Zhang et al. (2022) as the
attack method in Section 4. For simplicity and training efficiency, we only perturb node coordinates,
and set T = 1 in the main experiments. The step size α is randomly sampled from 1 to 100.

Setups for Ablation Study. We conduct extensive ablation studies on components, hyperparameters
and routing strategies as shown in Section 4. For simplicity, we slightly modified the training setups.
We train all methods using 2.5M TSP100 instances. The learning rate is decayed by 10 for the last
20% training instances. For the ablation on components (Fig. 3(a)), we set the attack steps as T = 2,
and remove each component separately to demonstrate the effectiveness of each component in our
proposed framework. For the ablation on hyperparameters (Fig. 3(b)), we train multiple models
with M ∈ {2, 3, 4, 5}. For the ablation on routing strategies (Fig. 3(c)), we set K = B for M-TopK,
where B = 64 is the batch size, and K = 1 for I-TopK. The other training setups remain the same.

Setups for Generalizability. For the pretraining stage, we train MatNet (Kwon et al., 2021) on
5M ATSP20 instances following the original setups from Kwon et al. (2021). We further train
a perturbation model by attacking it using reinforcement learning. Concretely, we use the dataset
from Lu et al. (2023), consisting of 50 ”tmat” class ATSP training instances that obey the triangle
inequality, to train the perturbation model for 500 epochs. Adam optimizer is used with the learning
rate of 1e − 3. The maximum number of actions taken by the perturbation model is T = 10.
After the pretraining stage, we use the pretrained model to initialize M = 3 models, and further
adversarially train them. We fix the perturbation model and only update it using the latest model
every E = 10 epochs (as discussed in Appendix B.3). After the 10th epoch, there would be M
perturbation models corresponding to M models. Following Lu et al. (2023), we use the fixed 1K
clean instances for training. In the inner maximization, we generate MK local adversarial instances
and 1K global adversarial instances using the perturbation models. However, since the perturbation
model is not efficient (i.e., it needs to conduct the beam search to find the edges to be modified),
we generate adversarial instances in advance and reuse them later. Then, in the outer minimization,
we load all instances and forward them to each model using the jointly trained neural router. The

2https://www.math.uwaterloo.ca/tsp/concorde/index.html
3http://akira.ruc.dk/˜keld/research/LKH-3/
4https://github.com/vidalt/HGS-CVRP
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Figure 6: The generated TSP instances following the (a) Uniform distribution; (b) Rotation distri-
bution; (c) Explosion distribution.

models are then adversarially trained for 20 epochs using the Adam optimizer with the learning rate
of 4e− 5, the weight decay of 1e− 6 and the batch size of B = 100.

D.2 GENERATION OF INSTANCES

We follow the instructions from Kool et al. (2018) and Zhou et al. (2023) to generate synthetic
instances. Concretely, 1) Uniform Distribution: The node coordinate of each node is uniformly
sampled from the unit square U(0, 1), as shown in Fig. 6(a). 2) Rotation Distribution: Following
Bossek et al. (2019), we mutate the nodes, which originally follow the uniform distribution, by
rotating a subset of them (anchored in the origin of the Euclidean plane) as shown in Fig. 6(b). The

coordinates of selected nodes are transformed by multiplying with a matrix
[
cos(φ) sin(φ)
− sin(φ) cos(φ)

]
,

where φ ∼ [0, 2π] is the rotation angle. 3) Explosion Distribution: Following Bossek et al.
(2019), we mutate the nodes, which originally follow the uniform distribution, by simulating a
random explosion. Specifically, we first randomly select the center of explosion vc (i.e., the hole
as shown in Fig. 6(c)). All nodes vi within the explosion radius R = 0.3 is moved away from the
center of explosion with the form of vi = vc + (R + s) · vc−vi

||vc−vi|| , where s ∼ Exp(λ = 1/10) is a
random value drawn from an exponential distribution.

In this paper, we mainly consider the distribution of node coordinates. For CVRP instances, the
coordinate of the depot node v0 is uniformly sampled from the unit square U(0, 1). The demand of
each node δi is randomly sampled from a discrete uniform distribution {1, . . . , 9}. The capacity of
each vehicle is set to Q = ⌈30 + n

5 ⌉, where n ≥ 50 is the size of CVRP instances. The demand and
capacity are further normalized to δ′i = δ/Q and 1, respectively.

Set-XML100 Benchmark Instances. The Set-XML100 (Queiroga et al., 2022) is a newly pro-
posed benchmark dataset, including a broad range of distribution shifts, such as depot position-
ing (A), customer positioning (B), demand distribution (C), and average route size (D). Since
it originally only contains instances with n = 100, we further generate instances with the sizes
n ∈ [125, 150, 175, 200] using its source code. Specifically, the four attributes are randomly sam-
pled from the Cartesian product of A{1, 2, 3}×B{1, 2, 3}×C{1, 2, 3, 4, 5, 6, 7}×D{1, 2, 3, 4, 5, 6}.
The name of an instance follows the pattern of XML{n} {ABCD} {id} in Table 7. Following the
setups described in Appendix D.1, we run HGS (Vidal, 2022) to obtain their (sub-)optimal solutions.

D.3 RESULTS ON BENCHMARK INSTANCES

We evaluate all methods (only trained on n = 100) on the real-world benchmark instances, including
TSPLIB5 (Reinelt, 1991) and CVRPLIB6 (Set-X (Uchoa et al., 2017) and Set-XML100 (Queiroga
et al., 2022)), where we choose representative instances with n ∈ [100, 200]. For Set-XML100, we
randomly sample 5 instances with n = 100 from the original dataset, and generate extra 20 instances
with n ∈ [125, 150, 175, 200] following the data generation process. Besides, we also show results
of Omni-VRP (Zhou et al., 2023), which is a recent work leveraging meta-learning techniques (Finn
et al., 2017; Nichol et al., 2018) to deal with the OOD generalization of neural VRP methods. The
results are obtained using their open-source models7, which are trained on n ∈ [50, 200] with diverse

5http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp
6http://vrp.galgos.inf.puc-rio.br/index.php
7https://github.com/RoyalSkye/Omni-VRP
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distributions. Moreover, we combine our method with the efficient active search (EAS) (Hottung
et al., 2022) by running EAS-Lay and EAS-Emb on each instance following their setups (e.g., 1 run
and 200 iterations), and report the best result. The results are shown in Tables. 5, 6 and 7.

Table 3: Performance evaluation against ROCO (Lu et al., 2023) over 1K ATSP instances.

Clean Fixed Adv.
(x1) Gap Time (x16) Gap Time (x1) Gap Time (x16) Gap Time

LKH3 0.000% 1s 0.000% 1s 0.000% 1s 0.000% 1s
Nearest Neighbour 30.481% – 30.481% – 31.595% – 31.595% –
Farthest Insertion 3.373% – 3.373% – 3.967% – 3.967% –

MatNet (1) 0.784% 0.5s 0.056% 5s 0.931% 0.5s 0.053% 5s
MatNet AT (1) 0.817% 0.5s 0.072% 5s 0.827% 0.5s 0.046% 5s
MatNet AT (3) 0.299% 1.5s 0.028% 15s 0.319% 1.5s 0.023% 15s
CNF (3) 0.246% 1.5s 0.022% 15s 0.278% 1.5s 0.015% 15s

D.4 RESULTS ON GENERALIZABILITY

We further evaluate the generalizability of CNF against other attacks. The results are shown in Table
3, where we evaluate all methods on 1K ATSP instances. For neural methods, we use the sampling
with x1 and x16 instance augmentations following Kwon et al. (2021); Lu et al. (2023). The gaps
are computed w.r.t. LKH3. From the results, we observe that 1) CNF is effective in mitigating the
trade-off between the standard generalization and adversarial robustness; 2) together with the main
results in Section 4, CNF is versatile to defend against various attacks for different neural methods.

D.5 SENSITIVITY ANALYSES

In addition to the ablation study on the key hyperparameter (i.e., the number of models M ), we
further conduct sensitivity analysis on others, such as the optimizer ∈ [Adam, SGD], batch size ∈
[32, 64, 128], normalization layer∈ [batch, instance] and learning rate (LR)∈ [1e−3, 1e−4, 1e−5]).
The experiments are conducted on TSP100 following the setups of the ablation study as presented
in Appendix D.1. The results are shown in Table 4, where we observe that the performance of our
method could be further boosted by carefully tuning hyperparameters.

Table 4: Sensitivity Analyses on hyperparameters.

Remark Optimizer Batch Size Normalization LR Uniform (100) Fixed Adv. (100)

Default Adam 64 Instance 1e-4 0.111% 0.255%
SGD 64 Instance 1e-4 0.146% 3.316%
Adam 32 Instance 1e-4 0.122% 0.262%
Adam 128 Instance 1e-4 0.088% 0.311%
Adam 64 Batch 1e-4 0.114% 0.247%
Adam 64 Instance 1e-3 0.183% 0.282%
Adam 64 Instance 1e-5 0.101% 0.616%

D.6 ABLATION STUDY ON CVRP

CNF W/O Global Attack W/O Router POMO_AT
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Figure 7: Ablation study on Components.

Similar to the ablation study on TSP (in Sec-
tion 4), we further conduct the ablation study
on CVRP. For simplicity, here we only consider
investigating the role of each component in our
method by removing them separately. The ex-
periments are conducted on CVRP100, and the
setups are kept the same as the ones presented
in Appendix D.1. The results are shown in Fig.
7, which still verifies the effectiveness of the
global attack and neural router in CNF.
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E DISCUSSIONS

Load Balancing. In this paper, load balancing refers to each model being distributed with a similar
or the same number of training instances from the instance set X , in each outer minimization step. It
could improve the training efficiency by evolving each model with similar quantities of data samples
(based on the Cannikin Law), and avoid the dominant model or biased performance. The proposed
neural router with the TopK operator could ensure such load balancing since each model is assigned
exactly K instances based on the probability matrix predicted by the neural router.

Larger Model. In addition to training multiple models, increasing the number of parameters for
a single model is also a way of enhancing the overall model capacity. However, technically, 1) a
larger model needs more GPU memory, which puts more requirements on the single GPU device. It
is also more complicated to enable parallel training on multiple GPUs compared with the multiple
models; 2) currently, our method conducts AT upon the pretrained model, but there does not exist
a larger pretrained model (e.g., larger POMO) in the literature. Despite the technical issues, we
try to pre-train the larger POMO (e.g., 18 encoder layers with 3.64M parameters in total) on the
uniform distributed data, and further conduct the vanilla AT. The performance is around 0.335%
and 0.406% on clean and adversarial instances, respectively, which is inferior to the counterpart of
multiple models (i.e., POMO AT (3)). The superiority of multiple models may be attributed to its
ensemble effect and the capacity in learning multiple diverse policies.

Why using the best-performing model for the global attack? The collaborative performance of
our framework depends on the best-performing model θb (for each instance), since its solution will
be chosen as the final solution during inference. The goal of inner maximization is to construct the
adversarial instance that could successfully fool the framework. Intuitively, if we choose to attack
other models (rather than θb), the constructed adversarial instances may not successfully fool the
best-performing model θb, and therefore the final solution to the adversarial instance could still be
good, which contradicts the goal. Therefore, to increase the success rate of attacking the framework
and generate more diverse adversarial instances, for each clean instance, we choose the correspond-
ing best-performing model θb as the global model in each iteration of the inner maximization.

The variability of adversarial instances for the same initial model. We take POMO (Kwon et al.,
2020) as an example. During training, in each step of solution construction, the decoder of the neural
solver selects the valid node to be visited by sampling from the probability distribution, rather than
using argmax. Therefore, even though we initialize all models using the same pretrained model,
given the same attack hyperparameters (e.g., attack iterations), the adversarial instances generated
by each model are generally not the same at the beginning of the training.

Generalizability to Other Domains. Conceptually, the underlying idea of CNF could be applied to
other domains with several adjustments. We take the image classification task as an example. Given
the training data with its ground-truth label (x, y), the global adversarial instance could be con-
structed by maximizing ℓ(x, y; θb), where ℓ is the cross-entropy loss and θb = argminθ∈Θ ℓ(x, y; θ)
is the best-performing model. In the outer minimization, we could also develop a neural router to
distribute training instances to different models, with the objective of maximizing the improvement
of ensemble performance. The cost matrix R,R′ in Eq. 6 could be filled with the probabilities on
label y predicted by each model. Despite the potential generalizability, the effectiveness of CNF in
other domains needs to be empirically justified, and we hope CNF could inspire such future works.

Advanced AT Techniques. In this paper, we mainly focus on the vanilla AT (Madry et al., 2018).
More advanced AT techniques, such as TRADES (Zhang et al., 2019), AT in RL (Pinto et al., 2017),
ensemble-based adversarial training (Tramèr et al., 2018; Kariyappa & Qureshi, 2019; Pang et al.,
2019; Yang et al., 2020a; 2021), and adversarial data augmentation (Xie et al., 2020; Cheng et al.,
2020; Herrmann et al., 2022; Wen et al., 2022; Kong et al., 2022) could be considered as well.
However, some of them may not be applicable to the discrete VRP domain due to their needs for
ground-truth labels or the dependence on the imperceptible perturbation model. 1) TRADES is em-
pirically effective for trading adversarial robustness off against standard generalization on the image
classification task. Its loss function is formulated as L = CE(f(x), y) + βKL(f(x), f(x̃)), where
CE is cross-entropy, KL is the KL-divergence, x is the clean instance, x̃ is the adversarial instance,
f(x) is the logit predicted by the model, and y is the ground-truth label. By explicitly making
the outputs of the network (logits) similar for x and x̃, it could mitigate the trade-off. However,
the above statement is conditional on the imperceptible perturbation model, where the ground-truth
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labels of x and x̃ are kept the same. As we discussed in Section 2.2, in the discrete VRPs, the per-
turbation model does not have such an imperceptible constraint. Therefore, it does not make sense
to make the outputs of the model similar for x and x̃, since the optimal solutions to x and x̃ are not
the same in the general case. 2) Another interesting direction is AT in RL, where the focus is the
attack side rather than the defense side (e.g., most of the design in Pinto et al. (2017) focuses on the
adversarial agent). Specifically, it jointly trains another agent (i.e., the attacker/adversary), whose
objective is to impede the model (i.e., the first agent), to generate hard trajectories in a two-player
zero-sum way. Its goal is to learn a policy that is robust to modeling errors in simulation or mismatch
between training and test scenarios. While our work focuses on the defense side and aims to mitigate
the trade-off between standard generalization and adversarial robustness. Moreover, this method is
specific to RL while our framework has the potential to work with the supervised learning setting.
Overall, it is non-trivial to directly apply this method to address our problem (e.g., the trade-off).
But it is an interesting future research direction to design attack methods specific to RL (e.g., by
training another adversarial agent or attacking each step of MDP). 3) Similar to the proposed CNF,
ensemble-based adversarial training also leverages multiple models, but with a different motivation
(e.g., reducing the adversarial transferability between models to defend against black-box adversar-
ial attacks (Yang et al., 2020a)). Pang et al. (2019) needs the ground-truth labels to calculate the
ensemble diversity. Yang et al. (2020a) depends on the misalignment of the distilled feature be-
tween the visual similarity and the classification result, and hence on the imperceptible perturbation
model. Therefore, it is non-trivial to directly adapt them to the discrete VRP domain. Kariyappa
& Qureshi (2019) proposes to decrease the gradient similarity loss to reduce the overall adversarial
transferability between models, and Yang et al. (2021) further uses the model smoothness loss to
improve the ensemble robustness. However, technically, their methods are computational expensive
due to the needs to keep the computational graph before taking an optimization step. Compared with
other baselines, their empirical results are not superior as well (see Section 4). 4) Adversarial data
augmentation (Xie et al., 2020; Cheng et al., 2020; Herrmann et al., 2022; Wen et al., 2022; Kong
et al., 2022) is found to be empirically effective in bolstering the generalization capabilities of deep
learning models. But most works focus on the imperceptible perturbation model, where the adver-
sarial perturbation is extremely small. In this paper, the global attack in CNF could also be viewed
as one way of adversarial data augmentation, and we demonstrate the improved generalization of
neural VRP solvers, even though the adversarial perturbation is relatively large.

Practical Significance / Attack Scenarios. Actually, there may not be a person or attacker to delib-
erately invade the VRP model in practice. However, the developers in a logistics enterprise should
consider the adversarial robustness of neural VRP solvers as a sanity check before deploying them
in the real world. The adversarial attack could be viewed as a way of measuring the worst-case per-
formance of neural VRP solvers within the neighborhood of inputs. Without considering adversarial
robustness, the neural solver may perform very poorly (see Fig. 1) when the testing instance pattern
in the real world is 1) different from the training one, and 2) similar to the adversarial one. For
example, considering an enterprise like Amazon, when some new (but not many) customers need
to be added to the current configuration or instance, especially when their locations coincidentally
lead to adversarial instances of the current solver (which corresponds to the node insertion attack
presented in Appendix B.2), the model without considering adversarial robustness may output a very
bad solution, and therefore resulting in unpleasant user experience and financial losses.

POMO_AT (3) POMO_HAC (3) POMO_DivTrain (3) CNF (3) W/O Global Attack W/O Router
Method
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Figure 8: Training Time.

Training Efficiency. Following the training se-
tups presented in Section 4, we show the train-
ing time of each method on TSP100 in Fig. 8.
As mentioned in Section 5, the limitation of
our proposed CNF is the increased training time
complexity due to the need for synergistically
training multiple models. Concretely, we em-
pirically observe that CNF (3) takes longer time
than the simple AT variants (e.g., POMO AT
(3), POMO HAC (3)). However, we note that
simply further training these methods cannot
significantly increase their performance. For
example, we try to train POMO AT (3) for 60 hours, with the gap still inferior to ours (i.e.,
POMO AT (3) vs. CNF (3): Uniform – 0.246% vs. 0.118%; Fixed Adv. – 0.278% vs. 0.236%).
On the other hand, our training time is less than that of advanced AT training methods (e.g.,
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POMO DivTrain (3)). The above comparison indicates that our method can achieve a better trade-
off to deliver better results within reasonable training time. Moreover, we find that the global attack
generation consumes more training time than the neural router (∼0.05 million parameters). During
inference, the computational complexity only depends on the number of models, since the neural
router is only activated during the training stage, and is discarded afterwards. Therefore, all meth-
ods with the same number of trained models have almost the same inference time.

Attack Budget. As we discussed in Section 2.2, we do not exert the imperceptible constraint on
the perturbation model in VRPs. We further explain it from two perspectives. 1) Different from
other domains, there is no theoretical guarantee to ensure the invariance of the optimal solution
(or ground-truth label) to a clean VRP instance, given the imperceptible perturbation. A small
change on even one node may induce a very different optimal solution. Therefore, we do not see
the benefit of constraining the attack budget to a very small (i.e., imperceptible) range in VRP tasks.
Moreover, even with the absence of imperceptible constraints on the adversary, unlike the graph
learning setting, we do not observe a significant degradation on clean performance. It reveals that
we don’t need explicit imperceptible perturbation to restrain the changes of (clean) objective values.
In our experiments, we set the attack budget within a reasonable range following the applied attack
method (e.g., α ∈ [1, 100] for Zhang et al. (2022)). Our experimental results (in Section 4 and
Appendix D) show that the proposed CNF is able to achieve a favorable balance, given different
attack methods and their attack budgets. 2) In VRPs (or COPs), all generated adversarial instances
are valid problem instances regardless of how much they differ from the clean instance. In this
sense, the attack budget models the severity of a potential distribution shift between training data
and test data (Geisler et al., 2022). This highlights the differences to other domains (e.g., computer
vision), where unconstrained perturbations may lead to non-realistic or invalid data. Technically, the
various attack budgets can help to generate diverse adversarial instances for training. Considering
the above aspects, we believe our adversarial setting, including diverse but valid problem instances,
may benefit the VRP community in developing a more general and robust neural solver. With that
said, this paper could also be viewed as an attempt to improve the generalization of neural VRP
solvers from the perspective of adversarial robustness.

The Selection Basis of Attackers. There are three attackers in the current literature of VRPs (or
COPs) (Zhang et al., 2022; Geisler et al., 2022; Lu et al., 2023). We select the attacker based on
its generality in VRPs. Specifically, 1) Geisler et al. (2022) is the early work that explicitly investi-
gates the adversarial robustness in COPs. Their perturbation model needs to be sound and efficient,
which means, given a clean instance and its optimal solution, the optimal solution to the adversarial
instance can be directly derived without running a solver. However, this direct derivation requires
the unique properties and theorems of certain problems (e.g., the intersection theorem (Cutler, 1980)
in the Euclidean space for TSP), and hence is non-trivial to generalize to more complicated VRPs
(e.g., CVRP). Moreover, their perturbation model is limited to attack the supervised neural solver
(i.e., ConvTSP (Joshi et al., 2019)), since it needs to construct the adversarial instance by maximiz-
ing the loss function so that the model prediction is maximally different from the derived optimal
solution. While in VRPs, reinforcement learning based methods (Kool et al., 2018; Kwon et al.,
2020) are more appealing since they can gain even better performance without the need for optimal
solutions. 2) Lu et al. (2023) requires that the optimal solution to the adversarial instance is no worse
than that to the clean instance in theory, which may limit the problem space of adversarial instances.
It focuses on the graph-based COPs (e.g., asymmetric TSP) and satisfies the requirement by lower-
ing the cost of edges. Similar to Geisler et al. (2022), their method is not easy to design for VRPs
with more constraints. Moreover, they resort to the black-box adversarial attack method by training
a reinforcement learning based attacker, which may lead to a higher computational complexity and
relatively low success rate of attacking. Therefore, for better generality, we choose Zhang et al.
(2022) as the attacker in the main paper, which could be applied to different VRP variants and pop-
ular VRP solvers (Kool et al., 2018; Kwon et al., 2020). Moreover, we also evaluate the versatility
of CNF against Lu et al. (2023) as presented in Appendix B.3 and D.4.

Relationship between OOD Generalization and Adversarial Robustness. Generally, adversarial
robustness is one way to measure the generalization over the perturbed instance x̃ in the proximity
of the clean instance x. In the context of VRPs (or COPs), adversarial instances are neither anoma-
lous nor statistical defects since they correspond to valid problem instances regardless of how much
they differ from x (Geisler et al., 2022). In contrast to other domains, 1) the attack budget models
the severity of a potential distribution shift between training data and test data; 2) the set of valid
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problems is not just a low-dimensional manifold in a high-dimensional space, and hence the man-
ifold hypothesis (Stutz et al., 2019) does not apply to combinatorial optimization. Therefore, it is
critical for neural VRP solvers to perform well on adversarial instances when striving for a broader
OOD generalization. Based on the experimental results, we empirically demonstrate that raising
robustness against adversarial instances by CNF favorably promotes various types of generalization
of neural VRP solvers (as shown in Section 4 and Appendix D.3), indicating the potential existence
of neural VRP solvers with high generalization and robustness concurrently.

Table 5: Results on TSPLIB (Reinelt, 1991) instances. * Only for reference due to different problem
settings, i.e., Omni VRP is meta-trained on n ∈ [50, 200], while others are adv-trained on n = 100.

POMO POMO AT POMO HAC POMO DivTrain Omni VRP* CNF CNF+EAS

Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

kroA100 21282 21420 0.65% 21347 0.31% 21308 0.12% 21370 0.41% 21305 0.11% 21308 0.12% 21282 0.00%

kroB100 22141 22200 0.27% 22211 0.32% 22200 0.27% 22199 0.26% 22650 2.30% 22216 0.34% 22199 0.26%

kroC100 20749 20799 0.24% 20768 0.09% 20753 0.02% 20768 0.09% 20902 0.74% 20758 0.04% 20749 0.00%

kroD100 21294 21446 0.71% 21391 0.46% 21407 0.53% 21435 0.66% 21828 2.51% 21353 0.28% 21294 0.00%

kroE100 22068 22259 0.87% 22288 1.00% 22167 0.45% 22213 0.66% 22239 0.77% 22121 0.24% 22106 0.17%

eil101 629 630 0.16% 630 0.16% 629 0.00% 631 0.32% 632 0.48% 630 0.16% 629 0.00%

lin105 14379 14477 0.68% 14426 0.33% 14408 0.20% 14402 0.16% 14819 3.06% 14403 0.17% 14379 0.00%

pr107 44303 44678 0.85% 47819 7.94% 44596 0.66% 46285 4.47% 44745 1.00% 44719 0.94% 44303 0.00%

pr124 59030 59389 0.61% 59257 0.38% 59385 0.60% 59558 0.89% 59238 0.35% 59076 0.08% 59030 0.00%

bier127 118282 133042 12.48% 118606 0.27% 118608 0.28% 118337 0.05% 121129 2.41% 118841 0.47% 118282 0.00%

ch130 6110 6119 0.15% 6130 0.33% 6115 0.08% 6125 0.25% 6251 2.31% 6111 0.02% 6110 0.00%

pr136 96772 97983 1.25% 100225 3.57% 97617 0.87% 100145 3.49% 97780 1.04% 97567 0.82% 97198 0.44%

pr144 58537 58935 0.68% 59544 1.72% 58913 0.64% 59265 1.24% 59571 1.77% 58868 0.57% 58537 0.00%

ch150 6528 6554 0.40% 6582 0.83% 6556 0.43% 6578 0.77% 6586 0.89% 6550 0.34% 6554 0.40%

kroA150 26524 26755 0.87% 26898 1.41% 26736 0.80% 26813 1.09% 26873 1.32% 26722 0.75% 26524 0.00%

kroB150 26130 26405 1.05% 26506 1.44% 26379 0.95% 26467 1.29% 26452 1.23% 26494 1.39% 26143 0.05%

pr152 73682 74249 0.77% 77537 5.23% 75291 2.18% 77127 4.68% 74907 1.66% 74876 1.62% 73682 0.00%

rat195 2323 2486 7.02% 2500 7.62% 2461 5.94% 2467 6.20% 2417 4.05% 2449 5.42% 2338 0.65%

kroA200 29368 29992 2.12% 30222 2.91% 29771 1.37% 30143 2.64% 29823 1.55% 29755 1.32% 29435 0.23%

kroB200 29437 30298 2.92% 30157 2.45% 29890 1.54% 30267 2.82% 29814 1.28% 29862 1.44% 29508 0.24%

Table 6: Results on CVRPLIB (Set-X) (Uchoa et al., 2017) instances.

POMO POMO AT POMO HAC POMO DivTrain Omni VRP* CNF CNF+EAS

Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n101-k25 27591 29282 6.13% 29262 6.06% 29315 6.25% 29478 6.84% 29442 6.71% 28911 4.78% 27936 1.25%

X-n106-k14 26362 26961 2.27% 26938 2.18% 26906 2.06% 26813 1.71% 26990 2.38% 26672 1.18% 26456 0.36%

X-n110-k13 14971 15154 1.22% 15400 2.87% 15215 1.63% 15319 2.32% 15285 2.10% 15127 1.04% 14971 0.00%

X-n115-k10 12747 13877 8.86% 13528 6.13% 13409 5.19% 13518 6.05% 13240 3.87% 13928 9.26% 13127 2.98%

X-n120-k6 13332 14574 9.32% 15418 15.65% 14907 11.81% 14930 11.99% 13944 4.59% 13652 2.40% 13424 0.69%

X-n125-k30 55539 58412 5.17% 58869 6.00% 58116 4.64% 58571 5.46% 58738 5.76% 58238 4.86% 56384 1.52%

X-n129-k18 28940 29565 2.16% 29290 1.21% 29439 1.72% 29411 1.63% 29975 3.58% 29348 1.41% 29012 0.25%

X-n134-k13 10916 11315 3.66% 11312 3.63% 11343 3.91% 11260 3.15% 11302 3.54% 11248 3.04% 11003 0.80%

X-n139-k10 13590 14084 3.64% 14300 5.22% 14011 3.10% 14042 3.33% 14019 3.16% 13940 2.58% 13644 0.40%

X-n143-k7 15700 16382 4.34% 16358 4.19% 16190 3.12% 16376 4.31% 16602 5.75% 15980 1.78% 15788 0.56%

X-n148-k46 43448 47613 9.59% 47348 8.98% 46751 7.60% 47338 8.95% 46438 6.88% 45694 5.17% 44001 1.27%

X-n153-k22 21220 24354 14.77% 23743 11.89% 23785 12.09% 23803 12.17% 22810 7.49% 24643 16.13% 22237 4.79%

X-n157-k13 16876 18294 8.40% 17420 3.22% 17503 3.72% 17500 3.70% 17107 1.37% 17640 4.53% 17142 1.58%

X-n162-k11 14138 14986 6.00% 15279 8.07% 14975 5.92% 15222 7.67% 14595 3.23% 14794 4.64% 14348 1.49%

X-n167-k10 20557 21294 3.59% 21435 4.27% 21472 4.45% 21584 5.00% 21436 4.28% 21658 5.36% 20883 1.59%

X-n172-k51 45607 50351 10.40% 49840 9.28% 49190 7.86% 50116 9.89% 48399 6.12% 49926 9.47% 46684 2.36%

X-n176-k26 47812 52889 10.62% 51924 8.60% 52541 9.89% 52261 9.31% 51332 7.36% 53420 11.73% 49827 4.21%

X-n181-k23 25569 26969 5.48% 26915 5.26% 26867 5.08% 26924 5.30% 26088 2.03% 26213 2.52% 25855 1.12%

X-n186-k15 24145 25734 6.58% 25659 6.27% 25620 6.11% 25635 6.17% 24768 2.58% 26109 8.13% 24635 2.03%

X-n190-k8 16980 18064 6.38% 17690 4.18% 17824 4.97% 17594 3.62% 17645 3.92% 17770 4.65% 17416 2.57%

X-n195-k51 44225 50296 13.73% 49923 12.88% 50015 13.09% 49188 11.22% 47477 7.35% 48823 10.40% 45417 2.70%

X-n200-k36 58578 62094 6.00% 62486 6.67% 62243 6.26% 62720 7.07% 61496 4.98% 61260 4.58% 60080 2.56%
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Table 7: Results on CVRPLIB (Set-XML100) (Queiroga et al., 2022) instances.

POMO POMO AT POMO HAC POMO DivTrain Omni-VRP* CNF CNF+EAS

Instance (Sub-)Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

XML100 1113 01 14740 15158 2.84% 15048 2.09% 15057 2.15% 15145 2.75% 15076 2.28% 15079 2.30% 14763 0.16%

XML100 1121 01 25764 27686 7.46% 27565 6.99% 27520 6.82% 27765 7.77% 27308 5.99% 27134 5.32% 25830 0.26%

XML100 2151 01 26132 27777 6.29% 27637 5.76% 27675 5.90% 27752 6.20% 27753 6.20% 26943 3.10% 26218 0.33%

XML100 3223 01 15031 15316 1.90% 15198 1.11% 15178 0.98% 15182 1.00% 15288 1.71% 15171 0.93% 15057 0.17%

XML100 3332 01 28804 29509 2.45% 29374 1.98% 29358 1.92% 29666 2.99% 29625 2.85% 29234 1.49% 28948 0.50%

XML125 2344 01 12330 12519 1.53% 12745 3.37% 12582 2.04% 12755 3.45% 12950 5.03% 12671 2.77% 12350 0.16%

XML125 2353 01 14786 15212 2.88% 15317 3.59% 15229 3.00% 15310 3.54% 15426 4.33% 15172 2.61% 14882 0.65%

XML125 3171 01 60336 64774 7.36% 63092 4.57% 63845 5.82% 63171 4.70% 62911 4.27% 64955 7.66% 61424 1.80%

XML125 3276 01 7823 9038 15.53% 8674 10.88% 8507 8.74% 8627 10.28% 8822 12.77% 8364 6.92% 7912 1.14%

XML125 3353 01 23244 24090 3.64% 23839 2.56% 23644 1.72% 23963 3.09% 24098 3.67% 23977 3.15% 23289 0.19%

XML150 1126 01 11019 12437 12.87% 12430 12.81% 12244 11.12% 11989 8.80% 12462 13.10% 11967 8.60% 11147 1.16%

XML150 1131 01 43844 46889 6.95% 47601 8.57% 46748 6.62% 47572 8.50% 46664 6.43% 45556 3.90% 44250 0.93%

XML150 1144 01 17397 17909 2.94% 17941 3.13% 17852 2.62% 17878 2.76% 18127 4.20% 18004 3.49% 17486 0.51%

XML150 3161 01 64484 68402 6.08% 68833 6.74% 68112 5.63% 68970 6.96% 67884 5.27% 67673 4.95% 65051 0.88%

XML150 3251 01 50158 53902 7.46% 54436 8.53% 53317 6.30% 54583 8.82% 53469 6.60% 52867 5.40% 50809 1.30%

XML175 1152 01 34440 36764 6.75% 37295 8.29% 36903 7.15% 36897 7.13% 36240 5.23% 35630 3.46% 34764 0.94%

XML175 1246 01 9813 10843 10.50% 11862 20.88% 10760 9.65% 11133 13.45% 10847 10.54% 10875 10.82% 10244 4.39%

XML175 1311 01 44406 49254 10.92% 47595 7.18% 47210 6.31% 48042 8.19% 46049 3.70% 45616 2.72% 44459 0.12%

XML175 1344 01 17087 17924 4.90% 17998 5.33% 17864 4.55% 18136 6.14% 17915 4.85% 18097 5.91% 17333 1.44%

XML175 3366 01 13950 15587 11.73% 16802 20.44% 15829 13.47% 16356 17.25% 15295 9.64% 15117 8.37% 14417 3.35%

XML200 1215 01 16457 23513 42.88% 20732 25.98% 20265 23.14% 19764 20.09% 17174 4.36% 17736 7.77% 17006 3.34%

XML200 1362 01 35840 38333 6.96% 38246 6.71% 38310 6.89% 38558 7.58% 37119 3.57% 37331 4.16% 36221 1.06%

XML200 3133 01 38372 40344 5.14% 40352 5.16% 40372 5.21% 40194 4.75% 39231 2.24% 40505 5.56% 38984 1.59%

XML200 3134 01 29402 31292 6.43% 31200 6.12% 31308 6.48% 30966 5.32% 30694 4.39% 31693 7.79% 30006 2.05%

XML200 3315 01 22508 25341 12.59% 28500 26.62% 26775 18.96% 27046 20.16% 23432 4.11% 24212 7.57% 23109 2.67%
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