
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DATASEA - AN AUTOMATIC FRAMEWORK FOR COM-
PREHENSIVE DATASET PROCESSING USING LARGE
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

In the era of data-driven decision-making, efficiently acquiring and analyzing
diverse datasets is critical for accelerating research and innovation. Yet, tra-
ditional manual approaches to dataset discovery, preparation, and exploration
remain inefficient and cumbersome, especially as the scale and complexity of
datasets continue to expand. These challenges create major roadblocks, slow-
ing down the pace of progress and reducing the capacity for data-driven break-
throughs. To address these challenges, we introduce DataSEA (Search, Eval-
uate, Analyze), a fully automated system for comprehensive dataset process-
ing, leveraging large language models (LLMs) to streamline the data handling
pipeline. DataSEA autonomously searches for dataset sources, retrieves and or-
ganizes evaluation metadata, and generates custom scripts to load and analyze
data based on user input. Users can provide just a dataset name, and DataSEA
will handle the entire preparation process. While fully automated, minimal user
interaction can further enhance system accuracy and dataset handling specificity.
We evaluated DataSEA on datasets from distinct fields, demonstrating its robust-
ness and efficiency in reducing the time and effort required for data preparation
and exploration. By automating these foundational tasks, DataSEA empowers
researchers to allocate more time to in-depth analysis and hypothesis genera-
tion, ultimately accelerating the pace of innovation. The code is available at
https://github.com/SingleView11/DataSEA.

1 INTRODUCTION

In the age of artificial intelligence, the significance of data is undeniable. The volume of data gen-
erated and published online is rapidly increasing, yet searching for structured data on the internet
remains challenging [Kacprzak et al. (2018)]. On one hand, quickly and clearly understanding the
structure and content of large datasets—spanning social sciences, life sciences, high-energy physics,
climate science, and other fields—has become increasingly difficult. On the other hand, as the scale
and complexity of data grow, the efficiency of manually searching for and downloading datasets
diminishes, turning into a daunting task. Traditional manual methods for discovering, preparing,
and exploring data are becoming increasingly cumbersome and inefficient. Consequently, swiftly
acquiring and analyzing diverse datasets has become a crucial factor in driving research and innova-
tion.

With the advancement of prompt engineering, large language models (LLMs) have demonstrated
impressive performance across various fields [Wei et al. (2022); Kojima et al. (2022); Wang et al.
(2022); Zhou et al. (2022); Madaan et al. (2024); Bai et al. (2022); Chen et al. (2023)]. The strong
capability of LLMs to process vast amounts of textual information opens new possibilities for the
automated discovery, evaluation, and analysis of datasets. By utilizing LLMs to analyze the web
information related to specific datasets, it is possible to organize this data into structured formats,
facilitating further computational processing and user interaction.

Thus, we propose DataSEA (Search, Evaluate, Analyze), a comprehensive automated dataset pro-
cessing system based on large language models. Additionally, by treating the collected data as a

1

https://github.com/SingleView11/DataSEA

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

new corpus for LLMs, it can enhance user interaction, further improving the system’s accuracy and
adaptability to specific data processing needs. This allows users to gradually understand the various
characteristics of target datasets and perform diverse evaluations in a question-answering system-
like environment.

Figure 1: The architecture of DataSEA. The system is divided into three key modules: Search, Eval-
uate, and Analyze. The Search Module (S) retrieves top results from search engines and evaluates
the relevance of the links using LLM models. The Evaluate Module (E) extracts metadata from
the identified websites and retrieves research papers citing the dataset, followed by metadata opti-
mization. The Analyze Module (A) generates and executes code to download datasets, hypothesizes
possible download methods, and visualizes data samples. The entire process can be fully automated,
though users may intervene to improve accuracy and filter unwanted downloads.

The design goal of DataSEA is to simplify and accelerate the data processing workflow, including
the search, evaluation, and analysis of datasets. Users only need to provide a dataset name, and
DataSEA can autonomously perform the search for dataset sources, retrieve and organize metadata,
and generate custom scripts to load and analyze data based on user requirements.

To demonstrate the significant practical value of this system, we evaluated DataSEA on multiple
datasets across various fields, such as computer vision, natural language processing, speech recog-
nition, medicine, natural sciences, social sciences, and finance. Accessing these datasets is crucial
for promoting the reproducibility of research findings, enabling scientists to build upon the work
of others, and facilitating easier access to information and its sources for data journalists [Brickley
et al. (2019)]. Experimental results indicate that DataSEA exhibits strong robustness and efficiency,
significantly reducing the time and effort required for data preparation and exploration. Addition-
ally, DataSEA provides rich and logical visualization, evaluation, and interpretation of data, greatly
lowering the cost of understanding the content of datasets.

We also tested the performance of various LLMs as core processing components of DataSEA, in-
cluding GPT-4 [Achiam et al. (2023)], GPT-3.5 [Ye et al. (2023)], and Llama [Touvron et al. (2023)].
Our findings indicate that the effectiveness of different LLM models in dataset collection, evalua-
tion, and analysis is related to their parameter counts, which influences their ability to integrate and
comprehend web information. This suggests that as model parameters increase in the future, along-
side improvements in long text processing and logical reasoning capabilities, DataSEA is likely to
exhibit enhanced capabilities in dataset collection and processing.

In Section 2, we outline related work; Section 3 elaborates on the methods used to construct
DataSEA; Section 4 presents experiments demonstrating the effectiveness of DataSEA; Section 5
discusses the existing limitations; and finally, Section 6 provides a comprehensive summary of this
paper. Additional relevant data can be found in the appendix.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Efficient Dataset Discovery and Exploration Efficient dataset discovery, preparation, and explo-
ration are critical components of the data-driven research pipeline. However, traditional approaches
often require significant manual effort, involving labor-intensive tasks such as searching for relevant
datasets, preparing them for analysis, and creating appropriate exploratory tools. Recent advances in
automated data management have sought to alleviate these challenges by streamlining data discov-
ery, cleaning, transformation, and exploration. Automated data integration tools such as advanced
dataset search systems Brickley et al. (2019) and AutoML frameworks Zöller & Huber (2021) have
demonstrated considerable promise in minimizing manual workload, though many solutions still
face limitations regarding the flexibility and comprehensiveness of the automated workflow. These
advancements reflect a growing interest in reducing human intervention and enhancing efficiency
through intelligent data management solutions.

Automated Dataset Processing Frameworks Several automated dataset processing tools have
emerged to address various parts of the data handling workflow. Tools such as Trifacta and Open-
Refine Petrova-Antonova & Tancheva (2020) focus on data wrangling, emphasizing interactive user
experiences for cleaning and transforming data. Although these tools significantly improve the ef-
ficiency of data preprocessing, they require extensive user involvement throughout the process and
lack fully automated workflows, particularly in terms of dataset discovery and evaluation.

The development of systems like AutoML He et al. (2021) has further paved the way for automation
by addressing tasks like feature engineering and model selection. However, while AutoML tools
effectively handle model training and hyperparameter tuning, they often depend on structured, pre-
prepared datasets. The processes of discovering datasets and assessing their suitability for analysis
largely remain manual, limiting the overall automation potential in the data science pipeline Biswas
et al. (2022).

Leveraging Language Models for Automation LLM models such as GPT-4 Achiam et al. (2023)
and LLAMA Touvron et al. (2023), have demonstrated significant capabilities in understanding nat-
ural language, generating code, and automating workflows in complex domains. Previous research
has leveraged LLMs to generate scripts for data processing Biswas & Talukdar (2024); Nejjar et al.
(2023); Patiny & Godin (2023), streamlining the creation of custom data handling scripts. These
efforts highlight the potential of LLMs in automating repetitive tasks, but they often focus narrowly
on code generation without addressing the end-to-end dataset processing pipeline.

The recent work on LLM-based assistants (e.g., GPT-4, LLAMA) has further demonstrated the
applicability of these models for responding to natural language queries related to data analytics
Ram et al. (2024), offering on-demand support for exploratory data analysis (EDA) Ma et al. (2023)
and visualization Sah et al. (2024). However, these applications are reactive, requiring substantial
user intervention in specifying datasets, parameters, and contexts for each step.

Comprehensive Dataset Automation DataSEA builds on these advancements, aiming to deliver
a fully automated framework for dataset processing that encompasses not only code generation but
also dataset discovery and evaluation. Unlike existing semi-automated tools that require significant
human interaction, DataSEA autonomously manages dataset discovery, metadata extraction, and
script generation, reducing the need for user input to a minimum. Data-centric AI Zha et al. (2023)
suggests that focusing on automating data-handling processes can significantly accelerate research
outcomes Mittal et al. (2023), and DataSEA aligns closely with this vision by implementing an
automated pipeline that integrates search, evaluation, and analysis.

By leveraging LLMs to automate not only the preparation but also the discovery and evaluation
of datasets, DataSEA contrasts with existing solutions that focus predominantly on either prepara-
tion or analytics. This comprehensive approach empowers researchers to reduce the time spent on
foundational tasks, allowing for more in-depth analysis and exploration of the data.

Summary While previous work has made significant strides in automating parts of the data prepa-
ration and analysis workflow, DataSEA is among the first to provide a fully integrated solution for
dataset discovery, evaluation, and custom analysis using large language models. By autonomously
handling these key stages, DataSEA extends beyond the capabilities of current LLM-driven tools
and represents a significant step toward automating the entire data lifecycle. This approach aligns

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

with recent trends in AI-driven automation and data-centric methodologies, ultimately accelerating
the pace of innovation in data-driven research.

3 METHODOLOGY

3.1 SYSTEM OVERVIEW

DataSEA is composed of three core modules: Search, Evaluate, and Analyze. The system leverages
large language models to intelligently locate dataset sources, extract metadata, and generate custom
scripts for loading and visualizing the data. Users can input a dataset name and optional descrip-
tion, and DataSEA autonomously handles the remainder of the process. The architecture allows for
minimal user interaction, but additional input can improve the system’s accuracy.

To enhance the effectiveness of LLMs, DataSEA employs instruction-prompting [Brown (2020)]
and a multi-chunk strategy [Liu et al. (2024)] to handle long inputs, ensuring that even large datasets
can be processed effectively by breaking the data into manageable sections while maintaining con-
text across chunks.

3.2 SEARCH MODULE

The Search Module in DataSEA automates the process of discovering dataset websites by leveraging
search engines and LLMs to filter and rank relevant results. The user starts by inputting a dataset
name and, optionally, additional dataset details to refine the search. Drawing inspiration from tools
like Google Dataset Search [Brickley et al. (2019)], the system generates optimized search queries
based on the input and send them to search engines such as Google to retrieve the top-ranking links.

Once the top links are retrieved, the system performs web content extraction on each page. The
contents are then analyzed by the LLM, which generates evaluation info. Similar to work on using
LLMs for content understanding and retrieval tasks [Brown (2020)], the LLM helps filter out irrele-
vant or low-quality pages. The links are ranked based on their evaluation info, with the top-ranking
results being those most likely to contain useful dataset information. More detail can be found in
Appendix.

Figure 2: The process flow of the Search Module in DataSEA. The system retrieves top links from
search engines based on user input, evaluates the relevance of each link using the LLM model, and
filters out irrelevant or low-quality pages. The links are ranked by relevance to the dataset, allowing
the user to quickly access accurate and useful resources.

3.3 EVALUATION MODULE

The Evaluation Module in DataSEA generates the metadata of the dataset, including various infor-
mation with 3 steps: Metadata Extraction, Reference Paper Retrieval, Metadata Extension. User can
customize the properties of the metadata template.

3.3.1 METADATA EXTRACTION

In the first step, the system processes the links identified as relevant in the Search Module. The
system extracts their website content and uses the LLM to get metadata. This process is guided by a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: The process flow of the Evaluation Module in DataSEA. The system extracts metadata
from relevant links, retrieves research papers that reference the dataset, and validates the relevance
of each paper using LLM models. The metadata is then optimized and extended using information
from the papers, ensuring a comprehensive dataset profile.

preset of metadata attributes, including the dataset’s usage, content and scale, application fields, and
other important factors. Additionally, users have the flexibility to input custom property names, and
the system dynamically optimizes prompts for the LLM to retrieve those specific properties. The
results from different links are combined at the end for optimization.

3.3.2 REFERENCE PAPER RETRIEVAL

The second stage focuses on retrieving and ranking research papers that reference the dataset. The
system uses the Google Scholar API to find papers that may have cited the dataset. These papers
are ranked by citation count, following the widely accepted practice of using citation metrics as
indicators of a paper’s impact (Bornmann & Daniel, 2008). For each paper, the metadata extracted
in the first step is used to validate whether the paper indeed references the correct dataset, as there
may be cases of duplicate names or other inaccuracies. The system filters the most impactful papers,
and the user can specify the number of papers to be collected.

3.3.3 METADATA EXTENSION

In the final step, the system extracts additional metadata from the validated reference papers. This
may include more detailed descriptions of the dataset’s features, specific application examples, and
additional context provided by the authors. The extracted metadata is then combined with the orig-
inal information from the dataset’s website, resulting in an enriched and comprehensive dataset
profile.

3.4 ANALYSIS MODULE

The Analysis Module in DataSEA is used to download the dataset and analyze it by generating code
and test them. The final generated code can load and visualize dataset samples, and user can input a
customized requirement and the code generation will be adapted to satisfy the requirement.

3.4.1 DATASET DOWNLOAD

In this phase, the module utilizes metadata from the Evaluation Module to generate hypotheses for
downloading the dataset from the identified websites. For each website containing dataset informa-
tion, the system generates hypotheses regarding possible download methods. It then creates code by
combining the hypothesis, the website content, and the dataset metadata, and executes this code to
attempt to download the dataset.

The generation of hypotheses has proven to be an effective method for handling uncertainty in data
retrieval processes, as it allows the system to explore multiple potential download strategies simul-
taneously. This approach is inspired by the inductive reasoning capabilities of language models,
as demonstrated in Hypothesis Search (Wang et al., 2023), where generating and testing multiple
hypotheses leads to more robust and successful outcomes.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: The process flow of the Analyze Module in DataSEA. The system generates hypotheses for
dataset download based on metadata, executes the download, and analyzes the dataset by reading the
samples of the raw data. It then generates visualization code, with options for manual intervention
to refine the analysis. The system also incorporates a self-repair feature to handle any issues in code
execution.

Since multiple links and hypotheses may be involved, the system organizes the download results into
separate folders, each corresponding to a specific hypothesis. Users can manually inspect the results
and delete unwanted downloads, such as cases where multiple datasets (e.g., raw, processed) are
available and only a portion is needed. This flexibility allows the user to refine the dataset collection
process and accelerate further analysis.

3.4.2 DATASET ANALYSIS AND VISUALIZATION

After successfully downloading the datasets, the system generates custom analysis code by calling
the LLM with prompts that include the dataset metadata and initial portions of the downloaded data.
This analysis code is designed to load the dataset, read the samples of the raw dataset, and visualize
key aspects of the dataset’s structure and contents.

The analysis code generation process incorporates a self-repair mechanism, drawing from ap-
proaches like CodeT5 (Wang et al., 2021). If the generated code fails during execution, the system
automatically collects the error log and combines it with the original code to form a more detailed
context. This context is sent back to the LLM, which attempts to identify and fix the issues in
the code. The system iterates through this feedback loop until a working version of the code is
produced, significantly improving the reliability and robustness of the analysis code. This feature
allows the system to autonomously handle failures and continuously improve the generated code
without requiring user intervention.

In addition to the automated processes, users have the ability to write customized requirements. The
system will generate and test code based on the user’s input, allowing for tailored analysis that fits
specific research needs. This user interaction complements the fully automated pipeline, providing
flexibility for users to guide the analysis toward more specific goals if needed.

4 EXPERIMENTS

4.1 SETUP

Datasets We evaluated DataSEA on 100 datasets across various fields to assess its generalizabil-
ity and effectiveness in automating dataset discovery, evaluation, and analysis. The datasets were
sourced from repositories such as Google Dataset Search, Kaggle, and other publicly available plat-
forms. These datasets span a wide range of fields, including Computer Vision, Natural Language
Processing (NLP), Healthcare, Speech and Audio, Natural Sciences, Social Science, Finance, Trans-
portation, Recommendation Systems, Time Series Analysis, Robotics, and Agriculture. The diver-
sity in size, format, and complexity of these datasets allowed for a comprehensive evaluation of
DataSEA’s performance across different domains.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Models We used three models to evaluate the performance of DataSEA: gpt-4o, gpt-4o-mini, and
llama3. For gpt-4o and gpt-4o-mini, we directly call openai apis; for llama3, we deploy it locally.

Parameters We configured three different modes in DataSEA to explore the trade-offs between
speed and accuracy: High-Speed, Medium-Speed and Slow-Speed version.High-Speed Version
is optimized for fast dataset discovery and analysis by reducing the number inhyper parameters.
Medium-Speed Version is a balance between performance and speed. Slow-Speed Version is fo-
cused on thorough dataset discovery and analysis. The 3 modes take about 3-5 / 10-15 / 20-60
minutes.

The hyper parameters include the number of websites collected per dataset, the number of hypothe-
ses generated, the number of relevant papers retrieved, the number of download code generation
trial, the number of analysis code idea and the number of self-repairs performed when issues were
encountered in code generation.

Evaluation Metrics We evaluated DataSEA based on the performance of each of its three core
modules: Search (S), Evaluate (E), and Analyze (A). For every module we have different metrics,
with more detail in the next subsection.

4.2 MAIN RESULTS

We present the evaluation of each module—Search (S), Evaluate (E), and Analyze (A)—using three
model and their high, medium, and slow-speed versions. Each module’s performance is detailed in
its respective section.

Search Module The Search Module was evaluated based on its ability to find relevant websites.
The main evaluation metrics are the RWF (Relevant Websites Found in LLM return, true if one is
found otherwise false), ACC (Relevance judgement accuracy of the LLM).

Model Version RWF (%) ACC (%)
gpt-4o High Speed 100 92.36

Medium Speed 100 93.02
Slow Speed 100 96.33

gpt-4o-mini High Speed 97 82.77
Medium Speed 98 84.14

Slow Speed 98 90.13
llama3 High Speed 99 83.20

Medium Speed 100 81.82
Slow Speed 100 87.67

Table 1: Results for Search Module (S) across different models and versions.

The results show that gpt-4o under low-speed mode achieves the highest accuracy for relevant web-
sites judging. As for the false judgements, most cases are false negative - the website does contain
information about the dataset but it is judged as not because there are too many redundant infor-
mation in the html content, so that the information about the dataset is stuck in the middle and not
captured well by the llm. This result is just like the phenomenon described in a paper showing
LLM’s incapability in processing long context[Liu et al. (2024)].

Evaluation Module The Evaluation Module was assessed using the quality of generated metadata
and retrieved papers. The I-ACC (Initial Metadata Accuracy) reflects the system’s ability to extract
correct metadata across different properties. It is calculated by averaging the accuracy of the 8 dif-
ferent properties in the metadata. We also evaluated R-ACC (Relevant Papers Accuracy, if a judged
reference paper is really referring to the dataset) and the E-ACC (Extended Metadata Accuracy).

Analysis Module For the Analysis Module, we focused on the DDS (Dataset Download Success),
H-ACC (Hypothesis Accuracy), CAS (Code Analysis Success Without Intervention), and CAS-I
(Code Analysis Success With Intervention). The H-ACC is examined by manually following the
steps generated by a hypothesis, and is marked as true if there exist one true hypothesis.

The intervention in code analysis means downloading the dataset by following the hypothesis, be-
cause while the system can be fully-automated, it is hard to download datasets automatically as most

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Version I-ACC (%) R-ACC (%) E-ACC (%)
gpt-4o High Speed 92.63 87.31 98.00

Medium Speed 93.13 84.09 98.00
Slow Speed 94.75 85.12 98.25

gpt-4o-mini High Speed 87.13 80.94 93.50
Medium Speed 85.00 82.30 92.25

Slow Speed 90.38 78.64 93.50
llama3 High Speed 82.63 81.53 84.75

Medium Speed 83.00 81.20 84.13
Slow Speed 83.00 84.22 85.88

Table 2: Results for Evaluation Module (E) across different models and versions.

datasets’ host platform will require login or email request for the dataset, and can not be crawled
easily. Even if the datasets are available publicly, there may be multiple datasets with different prop-
erties(raw, processed, etc), and serve different purposes, so a comparison for code analysis between
automatically downloaded data and manually downloaded data following the hypothesis is needed.

Model Version DDS (%) H-ACC (%) CAS (%) CAS-I (%)
gpt-4o High Speed 9 81 11 32

Medium Speed 11 88 12 35
Slow Speed 12 91 15 38

gpt-4o-mini High Speed 4 76 9 28
Medium Speed 6 82 9 32

Slow Speed 6 87 9 31
llama3 High Speed 2 62 3 19

Medium Speed 3 69 3 21
Slow Speed 4 70 3 21

Table 3: Results for Analysis Module (A) across different models and versions.

The interesting finding is that sometimes the CAS is higher than H-ACC, which is counter-intuition
because it is hard to imagine analyzing a dataset when it is not downloaded. This is due to the prompt
design, as instruction to try to generate code for the dataset without checking the dataset info. As a
result, for some popular datasets like MNIST or CIFAR-10, even though the download dataset folder
is empty, the generated code can still be run and will successfully generate visualization of samples.

The CAS-I will be lifted greatly if user manually follow the ideas generated and download the
dataset. For example, downloading a dataset in Kaggle is convenient and only need a click of button
if user is logged in, but the system currently cannot auto-login for the user and will fail to download
the dataset.

5 LIMITATIONS

DataSEA faces several challenges, including its inability to process databases and databanks, which
limits its application in biological fields like genomics [Sherry et al. (2001)] and proteomics [Abola
et al. (1984)]. Additionally, its performance depends heavily on LLMs, and the system exhibits a
trade-off between speed and accuracy. While the self-repair mechanism can handle common errors,
complex dataset structures may still require manual intervention. The automatic dataset download
process also struggles with anti-crawling mechanisms and login/email requests, and visual informa-
tion is often lost during HTML content extraction, suggesting the need for methods that integrate
neural optical understanding [Blecher et al. (2023)].

6 CONCLUSION

In this work, we introduced DataSEA, a fully automated system for comprehensive dataset pro-
cessing, which integrates dataset search, evaluation, and analysis using large language models. Our

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

system allows users to input a dataset name and automatically retrieves, evaluates, and analyzes
datasets from a wide range of domains. DataSEA demonstrates the effectiveness of leveraging
LLMs to streamline the dataset processing pipeline, reducing manual effort and enabling researchers
to focus on deeper data analysis. While our system shows promising results across diverse datasets,
certain limitations such as handling databases and databanks and challenges in automatic downloads
present opportunities for future work. Overall, DataSEA represents a significant step forward in au-
tomating the early stages of dataset preparation, offering researchers a powerful tool to accelerate
data-driven discoveries.

REFERENCES

Enrique E Abola, Frances C Bernstein, and Thomas F Koetzle. The protein data bank. Springer,
1984.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Anjanava Biswas and Wrick Talukdar. Robustness of structured data extraction from in-plane rotated
documents using multi-modal large language models (llm). Journal of Artificial Intelligence
Research, 2024.

Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. The art and practice of data science
pipelines: A comprehensive study of data science pipelines in theory, in-the-small, and in-the-
large. In Proceedings of the 44th International Conference on Software Engineering, pp. 2091–
2103, 2022.

Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic. Nougat: Neural optical
understanding for academic documents. arXiv preprint arXiv:2308.13418, 2023.

Lutz Bornmann and Hans-Dieter Daniel. What do citation counts measure? a review of studies on
citing behavior. Journal of documentation, 64(1):45–80, 2008.

Dan Brickley, Matthew Burgess, and Natasha Noy. Google dataset search: Building a search engine
for datasets in an open web ecosystem. In The world wide web conference, pp. 1365–1375, 2019.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622, 2021.

Emilia Kacprzak, Laura Koesten, Jeni Tennison, and Elena Simperl. Characterising dataset search
queries. In Companion Proceedings of the The Web Conference 2018, pp. 1485–1488, 2018.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024.

Pingchuan Ma, Rui Ding, Shuai Wang, Shi Han, and Dongmei Zhang. Insightpilot: An llm-
empowered automated data exploration system. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing: System Demonstrations, pp. 346–352, 2023.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Deepti Mittal, Rebecca Mease, Thomas Kuner, Herta Flor, Rohini Kuner, and Jamila Andoh. Data
management strategy for a collaborative research center. GigaScience, 12:giad049, 2023.

Mohamed Nejjar, Luca Zacharias, Fabian Stiehle, and Ingo Weber. Llms for science: Usage for
code generation and data analysis. Journal of Software: Evolution and Process, pp. e2723, 2023.

Luc Patiny and Guillaume Godin. Automatic extraction of fair data from publications using llm.
2023.

Dessislava Petrova-Antonova and Rumyana Tancheva. Data cleaning: A case study with openrefine
and trifacta wrangler. In Quality of Information and Communications Technology: 13th Interna-
tional Conference, QUATIC 2020, Faro, Portugal, September 9–11, 2020, Proceedings 13, pp.
32–40. Springer, 2020.

Gummuluri Venkata Ravi Ram, Kesanam Ashinee, and M Anand Kumar. End-to-end space-efficient
pipeline for natural language query based spacecraft health data analytics using large language
model (llm). In 2024 5th International Conference on Innovative Trends in Information Technol-
ogy (ICITIIT), pp. 1–6. IEEE, 2024.

Subham Sah, Rishab Mitra, Arpit Narechania, Alex Endert, John Stasko, and Wenwen Dou. Gen-
erating analytic specifications for data visualization from natural language queries using large
language models. arXiv preprint arXiv:2408.13391, 2024.

Stephen T Sherry, M-H Ward, M Kholodov, J Baker, Lon Phan, Elizabeth M Smigielski, and Karl
Sirotkin. dbsnp: the ncbi database of genetic variation. Nucleic acids research, 29(1):308–311,
2001.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah D Goodman.
Hypothesis search: Inductive reasoning with language models. arXiv preprint arXiv:2309.05660,
2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou,
Chao Gong, Yang Shen, et al. A comprehensive capability analysis of gpt-3 and gpt-3.5 series
models. arXiv preprint arXiv:2303.10420, 2023.

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, and Xia Hu. Data-centric ai: Perspec-
tives and challenges. In Proceedings of the 2023 SIAM International Conference on Data Mining
(SDM), pp. 945–948. SIAM, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

Marc-André Zöller and Marco F Huber. Benchmark and survey of automated machine learning
frameworks. Journal of artificial intelligence research, 70:409–472, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

A APPENDIX

MENU

CONTENTS

1 Introduction 1

2 Related Work 3

3 Methodology 4

3.1 System Overview . 4

3.2 Search Module . 4

3.3 Evaluation Module . 4

3.3.1 Metadata Extraction . 4

3.3.2 Reference Paper Retrieval . 5

3.3.3 Metadata Extension . 5

3.4 Analysis Module . 5

3.4.1 Dataset Download . 5

3.4.2 Dataset Analysis and Visualization . 6

4 Experiments 6

4.1 Setup . 6

4.2 Main Results . 7

5 Limitations 8

6 Conclusion 8

A Appendix 11

Appendices 11

A.1 Search Pipeline . 13

A.2 Evaluate Pipeline . 13

A.3 Analyze Pipeline . 13

A.4 Flowchart Visualizations . 14

A.5 Prompts we use . 14

A.5.1 Dataset Website Prompt . 15

A.5.2 Dataset Paper Retrieval . 16

A.5.3 Retrieving PDF Links for Dataset Paper 17

A.5.4 Generating Dataset Metadata Extraction Instructions 18

A.5.5 Generating Dataset Reference Detection Instructions 19

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A.5.6 Instruction for Generating Python Code to Visualize Dataset 20

A.5.7 Prompt for Extracting Dataset Download Link from HTML 21

A.5.8 Prompt for Generating Python Code to Download a Dataset 22

A.5.9 Prompt for Generating Python Code to Download a Dataset 24

A.6 Google Search Api . 25

A.7 Long Context Inference . 27

A.8 Reproducibility . 31

A.9 Code Structure . 31

A.10 Code Explanation . 32

A.10.1 QuickStart . 32

A.10.2 Advanced Running . 32

A.10.3 Search Module (S) . 32

A.10.4 Evaluate Module (E) . 34

A.10.5 Analyze Module (A) . 37

A.10.6 Main System Coordination . 39

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

This section provides a detailed description of the code structure for the DataSEA system, which
is composed of three main parts: Search, Evaluate, and Analyze. Each part contains an integrated
pipeline to automate the dataset processing workflow.

A.1 SEARCH PIPELINE

The Search Pipeline is responsible for identifying and retrieving relevant datasets based on the user-
provided input. It utilizes large language models (LLMs) to search dataset repositories and official
websites. The key steps are as follows:

1. Dataset Query: The system accepts a dataset name as input and sends it to the LLM for
generating search queries.

2. Web Search: These queries are used to search for datasets across multiple sources, includ-
ing Kaggle, UCI, Zenodo, and official dataset websites.

3. Link Retrieval: The system collects potential dataset links, filtering and ranking them
based on relevance and credibility.

4. Search Output: The final output is a set of ranked dataset links which are passed to the
next pipeline for evaluation.

A.2 EVALUATE PIPELINE

The Evaluate Pipeline processes the dataset links retrieved from the search phase to extract useful
metadata and identify the most reliable sources. This pipeline consists of three parts:

1. Metadata Extraction: Using LLMs, the system extracts relevant metadata from the dataset
links, such as dataset size, format, domain, and source information. This step utilizes a
combination of preset and user-specified property names.

2. Reference Paper Retrieval: The system retrieves research papers that reference the dataset
by querying academic databases. The papers are ranked by citation count, and their meta-
data is validated.

3. Metadata Extension: Metadata from the papers is integrated with the original dataset
metadata to provide a more comprehensive evaluation. The system uses cross-references
to ensure accuracy and consistency.

The output of this pipeline includes the final metadata and a list of reference papers, which are
passed to the Analyze Pipeline.

A.3 ANALYZE PIPELINE

The Analyze Pipeline is responsible for downloading, organizing, and analyzing the dataset. It
performs several critical tasks:

1. Dataset Download: The system generates hypotheses for downloading the dataset based
on metadata and content from the dataset website. For each hypothesis, it attempts to
download the dataset and stores the results in corresponding folders.

2. Code Generation: After downloading, the system uses LLMs to generate Python code that
can load, read, and visualize the dataset. The code is based on the metadata and sample
points extracted from the dataset.

3. Self-Repair: If the generated code fails during execution, the system captures the error log
and re-invokes the LLM to attempt self-repair. This step improves the robustness of the
generated code.

4. User-Defined Requirements: Users can specify custom analysis requirements, and the
system generates corresponding code to meet these needs. The code is automatically tested,
and any failures are corrected using the self-repair mechanism.

The final output of the Analyze Pipeline includes a fully downloaded dataset, analysis code, and vi-
sualized sample data points. Users can interact with the system to modify or delete failed downloads
as needed.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.4 FLOWCHART VISUALIZATIONS

The following figures illustrate the flow of the DataSEA system, both at a high level and within each
individual module:

• Figure 5: A flowchart of the entire pipeline, from dataset input to analysis completion.
• Figure 6: A detailed flowchart of the Search Pipeline, showing the steps involved in dataset

query and retrieval.
• Figure 7: A flowchart of the Evaluate Pipeline, illustrating the metadata extraction, refer-

ence paper retrieval, and metadata extension processes.
• Figure 8: A flowchart of the Analyze Pipeline, depicting the dataset download, code gen-

eration, and self-repair mechanisms.

Figure 5: Flowchart of the entire DataSEA pipeline.

Figure 6: Flowchart of the Search Pipeline.

Figure 7: Flowchart of the Evaluate Pipeline.

A.5 PROMPTS WE USE

We make tons of LLM api calls during the SEA process, and for every specific task we have a
independent prompt. We will list them and show their usage.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 8: Flowchart of the Analyze Pipeline.

A.5.1 DATASET WEBSITE PROMPT

The following prompt is designed to analyze a given website to determine if it contains a valid dataset
download link. It is used in situations where the dataset might be located on various websites, and
we need to extract the dataset link and metadata from the HTML content of the page. The prompt
ensures the clarity of the task and requests the output in a structured JSON format. Below is a
breakdown of the prompt:

• The prompt instructs the system to analyze the HTML of the website to determine if it is
the official website for the dataset in question, identified by the dataset name and a
description.

• It asks the system to check specifically for a dataset download link and warns against mis-
taking an article download link for a dataset.

• If the website is identified as containing the dataset, the system should extract and return
the dataset download link along with basic metadata, such as the website description.

• The prompt emphasizes returning the result in JSON format, specifying fields such as:
– is dataset website: Whether the website is related to the dataset.
– download link dataset: The URL link to the dataset download.
– metadata: Any additional information extracted from the website, such as descrip-

tions or other relevant data.
• The prompt also requests that if the dataset link is not found, the system should provide a

reason for this.
• It concludes by asking for a structured JSON output without any unnecessary text or for-

matting, to ensure compatibility and ease of use for further analysis.

The structure of the prompt is as follows:

Determine whether the current website HTML is the website for the dataset "{dataset_name}". Here is some detail about the dataset: "{desc}"
!!You should notice that the download link is for dataset and not article! If there is only download link of article and no dataset, it still should be judged as having no download link!!
If it is, give the dataset download link from the HTML content and provide some metadata about the website, such as description and basic info.

If the download link is already the dataset, then note it. Otherwise, indicate that it is not. Do note that if the link is the dataset, then click it and a dataset will be downloaded, and it is not another website introducing or containing info about the dataset.

If it is not, provide the reason.

Return the format in JSON with the following structure:
{

"is_dataset_website": <boolean>,
"metadata": <object>,
"download_link_dataset_exists": <boolean>,
"download_link_dataset": <string>,
"is_direct_data": <boolean>,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

"reason": <string>
}

Note: just give the json, and do not add any extra words like adding the j-s-o-n letters and then give me the json!

The website HTML:
"""
{html_content}
"""

A.5.2 DATASET PAPER RETRIEVAL

The prompt generated by this function is used to identify whether a provided website contains the
original paper for a given dataset. The original paper refers to a publication where the dataset was
first introduced by the author, not merely a paper that uses the dataset. The prompt asks the LLM to
carefully evaluate the HTML content of the page and determine if the paper link is present.

The model must also ensure that the link leads to a downloadable paper file (such as PDF) and not
another webpage or non-relevant content. If the website does not contain the original paper, the
model is required to provide a reason. The output of the task should follow a predefined JSON
structure that includes flags for whether the paper link is available, and metadata about the website
and the paper.

def generate_prompt_paper(link, dataset_name, desc = ""):
html_content = fetch_html_from_link(link)

if html_content is None:
return ""

prompt = f"""
Determine whether the current website HTML is the website for the original paper of the dataset "{dataset_name}". Here is some detail about the dataset: "{desc}"

Note that for "the original paper of the dataset", it means that the author of the paper creates the dataset, then writes a paper to introduce the details of the dataset {dataset_name}.
It does not mean the author just use the dataset in his research, but means that the author creates the dataset.

If it is, give the paper download link from the HTML content and provide some metadata about the website, such as description and basic info.

If the download link is just the paper pdf(or possibly other format) then note it. Otherwise, indicate that it is not.

If it is not the website of the original paper, provide the reason.

Return the format in JSON with the following structure:
{

"is_dataset_paper_website": <boolean>,
"metadata": <object>,
"download_link_paper_exists": <boolean>,
"download_link_paper": <string>,
"is_direct_paper": <boolean>,
"reason": <string>

}

Note: just give the json, and do not add any extra words like adding the j-s-o-n letters and then give me the json!

The website HTML:
"""
{html_content}
"""
return prompt

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5.3 RETRIEVING PDF LINKS FOR DATASET PAPER

The purpose of this prompt is to extract direct download links for the original dataset paper in
common formats such as PDF, DOCX, or TXT from a webpage. Given the website’s HTML content
and dataset details, the LLM is tasked with identifying direct download links for the academic paper,
filtering out irrelevant content like datasets or other material. The prompt also specifies the format
for the response, which must be structured in JSON.

The returned JSON should contain download links and specify the file format, ensuring that the links
are valid and directly lead to paper files rather than web pages or unrelated content.

def get_potential_pdf_link(link, dataset_name, desc = ""):

html_content = fetch_html_from_link(link)

prompt = f"""
I have the HTML content of a website, and I need to find any direct download links for a specific academic paper. The paper is the original paper of dataset {dataset_name}. The website link is: "{link}".

The description of the paper is as follows:
"{desc}".

Based on this information, please search through the HTML content to find any direct download links for the paper in common formats like PDF, DOCX, TXT, etc. Return all such links and specify the format of each link.

Remember you should give the direct link of paper but not other werid stuff like dataset!!

Return the format in JSON with the following structure:
{{

downalod_link_1: {{
"link": "https://aaa.com",
"format": "pdf"

}},
downalod_link_2: {{

"link": "https://bbb.com",
"format": "txt"

}},

...,

downalod_link_n: {{
"link": "https://nnn.com",
"format": "other format"

}},
}}

Note: just give the json, and do not add any extra words like adding the j-s-o-n letters and then give me the json!

The website HTML:
\"\"\"
{html_content}
\"\"\"
"""

prompt = clamp_prompt(prompt)

res = LLMApi(prompt)

return res

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5.4 GENERATING DATASET METADATA EXTRACTION INSTRUCTIONS

This prompt is designed to instruct the LLM to extract relevant metadata from a collection of con-
catenated text files that contain information about a dataset. The LLM is provided with basic in-
formation about the dataset, such as its name and current metadata, and is tasked with extracting
additional details like description, size, scale, author, and other relevant properties. The output for-
mat is strictly defined as JSON, and the LLM is asked not to provide any explanations, only the
JSON data.

The key fields that the LLM is expected to populate include:

• description: A brief description of the dataset.

• size: The size of the dataset (e.g., 1GB, 10,000 samples).

• scale: The memory size of the dataset (e.g., 1TB, 100MB).

• author: The dataset’s creator or author.

• organization: The institution responsible for the dataset.

• usage: Common uses for the dataset (e.g., model training, validation).

• application fields: Relevant application domains such as computer vision or NLP.

• keywords: Key terms associated with the dataset.

The LLM is instructed to use the text files as a source and output the final information in the required
JSON structure.

Function to create the instruction prompt without the actual text
def generate_instruction_prompt():

dataset_name, dataset_info = read_metadata()
prompt =f"""
You are provided with a detailed description from a folder of concatenated text files that may contain information about a dataset.
Your task is to extract the relevant dataset information and present it in the following JSON format:

The basic info of dataset: its name is {dataset_name}, and its current info is {dataset_info}

{{
"dataset_name": "{dataset_name}",
"info": {{

"description": "<brief description of the dataset>",
"size": "<size of the dataset (e.g., 1GB, 10,000 samples)>",
"scale": "<scale of the memory of the dataset (e.g., 1tb, 1gb, 100mb, 10mb, 1mb, 100kb, ..., and not things like global or regional!!! it should be a number with a unit like mb or gb>",
"author": "<author or creator of the dataset>",
"organization": "<organization or institution responsible for the dataset>",
"usage": "<how the dataset is typically used (e.g., model training, validation)>",
"application_fields": [

"<application_field (e.g., computer vision, NLP)>"
],
"keywords": [

"<keyword_1>",
"<keyword_2>"

]
}}

}}

Note that you should ONLY return a json file and no any other fukcing explanation info nonsense. JUST JSON!

Use the information from the concatenated text to fill out the fields as accurately as possible. If any information is missing, leave the corresponding field empty or remove it.
"""
return prompt

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.5.5 GENERATING DATASET REFERENCE DETECTION INSTRUCTIONS

This prompt instructs the LLM to analyze a research paper and identify whether it references a given
dataset. The LLM is provided with two inputs: the name and description of the dataset, and a text
string from the research paper. It is tasked with determining if the dataset is mentioned in the paper
and extracting relevant details about how the dataset is used. The output is structured as a JSON
object, containing information on whether the dataset is referenced and, if so, specific details on its
usage and relevant text excerpts.

The key tasks for the LLM include:

• Checking if the dataset is referenced in the research paper.
• Extracting relevant information on how the dataset is used (e.g., for model training, analy-

sis, or validation).
• Providing the specific text from the paper where the dataset is mentioned.
• Structuring the output in a JSON format, with clear fields for dataset usage, application

domains, and additional details.

The prompt is designed to be comprehensive, guiding the LLM through a detailed extraction process
to ensure accurate metadata is gathered from the research paper.

def generate_instruction_prompt(dataset_name, dataset_info):
instruction_prompt = f"""

You are provided with two inputs:

1. A dataset named ’{dataset_name}’, which is described as:
"{dataset_info}".

2. A string containing text from a research paper.

Your task is to:

- Determine if the research paper references the dataset ’{dataset_name}’ at any point.
- If the dataset is referenced, identify and extract the specific part of the paper where the dataset is mentioned.
- Additionally, provide detailed information about how the dataset is used in the paper. This might include, but is not limited to:

- Whether the dataset is used for model training, analysis, validation, comparison, or any other purpose.
- Any specific aspects of the dataset mentioned (e.g., size, features, or unique characteristics).
- Any insights into the relevance of the dataset to the research being conducted.

Your output should be a JSON object with the following structure:

{{
"dataset_referred": <true/false>,
"reference_details": {{

"dataset_name": "{dataset_name}",
"dataset_usage": "<detailed description of how the dataset is used in the research paper>",
"related_text": "<specific excerpt from the paper where the dataset is mentioned or discussed>"
"application_field": "<application domains of the paper, in the form of a list of keywords and their descriptions, and into a josn dict >"
...: any other useful info you think, can be left as blank

}}
}}

Instructions:
- If the dataset ’{dataset_name}’ is not mentioned in the paper, set "dataset_referred" to false.
- If the dataset is mentioned, set "dataset_referred" to true and provide detailed information in the "reference_details" field.
- Ensure that "related_text" contains an exact or closely matching excerpt from the paper that supports your conclusion.
- If the dataset is referred to but no explicit usage is stated, provide an empty string for "dataset_usage".
"""

return instruction_prompt

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.5.6 INSTRUCTION FOR GENERATING PYTHON CODE TO VISUALIZE DATASET

This prompt is designed to instruct the language model to generate Python code for loading and
visualizing a dataset. The model is guided to provide error-handling mechanisms and structured
output based on dataset popularity and file availability. If the dataset is famous, libraries should be
used; if not, the prompt asks the model to process local files to visualize the first 10 samples of
the dataset. The prompt emphasizes proper error handling, data extraction, and visualization while
logging useful information.

def generate_instruction_prompt(files_info, path, error_info = ""):

dataset_name, dataset_info = read_metadata()

"""
Generate an instruction prompt for an LLM to generate Python code to read
and visualize the elements of a dataset.

Parameters:
- dataset_name (str): The name of the dataset.
- dataset_info (list): A list of dictionaries containing file names and the

head starting characters of the files (if applicable).
"""

prompt = f"""
Instruction:
Generate Python code to load the dataset ’{dataset_name}’, retrieve the first 10 samples, and visualize them.

1. If the dataset ’{dataset_name}’ is famous (e.g., MNIST, CIFAR-10), use existing libraries to load it directly.
2. If the dataset is not famous, manually process the local dataset files provided below.
3. Visualize the first 10 samples using matplotlib or another Python library.
4. Ensure that all parts of the code (file loading, extraction, visualization) have try-except blocks to catch potential errors.

Dataset Information:
{dataset_info}

Local Dataset Files:
{files_info}

Task:
- Write a Python program to load the dataset, extract the first 10 samples, and save them to a JSON file.
- Write a function to visualize the samples and save the plot figure in the folder {path}.
- Ensure all functions handle errors properly, with logs or messages.

Final Output:
You should only return plain Python code without any additional explanation!

Ensure the code follows the below structure:
‘‘‘python
import os
import matplotlib.pyplot as plt

def load_dataset():
try:

...
except Exception as e:

...

def get_first_10_samples():
try:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

...
except Exception as e:

...

def visualize_samples(samples):
try:

...
except Exception as e:

...

def save_run_result():
...

if __name__ == "__main__":
try:

samples = get_first_10_samples()
visualize_samples(samples)

except Exception as e:
...

try:
save_run_result()

except Exception as e:
...

‘‘‘

Error log from previous code attempts: {error_info}
"""
return prompt

A.5.7 PROMPT FOR EXTRACTING DATASET DOWNLOAD LINK FROM HTML

This prompt is designed for a language model to analyze HTML content and retrieve direct or
indirect download links for a dataset. The model is required to provide clear instructions on how
to access the dataset, including handling any intermediate steps necessary for the download. The
prompt also instructs the model to infer the file format and provide detailed instructions if the dataset
cannot be directly downloaded.

def generate_llm_prompt(link):

dataset_name, dataset_info = read_metadata()

prompt = f"""
You are tasked with analyzing the HTML content provided to identify how to download a dataset. The dataset information is as follows:

- **Dataset Name**: {dataset_name}
- **Dataset Info**: {dataset_info}

Your Objective:
1. **Download URL**: Extract the direct download link for the dataset file if it is explicitly provided in the HTML. If the link is hidden behind multiple steps (like clicking through to a secondary page), your task is to trace those steps and identify where the final download occurs. If no link is available, return ’None’.
2. **File Format**: Determine the file format of the dataset (e.g., zip, tar, csv, json). If it is not explicitly mentioned, attempt to infer it from file extensions in the download URL or surrounding information.
3. **Download Steps**: Provide clear, step-by-step instructions to acquire the dataset. This may include:
- Clicking a direct download link.
- Navigating to another webpage to continue the download process, if there is no direct link and a download page link is available.
- Completing necessary forms or accepting terms to access the dataset.
- Any other process required to reach the final dataset.

You should try your best to find the direct download link of the dataset. Even if direct links do not exist, find possible indirect links.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

And sometimes there are direct download links but you misjudge them, so be more inclusive.

NOTE!!! You should only return me a json file and do not contain any other info, like text explanation or so. DO NOT WRITE EXPLANATION OUTSIDE OF JSON FILE YOU RETURN!!!

JSON Output Format:
Present the output as a JSON object in the following structure:

‘‘‘json
{{
"dataset_name": "{dataset_name}",
"download_info": {{

"download_url": "<Direct download URL or ’None’ if not available>",
"direct_download": "<If the download url is direct or none>",
"useful info": "<any useful infos you find, like links to potential download pages even if they are not direct or certificated. this should be a dict>"
"file_format": "<File format or ’Unknown’>",
"potential_indirect_links": "<potential download links you think>"
"download_steps": [
{{

"step": 1,
"action": "<Description of the first step needed to download the dataset>"

}},
{{

"step": 2,
"action": "<Description of the second step, if applicable>"

}},
{{

"step": 3,
"action": "<Additional steps, if applicable>"

}},
....,
{{

"step": n,
"action": "<Additional steps, if applicable>"

}},
]

}}
}}

NOTE!!! You should only return me a json file and do not contain any other info, like text explanation or so. DO NOT WRITE EXPLANATION OUTSIDE OF JSON FILE YOU RETURN!!!

"""
return prompt

A.5.8 PROMPT FOR GENERATING PYTHON CODE TO DOWNLOAD A DATASET

This prompt instructs the model to generate Python code that automates the process of downloading
a dataset. The model must handle both direct and indirect download links, provide error handling,
and ensure that the dataset is saved with the correct file structure. Additionally, the model is re-
quired to produce code that is generalizable and capable of managing different dataset formats and
conditions.

def generate_instruction(uid, idea):

dataset_name, dataset_info = read_metadata()

prompt = f"""

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Write a python file to download the dataset {dataset_name}. Here are some other detail in case the dataset is not popular, so I provide some additional info.

You are provided with an input dictionary stored in a variable called ‘input_data‘.
It is the info about a dataset {dataset_name}, with info {dataset_info}. Your goal is to generate python code that can download the dataset.
The structure of the dictionary is as follows:

{idea}

The real input is in the "input" section as this is an instruction prompt.

NOTE THAT THE dictionary is ONLY FOR REFERENCE and it may contain FALSE INFO, so you can depend on it or not depend on it when writing code.

Your task is to generate Python code for the following:

- **Create a Python script file in the folder ‘draft/ideas/{uid}‘ with the name ‘get_dataset.py‘, so its final path is ‘draft/ideas/{uid}/get_dataset.py‘.** The folder draft/{uid}/ already exists.

- **Define a function ‘download_dataset()‘ within this file.**
- This function should:

- Download the dataset based on the dataset name and dataset info, and (if not enough), info provided in the input idea part, including potential alternative links.
- Download the dataset based on the information provided in the ‘input_data‘ dictionary, including potential alternative links.
- If you can already find infomation about the dataseat without using input json, you can write code to get it too.
- Handle both direct downloads and cases where the download requires manual intervention following steps.
- Add try-except blocks anywhere so that the code will function normally even if things go wrong.
- Running the download_dataset will ensure that the dataset gets downloaded to the folder "draft/ideas/{uid}/downloads".

- If after trying downloading directly or indirectly(like trying all potenial_links), not a single file is downloaded, you need to:
- Print the required download steps as outlined in the ‘download_steps‘ section of the input.
- Output these instructions clearly so that the user can follow them to manually download the dataset.

- **Handle direct downloads:**
- If ‘direct_download‘ is set to "Yes", the function should use ‘requests‘ to download the file from ‘download_url‘ and save it in a folder called ‘draft/dataset/‘. The filename should be derived from the URL or the dataset name, and it should match the specified ‘file_format‘ (e.g., ‘.csv‘).

- **Create directories if necessary:**
- Ensure that the folder ‘draft/dataset/{uid}‘ is created if it doesn’t already exist.

- **Error handling:**
- The function should check for errors during the download process, including connection errors, HTTP status codes, and file-writing issues.
- If the download fails, print a meaningful error message and proceed to try the next available download link (if any).

- **Log useful information:**
- After a successful download, print out useful metadata about the dataset from the ‘useful info‘ field, such as ‘homepage‘, ‘description‘, and links to related documentation or papers.

- **File structure and naming:**
- Save the dataset with a filename based on the ‘dataset_name‘ and the appropriate ‘file_format‘. For example, if the dataset is named ‘aaa‘ and the format is ‘xxx‘, the file should be saved as ‘draft/dataset{uid}/aaa.xxx‘.

- **Generalization:**
- Ensure that the function is generalized to handle any properly formatted input dictionary of the same structure as provided in ‘input_data‘, not just the specific example given.

- **Edge cases and validation:**
- Include validation for the existence of required fields like ‘download_url‘ and ‘file_format‘ in the ‘input_data‘.
- If a field is missing or invalid, the function should print an error and gracefully handle the situation without crashing.

NOTE THAT the download link may be a link to files like csv/txt/zip/json/... , but when you just fetch it using normal get request, you may just get an html file. so you need to add logic to judge the returned info of html, like judging wiht content-type info and improve downlaoding effects.

Example code structure to start:

‘‘‘python
import os
import requests

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

def download_dataset():
...
...

...

if __name__ == "__main__":
download_dataset()

Note that the example code may be wrong, so do not really rely on it. You should generate code on your own.

You should only return python code that is content of get_dataset.py, and do not add any extra info. DO NOT ADD A SINGLE LETTER OUTSIDE OF THE PYTHON CODE!

And for the result python code, the function download_dataset, once run, will do all the job. You can add additional function to assist it, but this function must exist and can be run without calling parameters.

"""
return prompt

A.5.9 PROMPT FOR GENERATING PYTHON CODE TO DOWNLOAD A DATASET

This prompt instructs the model to generate a Python script to download a dataset, with detailed
instructions for error handling, logging, and alternative download methods. It ensures that the gen-
erated code is robust, handles edge cases, and can be run without any external parameters. The
script also includes mechanisms to handle both direct and indirect download links, create necessary
directories, and validate input data.

def generate_instruction(uid, idea):

dataset_name, dataset_info = read_metadata()

prompt = f"""

Write a python file to download the dataset {dataset_name}. Here are some other detail in case the dataset is not popular, so I provide some additional info.

You are provided with an input dictionary stored in a variable called ‘input_data‘.
It is the info about a dataset {dataset_name}, with info {dataset_info}. Your goal is to generate python code that can download the dataset.
The structure of the dictionary is as follows:

{idea}

The real input is in the "input" section as this is an instruction prompt.

NOTE THAT THE dictionary is ONLY FOR REFERENCE and it may contain FALSE INFO, so you can depend on it or not depend on it when writing code.

Your task is to generate Python code for the following:

- **Create a Python script file in the folder ‘draft/ideas/{uid}‘ with the name ‘get_dataset.py‘, so its final path is ‘draft/ideas/{uid}/get_dataset.py‘.** The folder draft/{uid}/ already exists.

- **Define a function ‘download_dataset()‘ within this file.**
- This function should:

- Download the dataset based on the dataset name and dataset info, and (if not enough), info provided in the input idea part, including potential alternative links.
- Download the dataset based on the information provided in the ‘input_data‘ dictionary, including potential alternative links.
- If you can already find infomation about the dataseat without using input json, you can write code to get it too.
- Handle both direct downloads and cases where the download requires manual intervention following steps.
- Add try-except blocks anywhere so that the code will function normally even if things go wrong.
- Running the download_dataset will ensure that the dataset gets downloaded to the folder "draft/ideas/{uid}/downloads".

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

- If after trying downloading directly or indirectly(like trying all potenial_links), not a single file is downloaded, you need to:
- Print the required download steps as outlined in the ‘download_steps‘ section of the input.
- Output these instructions clearly so that the user can follow them to manually download the dataset.

- **Handle direct downloads:**
- If ‘direct_download‘ is set to "Yes", the function should use ‘requests‘ to download the file from ‘download_url‘ and save it in a folder called ‘draft/dataset/‘. The filename should be derived from the URL or the dataset name, and it should match the specified ‘file_format‘ (e.g., ‘.csv‘).

- **Create directories if necessary:**
- Ensure that the folder ‘draft/dataset/{uid}‘ is created if it doesn’t already exist.

- **Error handling:**
- The function should check for errors during the download process, including connection errors, HTTP status codes, and file-writing issues.
- If the download fails, print a meaningful error message and proceed to try the next available download link (if any).

- **Log useful information:**
- After a successful download, print out useful metadata about the dataset from the ‘useful info‘ field, such as ‘homepage‘, ‘description‘, and links to related documentation or papers.

- **File structure and naming:**
- Save the dataset with a filename based on the ‘dataset_name‘ and the appropriate ‘file_format‘. For example, if the dataset is named ‘aaa‘ and the format is ‘xxx‘, the file should be saved as ‘draft/dataset{uid}/aaa.xxx‘.

- **Generalization:**
- Ensure that the function is generalized to handle any properly formatted input dictionary of the same structure as provided in ‘input_data‘, not just the specific example given.

- **Edge cases and validation:**
- Include validation for the existence of required fields like ‘download_url‘ and ‘file_format‘ in the ‘input_data‘.
- If a field is missing or invalid, the function should print an error and gracefully handle the situation without crashing.

NOTE THAT the download link may be a link to files like csv/txt/zip/json/... , but when you just fetch it using normal get request, you may just get an html file. so you need to add logic to judge the returned info of html, like judging wiht content-type info and improve downlaoding effects.

Example code structure to start:

‘‘‘python
import os
import requests

def download_dataset():
...
...

...

if __name__ == "__main__":
download_dataset()

Note that the example code may be wrong, so do not really rely on it. You should generate code on your own.

You should only return python code that is content of get_dataset.py, and do not add any extra info. DO NOT ADD A SINGLE LETTER OUTSIDE OF THE PYTHON CODE!

And for the result python code, the function download_dataset, once run, will do all the job. You can add additional function to assist it, but this function must exist and can be run without calling parameters.

"""
return prompt

A.6 GOOGLE SEARCH API

We directly crawl the top-ranked links search results from google with such code:

import requests

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

from bs4 import BeautifulSoup

def search_google(query):
Make a request to Google Search
url = f"https://www.google.com/search?q={query}"
headers = {

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
response = requests.get(url, headers=headers)

Check if the request was successful
if response.status_code == 200:

Parse the HTML content
soup = BeautifulSoup(response.text, ’html.parser’)
search_div = soup.find(’div’, {’id’: ’search’})
return str(search_div)

else:
return f"Error: {response.status_code}"

def save_to_file(content, filename):
with open(filename, ’w’, encoding=’utf-8’) as file:

file.write(content)

def extract_links(html_content):
soup = BeautifulSoup(html_content, ’html.parser’)
links = []

Find all ’a’ tags and get their href attributes
for a_tag in soup.find_all(’a’, href=True):

links.append(a_tag[’href’])

with open("links.txt", ’w’, encoding=’utf-8’) as link_file:
for link in links:
link_file.write(link + ’\n’)

return links

def get_links(input_text):
result = search_google(input_text)
links = extract_links(result)
return links

if __name__ == "__main__":
print(get_links("scope2 dataset"))

query = input("Enter your search query: ")
result = search_google(query)

if "Error" not in result:
save_to_file(result, "search_results.html")
print("Search results saved to ’search_results.html’.")

Extract links and save to a separate file
links = extract_links(result)
with open("draft/links.txt", ’w’, encoding=’utf-8’) as link_file:

for link in links:
link_file.write(link + ’\n’)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

print("Links saved to ’links.txt’.")
else:

print(result)

A.7 LONG CONTEXT INFERENCE

Long context inference involves processing large textual inputs that exceed typical token limits
in language models. By employing techniques such as chunking, models can handle and analyze
extensive documents without losing context or important details.

To implement long context inference, a common approach is to break down the input text into
smaller chunks, process each chunk separately, and then combine the results to form a coherent
output. Below is an example of Python code implementing this approach using an API to handle
long texts:

import os
import requests
import json, sys

parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ’..’))
sys.path.append(parent_dir)

from utils import LLMApi, clamp_prompt, clean_llm_json_res

Get the OpenAI API key from environment variable
API_KEY = os.getenv(’OPENAI_API_KEY’)

Function to split the input into chunks based on token limit
def split_into_chunks(text, max_char_len = 8888):

chunks = []

Split the text into chunks of the given max_char_len
for i in range(0, len(text), max_char_len):

chunks.append(text[i:i + max_char_len])

return chunks

Function to process text of any length with chunking
def call_llm_with_chunks(instruction, text, max_tokens_per_chunk=8888, max_chunk_number = 50, model="gpt-4o-mini"):

chunks = split_into_chunks(text, max_tokens_per_chunk)

full_response = []

for i, chunk in enumerate(chunks):
if i > max_chunk_number:

break
print(f"Processing chunk {i+1}/{len(chunks)}...")
prompt = generate_chunk_prompt(instruction, chunk, i)
response = LLMApi(prompt, model=model)
if response:

full_response.append(response)

return full_response

def generate_chunk_prompt(instruction, chunk, number):
prompt = f"""
Task: You are required to perform the following action on the provided text.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Instruction:
{instruction}

Context:
The text provided below is a portion(portion number: {number}) of a larger document. The text might include multiple ideas, important details, and some redundant information. You are expected to carefully read the entire chunk and execute the instruction provided above.

Important Notes:
- Pay close attention to the instruction and ensure that the output reflects exactly what is being asked.
- If the instruction requires summarizing, ensure the result is concise while retaining key information.
- If the instruction asks for rewriting, rephrase without altering the original meaning.

Below is the text chunk that you should work on:

[Start of Text Chunk]
{chunk}
[End of Text Chunk]

Please follow the instruction precisely and produce the corresponding output.
"""
return prompt

def generate_combination_prompt(instruction, chunk_responses):
prompt = f"""
Task: You are required to combine multiple responses generated from different chunks of a larger text.
The individual chunk responses may contain overlapping information, separate ideas, or fragmented content.
Your task is to combine these responses into a single cohesive and comprehensive output.

The responses are results of such task: {instruction}, so merge them based on the task description to make sure useful info is not lost.

Below are the responses generated from different chunks. Please combine them into a single well-structured and cohesive result:

"""

for i, response in enumerate(chunk_responses):
prompt += f"[Response {i+1}]\n{response}\n\n"

prompt += "Please combine the above responses into a single cohesive output, following the instructions provided."

return prompt

def LLM_long_api(instruction, input_text, max_chunk = 100, model="gpt-4o-mini"):
res = call_llm_with_chunks(instruction, input_text, max_chunk_number = max_chunk, model=model)
cb_pp = generate_combination_prompt(instruction, res)

return clean_llm_json_res(LLMApi(cb_pp))

if __name__ == "__main__":
res = LLM_long_api("you need to give me a story with some input info", "the story takes place in ancient China and is about a love story with a good ending")
print(res)

The function calls utils, and the code of util is below:

import json, os, requests

def change_dataset_name(name):
json_file_path = "draft/metadata.json"

with open(json_file_path, ’r’) as file:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

data = json.load(file)

Update the dataset_name
data[’dataset_name’] = name

Save the updated JSON back to the file
with open(json_file_path, ’w’) as file:

json.dump(data, file, indent=4)

def read_dataset_name():
with open("draft/metadata.json", ’r’) as file:

data2 = json.load(file)

Extract the "dataset_name" property
dataset_name = data2[’dataset_name’]

return dataset_name

def LLMApi(input_text, max_length=8888, model="gpt-4o-mini"):
api_key = os.getenv(’OPENAI_API_KEY’) # Get the API key from environment variables
if not api_key:

return "API key not found in environment variables."

url = "https://api.openai.com/v1/chat/completions"

headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"

}

Clamp input text to max_length
if len(input_text) > max_length:

input_text = input_text[:max_length] # Truncate the text if it’s too long

data = {
"model": model, # Ensure you’re using a valid model, e.g., "gpt-4"
"messages": [

{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": input_text}

]
}

try:
Send POST request to OpenAI API
response = requests.post(url, headers=headers, data=json.dumps(data))

If the response is successful (status code 200)
if response.status_code == 200:

result = response.json()
return result[’choices’][0][’message’][’content’].strip()

else:
return f"Error: {response.status_code} - {response.text}"

except Exception as e:
return f"An error occurred: {e}"

def fetch_html_from_link(link):
"""Fetches HTML content from a given link."""

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

try:
response = requests.get(link)
response.raise_for_status() # Raise an error for bad responses

return response.text
except requests.RequestException:

return None # Return None on error

from bs4 import BeautifulSoup
import requests

def fetch_html_from_link_no_script(link):
"""Fetches HTML content from a given link."""
try:

response = requests.get(link)
response.raise_for_status() # Raise an error for bad responses

html_content = response.text

Try removing <script> tags from the HTML
try:

soup = BeautifulSoup(html_content, ’html.parser’)
for script in soup.find_all(’script’):

script.decompose() # Remove the <script> tags
return str(soup)

except Exception:
return html_content # In case of error, return the raw HTML content

except requests.RequestException:
return None # Return None on error

def clamp_prompt(long_string, char_limit=8888):
if len(long_string) > char_limit:

return long_string[:char_limit] + ’...’
return long_string

def read_metadata(file_path=’draft/metadata.json’):
with open(file_path, ’r’, encoding=’utf-8’) as file:

Load the JSON data from the file
metadata = json.load(file)

Extract dataset_name and convert the entire ’info’ dictionary to a string
dataset_name = metadata[’dataset_name’]
dataset_info = json.dumps(metadata[’info’]) # Convert the ’info’ dictionary to a JSON-formatted string

return dataset_name, dataset_info

def read_metadata_dataset_websites(file_path=’draft/metadata.json’):
try:

with open(file_path, ’r’, encoding=’utf-8’) as file:
Load the JSON data from the file
metadata = json.load(file)

Extract dataset_name and convert the entire ’info’ dictionary to a string
dataset_websites = metadata["dataset_websites"]

return dataset_websites
except Exception as e:

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

print(f"failed to read_metadata_dataset_websites, reason is : {e}")
return []

Example usage:
dataset_name, dataset_info = read_metadata()
print(f"Dataset Name: {dataset_name}")
print(f"Dataset Info: {dataset_info}")

def clean_llm_json_res(res):
res_json = res
try:

if res.startswith(’‘‘‘json\n’):
res = res[len(’‘‘‘json\n’):].strip(’‘ \n’)

Convert the string to JSON format
res_json = json.loads(res)

except Exception as e:
Skip invalid JSON strings
print(f"Error decoding JSON for item: {res} - {e}")

return res_json

def get_py_files_length(folder_path):
total_length = 0
Traverse through all files in the folder and its subfolders
for root, dirs, files in os.walk(folder_path):

for file in files:
if file.endswith(".py"): # Only consider .py files

file_path = os.path.join(root, file)
with open(file_path, ’r’, encoding=’utf-8’) as f:

total_length += len(f.readlines()) # Add number of lines in the file
return total_length

if __name__ == "__main__":
folder_path = os.path.dirname(os.path.realpath(__file__)) # Get the current folder path
total_lines = get_py_files_length(folder_path)
print(f"The total number of lines in all .py files (including this script) is: {total_lines}")

A.8 REPRODUCIBILITY

The code for the DataSEA system is available on GitHub at https://github.com/
SingleView11/DataSEA. Detailed instructions for setting up the environment and running
the pipelines are provided in the repository.

A.9 CODE STRUCTURE

The code for the DataSEA system is organized into three main modules: Search (S), Evaluate (E),
and Analyze (A). Each module contains several Python scripts responsible for different tasks within
the pipeline. Below is a detailed breakdown of the file structure:

app/

app.py # Main file to orchestrate the full pipeline
utils.py # Utility functions used across modules

S/ # Search module

31

https://github.com/SingleView11/DataSEA
https://github.com/SingleView11/DataSEA

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

convert_json_format.py # JSON format conversion
convert_json_format2.py # Alternative JSON format conversion
GetRawResponse.py # Fetch raw responses from search queries
get_firstpage_links.py # Retrieve first-page search links
links_eval.py # Evaluate and rank retrieved links
main_s.py # Main script for Search module
prompt_generation.py # Generate search prompts for LLM
readme.md # Documentation for Search module
__init__.py # Init file for the Search module

E/ # Evaluate module
analyze_ref_pdfs.py # Analyze reference papers in PDF format
get_dataset_metadata.py # Extract metadata from dataset sources
get_paper.py # Retrieve reference papers for the dataset
get_pdfs.py # Download and parse PDFs
get_sorted_ref_papers.py # Sort and rank reference papers by citations
longtext_api.py # Handle long text input/output for LLMs
main_e.py # Main script for Evaluate module
main_es.py # Extended script for Evaluate module
sortgs_update.py # Update sorting logic for references
__init__.py # Init file for the Evaluate module

A/ # Analyze module
analyze_dataset.py # Generate analysis and visualizations for datasets
get_download_method.py # Determine download method for datasets
main_a.py # Main script for Analyze module
main_sea.py # Integrated script for Search, Evaluate, Analyze
try_download_ideas.py # Try different download ideas for dataset
zip_files_final.py # Handle final dataset packaging
__init__.py # Init file for the Analyze module

The structure is modular, with each module containing its own set of scripts that handle specific
steps in the DataSEA workflow. The modules are integrated by the app.py file, which orchestrates
the end-to-end pipeline.

And below are details of using the code.

A.10 CODE EXPLANATION

This subsection provides detailed explanations for each Python file in the DataSEA system, covering
the functionality, logic, and interactions with other modules.

A.10.1 QUICKSTART

For setup, install requirement.txt, and make sure the openai api key is set in your environment
variable.

Then run the app.py. It will ask you to input a dataset name and some optional descriptive info, and
then you only need to wait for about 5-10 minutes to get a zip file that stores the infos about the
dataset!

A.10.2 ADVANCED RUNNING

You can also do the s,e,a pipelines separately by calling s pipeline, e pipeline, a pipeline function
one by one, just check the main s, main e, main a functions.

A.10.3 SEARCH MODULE (S)

convert json format.py

• Code Usage:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

– process judge info(data): Processes entries to parse the judge info field
as JSON, if possible.

– convert judge info in file(input file, output file): Reads
JSON data from input file, processes it, and saves it to output file.

– eval pipeline(): Runs the dataset evaluation pipeline from the links eval
module.

convert json format2.py

• Code Usage:
– process judge info(data): Processes and converts the judge info field to

a valid JSON object if possible.
– filter dataset websites(data): Filters entries where
is dataset website in judge info is True.

– filter judge info in file(input file, output file): Reads JSON
from input file, processes and filters the entries, and saves the filtered result to
output file.

GetRawResponse.py

• Code Usage:
– google response(query): Simulates a Google search by sending a search

query to Google’s search engine and saves the raw HTML response to
raw search response.html.

get firstpage links.py

• Code Usage:
– search google(query): Sends a search query to Google, parses the HTML re-

sponse, and returns the search results as HTML.
– save to file(content, filename): Saves the provided content (HTML or

text) to a file with the specified filename.
– extract links(html content): Extracts all the links from the provided

HTML content and returns them as a list.
– get links(input text): Performs a Google search for the given input text,

extracts the links, and returns them as a list.

links eval.py

• Code Usage:
– LLMApi(input text): Sends a request to the OpenAI API using the provided

input text and returns the LLM’s response.
– test(dataset name="", desc="", need input=True): Retrieves

dataset links, generates prompts, and sends them to the LLM API for evaluation,
returning the results.

– save array to json(array, file path="draft/evals.json"):
Saves an array to a specified JSON file.

– eval pipeline(dataset name="", dataset desc="",
need input=True): Runs the evaluation pipeline, gathering and saving the
LLM evaluations for a given dataset.

main s.py

• Code Usage:
– process judge info(data): Processes the judge info field, converting it

to JSON if valid.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

– convert judge info in file(input file, output file): Reads
JSON from input file, processes judge info, and writes the result to
output file.

– create folders(base folder="draft"): Deletes contents in the draft
folder and creates a folder structure for storing documents and metadata.

– create metadata file(base folder): Creates an empty
metadata.json file with fields for dataset metadata.

– s pipeline(dataset name="", dataset desc="",
need input=True): Runs the full search pipeline, including folder creation,
dataset evaluation, and processing judge info into JSON.

prompt generation.py

• Code Usage:

– fetch html from link(link): Fetches the HTML content from a given link.
Returns the HTML as a string or None if an error occurs.

– generate prompt(link, dataset name, desc=""): Generates a
prompt based on the HTML content of the link and the dataset description. The
prompt is used to check if the link is a dataset website.

– save prompt to file(link, dataset name,
filename="gen pro.txt"): Fetches HTML, generates a prompt, and
saves it to a file.

– clamp prompt(long string, char limit=8000): Clamps a string to a
specified character limit (default: 8000 characters).

– prompts links(dataset name, desc=""): Fetches dataset-related links,
generates prompts, and returns them as a list of dictionaries with link and prompt.

– test(): Prompts the user for a dataset name, fetches the first link, and saves a
generated prompt to a file.

– test2(): Prompts the user for a dataset name and a specific link, then saves a
generated prompt to a file.

init .py (S)

A.10.4 EVALUATE MODULE (E)

The Evaluate module processes and extracts metadata from the dataset links obtained from the
Search module.

analyze ref pdfs.py

• Code Usage:

– extract text from pdf(pdf path): Extracts text from a PDF file and returns
it as a string.

– analyze ref papers(): Reads research paper links from a JSON file, extracts
PDF links, downloads PDFs, and runs analysis on them with the dataset.

– analyze pdfs with dataset(folder path, output file): Analyzes
PDFs in a folder by checking for dataset references and saves the results to a JSON
file.

– generate instruction prompt(dataset name, dataset info):
Generates a prompt for an LLM to analyze how a research paper uses the given
dataset.

– analyze pdf with dataset(text): Sends the extracted text from a research
paper to the LLM for analysis, checking for dataset references.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

get dataset metadata.py

• Code Usage:

– extract links from file(file path): Extracts links from a JSON file,
looking for link and download link dataset fields.

– extract all links2(file path): Extracts links from another JSON struc-
ture, including nested fields like download link paper and metadata URLs.

– download files dataset(): Combines all extracted links from
extract links from file and extract all links2, then processes
these links for downloading.

– download link content(url): Downloads content from a URL if the file size
is less than 10MB.

– save content to file(content, url, content type): Saves the
downloaded content to a file, naming it based on the URL.

– process links(all links): Processes a list of links by downloading content
for each and saving it to the appropriate folder.

– extract text from file(file path): Extracts text from various file types
(PDF, HTML, CSV, TXT) and returns the content.

– process folder(input folder, output folder): Extracts and pro-
cesses text from all files in a folder and saves the cleaned text to the output folder.

– generate instruction prompt(): Generates a prompt for LLMs to extract
dataset information from concatenated text.

– process folder and generate prompt(folder path): Concatenates
text from multiple files, generates an LLM prompt, and processes the results.

– merge jsons(generated data, file path): Merges generated LLM re-
sults with an existing JSON metadata file.

– whole pipeline get metadata and txt info(): Runs the entire pro-
cess—downloads dataset files, processes text, generates a prompt, and merges results
with metadata.

get paper.py

• Code Usage:

– prompts links(dataset name, desc=""): Retrieves links for potential
dataset papers, generates prompts for each link, and returns a list of links with as-
sociated prompts.

– generate prompt paper(link, dataset name, desc=""): Generates
a prompt to determine if the given link corresponds to the original paper of the dataset.

– get json evals(): Retrieves dataset and paper-related links, generates prompts,
and evaluates them using LLM.

– save json prompts(): Retrieves evaluations from LLM for dataset and paper
links and saves them in JSON format.

– dataset link prompts(dataset name, desc=""): Retrieves and gener-
ates prompts for dataset-related links from the dataset res.json file.

– getValidLinks(json path): Filters valid links from a JSON file based on cer-
tain criteria like is dataset website, download link dataset exists,
and is direct data.

– merge link prompts(lipros, dataset link prompts array):
Merges two arrays of link prompts, counting the occurrences of links and adding a
number property.

– get possible papers(): Runs the full process to retrieve, evaluate, and convert
potential paper links into a JSON file.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

get pdfs.py

• Code Usage:

– filter json data(json file, callback=None): Filters and re-
turns relevant data from a JSON file based on certain paper-related at-
tributes (is dataset paper website, download link paper exists,
is direct paper).

– extract links and paper links(): Extracts both dataset and paper down-
load links from filtered JSON data, evaluates them, and saves them in a separate JSON
file.

– get potential pdf link(link, dataset name, desc=""): Fetches
the HTML content of a link and generates a prompt to find direct download links
for the original paper of the dataset.

– save download links to json(download links array,
file path): Saves the extracted download links to a specified JSON file.

– get pdf links from single link(link): Extracts PDF links from a given
URL by generating a prompt using the dataset name and metadata.

– download file(link, file path): Downloads the content from a URL and
saves it in a specified folder. Supports formats like PDF, TXT, and CSV.

– download pdfs from links(links, file path): Downloads PDF files
from a list of links and saves them to the specified folder.

– download all pdfs(): Runs the complete process of extracting, filtering, and
downloading dataset-related PDFs from the provided links.

– delete all files in folder(folder path): Deletes all files in a speci-
fied folder.

– delete all contents in folder(folder path): Deletes all files and
subfolders within a specified folder.

get sorted ref papers.py

• Code Usage:

– evaluate paper(obj): Placeholder function for evaluating a paper. No func-
tionality implemented yet.

– get gs rank res(): Reads the dataset name and calls the sortgs main()
function to rank results based on the dataset name.

– csv to json(csv file, json file): Converts a CSV file to a JSON format,
saving the result in the specified JSON file.

– get gs papers(): Retrieves Google Scholar ranking results for the dataset and
converts them from CSV to JSON format.

longtext api.py

• Code Usage:

– split into chunks(text, max char len=8888): Splits a long text into
smaller chunks based on a character length limit.

– call llm with chunks(instruction, text,
max tokens per chunk=8888, max chunk number=50,
model="gpt-4o-mini"): Processes text in chunks using an LLM, based
on the provided instruction and model.

– generate chunk prompt(instruction, chunk, number): Creates a
prompt for an LLM to process a specific chunk of text based on the provided in-
struction.

– generate combination prompt(instruction, chunk responses):
Generates a prompt to combine multiple LLM responses from different chunks into a
single cohesive output.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

– LLM long api(instruction, input text, max chunk=100,
model="gpt-4o-mini"): Processes a long text using an LLM by splitting
it into chunks, generating responses for each, and then combining the results.

main e.py

• Code Usage:

– get final metadata(): Combines information from various sources like dataset
websites, original papers, and reference papers into the metadata.json file.

– prune metadata(): Refines the metadata by pruning and enhancing fields like
description, size, scale, author, and usage based on evaluation data and papers. Saves
the pruned metadata to metadata pruned.json and updates metadata.json.

– get prune metadata(): Runs both get final metadata() and
prune metadata() to generate and refine the metadata.

– e pipeline(): Runs the complete pipeline for retrieving papers, downloading
PDFs, processing Google Scholar papers, generating metadata, analyzing reference
papers, and pruning metadata.

main es.py

• Code Usage:

– se pipeline(): Combines two pipelines, s pipeline() and e pipeline(),
running them sequentially to process both the ”S” and ”E” workflows.

sortgs update.py NOTE: This code has source https://github.com/WittmannF/
sort-google-scholar, and I update it for convenience.

• Code Usage:

– get command line args(): Parses command-line arguments for keyword, num-
ber of results, output path, sorting criteria, language filter, and other options related to
Google Scholar scraping.

– get citations(content): Extracts the number of citations from the provided
HTML content.

– get year(content): Extracts the publication year from the provided HTML con-
tent.

– setup driver(): Sets up and returns a Selenium WebDriver instance to handle
Google Scholar requests.

– get author(content): Extracts the author information from the HTML content.
– get element(driver, xpath): Safely retrieves an element from the webpage

using an XPath expression with multiple attempts.
– get content with selenium(url): Uses Selenium to retrieve the page con-

tent from a URL, handling CAPTCHA challenges when required.
– sortgs main(): Scrapes Google Scholar for papers related to a dataset, extract-

ing metadata like citations, authors, and years. Saves the results in a CSV file and
optionally plots the number of citations vs. rank.

init .py (E)

A.10.5 ANALYZE MODULE (A)

The Analyze module is responsible for downloading, organizing, and visualizing the dataset.

analyze dataset.py

• Code Usage:

37

 https://github.com/WittmannF/sort-google-scholar
 https://github.com/WittmannF/sort-google-scholar

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

– delete py files in folder(folder path): Recursively deletes all Python
(.py) files in the specified folder.

– delete log json files in folder(folder path): Recursively deletes
all JSON log files ending in log.json in the specified folder.

– get analyze code for all(): Cleans up the dataset folder and generates
Python code to analyze dataset files, extracting the first 10 samples and visualizing
them.

– get file info list(dataset folder, n=500): Reads the first 500 char-
acters from each file in the specified folder, returning a list of dictionaries with file-
names and file content.

– generate code for analyzing(files info, path, error info):
Generates Python code for analyzing dataset files based on file content, dataset
metadata, and past error logs.

– generate instruction prompt(files info, path, error info):
Generates a prompt for an LLM to create Python code for loading, analyzing, and
visualizing a dataset.

– analyze and run code(): Generates and runs Python code to analyze all dataset
files.

– analyze and run code with self repair(): Attempts to run generated
Python files up to three times with self-repair functionality if an error occurs.

– regenerate idea(file path, e): Regenerates Python code for a given file
if an error occurs during execution.

get download method.py

• Code Usage:

– delete py files in folder(folder path): Recursively deletes all Python
(.py) files in the specified folder.

– delete log json files in folder(folder path): Recursively deletes
all JSON log files ending in log.json in the specified folder.

– get analyze code for all(): Cleans up the dataset folder and generates
Python code to analyze dataset files, extracting the first 10 samples and visualizing
them.

– get file info list(dataset folder, n=500): Reads the first 500 char-
acters from each file in the specified folder, returning a list of dictionaries with file-
names and file content.

– generate code for analyzing(files info, path, error info):
Generates Python code for analyzing dataset files based on file content, dataset
metadata, and past error logs.

– generate instruction prompt(files info, path, error info):
Generates a prompt for an LLM to create Python code for loading, analyzing, and
visualizing a dataset.

– analyze and run code(): Generates and runs Python code to analyze all dataset
files.

– analyze and run code with self repair(): Attempts to run generated
Python files up to three times with self-repair functionality if an error occurs.

– regenerate idea(file path, e): Regenerates Python code for a given file
if an error occurs during execution.

main a.py

• a pipeline(): A pipeline that automates the process of:

– get download ideas(): Retrieves ideas for how to download datasets.
– try ideas and run code(): Attempts various download methods and runs the

corresponding code.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

– analyze and run code(): Analyzes the dataset and runs the generated analysis
code.

– zip folder with uuid(): Zips the dataset folder with a unique identifier.

main sea.py

• sea pipeline(): A combined pipeline that runs both the S+E and A pipelines:
– se pipeline(): Runs both the S and E workflows sequentially.
– a pipeline(): Runs the dataset download, analysis, and packaging pipeline.

try download ideas.py

• Code Usage:
– try ideas(): Sets up directories, clears previous data, and iterates over dataset

download ideas, attempting to generate Python scripts to download datasets based on
provided ideas.

– generate instruction(uid, idea): Generates an instruction prompt for
the LLM to create Python code for downloading the dataset, handling errors, and
saving the file in a specified directory.

– clean code block(code str): Cleans up LLM-generated code by removing
any surrounding markdown formatting (like ‘‘‘python).

– evaluate idea(idea): Uses an LLM to generate Python code for a dataset
download based on the provided idea, and saves both the code and the status of the
evaluation.

– run all python files in folder(folder path): Recursively finds and
runs all Python files in a given folder and its subfolders, handling errors and logging
results.

– try ideas and run code(): Combines try ideas() and
run all python files in folder() to first attempt dataset download
ideas and then run the generated Python scripts.

zip files final.py

• zip folder with uuid(folder path="draft", use uuid=False):
– This function zips the contents of a specified folder and saves it as a ‘.zip‘ file. The

zip file is named using the dataset’s name, and if use uuid is set to True, a UUID
is appended to the filename.

– The zip file is saved in the experiment results folder. The function ensures this
folder is created if it does not exist.

– By default, the draft folder is zipped, but you can specify a different folder by
passing the folder path argument.

init .py (A)

A.10.6 MAIN SYSTEM COORDINATION

app.py

• sea pipeline without input(dataset name, dataset desc):
– This function executes the SEA pipeline (Search, Evaluate, Analyze) without requir-

ing user input. It accepts a dataset name and description, passing them to the respective
pipeline functions s pipeline, e pipeline, and a pipeline.

• batch get experiment res(arr):
– This function takes a list of dataset names and runs the
sea pipeline without input for each dataset in the list, automating the
execution of the full pipeline for multiple datasets.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

utils.py

• change dataset name(name):
– This function updates the dataset name in the metadata.json file.

• read dataset name():
– Reads the dataset name from the metadata.json file.

• LLMApi(input text, max length=8888, model="gpt-4o-mini"):
– Sends an API request to an LLM (GPT model) with the given input text, truncating it

if it exceeds the character limit.
• fetch html from link(link):

– Fetches raw HTML content from a given URL.
• fetch html from link no script(link):

– Fetches HTML content from a given URL, removing any <script> tags from the
content.

• clamp prompt(long string, char limit=8888):
– Truncates a string if it exceeds a specified character limit.

• read metadata(file path=’draft/metadata.json’):
– Reads metadata from the specified metadata.json file and returns the dataset

name and the dataset info as a string.
• read metadata dataset websites(file path=’draft/metadata.json’):

– Reads the dataset websites field from the metadata file.
• clean llm json res(res):

– Cleans and decodes the JSON response from an LLM, removing code block format-
ting.

• get py files length(folder path):
– Calculates the total number of lines in all Python files in the specified folder and its

subfolders.

40

	Introduction
	Related Work
	Methodology
	System Overview
	Search Module
	Evaluation Module
	Metadata Extraction
	Reference Paper Retrieval
	Metadata Extension

	Analysis Module
	Dataset Download
	Dataset Analysis and Visualization

	Experiments
	Setup
	Main Results

	Limitations
	Conclusion
	Appendix
	Appendices
	Search Pipeline
	Evaluate Pipeline
	Analyze Pipeline
	Flowchart Visualizations
	Prompts we use
	Dataset Website Prompt
	Dataset Paper Retrieval
	Retrieving PDF Links for Dataset Paper
	Generating Dataset Metadata Extraction Instructions
	Generating Dataset Reference Detection Instructions
	Instruction for Generating Python Code to Visualize Dataset
	Prompt for Extracting Dataset Download Link from HTML
	Prompt for Generating Python Code to Download a Dataset
	Prompt for Generating Python Code to Download a Dataset

	Google Search Api
	Long Context Inference
	Reproducibility
	Code Structure
	Code Explanation
	QuickStart
	Advanced Running
	Search Module (S)
	Evaluate Module (E)
	Analyze Module (A)
	Main System Coordination

