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ABSTRACT

In the era of data-driven decision-making, efficiently acquiring and analyzing
diverse datasets is critical for accelerating research and innovation. Yet, tra-
ditional manual approaches to dataset discovery, preparation, and exploration
remain inefficient and cumbersome, especially as the scale and complexity of
datasets continue to expand. These challenges create major roadblocks, slow-
ing down the pace of progress and reducing the capacity for data-driven break-
throughs. To address these challenges, we introduce DataSEA (Search, Eval-
uate, Analyze), a fully automated system for comprehensive dataset process-
ing, leveraging large language models (LLMs) to streamline the data handling
pipeline. DataSEA autonomously searches for dataset sources, retrieves and or-
ganizes evaluation metadata, and generates custom scripts to load and analyze
data based on user input. Users can provide just a dataset name, and DataSEA
will handle the entire preparation process. While fully automated, minimal user
interaction can further enhance system accuracy and dataset handling specificity.
We evaluated DataSEA on datasets from distinct fields, demonstrating its robust-
ness and efficiency in reducing the time and effort required for data preparation
and exploration. By automating these foundational tasks, DataSEA empowers
researchers to allocate more time to in-depth analysis and hypothesis genera-
tion, ultimately accelerating the pace of innovation. The code is available at
https://github.com/SingleView11/DataSEA.

1 INTRODUCTION

In the age of artificial intelligence, the significance of data is undeniable. The volume of data gen-
erated and published online is rapidly increasing, yet searching for structured data on the internet
remains challenging [Kacprzak et al. (2018)]. On one hand, quickly and clearly understanding the
structure and content of large datasets—spanning social sciences, life sciences, high-energy physics,
climate science, and other fields—has become increasingly difficult. On the other hand, as the scale
and complexity of data grow, the efficiency of manually searching for and downloading datasets
diminishes, turning into a daunting task. Traditional manual methods for discovering, preparing,
and exploring data are becoming increasingly cumbersome and inefficient. Consequently, swiftly
acquiring and analyzing diverse datasets has become a crucial factor in driving research and innova-
tion.

With the advancement of prompt engineering, large language models (LLMs) have demonstrated
impressive performance across various fields [Wei et al. (2022); Kojima et al. (2022); Wang et al.
(2022); Zhou et al. (2022); Madaan et al. (2024); Bai et al. (2022); Chen et al. (2023)]. The strong
capability of LLMs to process vast amounts of textual information opens new possibilities for the
automated discovery, evaluation, and analysis of datasets. By utilizing LLMs to analyze the web
information related to specific datasets, it is possible to organize this data into structured formats,
facilitating further computational processing and user interaction.

Thus, we propose DataSEA (Search, Evaluate, Analyze), a comprehensive automated dataset pro-
cessing system based on large language models. Additionally, by treating the collected data as a
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new corpus for LLMs, it can enhance user interaction, further improving the system’s accuracy and
adaptability to specific data processing needs. This allows users to gradually understand the various
characteristics of target datasets and perform diverse evaluations in a question-answering system-
like environment.

Figure 1: The architecture of DataSEA. The system is divided into three key modules: Search, Eval-
uate, and Analyze. The Search Module (S) retrieves top results from search engines and evaluates
the relevance of the links using LLM models. The Evaluate Module (E) extracts metadata from
the identified websites and retrieves research papers citing the dataset, followed by metadata opti-
mization. The Analyze Module (A) generates and executes code to download datasets, hypothesizes
possible download methods, and visualizes data samples. The entire process can be fully automated,
though users may intervene to improve accuracy and filter unwanted downloads.

The design goal of DataSEA is to simplify and accelerate the data processing workflow, including
the search, evaluation, and analysis of datasets. Users only need to provide a dataset name, and
DataSEA can autonomously perform the search for dataset sources, retrieve and organize metadata,
and generate custom scripts to load and analyze data based on user requirements.

To demonstrate the significant practical value of this system, we evaluated DataSEA on multiple
datasets across various fields, such as computer vision, natural language processing, speech recog-
nition, medicine, natural sciences, social sciences, and finance. Accessing these datasets is crucial
for promoting the reproducibility of research findings, enabling scientists to build upon the work
of others, and facilitating easier access to information and its sources for data journalists [Brickley
et al. (2019)]. Experimental results indicate that DataSEA exhibits strong robustness and efficiency,
significantly reducing the time and effort required for data preparation and exploration. Addition-
ally, DataSEA provides rich and logical visualization, evaluation, and interpretation of data, greatly
lowering the cost of understanding the content of datasets.

We also tested the performance of various LLMs as core processing components of DataSEA, in-
cluding GPT-4 [Achiam et al. (2023)], GPT-3.5 [Ye et al. (2023)], and Llama [Touvron et al. (2023)].
Our findings indicate that the effectiveness of different LLM models in dataset collection, evalua-
tion, and analysis is related to their parameter counts, which influences their ability to integrate and
comprehend web information. This suggests that as model parameters increase in the future, along-
side improvements in long text processing and logical reasoning capabilities, DataSEA is likely to
exhibit enhanced capabilities in dataset collection and processing.

In Section 2, we outline related work; Section 3 elaborates on the methods used to construct
DataSEA; Section 4 presents experiments demonstrating the effectiveness of DataSEA; Section 5
discusses the existing limitations; and finally, Section 6 provides a comprehensive summary of this
paper. Additional relevant data can be found in the appendix.
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2 RELATED WORK

Efficient Dataset Discovery and Exploration Efficient dataset discovery, preparation, and explo-
ration are critical components of the data-driven research pipeline. However, traditional approaches
often require significant manual effort, involving labor-intensive tasks such as searching for relevant
datasets, preparing them for analysis, and creating appropriate exploratory tools. Recent advances in
automated data management have sought to alleviate these challenges by streamlining data discov-
ery, cleaning, transformation, and exploration. Automated data integration tools such as advanced
dataset search systems Brickley et al. (2019) and AutoML frameworks Zöller & Huber (2021) have
demonstrated considerable promise in minimizing manual workload, though many solutions still
face limitations regarding the flexibility and comprehensiveness of the automated workflow. These
advancements reflect a growing interest in reducing human intervention and enhancing efficiency
through intelligent data management solutions.

Automated Dataset Processing Frameworks Several automated dataset processing tools have
emerged to address various parts of the data handling workflow. Tools such as Trifacta and Open-
Refine Petrova-Antonova & Tancheva (2020) focus on data wrangling, emphasizing interactive user
experiences for cleaning and transforming data. Although these tools significantly improve the ef-
ficiency of data preprocessing, they require extensive user involvement throughout the process and
lack fully automated workflows, particularly in terms of dataset discovery and evaluation.

The development of systems like AutoML He et al. (2021) has further paved the way for automation
by addressing tasks like feature engineering and model selection. However, while AutoML tools
effectively handle model training and hyperparameter tuning, they often depend on structured, pre-
prepared datasets. The processes of discovering datasets and assessing their suitability for analysis
largely remain manual, limiting the overall automation potential in the data science pipeline Biswas
et al. (2022).

Leveraging Language Models for Automation LLM models such as GPT-4 Achiam et al. (2023)
and LLAMA Touvron et al. (2023), have demonstrated significant capabilities in understanding nat-
ural language, generating code, and automating workflows in complex domains. Previous research
has leveraged LLMs to generate scripts for data processing Biswas & Talukdar (2024); Nejjar et al.
(2023); Patiny & Godin (2023), streamlining the creation of custom data handling scripts. These
efforts highlight the potential of LLMs in automating repetitive tasks, but they often focus narrowly
on code generation without addressing the end-to-end dataset processing pipeline.

The recent work on LLM-based assistants (e.g., GPT-4, LLAMA) has further demonstrated the
applicability of these models for responding to natural language queries related to data analytics
Ram et al. (2024), offering on-demand support for exploratory data analysis (EDA) Ma et al. (2023)
and visualization Sah et al. (2024). However, these applications are reactive, requiring substantial
user intervention in specifying datasets, parameters, and contexts for each step.

Comprehensive Dataset Automation DataSEA builds on these advancements, aiming to deliver
a fully automated framework for dataset processing that encompasses not only code generation but
also dataset discovery and evaluation. Unlike existing semi-automated tools that require significant
human interaction, DataSEA autonomously manages dataset discovery, metadata extraction, and
script generation, reducing the need for user input to a minimum. Data-centric AI Zha et al. (2023)
suggests that focusing on automating data-handling processes can significantly accelerate research
outcomes Mittal et al. (2023), and DataSEA aligns closely with this vision by implementing an
automated pipeline that integrates search, evaluation, and analysis.

By leveraging LLMs to automate not only the preparation but also the discovery and evaluation
of datasets, DataSEA contrasts with existing solutions that focus predominantly on either prepara-
tion or analytics. This comprehensive approach empowers researchers to reduce the time spent on
foundational tasks, allowing for more in-depth analysis and exploration of the data.

Summary While previous work has made significant strides in automating parts of the data prepa-
ration and analysis workflow, DataSEA is among the first to provide a fully integrated solution for
dataset discovery, evaluation, and custom analysis using large language models. By autonomously
handling these key stages, DataSEA extends beyond the capabilities of current LLM-driven tools
and represents a significant step toward automating the entire data lifecycle. This approach aligns
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with recent trends in AI-driven automation and data-centric methodologies, ultimately accelerating
the pace of innovation in data-driven research.

3 METHODOLOGY

3.1 SYSTEM OVERVIEW

DataSEA is composed of three core modules: Search, Evaluate, and Analyze. The system leverages
large language models to intelligently locate dataset sources, extract metadata, and generate custom
scripts for loading and visualizing the data. Users can input a dataset name and optional descrip-
tion, and DataSEA autonomously handles the remainder of the process. The architecture allows for
minimal user interaction, but additional input can improve the system’s accuracy.

To enhance the effectiveness of LLMs, DataSEA employs instruction-prompting [Brown (2020)]
and a multi-chunk strategy [Liu et al. (2024)] to handle long inputs, ensuring that even large datasets
can be processed effectively by breaking the data into manageable sections while maintaining con-
text across chunks.

3.2 SEARCH MODULE

The Search Module in DataSEA automates the process of discovering dataset websites by leveraging
search engines and LLMs to filter and rank relevant results. The user starts by inputting a dataset
name and, optionally, additional dataset details to refine the search. Drawing inspiration from tools
like Google Dataset Search [Brickley et al. (2019)], the system generates optimized search queries
based on the input and send them to search engines such as Google to retrieve the top-ranking links.

Once the top links are retrieved, the system performs web content extraction on each page. The
contents are then analyzed by the LLM, which generates evaluation info. Similar to work on using
LLMs for content understanding and retrieval tasks [Brown (2020)], the LLM helps filter out irrele-
vant or low-quality pages. The links are ranked based on their evaluation info, with the top-ranking
results being those most likely to contain useful dataset information. More detail can be found in
Appendix.

Figure 2: The process flow of the Search Module in DataSEA. The system retrieves top links from
search engines based on user input, evaluates the relevance of each link using the LLM model, and
filters out irrelevant or low-quality pages. The links are ranked by relevance to the dataset, allowing
the user to quickly access accurate and useful resources.

3.3 EVALUATION MODULE

The Evaluation Module in DataSEA generates the metadata of the dataset, including various infor-
mation with 3 steps: Metadata Extraction, Reference Paper Retrieval, Metadata Extension. User can
customize the properties of the metadata template.

3.3.1 METADATA EXTRACTION

In the first step, the system processes the links identified as relevant in the Search Module. The
system extracts their website content and uses the LLM to get metadata. This process is guided by a
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Figure 3: The process flow of the Evaluation Module in DataSEA. The system extracts metadata
from relevant links, retrieves research papers that reference the dataset, and validates the relevance
of each paper using LLM models. The metadata is then optimized and extended using information
from the papers, ensuring a comprehensive dataset profile.

preset of metadata attributes, including the dataset’s usage, content and scale, application fields, and
other important factors. Additionally, users have the flexibility to input custom property names, and
the system dynamically optimizes prompts for the LLM to retrieve those specific properties. The
results from different links are combined at the end for optimization.

3.3.2 REFERENCE PAPER RETRIEVAL

The second stage focuses on retrieving and ranking research papers that reference the dataset. The
system uses the Google Scholar API to find papers that may have cited the dataset. These papers
are ranked by citation count, following the widely accepted practice of using citation metrics as
indicators of a paper’s impact (Bornmann & Daniel, 2008). For each paper, the metadata extracted
in the first step is used to validate whether the paper indeed references the correct dataset, as there
may be cases of duplicate names or other inaccuracies. The system filters the most impactful papers,
and the user can specify the number of papers to be collected.

3.3.3 METADATA EXTENSION

In the final step, the system extracts additional metadata from the validated reference papers. This
may include more detailed descriptions of the dataset’s features, specific application examples, and
additional context provided by the authors. The extracted metadata is then combined with the orig-
inal information from the dataset’s website, resulting in an enriched and comprehensive dataset
profile.

3.4 ANALYSIS MODULE

The Analysis Module in DataSEA is used to download the dataset and analyze it by generating code
and test them. The final generated code can load and visualize dataset samples, and user can input a
customized requirement and the code generation will be adapted to satisfy the requirement.

3.4.1 DATASET DOWNLOAD

In this phase, the module utilizes metadata from the Evaluation Module to generate hypotheses for
downloading the dataset from the identified websites. For each website containing dataset informa-
tion, the system generates hypotheses regarding possible download methods. It then creates code by
combining the hypothesis, the website content, and the dataset metadata, and executes this code to
attempt to download the dataset.

The generation of hypotheses has proven to be an effective method for handling uncertainty in data
retrieval processes, as it allows the system to explore multiple potential download strategies simul-
taneously. This approach is inspired by the inductive reasoning capabilities of language models,
as demonstrated in Hypothesis Search (Wang et al., 2023), where generating and testing multiple
hypotheses leads to more robust and successful outcomes.
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Figure 4: The process flow of the Analyze Module in DataSEA. The system generates hypotheses for
dataset download based on metadata, executes the download, and analyzes the dataset by reading the
samples of the raw data. It then generates visualization code, with options for manual intervention
to refine the analysis. The system also incorporates a self-repair feature to handle any issues in code
execution.

Since multiple links and hypotheses may be involved, the system organizes the download results into
separate folders, each corresponding to a specific hypothesis. Users can manually inspect the results
and delete unwanted downloads, such as cases where multiple datasets (e.g., raw, processed) are
available and only a portion is needed. This flexibility allows the user to refine the dataset collection
process and accelerate further analysis.

3.4.2 DATASET ANALYSIS AND VISUALIZATION

After successfully downloading the datasets, the system generates custom analysis code by calling
the LLM with prompts that include the dataset metadata and initial portions of the downloaded data.
This analysis code is designed to load the dataset, read the samples of the raw dataset, and visualize
key aspects of the dataset’s structure and contents.

The analysis code generation process incorporates a self-repair mechanism, drawing from ap-
proaches like CodeT5 (Wang et al., 2021). If the generated code fails during execution, the system
automatically collects the error log and combines it with the original code to form a more detailed
context. This context is sent back to the LLM, which attempts to identify and fix the issues in
the code. The system iterates through this feedback loop until a working version of the code is
produced, significantly improving the reliability and robustness of the analysis code. This feature
allows the system to autonomously handle failures and continuously improve the generated code
without requiring user intervention.

In addition to the automated processes, users have the ability to write customized requirements. The
system will generate and test code based on the user’s input, allowing for tailored analysis that fits
specific research needs. This user interaction complements the fully automated pipeline, providing
flexibility for users to guide the analysis toward more specific goals if needed.

4 EXPERIMENTS

4.1 SETUP

Datasets We evaluated DataSEA on 100 datasets across various fields to assess its generalizabil-
ity and effectiveness in automating dataset discovery, evaluation, and analysis. The datasets were
sourced from repositories such as Google Dataset Search, Kaggle, and other publicly available plat-
forms. These datasets span a wide range of fields, including Computer Vision, Natural Language
Processing (NLP), Healthcare, Speech and Audio, Natural Sciences, Social Science, Finance, Trans-
portation, Recommendation Systems, Time Series Analysis, Robotics, and Agriculture. The diver-
sity in size, format, and complexity of these datasets allowed for a comprehensive evaluation of
DataSEA’s performance across different domains.

6
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Models We used three models to evaluate the performance of DataSEA: gpt-4o, gpt-4o-mini, and
llama3. For gpt-4o and gpt-4o-mini, we directly call openai apis; for llama3, we deploy it locally.

Parameters We configured three different modes in DataSEA to explore the trade-offs between
speed and accuracy: High-Speed, Medium-Speed and Slow-Speed version.High-Speed Version
is optimized for fast dataset discovery and analysis by reducing the number inhyper parameters.
Medium-Speed Version is a balance between performance and speed. Slow-Speed Version is fo-
cused on thorough dataset discovery and analysis. The 3 modes take about 3-5 / 10-15 / 20-60
minutes.

The hyper parameters include the number of websites collected per dataset, the number of hypothe-
ses generated, the number of relevant papers retrieved, the number of download code generation
trial, the number of analysis code idea and the number of self-repairs performed when issues were
encountered in code generation.

Evaluation Metrics We evaluated DataSEA based on the performance of each of its three core
modules: Search (S), Evaluate (E), and Analyze (A). For every module we have different metrics,
with more detail in the next subsection.

4.2 MAIN RESULTS

We present the evaluation of each module—Search (S), Evaluate (E), and Analyze (A)—using three
model and their high, medium, and slow-speed versions. Each module’s performance is detailed in
its respective section.

Search Module The Search Module was evaluated based on its ability to find relevant websites.
The main evaluation metrics are the RWF (Relevant Websites Found in LLM return, true if one is
found otherwise false), ACC (Relevance judgement accuracy of the LLM).

Model Version RWF (%) ACC (%)
gpt-4o High Speed 100 92.36

Medium Speed 100 93.02
Slow Speed 100 96.33

gpt-4o-mini High Speed 97 82.77
Medium Speed 98 84.14

Slow Speed 98 90.13
llama3 High Speed 99 83.20

Medium Speed 100 81.82
Slow Speed 100 87.67

Table 1: Results for Search Module (S) across different models and versions.

The results show that gpt-4o under low-speed mode achieves the highest accuracy for relevant web-
sites judging. As for the false judgements, most cases are false negative - the website does contain
information about the dataset but it is judged as not because there are too many redundant infor-
mation in the html content, so that the information about the dataset is stuck in the middle and not
captured well by the llm. This result is just like the phenomenon described in a paper showing
LLM’s incapability in processing long context[Liu et al. (2024)].

Evaluation Module The Evaluation Module was assessed using the quality of generated metadata
and retrieved papers. The I-ACC (Initial Metadata Accuracy) reflects the system’s ability to extract
correct metadata across different properties. It is calculated by averaging the accuracy of the 8 dif-
ferent properties in the metadata. We also evaluated R-ACC (Relevant Papers Accuracy, if a judged
reference paper is really referring to the dataset) and the E-ACC (Extended Metadata Accuracy).

Analysis Module For the Analysis Module, we focused on the DDS (Dataset Download Success),
H-ACC (Hypothesis Accuracy), CAS (Code Analysis Success Without Intervention), and CAS-I
(Code Analysis Success With Intervention). The H-ACC is examined by manually following the
steps generated by a hypothesis, and is marked as true if there exist one true hypothesis.

The intervention in code analysis means downloading the dataset by following the hypothesis, be-
cause while the system can be fully-automated, it is hard to download datasets automatically as most

7
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Model Version I-ACC (%) R-ACC (%) E-ACC (%)
gpt-4o High Speed 92.63 87.31 98.00

Medium Speed 93.13 84.09 98.00
Slow Speed 94.75 85.12 98.25

gpt-4o-mini High Speed 87.13 80.94 93.50
Medium Speed 85.00 82.30 92.25

Slow Speed 90.38 78.64 93.50
llama3 High Speed 82.63 81.53 84.75

Medium Speed 83.00 81.20 84.13
Slow Speed 83.00 84.22 85.88

Table 2: Results for Evaluation Module (E) across different models and versions.

datasets’ host platform will require login or email request for the dataset, and can not be crawled
easily. Even if the datasets are available publicly, there may be multiple datasets with different prop-
erties(raw, processed, etc), and serve different purposes, so a comparison for code analysis between
automatically downloaded data and manually downloaded data following the hypothesis is needed.

Model Version DDS (%) H-ACC (%) CAS (%) CAS-I (%)
gpt-4o High Speed 9 81 11 32

Medium Speed 11 88 12 35
Slow Speed 12 91 15 38

gpt-4o-mini High Speed 4 76 9 28
Medium Speed 6 82 9 32

Slow Speed 6 87 9 31
llama3 High Speed 2 62 3 19

Medium Speed 3 69 3 21
Slow Speed 4 70 3 21

Table 3: Results for Analysis Module (A) across different models and versions.

The interesting finding is that sometimes the CAS is higher than H-ACC, which is counter-intuition
because it is hard to imagine analyzing a dataset when it is not downloaded. This is due to the prompt
design, as instruction to try to generate code for the dataset without checking the dataset info. As a
result, for some popular datasets like MNIST or CIFAR-10, even though the download dataset folder
is empty, the generated code can still be run and will successfully generate visualization of samples.

The CAS-I will be lifted greatly if user manually follow the ideas generated and download the
dataset. For example, downloading a dataset in Kaggle is convenient and only need a click of button
if user is logged in, but the system currently cannot auto-login for the user and will fail to download
the dataset.

5 LIMITATIONS

DataSEA faces several challenges, including its inability to process databases and databanks, which
limits its application in biological fields like genomics [Sherry et al. (2001) ] and proteomics [Abola
et al. (1984)]. Additionally, its performance depends heavily on LLMs, and the system exhibits a
trade-off between speed and accuracy. While the self-repair mechanism can handle common errors,
complex dataset structures may still require manual intervention. The automatic dataset download
process also struggles with anti-crawling mechanisms and login/email requests, and visual informa-
tion is often lost during HTML content extraction, suggesting the need for methods that integrate
neural optical understanding [Blecher et al. (2023)].

6 CONCLUSION

In this work, we introduced DataSEA, a fully automated system for comprehensive dataset pro-
cessing, which integrates dataset search, evaluation, and analysis using large language models. Our

8
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system allows users to input a dataset name and automatically retrieves, evaluates, and analyzes
datasets from a wide range of domains. DataSEA demonstrates the effectiveness of leveraging
LLMs to streamline the dataset processing pipeline, reducing manual effort and enabling researchers
to focus on deeper data analysis. While our system shows promising results across diverse datasets,
certain limitations such as handling databases and databanks and challenges in automatic downloads
present opportunities for future work. Overall, DataSEA represents a significant step forward in au-
tomating the early stages of dataset preparation, offering researchers a powerful tool to accelerate
data-driven discoveries.
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This section provides a detailed description of the code structure for the DataSEA system, which
is composed of three main parts: Search, Evaluate, and Analyze. Each part contains an integrated
pipeline to automate the dataset processing workflow.

A.1 SEARCH PIPELINE

The Search Pipeline is responsible for identifying and retrieving relevant datasets based on the user-
provided input. It utilizes large language models (LLMs) to search dataset repositories and official
websites. The key steps are as follows:

1. Dataset Query: The system accepts a dataset name as input and sends it to the LLM for
generating search queries.

2. Web Search: These queries are used to search for datasets across multiple sources, includ-
ing Kaggle, UCI, Zenodo, and official dataset websites.

3. Link Retrieval: The system collects potential dataset links, filtering and ranking them
based on relevance and credibility.

4. Search Output: The final output is a set of ranked dataset links which are passed to the
next pipeline for evaluation.

A.2 EVALUATE PIPELINE

The Evaluate Pipeline processes the dataset links retrieved from the search phase to extract useful
metadata and identify the most reliable sources. This pipeline consists of three parts:

1. Metadata Extraction: Using LLMs, the system extracts relevant metadata from the dataset
links, such as dataset size, format, domain, and source information. This step utilizes a
combination of preset and user-specified property names.

2. Reference Paper Retrieval: The system retrieves research papers that reference the dataset
by querying academic databases. The papers are ranked by citation count, and their meta-
data is validated.

3. Metadata Extension: Metadata from the papers is integrated with the original dataset
metadata to provide a more comprehensive evaluation. The system uses cross-references
to ensure accuracy and consistency.

The output of this pipeline includes the final metadata and a list of reference papers, which are
passed to the Analyze Pipeline.

A.3 ANALYZE PIPELINE

The Analyze Pipeline is responsible for downloading, organizing, and analyzing the dataset. It
performs several critical tasks:

1. Dataset Download: The system generates hypotheses for downloading the dataset based
on metadata and content from the dataset website. For each hypothesis, it attempts to
download the dataset and stores the results in corresponding folders.

2. Code Generation: After downloading, the system uses LLMs to generate Python code that
can load, read, and visualize the dataset. The code is based on the metadata and sample
points extracted from the dataset.

3. Self-Repair: If the generated code fails during execution, the system captures the error log
and re-invokes the LLM to attempt self-repair. This step improves the robustness of the
generated code.

4. User-Defined Requirements: Users can specify custom analysis requirements, and the
system generates corresponding code to meet these needs. The code is automatically tested,
and any failures are corrected using the self-repair mechanism.

The final output of the Analyze Pipeline includes a fully downloaded dataset, analysis code, and vi-
sualized sample data points. Users can interact with the system to modify or delete failed downloads
as needed.
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A.4 FLOWCHART VISUALIZATIONS

The following figures illustrate the flow of the DataSEA system, both at a high level and within each
individual module:

• Figure 5: A flowchart of the entire pipeline, from dataset input to analysis completion.
• Figure 6: A detailed flowchart of the Search Pipeline, showing the steps involved in dataset

query and retrieval.
• Figure 7: A flowchart of the Evaluate Pipeline, illustrating the metadata extraction, refer-

ence paper retrieval, and metadata extension processes.
• Figure 8: A flowchart of the Analyze Pipeline, depicting the dataset download, code gen-

eration, and self-repair mechanisms.

Figure 5: Flowchart of the entire DataSEA pipeline.

Figure 6: Flowchart of the Search Pipeline.

Figure 7: Flowchart of the Evaluate Pipeline.

A.5 PROMPTS WE USE

We make tons of LLM api calls during the SEA process, and for every specific task we have a
independent prompt. We will list them and show their usage.
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Figure 8: Flowchart of the Analyze Pipeline.

A.5.1 DATASET WEBSITE PROMPT

The following prompt is designed to analyze a given website to determine if it contains a valid dataset
download link. It is used in situations where the dataset might be located on various websites, and
we need to extract the dataset link and metadata from the HTML content of the page. The prompt
ensures the clarity of the task and requests the output in a structured JSON format. Below is a
breakdown of the prompt:

• The prompt instructs the system to analyze the HTML of the website to determine if it is
the official website for the dataset in question, identified by the dataset name and a
description.

• It asks the system to check specifically for a dataset download link and warns against mis-
taking an article download link for a dataset.

• If the website is identified as containing the dataset, the system should extract and return
the dataset download link along with basic metadata, such as the website description.

• The prompt emphasizes returning the result in JSON format, specifying fields such as:
– is dataset website: Whether the website is related to the dataset.
– download link dataset: The URL link to the dataset download.
– metadata: Any additional information extracted from the website, such as descrip-

tions or other relevant data.
• The prompt also requests that if the dataset link is not found, the system should provide a

reason for this.
• It concludes by asking for a structured JSON output without any unnecessary text or for-

matting, to ensure compatibility and ease of use for further analysis.

The structure of the prompt is as follows:

Determine whether the current website HTML is the website for the dataset "{dataset_name}". Here is some detail about the dataset: "{desc}"
!!You should notice that the download link is for dataset and not article! If there is only download link of article and no dataset, it still should be judged as having no download link!!
If it is, give the dataset download link from the HTML content and provide some metadata about the website, such as description and basic info.

If the download link is already the dataset, then note it. Otherwise, indicate that it is not. Do note that if the link is the dataset, then click it and a dataset will be downloaded, and it is not another website introducing or containing info about the dataset.

If it is not, provide the reason.

Return the format in JSON with the following structure:
{

"is_dataset_website": <boolean>,
"metadata": <object>,
"download_link_dataset_exists": <boolean>,
"download_link_dataset": <string>,
"is_direct_data": <boolean>,
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"reason": <string>
}

Note: just give the json, and do not add any extra words like adding the j-s-o-n letters and then give me the json!

The website HTML:
"""
{html_content}
"""

A.5.2 DATASET PAPER RETRIEVAL

The prompt generated by this function is used to identify whether a provided website contains the
original paper for a given dataset. The original paper refers to a publication where the dataset was
first introduced by the author, not merely a paper that uses the dataset. The prompt asks the LLM to
carefully evaluate the HTML content of the page and determine if the paper link is present.

The model must also ensure that the link leads to a downloadable paper file (such as PDF) and not
another webpage or non-relevant content. If the website does not contain the original paper, the
model is required to provide a reason. The output of the task should follow a predefined JSON
structure that includes flags for whether the paper link is available, and metadata about the website
and the paper.

def generate_prompt_paper(link, dataset_name, desc = ""):
html_content = fetch_html_from_link(link)

if html_content is None:
return ""

prompt = f"""
Determine whether the current website HTML is the website for the original paper of the dataset "{dataset_name}". Here is some detail about the dataset: "{desc}"

Note that for "the original paper of the dataset", it means that the author of the paper creates the dataset, then writes a paper to introduce the details of the dataset {dataset_name}.
It does not mean the author just use the dataset in his research, but means that the author creates the dataset.

If it is, give the paper download link from the HTML content and provide some metadata about the website, such as description and basic info.

If the download link is just the paper pdf(or possibly other format) then note it. Otherwise, indicate that it is not.

If it is not the website of the original paper, provide the reason.

Return the format in JSON with the following structure:
{

"is_dataset_paper_website": <boolean>,
"metadata": <object>,
"download_link_paper_exists": <boolean>,
"download_link_paper": <string>,
"is_direct_paper": <boolean>,
"reason": <string>

}

Note: just give the json, and do not add any extra words like adding the j-s-o-n letters and then give me the json!

The website HTML:
"""
{html_content}
"""
return prompt
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A.5.3 RETRIEVING PDF LINKS FOR DATASET PAPER

The purpose of this prompt is to extract direct download links for the original dataset paper in
common formats such as PDF, DOCX, or TXT from a webpage. Given the website’s HTML content
and dataset details, the LLM is tasked with identifying direct download links for the academic paper,
filtering out irrelevant content like datasets or other material. The prompt also specifies the format
for the response, which must be structured in JSON.

The returned JSON should contain download links and specify the file format, ensuring that the links
are valid and directly lead to paper files rather than web pages or unrelated content.

def get_potential_pdf_link(link, dataset_name, desc = ""):

html_content = fetch_html_from_link(link)

prompt = f"""
I have the HTML content of a website, and I need to find any direct download links for a specific academic paper. The paper is the original paper of dataset {dataset_name}. The website link is: "{link}".

The description of the paper is as follows:
"{desc}".

Based on this information, please search through the HTML content to find any direct download links for the paper in common formats like PDF, DOCX, TXT, etc. Return all such links and specify the format of each link.

Remember you should give the direct link of paper but not other werid stuff like dataset!!

Return the format in JSON with the following structure:
{{

downalod_link_1: {{
"link": "https://aaa.com",
"format": "pdf"

}},
downalod_link_2: {{

"link": "https://bbb.com",
"format": "txt"

}},

...,

downalod_link_n: {{
"link": "https://nnn.com",
"format": "other format"

}},
}}

Note: just give the json, and do not add any extra words like adding the j-s-o-n letters and then give me the json!

The website HTML:
\"\"\"
{html_content}
\"\"\"
"""

prompt = clamp_prompt(prompt)

res = LLMApi(prompt)

return res
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A.5.4 GENERATING DATASET METADATA EXTRACTION INSTRUCTIONS

This prompt is designed to instruct the LLM to extract relevant metadata from a collection of con-
catenated text files that contain information about a dataset. The LLM is provided with basic in-
formation about the dataset, such as its name and current metadata, and is tasked with extracting
additional details like description, size, scale, author, and other relevant properties. The output for-
mat is strictly defined as JSON, and the LLM is asked not to provide any explanations, only the
JSON data.

The key fields that the LLM is expected to populate include:

• description: A brief description of the dataset.

• size: The size of the dataset (e.g., 1GB, 10,000 samples).

• scale: The memory size of the dataset (e.g., 1TB, 100MB).

• author: The dataset’s creator or author.

• organization: The institution responsible for the dataset.

• usage: Common uses for the dataset (e.g., model training, validation).

• application fields: Relevant application domains such as computer vision or NLP.

• keywords: Key terms associated with the dataset.

The LLM is instructed to use the text files as a source and output the final information in the required
JSON structure.

# Function to create the instruction prompt without the actual text
def generate_instruction_prompt():

dataset_name, dataset_info = read_metadata()
prompt =f"""
You are provided with a detailed description from a folder of concatenated text files that may contain information about a dataset.
Your task is to extract the relevant dataset information and present it in the following JSON format:

The basic info of dataset: its name is {dataset_name}, and its current info is {dataset_info}

{{
"dataset_name": "{dataset_name}",
"info": {{

"description": "<brief description of the dataset>",
"size": "<size of the dataset (e.g., 1GB, 10,000 samples)>",
"scale": "<scale of the memory of the dataset (e.g., 1tb, 1gb, 100mb, 10mb, 1mb, 100kb, ..., and not things like global or regional!!! it should be a number with a unit like mb or gb>",
"author": "<author or creator of the dataset>",
"organization": "<organization or institution responsible for the dataset>",
"usage": "<how the dataset is typically used (e.g., model training, validation)>",
"application_fields": [

"<application_field (e.g., computer vision, NLP)>"
],
"keywords": [

"<keyword_1>",
"<keyword_2>"

]
}}

}}

Note that you should ONLY return a json file and no any other fukcing explanation info nonsense. JUST JSON!

Use the information from the concatenated text to fill out the fields as accurately as possible. If any information is missing, leave the corresponding field empty or remove it.
"""
return prompt
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A.5.5 GENERATING DATASET REFERENCE DETECTION INSTRUCTIONS

This prompt instructs the LLM to analyze a research paper and identify whether it references a given
dataset. The LLM is provided with two inputs: the name and description of the dataset, and a text
string from the research paper. It is tasked with determining if the dataset is mentioned in the paper
and extracting relevant details about how the dataset is used. The output is structured as a JSON
object, containing information on whether the dataset is referenced and, if so, specific details on its
usage and relevant text excerpts.

The key tasks for the LLM include:

• Checking if the dataset is referenced in the research paper.
• Extracting relevant information on how the dataset is used (e.g., for model training, analy-

sis, or validation).
• Providing the specific text from the paper where the dataset is mentioned.
• Structuring the output in a JSON format, with clear fields for dataset usage, application

domains, and additional details.

The prompt is designed to be comprehensive, guiding the LLM through a detailed extraction process
to ensure accurate metadata is gathered from the research paper.

def generate_instruction_prompt(dataset_name, dataset_info):
instruction_prompt = f"""

You are provided with two inputs:

1. A dataset named ’{dataset_name}’, which is described as:
"{dataset_info}".

2. A string containing text from a research paper.

Your task is to:

- Determine if the research paper references the dataset ’{dataset_name}’ at any point.
- If the dataset is referenced, identify and extract the specific part of the paper where the dataset is mentioned.
- Additionally, provide detailed information about how the dataset is used in the paper. This might include, but is not limited to:

- Whether the dataset is used for model training, analysis, validation, comparison, or any other purpose.
- Any specific aspects of the dataset mentioned (e.g., size, features, or unique characteristics).
- Any insights into the relevance of the dataset to the research being conducted.

Your output should be a JSON object with the following structure:

{{
"dataset_referred": <true/false>,
"reference_details": {{

"dataset_name": "{dataset_name}",
"dataset_usage": "<detailed description of how the dataset is used in the research paper>",
"related_text": "<specific excerpt from the paper where the dataset is mentioned or discussed>"
"application_field": "<application domains of the paper, in the form of a list of keywords and their descriptions, and into a josn dict >"
...: any other useful info you think, can be left as blank

}}
}}

Instructions:
- If the dataset ’{dataset_name}’ is not mentioned in the paper, set "dataset_referred" to false.
- If the dataset is mentioned, set "dataset_referred" to true and provide detailed information in the "reference_details" field.
- Ensure that "related_text" contains an exact or closely matching excerpt from the paper that supports your conclusion.
- If the dataset is referred to but no explicit usage is stated, provide an empty string for "dataset_usage".
"""

return instruction_prompt
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A.5.6 INSTRUCTION FOR GENERATING PYTHON CODE TO VISUALIZE DATASET

This prompt is designed to instruct the language model to generate Python code for loading and
visualizing a dataset. The model is guided to provide error-handling mechanisms and structured
output based on dataset popularity and file availability. If the dataset is famous, libraries should be
used; if not, the prompt asks the model to process local files to visualize the first 10 samples of
the dataset. The prompt emphasizes proper error handling, data extraction, and visualization while
logging useful information.

def generate_instruction_prompt(files_info, path, error_info = ""):

dataset_name, dataset_info = read_metadata()

"""
Generate an instruction prompt for an LLM to generate Python code to read
and visualize the elements of a dataset.

Parameters:
- dataset_name (str): The name of the dataset.
- dataset_info (list): A list of dictionaries containing file names and the

head starting characters of the files (if applicable).
"""

prompt = f"""
# Instruction:
Generate Python code to load the dataset ’{dataset_name}’, retrieve the first 10 samples, and visualize them.

1. If the dataset ’{dataset_name}’ is famous (e.g., MNIST, CIFAR-10), use existing libraries to load it directly.
2. If the dataset is not famous, manually process the local dataset files provided below.
3. Visualize the first 10 samples using matplotlib or another Python library.
4. Ensure that all parts of the code (file loading, extraction, visualization) have try-except blocks to catch potential errors.

## Dataset Information:
{dataset_info}

## Local Dataset Files:
{files_info}

### Task:
- Write a Python program to load the dataset, extract the first 10 samples, and save them to a JSON file.
- Write a function to visualize the samples and save the plot figure in the folder {path}.
- Ensure all functions handle errors properly, with logs or messages.

### Final Output:
You should only return plain Python code without any additional explanation!

Ensure the code follows the below structure:
‘‘‘python
import os
import matplotlib.pyplot as plt

def load_dataset():
try:

...
except Exception as e:

...

def get_first_10_samples():
try:
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...
except Exception as e:

...

def visualize_samples(samples):
try:

...
except Exception as e:

...

def save_run_result():
...

if __name__ == "__main__":
try:

samples = get_first_10_samples()
visualize_samples(samples)

except Exception as e:
...

try:
save_run_result()

except Exception as e:
...

‘‘‘

Error log from previous code attempts: {error_info}
"""
return prompt

A.5.7 PROMPT FOR EXTRACTING DATASET DOWNLOAD LINK FROM HTML

This prompt is designed for a language model to analyze HTML content and retrieve direct or
indirect download links for a dataset. The model is required to provide clear instructions on how
to access the dataset, including handling any intermediate steps necessary for the download. The
prompt also instructs the model to infer the file format and provide detailed instructions if the dataset
cannot be directly downloaded.

def generate_llm_prompt(link):

dataset_name, dataset_info = read_metadata()

prompt = f"""
You are tasked with analyzing the HTML content provided to identify how to download a dataset. The dataset information is as follows:

- **Dataset Name**: {dataset_name}
- **Dataset Info**: {dataset_info}

### Your Objective:
1. **Download URL**: Extract the direct download link for the dataset file if it is explicitly provided in the HTML. If the link is hidden behind multiple steps (like clicking through to a secondary page), your task is to trace those steps and identify where the final download occurs. If no link is available, return ’None’.
2. **File Format**: Determine the file format of the dataset (e.g., zip, tar, csv, json). If it is not explicitly mentioned, attempt to infer it from file extensions in the download URL or surrounding information.
3. **Download Steps**: Provide clear, step-by-step instructions to acquire the dataset. This may include:
- Clicking a direct download link.
- Navigating to another webpage to continue the download process, if there is no direct link and a download page link is available.
- Completing necessary forms or accepting terms to access the dataset.
- Any other process required to reach the final dataset.

You should try your best to find the direct download link of the dataset. Even if direct links do not exist, find possible indirect links.
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And sometimes there are direct download links but you misjudge them, so be more inclusive.

NOTE!!! You should only return me a json file and do not contain any other info, like text explanation or so. DO NOT WRITE EXPLANATION OUTSIDE OF JSON FILE YOU RETURN!!!

### JSON Output Format:
Present the output as a JSON object in the following structure:

‘‘‘json
{{
"dataset_name": "{dataset_name}",
"download_info": {{

"download_url": "<Direct download URL or ’None’ if not available>",
"direct_download": "<If the download url is direct or none>",
"useful info": "<any useful infos you find, like links to potential download pages even if they are not direct or certificated. this should be a dict>"
"file_format": "<File format or ’Unknown’>",
"potential_indirect_links": "<potential download links you think>"
"download_steps": [
{{

"step": 1,
"action": "<Description of the first step needed to download the dataset>"

}},
{{

"step": 2,
"action": "<Description of the second step, if applicable>"

}},
{{

"step": 3,
"action": "<Additional steps, if applicable>"

}},
....,
{{

"step": n,
"action": "<Additional steps, if applicable>"

}},
]

}}
}}

NOTE!!! You should only return me a json file and do not contain any other info, like text explanation or so. DO NOT WRITE EXPLANATION OUTSIDE OF JSON FILE YOU RETURN!!!

"""
return prompt

A.5.8 PROMPT FOR GENERATING PYTHON CODE TO DOWNLOAD A DATASET

This prompt instructs the model to generate Python code that automates the process of downloading
a dataset. The model must handle both direct and indirect download links, provide error handling,
and ensure that the dataset is saved with the correct file structure. Additionally, the model is re-
quired to produce code that is generalizable and capable of managing different dataset formats and
conditions.

def generate_instruction(uid, idea):

dataset_name, dataset_info = read_metadata()

prompt = f"""
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Write a python file to download the dataset {dataset_name}. Here are some other detail in case the dataset is not popular, so I provide some additional info.

You are provided with an input dictionary stored in a variable called ‘input_data‘.
It is the info about a dataset {dataset_name}, with info {dataset_info}. Your goal is to generate python code that can download the dataset.
The structure of the dictionary is as follows:

{idea}

The real input is in the "input" section as this is an instruction prompt.

NOTE THAT THE dictionary is ONLY FOR REFERENCE and it may contain FALSE INFO, so you can depend on it or not depend on it when writing code.

Your task is to generate Python code for the following:

- **Create a Python script file in the folder ‘draft/ideas/{uid}‘ with the name ‘get_dataset.py‘, so its final path is ‘draft/ideas/{uid}/get_dataset.py‘.** The folder draft/{uid}/ already exists.

- **Define a function ‘download_dataset()‘ within this file.**
- This function should:

- Download the dataset based on the dataset name and dataset info, and (if not enough), info provided in the input idea part, including potential alternative links.
- Download the dataset based on the information provided in the ‘input_data‘ dictionary, including potential alternative links.
- If you can already find infomation about the dataseat without using input json, you can write code to get it too.
- Handle both direct downloads and cases where the download requires manual intervention following steps.
- Add try-except blocks anywhere so that the code will function normally even if things go wrong.
- Running the download_dataset will ensure that the dataset gets downloaded to the folder "draft/ideas/{uid}/downloads".

- If after trying downloading directly or indirectly(like trying all potenial_links), not a single file is downloaded, you need to:
- Print the required download steps as outlined in the ‘download_steps‘ section of the input.
- Output these instructions clearly so that the user can follow them to manually download the dataset.

- **Handle direct downloads:**
- If ‘direct_download‘ is set to "Yes", the function should use ‘requests‘ to download the file from ‘download_url‘ and save it in a folder called ‘draft/dataset/‘. The filename should be derived from the URL or the dataset name, and it should match the specified ‘file_format‘ (e.g., ‘.csv‘).

- **Create directories if necessary:**
- Ensure that the folder ‘draft/dataset/{uid}‘ is created if it doesn’t already exist.

- **Error handling:**
- The function should check for errors during the download process, including connection errors, HTTP status codes, and file-writing issues.
- If the download fails, print a meaningful error message and proceed to try the next available download link (if any).

- **Log useful information:**
- After a successful download, print out useful metadata about the dataset from the ‘useful info‘ field, such as ‘homepage‘, ‘description‘, and links to related documentation or papers.

- **File structure and naming:**
- Save the dataset with a filename based on the ‘dataset_name‘ and the appropriate ‘file_format‘. For example, if the dataset is named ‘aaa‘ and the format is ‘xxx‘, the file should be saved as ‘draft/dataset{uid}/aaa.xxx‘.

- **Generalization:**
- Ensure that the function is generalized to handle any properly formatted input dictionary of the same structure as provided in ‘input_data‘, not just the specific example given.

- **Edge cases and validation:**
- Include validation for the existence of required fields like ‘download_url‘ and ‘file_format‘ in the ‘input_data‘.
- If a field is missing or invalid, the function should print an error and gracefully handle the situation without crashing.

NOTE THAT the download link may be a link to files like csv/txt/zip/json/... , but when you just fetch it using normal get request, you may just get an html file. so you need to add logic to judge the returned info of html, like judging wiht content-type info and improve downlaoding effects.

Example code structure to start:

‘‘‘python
import os
import requests
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def download_dataset():
...
...

...

if __name__ == "__main__":
download_dataset()

Note that the example code may be wrong, so do not really rely on it. You should generate code on your own.

You should only return python code that is content of get_dataset.py, and do not add any extra info. DO NOT ADD A SINGLE LETTER OUTSIDE OF THE PYTHON CODE!

And for the result python code, the function download_dataset, once run, will do all the job. You can add additional function to assist it, but this function must exist and can be run without calling parameters.

"""
return prompt

A.5.9 PROMPT FOR GENERATING PYTHON CODE TO DOWNLOAD A DATASET

This prompt instructs the model to generate a Python script to download a dataset, with detailed
instructions for error handling, logging, and alternative download methods. It ensures that the gen-
erated code is robust, handles edge cases, and can be run without any external parameters. The
script also includes mechanisms to handle both direct and indirect download links, create necessary
directories, and validate input data.

def generate_instruction(uid, idea):

dataset_name, dataset_info = read_metadata()

prompt = f"""

Write a python file to download the dataset {dataset_name}. Here are some other detail in case the dataset is not popular, so I provide some additional info.

You are provided with an input dictionary stored in a variable called ‘input_data‘.
It is the info about a dataset {dataset_name}, with info {dataset_info}. Your goal is to generate python code that can download the dataset.
The structure of the dictionary is as follows:

{idea}

The real input is in the "input" section as this is an instruction prompt.

NOTE THAT THE dictionary is ONLY FOR REFERENCE and it may contain FALSE INFO, so you can depend on it or not depend on it when writing code.

Your task is to generate Python code for the following:

- **Create a Python script file in the folder ‘draft/ideas/{uid}‘ with the name ‘get_dataset.py‘, so its final path is ‘draft/ideas/{uid}/get_dataset.py‘.** The folder draft/{uid}/ already exists.

- **Define a function ‘download_dataset()‘ within this file.**
- This function should:

- Download the dataset based on the dataset name and dataset info, and (if not enough), info provided in the input idea part, including potential alternative links.
- Download the dataset based on the information provided in the ‘input_data‘ dictionary, including potential alternative links.
- If you can already find infomation about the dataseat without using input json, you can write code to get it too.
- Handle both direct downloads and cases where the download requires manual intervention following steps.
- Add try-except blocks anywhere so that the code will function normally even if things go wrong.
- Running the download_dataset will ensure that the dataset gets downloaded to the folder "draft/ideas/{uid}/downloads".
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- If after trying downloading directly or indirectly(like trying all potenial_links), not a single file is downloaded, you need to:
- Print the required download steps as outlined in the ‘download_steps‘ section of the input.
- Output these instructions clearly so that the user can follow them to manually download the dataset.

- **Handle direct downloads:**
- If ‘direct_download‘ is set to "Yes", the function should use ‘requests‘ to download the file from ‘download_url‘ and save it in a folder called ‘draft/dataset/‘. The filename should be derived from the URL or the dataset name, and it should match the specified ‘file_format‘ (e.g., ‘.csv‘).

- **Create directories if necessary:**
- Ensure that the folder ‘draft/dataset/{uid}‘ is created if it doesn’t already exist.

- **Error handling:**
- The function should check for errors during the download process, including connection errors, HTTP status codes, and file-writing issues.
- If the download fails, print a meaningful error message and proceed to try the next available download link (if any).

- **Log useful information:**
- After a successful download, print out useful metadata about the dataset from the ‘useful info‘ field, such as ‘homepage‘, ‘description‘, and links to related documentation or papers.

- **File structure and naming:**
- Save the dataset with a filename based on the ‘dataset_name‘ and the appropriate ‘file_format‘. For example, if the dataset is named ‘aaa‘ and the format is ‘xxx‘, the file should be saved as ‘draft/dataset{uid}/aaa.xxx‘.

- **Generalization:**
- Ensure that the function is generalized to handle any properly formatted input dictionary of the same structure as provided in ‘input_data‘, not just the specific example given.

- **Edge cases and validation:**
- Include validation for the existence of required fields like ‘download_url‘ and ‘file_format‘ in the ‘input_data‘.
- If a field is missing or invalid, the function should print an error and gracefully handle the situation without crashing.

NOTE THAT the download link may be a link to files like csv/txt/zip/json/... , but when you just fetch it using normal get request, you may just get an html file. so you need to add logic to judge the returned info of html, like judging wiht content-type info and improve downlaoding effects.

Example code structure to start:

‘‘‘python
import os
import requests

def download_dataset():
...
...

...

if __name__ == "__main__":
download_dataset()

Note that the example code may be wrong, so do not really rely on it. You should generate code on your own.

You should only return python code that is content of get_dataset.py, and do not add any extra info. DO NOT ADD A SINGLE LETTER OUTSIDE OF THE PYTHON CODE!

And for the result python code, the function download_dataset, once run, will do all the job. You can add additional function to assist it, but this function must exist and can be run without calling parameters.

"""
return prompt

A.6 GOOGLE SEARCH API

We directly crawl the top-ranked links search results from google with such code:

import requests
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from bs4 import BeautifulSoup

def search_google(query):
# Make a request to Google Search
url = f"https://www.google.com/search?q={query}"
headers = {

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
response = requests.get(url, headers=headers)

# Check if the request was successful
if response.status_code == 200:

# Parse the HTML content
soup = BeautifulSoup(response.text, ’html.parser’)
search_div = soup.find(’div’, {’id’: ’search’})
return str(search_div)

else:
return f"Error: {response.status_code}"

def save_to_file(content, filename):
with open(filename, ’w’, encoding=’utf-8’) as file:

file.write(content)

def extract_links(html_content):
soup = BeautifulSoup(html_content, ’html.parser’)
links = []

# Find all ’a’ tags and get their href attributes
for a_tag in soup.find_all(’a’, href=True):

links.append(a_tag[’href’])

# with open("links.txt", ’w’, encoding=’utf-8’) as link_file:
# for link in links:
# link_file.write(link + ’\n’)

return links

def get_links(input_text):
result = search_google(input_text)
links = extract_links(result)
return links

if __name__ == "__main__":
# print(get_links("scope2 dataset"))

query = input("Enter your search query: ")
result = search_google(query)

if "Error" not in result:
save_to_file(result, "search_results.html")
print("Search results saved to ’search_results.html’.")

# Extract links and save to a separate file
links = extract_links(result)
with open("draft/links.txt", ’w’, encoding=’utf-8’) as link_file:

for link in links:
link_file.write(link + ’\n’)
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print("Links saved to ’links.txt’.")
else:

print(result)

A.7 LONG CONTEXT INFERENCE

Long context inference involves processing large textual inputs that exceed typical token limits
in language models. By employing techniques such as chunking, models can handle and analyze
extensive documents without losing context or important details.

To implement long context inference, a common approach is to break down the input text into
smaller chunks, process each chunk separately, and then combine the results to form a coherent
output. Below is an example of Python code implementing this approach using an API to handle
long texts:

import os
import requests
import json, sys

parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ’..’))
sys.path.append(parent_dir)

from utils import LLMApi, clamp_prompt, clean_llm_json_res

# Get the OpenAI API key from environment variable
API_KEY = os.getenv(’OPENAI_API_KEY’)

# Function to split the input into chunks based on token limit
def split_into_chunks(text, max_char_len = 8888):

chunks = []

# Split the text into chunks of the given max_char_len
for i in range(0, len(text), max_char_len):

chunks.append(text[i:i + max_char_len])

return chunks

# Function to process text of any length with chunking
def call_llm_with_chunks(instruction, text, max_tokens_per_chunk=8888, max_chunk_number = 50, model="gpt-4o-mini"):

chunks = split_into_chunks(text, max_tokens_per_chunk)

full_response = []

for i, chunk in enumerate(chunks):
if i > max_chunk_number:

break
print(f"Processing chunk {i+1}/{len(chunks)}...")
prompt = generate_chunk_prompt(instruction, chunk, i)
response = LLMApi(prompt, model=model)
if response:

full_response.append(response)

return full_response

def generate_chunk_prompt(instruction, chunk, number):
prompt = f"""
Task: You are required to perform the following action on the provided text.
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Instruction:
{instruction}

Context:
The text provided below is a portion(portion number: {number}) of a larger document. The text might include multiple ideas, important details, and some redundant information. You are expected to carefully read the entire chunk and execute the instruction provided above.

Important Notes:
- Pay close attention to the instruction and ensure that the output reflects exactly what is being asked.
- If the instruction requires summarizing, ensure the result is concise while retaining key information.
- If the instruction asks for rewriting, rephrase without altering the original meaning.

Below is the text chunk that you should work on:

[Start of Text Chunk]
{chunk}
[End of Text Chunk]

Please follow the instruction precisely and produce the corresponding output.
"""
return prompt

def generate_combination_prompt(instruction, chunk_responses):
prompt = f"""
Task: You are required to combine multiple responses generated from different chunks of a larger text.
The individual chunk responses may contain overlapping information, separate ideas, or fragmented content.
Your task is to combine these responses into a single cohesive and comprehensive output.

The responses are results of such task: {instruction}, so merge them based on the task description to make sure useful info is not lost.

Below are the responses generated from different chunks. Please combine them into a single well-structured and cohesive result:

"""

for i, response in enumerate(chunk_responses):
prompt += f"[Response {i+1}]\n{response}\n\n"

prompt += "Please combine the above responses into a single cohesive output, following the instructions provided."

return prompt

def LLM_long_api(instruction, input_text, max_chunk = 100, model="gpt-4o-mini"):
res = call_llm_with_chunks(instruction, input_text, max_chunk_number = max_chunk, model=model)
cb_pp = generate_combination_prompt(instruction, res)

return clean_llm_json_res( LLMApi(cb_pp))

if __name__ == "__main__":
res = LLM_long_api("you need to give me a story with some input info", "the story takes place in ancient China and is about a love story with a good ending")
print(res)

The function calls utils, and the code of util is below:

import json, os, requests

def change_dataset_name(name):
json_file_path = "draft/metadata.json"

with open(json_file_path, ’r’) as file:
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data = json.load(file)

# Update the dataset_name
data[’dataset_name’] = name

# Save the updated JSON back to the file
with open(json_file_path, ’w’) as file:

json.dump(data, file, indent=4)

def read_dataset_name():
with open("draft/metadata.json", ’r’) as file:

data2 = json.load(file)

# Extract the "dataset_name" property
dataset_name = data2[’dataset_name’]

return dataset_name

def LLMApi(input_text, max_length=8888, model="gpt-4o-mini"):
api_key = os.getenv(’OPENAI_API_KEY’) # Get the API key from environment variables
if not api_key:

return "API key not found in environment variables."

url = "https://api.openai.com/v1/chat/completions"

headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"

}

# Clamp input text to max_length
if len(input_text) > max_length:

input_text = input_text[:max_length] # Truncate the text if it’s too long

data = {
"model": model, # Ensure you’re using a valid model, e.g., "gpt-4"
"messages": [

{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": input_text}

]
}

try:
# Send POST request to OpenAI API
response = requests.post(url, headers=headers, data=json.dumps(data))

# If the response is successful (status code 200)
if response.status_code == 200:

result = response.json()
return result[’choices’][0][’message’][’content’].strip()

else:
return f"Error: {response.status_code} - {response.text}"

except Exception as e:
return f"An error occurred: {e}"

def fetch_html_from_link(link):
"""Fetches HTML content from a given link."""
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try:
response = requests.get(link)
response.raise_for_status() # Raise an error for bad responses

return response.text
except requests.RequestException:

return None # Return None on error

from bs4 import BeautifulSoup
import requests

def fetch_html_from_link_no_script(link):
"""Fetches HTML content from a given link."""
try:

response = requests.get(link)
response.raise_for_status() # Raise an error for bad responses

html_content = response.text

# Try removing <script> tags from the HTML
try:

soup = BeautifulSoup(html_content, ’html.parser’)
for script in soup.find_all(’script’):

script.decompose() # Remove the <script> tags
return str(soup)

except Exception:
return html_content # In case of error, return the raw HTML content

except requests.RequestException:
return None # Return None on error

def clamp_prompt(long_string, char_limit=8888):
if len(long_string) > char_limit:

return long_string[:char_limit] + ’...’
return long_string

def read_metadata(file_path=’draft/metadata.json’):
with open(file_path, ’r’, encoding=’utf-8’) as file:

# Load the JSON data from the file
metadata = json.load(file)

# Extract dataset_name and convert the entire ’info’ dictionary to a string
dataset_name = metadata[’dataset_name’]
dataset_info = json.dumps(metadata[’info’]) # Convert the ’info’ dictionary to a JSON-formatted string

return dataset_name, dataset_info

def read_metadata_dataset_websites(file_path=’draft/metadata.json’):
try:

with open(file_path, ’r’, encoding=’utf-8’) as file:
# Load the JSON data from the file
metadata = json.load(file)

# Extract dataset_name and convert the entire ’info’ dictionary to a string
dataset_websites = metadata["dataset_websites"]

return dataset_websites
except Exception as e:
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print(f"failed to read_metadata_dataset_websites, reason is : {e}")
return []

# # Example usage:
# dataset_name, dataset_info = read_metadata()
# print(f"Dataset Name: {dataset_name}")
# print(f"Dataset Info: {dataset_info}")

def clean_llm_json_res(res):
res_json = res
try:

if res.startswith(’‘‘‘json\n’):
res = res[len(’‘‘‘json\n’):].strip(’‘ \n’)

# Convert the string to JSON format
res_json = json.loads(res)

except Exception as e:
# Skip invalid JSON strings
print(f"Error decoding JSON for item: {res} - {e}")

return res_json

def get_py_files_length(folder_path):
total_length = 0
# Traverse through all files in the folder and its subfolders
for root, dirs, files in os.walk(folder_path):

for file in files:
if file.endswith(".py"): # Only consider .py files

file_path = os.path.join(root, file)
with open(file_path, ’r’, encoding=’utf-8’) as f:

total_length += len(f.readlines()) # Add number of lines in the file
return total_length

if __name__ == "__main__":
folder_path = os.path.dirname(os.path.realpath(__file__)) # Get the current folder path
total_lines = get_py_files_length(folder_path)
print(f"The total number of lines in all .py files (including this script) is: {total_lines}")

A.8 REPRODUCIBILITY

The code for the DataSEA system is available on GitHub at https://github.com/
SingleView11/DataSEA. Detailed instructions for setting up the environment and running
the pipelines are provided in the repository.

A.9 CODE STRUCTURE

The code for the DataSEA system is organized into three main modules: Search (S), Evaluate (E),
and Analyze (A). Each module contains several Python scripts responsible for different tasks within
the pipeline. Below is a detailed breakdown of the file structure:

app/

app.py # Main file to orchestrate the full pipeline
utils.py # Utility functions used across modules

S/ # Search module
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convert_json_format.py # JSON format conversion
convert_json_format2.py # Alternative JSON format conversion
GetRawResponse.py # Fetch raw responses from search queries
get_firstpage_links.py # Retrieve first-page search links
links_eval.py # Evaluate and rank retrieved links
main_s.py # Main script for Search module
prompt_generation.py # Generate search prompts for LLM
readme.md # Documentation for Search module
__init__.py # Init file for the Search module

E/ # Evaluate module
analyze_ref_pdfs.py # Analyze reference papers in PDF format
get_dataset_metadata.py # Extract metadata from dataset sources
get_paper.py # Retrieve reference papers for the dataset
get_pdfs.py # Download and parse PDFs
get_sorted_ref_papers.py # Sort and rank reference papers by citations
longtext_api.py # Handle long text input/output for LLMs
main_e.py # Main script for Evaluate module
main_es.py # Extended script for Evaluate module
sortgs_update.py # Update sorting logic for references
__init__.py # Init file for the Evaluate module

A/ # Analyze module
analyze_dataset.py # Generate analysis and visualizations for datasets
get_download_method.py # Determine download method for datasets
main_a.py # Main script for Analyze module
main_sea.py # Integrated script for Search, Evaluate, Analyze
try_download_ideas.py # Try different download ideas for dataset
zip_files_final.py # Handle final dataset packaging
__init__.py # Init file for the Analyze module

The structure is modular, with each module containing its own set of scripts that handle specific
steps in the DataSEA workflow. The modules are integrated by the app.py file, which orchestrates
the end-to-end pipeline.

And below are details of using the code.

A.10 CODE EXPLANATION

This subsection provides detailed explanations for each Python file in the DataSEA system, covering
the functionality, logic, and interactions with other modules.

A.10.1 QUICKSTART

For setup, install requirement.txt, and make sure the openai api key is set in your environment
variable.

Then run the app.py. It will ask you to input a dataset name and some optional descriptive info, and
then you only need to wait for about 5-10 minutes to get a zip file that stores the infos about the
dataset!

A.10.2 ADVANCED RUNNING

You can also do the s,e,a pipelines separately by calling s pipeline, e pipeline, a pipeline function
one by one, just check the main s, main e, main a functions.

A.10.3 SEARCH MODULE (S)

convert json format.py

• Code Usage:
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– process judge info(data): Processes entries to parse the judge info field
as JSON, if possible.

– convert judge info in file(input file, output file): Reads
JSON data from input file, processes it, and saves it to output file.

– eval pipeline(): Runs the dataset evaluation pipeline from the links eval
module.

convert json format2.py

• Code Usage:
– process judge info(data): Processes and converts the judge info field to

a valid JSON object if possible.
– filter dataset websites(data): Filters entries where
is dataset website in judge info is True.

– filter judge info in file(input file, output file): Reads JSON
from input file, processes and filters the entries, and saves the filtered result to
output file.

GetRawResponse.py

• Code Usage:
– google response(query): Simulates a Google search by sending a search

query to Google’s search engine and saves the raw HTML response to
raw search response.html.

get firstpage links.py

• Code Usage:
– search google(query): Sends a search query to Google, parses the HTML re-

sponse, and returns the search results as HTML.
– save to file(content, filename): Saves the provided content (HTML or

text) to a file with the specified filename.
– extract links(html content): Extracts all the links from the provided

HTML content and returns them as a list.
– get links(input text): Performs a Google search for the given input text,

extracts the links, and returns them as a list.

links eval.py

• Code Usage:
– LLMApi(input text): Sends a request to the OpenAI API using the provided

input text and returns the LLM’s response.
– test(dataset name="", desc="", need input=True): Retrieves

dataset links, generates prompts, and sends them to the LLM API for evaluation,
returning the results.

– save array to json(array, file path="draft/evals.json"):
Saves an array to a specified JSON file.

– eval pipeline(dataset name="", dataset desc="",
need input=True): Runs the evaluation pipeline, gathering and saving the
LLM evaluations for a given dataset.

main s.py

• Code Usage:
– process judge info(data): Processes the judge info field, converting it

to JSON if valid.
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– convert judge info in file(input file, output file): Reads
JSON from input file, processes judge info, and writes the result to
output file.

– create folders(base folder="draft"): Deletes contents in the draft
folder and creates a folder structure for storing documents and metadata.

– create metadata file(base folder): Creates an empty
metadata.json file with fields for dataset metadata.

– s pipeline(dataset name="", dataset desc="",
need input=True): Runs the full search pipeline, including folder creation,
dataset evaluation, and processing judge info into JSON.

prompt generation.py

• Code Usage:

– fetch html from link(link): Fetches the HTML content from a given link.
Returns the HTML as a string or None if an error occurs.

– generate prompt(link, dataset name, desc=""): Generates a
prompt based on the HTML content of the link and the dataset description. The
prompt is used to check if the link is a dataset website.

– save prompt to file(link, dataset name,
filename="gen pro.txt"): Fetches HTML, generates a prompt, and
saves it to a file.

– clamp prompt(long string, char limit=8000): Clamps a string to a
specified character limit (default: 8000 characters).

– prompts links(dataset name, desc=""): Fetches dataset-related links,
generates prompts, and returns them as a list of dictionaries with link and prompt.

– test(): Prompts the user for a dataset name, fetches the first link, and saves a
generated prompt to a file.

– test2(): Prompts the user for a dataset name and a specific link, then saves a
generated prompt to a file.

init .py (S)

A.10.4 EVALUATE MODULE (E)

The Evaluate module processes and extracts metadata from the dataset links obtained from the
Search module.

analyze ref pdfs.py

• Code Usage:

– extract text from pdf(pdf path): Extracts text from a PDF file and returns
it as a string.

– analyze ref papers(): Reads research paper links from a JSON file, extracts
PDF links, downloads PDFs, and runs analysis on them with the dataset.

– analyze pdfs with dataset(folder path, output file): Analyzes
PDFs in a folder by checking for dataset references and saves the results to a JSON
file.

– generate instruction prompt(dataset name, dataset info):
Generates a prompt for an LLM to analyze how a research paper uses the given
dataset.

– analyze pdf with dataset(text): Sends the extracted text from a research
paper to the LLM for analysis, checking for dataset references.
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get dataset metadata.py

• Code Usage:

– extract links from file(file path): Extracts links from a JSON file,
looking for link and download link dataset fields.

– extract all links2(file path): Extracts links from another JSON struc-
ture, including nested fields like download link paper and metadata URLs.

– download files dataset(): Combines all extracted links from
extract links from file and extract all links2, then processes
these links for downloading.

– download link content(url): Downloads content from a URL if the file size
is less than 10MB.

– save content to file(content, url, content type): Saves the
downloaded content to a file, naming it based on the URL.

– process links(all links): Processes a list of links by downloading content
for each and saving it to the appropriate folder.

– extract text from file(file path): Extracts text from various file types
(PDF, HTML, CSV, TXT) and returns the content.

– process folder(input folder, output folder): Extracts and pro-
cesses text from all files in a folder and saves the cleaned text to the output folder.

– generate instruction prompt(): Generates a prompt for LLMs to extract
dataset information from concatenated text.

– process folder and generate prompt(folder path): Concatenates
text from multiple files, generates an LLM prompt, and processes the results.

– merge jsons(generated data, file path): Merges generated LLM re-
sults with an existing JSON metadata file.

– whole pipeline get metadata and txt info(): Runs the entire pro-
cess—downloads dataset files, processes text, generates a prompt, and merges results
with metadata.

get paper.py

• Code Usage:

– prompts links(dataset name, desc=""): Retrieves links for potential
dataset papers, generates prompts for each link, and returns a list of links with as-
sociated prompts.

– generate prompt paper(link, dataset name, desc=""): Generates
a prompt to determine if the given link corresponds to the original paper of the dataset.

– get json evals(): Retrieves dataset and paper-related links, generates prompts,
and evaluates them using LLM.

– save json prompts(): Retrieves evaluations from LLM for dataset and paper
links and saves them in JSON format.

– dataset link prompts(dataset name, desc=""): Retrieves and gener-
ates prompts for dataset-related links from the dataset res.json file.

– getValidLinks(json path): Filters valid links from a JSON file based on cer-
tain criteria like is dataset website, download link dataset exists,
and is direct data.

– merge link prompts(lipros, dataset link prompts array):
Merges two arrays of link prompts, counting the occurrences of links and adding a
number property.

– get possible papers(): Runs the full process to retrieve, evaluate, and convert
potential paper links into a JSON file.
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get pdfs.py

• Code Usage:

– filter json data(json file, callback=None): Filters and re-
turns relevant data from a JSON file based on certain paper-related at-
tributes (is dataset paper website, download link paper exists,
is direct paper).

– extract links and paper links(): Extracts both dataset and paper down-
load links from filtered JSON data, evaluates them, and saves them in a separate JSON
file.

– get potential pdf link(link, dataset name, desc=""): Fetches
the HTML content of a link and generates a prompt to find direct download links
for the original paper of the dataset.

– save download links to json(download links array,
file path): Saves the extracted download links to a specified JSON file.

– get pdf links from single link(link): Extracts PDF links from a given
URL by generating a prompt using the dataset name and metadata.

– download file(link, file path): Downloads the content from a URL and
saves it in a specified folder. Supports formats like PDF, TXT, and CSV.

– download pdfs from links(links, file path): Downloads PDF files
from a list of links and saves them to the specified folder.

– download all pdfs(): Runs the complete process of extracting, filtering, and
downloading dataset-related PDFs from the provided links.

– delete all files in folder(folder path): Deletes all files in a speci-
fied folder.

– delete all contents in folder(folder path): Deletes all files and
subfolders within a specified folder.

get sorted ref papers.py

• Code Usage:

– evaluate paper(obj): Placeholder function for evaluating a paper. No func-
tionality implemented yet.

– get gs rank res(): Reads the dataset name and calls the sortgs main()
function to rank results based on the dataset name.

– csv to json(csv file, json file): Converts a CSV file to a JSON format,
saving the result in the specified JSON file.

– get gs papers(): Retrieves Google Scholar ranking results for the dataset and
converts them from CSV to JSON format.

longtext api.py

• Code Usage:

– split into chunks(text, max char len=8888): Splits a long text into
smaller chunks based on a character length limit.

– call llm with chunks(instruction, text,
max tokens per chunk=8888, max chunk number=50,
model="gpt-4o-mini"): Processes text in chunks using an LLM, based
on the provided instruction and model.

– generate chunk prompt(instruction, chunk, number): Creates a
prompt for an LLM to process a specific chunk of text based on the provided in-
struction.

– generate combination prompt(instruction, chunk responses):
Generates a prompt to combine multiple LLM responses from different chunks into a
single cohesive output.
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– LLM long api(instruction, input text, max chunk=100,
model="gpt-4o-mini"): Processes a long text using an LLM by splitting
it into chunks, generating responses for each, and then combining the results.

main e.py

• Code Usage:

– get final metadata(): Combines information from various sources like dataset
websites, original papers, and reference papers into the metadata.json file.

– prune metadata(): Refines the metadata by pruning and enhancing fields like
description, size, scale, author, and usage based on evaluation data and papers. Saves
the pruned metadata to metadata pruned.json and updates metadata.json.

– get prune metadata(): Runs both get final metadata() and
prune metadata() to generate and refine the metadata.

– e pipeline(): Runs the complete pipeline for retrieving papers, downloading
PDFs, processing Google Scholar papers, generating metadata, analyzing reference
papers, and pruning metadata.

main es.py

• Code Usage:

– se pipeline(): Combines two pipelines, s pipeline() and e pipeline(),
running them sequentially to process both the ”S” and ”E” workflows.

sortgs update.py NOTE: This code has source https://github.com/WittmannF/
sort-google-scholar, and I update it for convenience.

• Code Usage:

– get command line args(): Parses command-line arguments for keyword, num-
ber of results, output path, sorting criteria, language filter, and other options related to
Google Scholar scraping.

– get citations(content): Extracts the number of citations from the provided
HTML content.

– get year(content): Extracts the publication year from the provided HTML con-
tent.

– setup driver(): Sets up and returns a Selenium WebDriver instance to handle
Google Scholar requests.

– get author(content): Extracts the author information from the HTML content.
– get element(driver, xpath): Safely retrieves an element from the webpage

using an XPath expression with multiple attempts.
– get content with selenium(url): Uses Selenium to retrieve the page con-

tent from a URL, handling CAPTCHA challenges when required.
– sortgs main(): Scrapes Google Scholar for papers related to a dataset, extract-

ing metadata like citations, authors, and years. Saves the results in a CSV file and
optionally plots the number of citations vs. rank.

init .py (E)

A.10.5 ANALYZE MODULE (A)

The Analyze module is responsible for downloading, organizing, and visualizing the dataset.

analyze dataset.py

• Code Usage:
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– delete py files in folder(folder path): Recursively deletes all Python
(.py) files in the specified folder.

– delete log json files in folder(folder path): Recursively deletes
all JSON log files ending in log.json in the specified folder.

– get analyze code for all(): Cleans up the dataset folder and generates
Python code to analyze dataset files, extracting the first 10 samples and visualizing
them.

– get file info list(dataset folder, n=500): Reads the first 500 char-
acters from each file in the specified folder, returning a list of dictionaries with file-
names and file content.

– generate code for analyzing(files info, path, error info):
Generates Python code for analyzing dataset files based on file content, dataset
metadata, and past error logs.

– generate instruction prompt(files info, path, error info):
Generates a prompt for an LLM to create Python code for loading, analyzing, and
visualizing a dataset.

– analyze and run code(): Generates and runs Python code to analyze all dataset
files.

– analyze and run code with self repair(): Attempts to run generated
Python files up to three times with self-repair functionality if an error occurs.

– regenerate idea(file path, e): Regenerates Python code for a given file
if an error occurs during execution.

get download method.py

• Code Usage:

– delete py files in folder(folder path): Recursively deletes all Python
(.py) files in the specified folder.

– delete log json files in folder(folder path): Recursively deletes
all JSON log files ending in log.json in the specified folder.

– get analyze code for all(): Cleans up the dataset folder and generates
Python code to analyze dataset files, extracting the first 10 samples and visualizing
them.

– get file info list(dataset folder, n=500): Reads the first 500 char-
acters from each file in the specified folder, returning a list of dictionaries with file-
names and file content.

– generate code for analyzing(files info, path, error info):
Generates Python code for analyzing dataset files based on file content, dataset
metadata, and past error logs.

– generate instruction prompt(files info, path, error info):
Generates a prompt for an LLM to create Python code for loading, analyzing, and
visualizing a dataset.

– analyze and run code(): Generates and runs Python code to analyze all dataset
files.

– analyze and run code with self repair(): Attempts to run generated
Python files up to three times with self-repair functionality if an error occurs.

– regenerate idea(file path, e): Regenerates Python code for a given file
if an error occurs during execution.

main a.py

• a pipeline(): A pipeline that automates the process of:

– get download ideas(): Retrieves ideas for how to download datasets.
– try ideas and run code(): Attempts various download methods and runs the

corresponding code.
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– analyze and run code(): Analyzes the dataset and runs the generated analysis
code.

– zip folder with uuid(): Zips the dataset folder with a unique identifier.

main sea.py

• sea pipeline(): A combined pipeline that runs both the S+E and A pipelines:
– se pipeline(): Runs both the S and E workflows sequentially.
– a pipeline(): Runs the dataset download, analysis, and packaging pipeline.

try download ideas.py

• Code Usage:
– try ideas(): Sets up directories, clears previous data, and iterates over dataset

download ideas, attempting to generate Python scripts to download datasets based on
provided ideas.

– generate instruction(uid, idea): Generates an instruction prompt for
the LLM to create Python code for downloading the dataset, handling errors, and
saving the file in a specified directory.

– clean code block(code str): Cleans up LLM-generated code by removing
any surrounding markdown formatting (like ‘‘‘python).

– evaluate idea(idea): Uses an LLM to generate Python code for a dataset
download based on the provided idea, and saves both the code and the status of the
evaluation.

– run all python files in folder(folder path): Recursively finds and
runs all Python files in a given folder and its subfolders, handling errors and logging
results.

– try ideas and run code(): Combines try ideas() and
run all python files in folder() to first attempt dataset download
ideas and then run the generated Python scripts.

zip files final.py

• zip folder with uuid(folder path="draft", use uuid=False):
– This function zips the contents of a specified folder and saves it as a ‘.zip‘ file. The

zip file is named using the dataset’s name, and if use uuid is set to True, a UUID
is appended to the filename.

– The zip file is saved in the experiment results folder. The function ensures this
folder is created if it does not exist.

– By default, the draft folder is zipped, but you can specify a different folder by
passing the folder path argument.

init .py (A)

A.10.6 MAIN SYSTEM COORDINATION

app.py

• sea pipeline without input(dataset name, dataset desc):
– This function executes the SEA pipeline (Search, Evaluate, Analyze) without requir-

ing user input. It accepts a dataset name and description, passing them to the respective
pipeline functions s pipeline, e pipeline, and a pipeline.

• batch get experiment res(arr):
– This function takes a list of dataset names and runs the
sea pipeline without input for each dataset in the list, automating the
execution of the full pipeline for multiple datasets.
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utils.py

• change dataset name(name):
– This function updates the dataset name in the metadata.json file.

• read dataset name():
– Reads the dataset name from the metadata.json file.

• LLMApi(input text, max length=8888, model="gpt-4o-mini"):
– Sends an API request to an LLM (GPT model) with the given input text, truncating it

if it exceeds the character limit.
• fetch html from link(link):

– Fetches raw HTML content from a given URL.
• fetch html from link no script(link):

– Fetches HTML content from a given URL, removing any <script> tags from the
content.

• clamp prompt(long string, char limit=8888):
– Truncates a string if it exceeds a specified character limit.

• read metadata(file path=’draft/metadata.json’):
– Reads metadata from the specified metadata.json file and returns the dataset

name and the dataset info as a string.
• read metadata dataset websites(file path=’draft/metadata.json’):

– Reads the dataset websites field from the metadata file.
• clean llm json res(res):

– Cleans and decodes the JSON response from an LLM, removing code block format-
ting.

• get py files length(folder path):
– Calculates the total number of lines in all Python files in the specified folder and its

subfolders.

40


	Introduction
	Related Work
	Methodology
	System Overview
	Search Module
	Evaluation Module
	Metadata Extraction
	Reference Paper Retrieval
	Metadata Extension

	Analysis Module
	Dataset Download
	Dataset Analysis and Visualization


	Experiments
	Setup
	Main Results

	Limitations
	Conclusion
	Appendix
	Appendices
	Search Pipeline
	Evaluate Pipeline
	Analyze Pipeline
	Flowchart Visualizations
	Prompts we use
	Dataset Website Prompt
	Dataset Paper Retrieval
	Retrieving PDF Links for Dataset Paper
	Generating Dataset Metadata Extraction Instructions
	Generating Dataset Reference Detection Instructions
	Instruction for Generating Python Code to Visualize Dataset
	Prompt for Extracting Dataset Download Link from HTML
	Prompt for Generating Python Code to Download a Dataset
	Prompt for Generating Python Code to Download a Dataset

	Google Search Api
	Long Context Inference
	Reproducibility
	Code Structure
	Code Explanation
	QuickStart
	Advanced Running
	Search Module (S)
	Evaluate Module (E)
	Analyze Module (A)
	Main System Coordination



