
XLand-100B: A Large-Scale Multi-Task
Dataset for In-Context Reinforcement Learning

Alexander Nikulin∗

AIRI
MIPT

Ilya Zisman∗

AIRI
Skoltech

Alexey Zemtsov∗

T-Bank
Vladislav Kurenkov

AIRI
Innopolis University

Abstract

Following the success of the in-context learning paradigm in large-scale language
and computer vision models, the recently emerging field of in-context reinforce-
ment learning is experiencing a rapid growth. However, its development has been
held back by the lack of challenging benchmarks, as all the experiments have
been carried out in simple environments and on small-scale datasets. We present
XLand-100B, a large-scale dataset for in-context reinforcement learning based
on the XLand-MiniGrid environment, as a first step to alleviate this problem. It
contains complete learning histories for nearly 30, 000 different tasks, covering
100B transitions and 2.5B episodes. It took 50, 000 GPU hours to collect the
dataset, which is beyond the reach of most academic labs. We also benchmark
common in-context RL baselines and show that they struggle to generalize to novel
and diverse tasks. With this substantial effort, we aim to democratize research in
the rapidly growing field of in-context reinforcement learning and provide a solid
foundation for further scaling.

1 Introduction

In-context learning, i.e. the ability to learn new tasks purely based on examples given in the context
during inference and without any weight updates, was initially thought to be an emergent property
of large language models, such as GPT-3 (Brown et al., 2020). However, it was quickly discovered
that small transformers are also capable of in-context learning (Kirsch et al., 2022; Von Oswald
et al., 2023), and even many non-transformer models have such abilities (Bhattamishra et al., 2023;
Akyürek et al., 2024; Park et al., 2024; Grazzi et al., 2024; Vladymyrov et al., 2024; Tong & Pehlevan,
2024). More importantly, driven by properties of data, rather than the architecture (Chan et al., 2022;
Gu et al., 2023), in-context learning is not specific to language modeling and has been found in other
domains, e.g. image generation (Bai et al., 2023; Najdenkoska et al., 2023; Doveh et al., 2024; Tian
et al., 2024).

However, despite the rapid adoption of the transformer architecture in reinforcement learning (RL)
after the release of Decision Transformer (DT) (Chen et al., 2021; Hu et al., 2022; Agarwal et al.,
2023; Li et al., 2023), models with in-context learning capabilities appeared only recently. This delay
is caused by a number of reasons. Firstly, to transition from in-weights to in-context learning, a model
should be trained on tens of thousands of unique tasks (Kirsch et al., 2022). Unfortunately, even
the largest RL datasets currently contain only hundreds or tasks (Padalkar et al., 2023). Secondly, it
was necessary to determine the right way to provide a context to a transformer and develop the data

∗Equal contribution.
Correspondence to: nikulin@airi.net
Work is done at dunnolab.ai

Workshop on Adaptive Foundation Models at 38th Conference on Neural Information Processing Systems
(NeurIPS 2024).

https://dunnolab.ai

Table 1: Comparison with other RL datasets.
Data # tasks # transitions # episodes Size Open-Source Enables ICRL
XLand-100B (ours) 28,876 100B 2.5B 320GB ✓ ✓
JAT 157 323M N/A 1TB ✓ ✗
GATO 596 1.5T 63M N/A ✗ ✗
Open X-Embodiment 527 N/A 2.4M 9TB ✓ ✗
AlphaStar Unplugged 1 21B 2.8M N/A ✗ ?
NetHack 1 3.5B 110K 97 GB ✗ ✗
D4RL 11 N/A 40 M 4.8GB ✓ ✗
V-D4RL 4 2.4M N/A 17GB ✓ ✗
D5RL 50 N/A 2500 N/A ✗ ✗
RL Unplugged 90 80M N/A 54.1TB ✓ ✗
Procgen 16 37M N/A 500GB ✓ ✗

collection pipeline, which for many methods (Laskin et al., 2022; Lee et al., 2023; Shi et al., 2024)
was different from what is commonly available in existing datasets (see Appendix B).

Due to the lack of suitable datasets and the high cost of collecting data in existing environments,
the recent wave of in-context RL research (Laskin et al., 2022; Lee et al., 2023; Norman & Clune,
2023; Kirsch et al., 2023; Sinii et al., 2023; Zisman et al., 2023) used environments with very simple
task distributions, where it was feasible to collect datasets with hundreds of tasks. While these
benchmarks are affordable, they are not suitable for the comparison of methods at scale on tasks
with high diversity and difficulty, which is essential for real-world applications. Because of this,
the development of in-context RL is currently hindered by these factors. We believe it is crucial to
address these barriers, given the essential role of in-context learning in the path to foundation models
and truly generalist agents (Team et al., 2021, 2023; Kirsch et al., 2023; Lu et al., 2024; Liu et al.,
2024).

2 XLand-100B Dataset

We present XLand-100B, a large-scale dataset for in-context RL based on the XLand-MiniGrid
(Nikulin et al., 2023) environment, together with its smaller and simpler version XLand-Trivial-20B.
Combined they contain about 3.5B episodes, 130B transitions and 40,000 unique tasks (see Table 2
in the Appendix B for detailed statistics). It took 50, 000 GPU hours to collect the dataset, which is
beyond the reach of most academic labs. In contrast to most existing datasets for RL, our dataset
is compatible with the most widely used in-context learning RL methods. We provide additional
background in Appendix A and compare our dataset in detail with the currently existing ones in
Appendix B.

2.1 Data Format

Storage format. We chose to store the datasets in HDF5 file format based on its popularity and
convenience. We used gzip compression with default compression strength of 6, which reduced
dataset size from almost 5TB+ to just ∼600GB for our main dataset. Using a little trick described
later, we were able to reduce the size even more to just 326 GB (see Table 2). However, a naive use
of compression can dramatically increase batch sampling time and slow overall training time down.
We tuned HDF5 cache chunk size specifically to maximize sampling throughput for large sequence
lengths. After tuning, we achieved a fourfold speedup over the naive compression, and were only two
times slower compared to no compression. See Appendix D for throughput benchmarks.

Data and metadata format. We collect complete learning histories, i.e. we store all observations,
actions, rewards and dones encountered during agent training (see Appendix C for more details).
To be compatible with DPT-like methods (Lee et al., 2023), we also store expert actions for each
transition (see Section 2.2). Unlike popular formats such as RLDS, we store transitions as one
sequential array per history per modality. The rationale here is that under compression, it is much
cheaper to sample slices of long episodes in sequence rather than sampling across different groups.

2

0 12.5B 25B
Transitions

0.1

0.2

0.3

0.4

Re
tu

rn

Figure 2: Evaluation return
for multi-task goal-conditioned
reccurent PPO pretraining on
65k tasks. Pretrained agent
was further used a starting point
for single-task finetuning dur-
ing dataset collection.

0 0.5B 1B
Transitions

0.0

0.5

1.0

Re
tu

rn

From Scratch
Pretrained

Figure 3: Single-task evalua-
tion curves on 36 hard tasks for
policies trained from scratch or
fine-tuned from multi-task pre-
trained checkpoints. See Ap-
pendix E for curves on tasks of
all difficulty.

0 1 2 3 4 5 6 7 8 9
Number of rules

0

2k

4k

6k Initial
Filtered

Figure 4: Distribution of the
tasks by difficulty sampled
initially and in the resulting
dataset. To ensure the quality,
we filtered tasks where the fi-
nal return was below 0.3 or the
data was corrupted due to some
errors during training.

We also store observations efficiently to further reduce dataset size. Instead of storing two channels
for tile and color, we map their indexes into Cartesian product of colors and tiles, halving the storage
size. They can be decoded easily during sampling without any overhead with divmod function. In
addition, for each history we store the XLand-MiniGrid environment ID, benchmark ID and ruleset
ID, which can be used later to filter the dataset, e.g. based on the complexity of the tasks, split into
train and test or set up the environment for evaluation.

2.2 Data Collection

0.0 0.5 1.0
Normalized #episodes

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

3 rules
5 rules

7 rules
9 rules

Figure 1: Learning histories
for the XLand-100B dataset
separated by number of rules.
For visual clarity, we show
only a sample of the possible
number of rules and normal-
ize the number of episodes, as
they may vary considerably.

At a high level, data collection was organised into three stages,
namely multi-task task-conditioned pre-training; single-task fine-
tuning to collect learning histories; and finally post-processing and
filtering. Although we used highly optimised GPU-accelerated im-
plementations of the base RL algorithm and environment, it still took
50, 000 GPU hours to collect the full dataset. Collecting a dataset
of this size for any other environment suitable for in-context RL,
e.g. Meta-World (Yu et al., 2020), would take much longer, which
is unlikely to be feasible for most practitioners (Nikulin et al., 2023).
Next, we describe the collection process, including the selection of
the base RL algorithm and all subsequent steps. We provide exact
hyperparameters for each stage in Appendix M.

Base algorithm. For our datasets we chose PPO (Schulman et al.,
2017), due its high scalability and compatibility with massively
parallel environments. We ported the implementation from recurrent
PPO provided by (Nikulin et al., 2023), customizing it to meet our
needs. We added callbacks for saving transitions during training and
extended agent architecture to take ruleset encoding as an optional condition for pre-training. We
used GRU (Cho et al., 2014) for memory, as it showed satisfactory performance on preliminary
experiments. Since the base algorithm was implemented in JAX (Bradbury et al., 2018), we were
able to just-in-time compile the entire training loop, achieving 1M steps per second during training
on one GPU with mixed precision enabled.

Pretraining. For our main XLand-100B dataset we uniformly sampled tasks from medium-1m
benchmark from XLand-MiniGrid. It contains tasks of various difficulty, ranging from zero to nine
rules. Unfortunately, on many hard tasks our base algorithm could not manage to converge in the
time budget allocated for a single training run. On the hardest tasks, it was not even possible to get a
non-zero reward at all, due to the exploration challenge that such tasks poses. In order to speed up
convergence and exploration on harder tasks, we pre-train an agent in a multi-task task-conditioned
manner. We expose the ruleset specification, which is usually hidden from the agent, and encode the
goal and rules via embeddings, concatenating resulting encodings and passing it as an additional
input to the agent. After that, we train the agent on 65k tasks simultaneously for 25B transitions. As
Figure 2 shows, such an agent learns to generalize zero-shot on new tasks quite well, although we do

3

not aim to push it to the limit, as zero-shot generalization does not produce a smooth learning history
during fine-tuning. We skip this stage for XLand-Trivial-20B dataset due to the simplicity of the
tasks in trivial-1m benchmark.

0k 25k 50k 75k 100k 125k
Transitions

0.5

0.6

0.7

0.8

0.9

1.0

Ac
tio

ns
 a

gr
ee

m
en

t

Figure 5: Agreement between
actions predicted by the expert
and the actual actions in the
learning history. We use final
PPO policy as an expert for
actions labeling.

Finetuning. This is a key stage in the data collection process, during
which we finetune a pretrained agent while recording the transitions
encountered into the dataset. We finetune the agent using 8192 paral-
lel environments for 1B transitions on 30k uniformly sampled tasks
from medium-1m benchmark. We mask out the task-conditioning
encoding to prevent zero-shot generalization. We record transitions
only from first 32 parallel environments. For the XLand-Trivial-
20B dataset, instead of fine-tuning, we train the agent from scratch
on 10k uniformly sampled tasks from the trivial-1m benchmark,
keeping all other hyperparameters the same. In the Figure 3 we show
the effect of finetuning on hard tasks (with more than seven rules)
compared to training from scratch. It can be seen that we are able to
show strong performance even on the hardest tasks, increasing the
diversity and coverage of the resulting dataset. For the same results
on tasks of all levels of difficulty, see Appendix E.

Postprocessing. After fine-tuning, it was necessary to additionally
label the transitions with the expert actions to support DPT-like
methods (Lee et al., 2023). To do this, we walk through the entire learning history with the final
policy, starting from the initial hidden state for the GRU. We evaluate the validity of such a labelling
scheme later in the Section 2.3. To ensure quality, we filtered out any task with a final return below
0.3 as an unrepresentative learning history. There were some failures, such as GPU crashes, which
are inevitable during large-scale training. So any runs with corrupted data were also filtered out. In
total, we filtered out about 1k tasks, leaving almost 29k tasks in the final dataset. We provide detailed
statistics for each dataset in Table 2 and the final distribution of tasks by number of rules in Figure 4.

2.3 Data Evaluation

In this section we validate that the resulting XLand-100B dataset actually fulfils the two most
important requirements for in-context RL, namely it contains learning histories with distinct policy
improvement pattern and has expert actions for each transition (see Appendix B for a discussion).
We provide analogous results for XLand-Trivial-20B in the Appendix F.

Improvement history. In the Figure 1 we show the averaged return from the learning histories
separated by the number of rules. In order to better show the speed of learning on the same scale, we
have normalized the x-axis for each level of difficulty, as the number of episodes can vary greatly
(as it takes more time to solve complex tasks). One can see that the dataset provides a whole range
of learning speeds, from very fast on easy problems to much slower on the hardest, which may be
important for methods based on AD (Zisman et al., 2023; Shi et al., 2024). For a learning history
averaged over full dataset see Appendix F.

Expert actions relabeling. In contrast to AD, which predicts next actions from the trajectory itself,
DPT-like methods require access to optimal actions on each transition for prediction. However, for
the most nontrivial or real-world problems, obtaining true optimal actions in large numbers is unlikely
to be possible. Recently, Lin et al. (2023) introduced approximate DPT, scheme where expert actions
are estimated from the entire history by some algorithm. We implemented this scheme for lack of
evident alternatives. However, we had to make sure that such a labeling is adequate in our case and
the expert at the end predicts actions close to what the policy did in reality near the end of training.
This is not obvious, as during the labeling it can diverge into out-of-distribution hidden states for
GRU. In the Figure 5 we show that on XLand-100B the agreement between the predicted actions by
the expert and the actual actions increases closer to the end of the learning history, meaning that the
expert does not diverge during relabeling.

3 Experiments

4

0 100 200 300 400 500
Episodes

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

rules = 1
Data
Model

0 100 200 300 400 500
Episodes

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

rules = 3
Data
Model

0 100 200 300 400 500
Episodes

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

rules = 6
Data
Model

0 100 200 300 400 500
Episodes

0.2

0.0

0.2

0.4

0.6

0.8

Re
tu

rn

rules = 9
Data
Model

Figure 6: Comparison of the learning histories in -100B dataset vs. AD performance on the same
training tasks. AD is able to solve simple tasks, however its performance degrades as the rulesets get
deeper. The context length of the model is 1024. The evaluation parameters, except training tasks,
are the same as in Figure 7.

0 100 200 300 400 500
Episodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
tu

rn

XLand-Trivial-20B
512
1024
2048
4096

0 100 200 300 400 500
Episodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Re
tu

rn

XLand-100B
1024
2048
4096

Figure 7: AD performance on
our datasets for different se-
quence lengths. Both datasets
lead to the emergence of in-
context ability. We report the
average return on 1024 unseen
tasks across 3 seeds.

In this section, we investigate whether our datasets can enable an in-
context RL ability. Additionally, we demonstrate how well current
in-context algorithms perform across different task complexities and
outline their current limitations. We take AD (Laskin et al., 2022)
and DPT (Lee et al., 2023) for our experiments, the exact imple-
mentations details are in Appendix H and Appendix I. Both meth-
ods were trained on XLand-Trivial-20B and XLand-100B with
{512, 1024, 2048, 4096} and {1024, 2048, 4096} context lengths re-
spectively. For evaluation, we run three models on 1024 unseen tasks
for 500 episodes.

AD. AD shows an emergence of in-context ability during training on
both datasets. Figure 7 demonstrates the performance of the method
for different context lengths. On -Trivial-20B dataset it is able
to show a stable policy improvement from about 0.28 to 0.4 during
the evaluation. For -100B the performance is similar, but the pace
of improvement is faster. We hypothesise that it happens due to
wider data-coverage, since the agent sees more complex tasks and is
able to learn faster from them. To further examine the performance
on the -100B dataset, we evaluate AD on the training tasks from
the dataset and separate the performance based on the complexity
of the tasks. As shown in Figure 6, AD is able to demonstrate in-
context abilities on simple tasks, but it struggles with more complex
ones. We believe there is a need for further research to discover new
and more sample-efficient architectures capable of solving the more
complex tasks of our dataset.

DPT. Decision-Pretrained Transformer (Lee et al., 2023) is another
method that exhibit in-context RL capabilities. However, in our experiments we were unable to
train it so that these abilities emerge (see Appendix L). We believe this is closely connected to the
inability of DPT to reason in POMDP environments. For a detailed investigation, we refer the reader
to Appendix J.

4 Limitations and Future Work

There are several limitations to our work, some of which we hope to address in future releases.
Despite the size and diversity of the datasets provided in terms of tasks, we do not provide diversity in
terms of the domains, as all tasks share the same observation and action spaces. In addition, the tasks
also share an overall latent structure, i.e. it is always a form of binary tree. This can be addressed with
more diverse benchmark generators in the XLand-MiniGrid library (Nikulin et al., 2023). All learning
histories were collected on grids with only one room, which may limit the transfer to the harder
layouts with multiple rooms containing doors. Finally, the effect of fine-tuning from pre-trained
checkpoints is underexplored and could potentially hurt performance, as there are many learning
histories that start from a high reward. We hope to improve the RL baseline for data collection to
avoid the need for multi-task pre-training in the future.

5

References
Agarwal, P., Rahman, A. A., St-Charles, P.-L., Prince, S. J., and Kahou, S. E. Transformers in

reinforcement learning: a survey. arXiv preprint arXiv:2307.05979, 2023.

Akyürek, E., Wang, B., Kim, Y., and Andreas, J. In-context language learning: Arhitectures and
algorithms. arXiv preprint arXiv:2401.12973, 2024.

Bai, Y., Geng, X., Mangalam, K., Bar, A., Yuille, A., Darrell, T., Malik, J., and Efros, A. A. Sequential
modeling enables scalable learning for large vision models. arXiv preprint arXiv:2312.00785,
2023.

Beck, J., Vuorio, R., Xiong, Z., and Whiteson, S. Recurrent hypernetworks are surprisingly strong in
meta-rl. Advances in Neural Information Processing Systems, 36, 2024.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013.

Bhattamishra, S., Patel, A., Blunsom, P., and Kanade, V. Understanding in-context learning in
transformers and llms by learning to learn discrete functions. arXiv preprint arXiv:2310.03016,
2023.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A., Richemond, P., McClelland, J., and Hill,
F. Data distributional properties drive emergent in-context learning in transformers. Advances in
Neural Information Processing Systems, 35:18878–18891, 2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., and
Mordatch, I. Decision transformer: Reinforcement learning via sequence modeling. Advances in
neural information processing systems, 34:15084–15097, 2021.

Chevalier-Boisvert, M., Dai, B., Towers, M., de Lazcano, R., Willems, L., Lahlou, S., Pal, S., Castro,
P. S., and Terry, J. Minigrid & miniworld: Modular & customizable reinforcement learning
environments for goal-oriented tasks. CoRR, abs/2306.13831, 2023.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Leveraging procedural generation to benchmark
reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

Dao, T. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Interna-
tional Conference on Learning Representations (ICLR), 2024.

Doveh, S., Perek, S., Mirza, M. J., Alfassy, A., Arbelle, A., Ullman, S., and Karlinsky, L. Towards
multimodal in-context learning for vision & language models. arXiv preprint arXiv:2403.12736,
2024.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P. Rl2: Fast reinforcement
learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4rl: Datasets for deep data-driven
reinforcement learning, 2020.

6

http://github.com/google/jax

Gallouédec, Q., Beeching, E., Romac, C., and Dellandréa, E. Jack of All Trades, Master of
Some, a Multi-Purpose Transformer Agent. arXiv preprint arXiv:2402.09844, 2024. URL
https://arxiv.org/abs/2402.09844.

Grazzi, R., Siems, J., Schrodi, S., Brox, T., and Hutter, F. Is mamba capable of in-context learning?
arXiv preprint arXiv:2402.03170, 2024.

Grigsby, J., Fan, L., and Zhu, Y. Amago: Scalable in-context reinforcement learning for adaptive
agents. arXiv preprint arXiv:2310.09971, 2023.

Gu, Y., Dong, L., Wei, F., and Huang, M. Pre-training to learn in context. arXiv preprint
arXiv:2305.09137, 2023.

Gulcehre, C., Wang, Z., Novikov, A., Paine, T. L., Colmenarejo, S. G., Zolna, K., Agarwal, R., Merel,
J., Mankowitz, D., Paduraru, C., Dulac-Arnold, G., Li, J., Norouzi, M., Hoffman, M., Nachum,
O., Tucker, G., Heess, N., and de Freitas, N. Rl unplugged: A suite of benchmarks for offline
reinforcement learning, 2021.

Hambro, E., Raileanu, R., Rothermel, D., Mella, V., Rocktäschel, T., Küttler, H., and Murray, N.
Dungeons and data: A large-scale nethack dataset, 2023.

Hu, S., Shen, L., Zhang, Y., Chen, Y., and Tao, D. On transforming reinforcement learning by
transformer: The development trajectory. arXiv preprint arXiv:2212.14164, 2022.

Hui, D. Y.-T., Chevalier-Boisvert, M., Bahdanau, D., and Bengio, Y. Babyai 1.1, 2020.

Janner, M., Li, Q., and Levine, S. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L. General-purpose in-context learning by
meta-learning transformers. arXiv preprint arXiv:2212.04458, 2022.

Kirsch, L., Harrison, J., Freeman, C., Sohl-Dickstein, J., and Schmidhuber, J. Towards general-
purpose in-context learning agents. In NeurIPS 2023 Workshop on Generalization in Planning,
2023. URL https://openreview.net/forum?id=eDZJTdUsfe.

Kurenkov, V., Nikulin, A., Tarasov, D., and Kolesnikov, S. Katakomba: Tools and benchmarks for
data-driven nethack. Advances in Neural Information Processing Systems, 36, 2024.

Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer, S., Steigerwald, R., Strouse, D., Hansen, S.,
Filos, A., Brooks, E., et al. In-context reinforcement learning with algorithm distillation. arXiv
preprint arXiv:2210.14215, 2022.

Lee, J. N., Xie, A., Pacchiano, A., Chandak, Y., Finn, C., Nachum, O., and Brunskill, E. Supervised
pretraining can learn in-context reinforcement learning. arXiv preprint arXiv:2306.14892, 2023.

Lee, K.-H., Nachum, O., Yang, M. S., Lee, L., Freeman, D., Guadarrama, S., Fischer, I., Xu, W., Jang,
E., Michalewski, H., et al. Multi-game decision transformers. Advances in Neural Information
Processing Systems, 35:27921–27936, 2022.

Li, W., Luo, H., Lin, Z., Zhang, C., Lu, Z., and Ye, D. A survey on transformers in reinforcement
learning. arXiv preprint arXiv:2301.03044, 2023.

Lin, L., Bai, Y., and Mei, S. Transformers as decision makers: Provable in-context reinforcement
learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Liu, H. and Abbeel, P. Emergent agentic transformer from chain of hindsight experience. In
International Conference on Machine Learning, pp. 21362–21374. PMLR, 2023.

Liu, X., Lou, X., Jiao, J., and Zhang, J. Position: Foundation agents as the paradigm shift for decision
making. arXiv preprint arXiv:2405.17009, 2024.

Lu, C., Ball, P. J., Rudner, T. G. J., Parker-Holder, J., Osborne, M. A., and Teh, Y. W. Challenges and
opportunities in offline reinforcement learning from visual observations, 2023.

7

https://arxiv.org/abs/2402.09844
https://openreview.net/forum?id=eDZJTdUsfe

Lu, C., Schroecker, Y., Gu, A., Parisotto, E., Foerster, J., Singh, S., and Behbahani, F. Structured state
space models for in-context reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Mathieu, M., Ozair, S., Srinivasan, S., Gulcehre, C., Zhang, S., Jiang, R., Paine, T. L., Powell, R.,
Żołna, K., Schrittwieser, J., Choi, D., Georgiev, P., Toyama, D., Huang, A., Ring, R., Babuschkin,
I., Ewalds, T., Bordbar, M., Henderson, S., Colmenarejo, S. G., van den Oord, A., Czarnecki,
W. M., de Freitas, N., and Vinyals, O. Alphastar unplugged: Large-scale offline reinforcement
learning, 2023.

Mediratta, I., You, Q., Jiang, M., and Raileanu, R. The generalization gap in offline reinforcement
learning, 2024.

Melo, L. C. Transformers are meta-reinforcement learners. In International Conference on Machine
Learning, pp. 15340–15359. PMLR, 2022.

Mirchandani, S., Xia, F., Florence, P., Ichter, B., Driess, D., Arenas, M. G., Rao, K., Sadigh, D., and
Zeng, A. Large language models as general pattern machines. arXiv preprint arXiv:2307.04721,
2023.

Müller, S., Hollmann, N., Arango, S. P., Grabocka, J., and Hutter, F. Transformers can do bayesian
inference. arXiv preprint arXiv:2112.10510, 2021.

Najdenkoska, I., Sinha, A., Dubey, A., Mahajan, D., Ramanathan, V., and Radenovic, F. Context
diffusion: In-context aware image generation. arXiv preprint arXiv:2312.03584, 2023.

Nikulin, A., Kurenkov, V., Zisman, I., Agarkov, A., Sinii, V., and Kolesnikov, S. Xland-minigrid:
Scalable meta-reinforcement learning environments in jax. arXiv preprint arXiv:2312.12044, 2023.

Norman, B. and Clune, J. First-explore, then exploit: Meta-learning intelligent exploration. arXiv
preprint arXiv:2307.02276, 2023.

Padalkar, A., Pooley, A., Jain, A., Bewley, A., Herzog, A., Irpan, A., Khazatsky, A., Rai, A., Singh,
A., Brohan, A., et al. Open x-embodiment: Robotic learning datasets and rt-x models. arXiv
preprint arXiv:2310.08864, 2023.

Park, J., Park, J., Xiong, Z., Lee, N., Cho, J., Oymak, S., Lee, K., and Papailiopoulos, D. Can
mamba learn how to learn? a comparative study on in-context learning tasks. arXiv preprint
arXiv:2402.04248, 2024.

Press, O., Smith, N. A., and Lewis, M. Train short, test long: Attention with linear biases enables
input length extrapolation, 2022.

Rafailov, R., Hatch, K. B., Singh, A., Kumar, A., Smith, L., Kostrikov, I., Hansen-Estruch, P., Kolev,
V., Ball, P. J., Wu, J., et al. D5rl: Diverse datasets for data-driven deep reinforcement learning.
2023.

Raparthy, S. C., Hambro, E., Kirk, R., Henaff, M., and Raileanu, R. Generalization to new sequential
decision making tasks with in-context learning. arXiv preprint arXiv:2312.03801, 2023.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deepspeed: System optimizations enable training
deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 3505–3506, 2020.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-Maron, G., Gimenez, M.,
Sulsky, Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi, A., Edwards, A., Heess, N.,
Chen, Y., Hadsell, R., Vinyals, O., Bordbar, M., and de Freitas, N. A generalist agent, 2022.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shala, G., Biedenkapp, A., and Grabocka, J. Hierarchical transformers are efficient meta-
reinforcement learners. arXiv preprint arXiv:2402.06402, 2024.

8

Shi, L. X., Jiang, Y., Grigsby, J., Fan, L., and Zhu, Y. Cross-episodic curriculum for transformer
agents. Advances in Neural Information Processing Systems, 36, 2024.

Sinii, V., Nikulin, A., Kurenkov, V., Zisman, I., and Kolesnikov, S. In-context reinforcement learning
for variable action spaces. arXiv preprint arXiv:2312.13327, 2023.

Team, A. A., Bauer, J., Baumli, K., Baveja, S., Behbahani, F., Bhoopchand, A., Bradley-Schmieg, N.,
Chang, M., Clay, N., Collister, A., et al. Human-timescale adaptation in an open-ended task space.
arXiv preprint arXiv:2301.07608, 2023.

Team, O. E. L., Stooke, A., Mahajan, A., Barros, C., Deck, C., Bauer, J., Sygnowski, J., Trebacz, M.,
Jaderberg, M., Mathieu, M., et al. Open-ended learning leads to generally capable agents. arXiv
preprint arXiv:2107.12808, 2021.

Tian, K., Jiang, Y., Yuan, Z., Peng, B., and Wang, L. Visual autoregressive modeling: Scalable image
generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

Tong, W. L. and Pehlevan, C. Mlps learn in-context. arXiv preprint arXiv:2405.15618, 2024.

Vladymyrov, M., von Oswald, J., Sandler, M., and Ge, R. Linear transformers are versatile in-context
learners. arXiv preprint arXiv:2402.14180, 2024.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvintsev, A., Zhmoginov, A., and
Vladymyrov, M. Transformers learn in-context by gradient descent. In International Conference
on Machine Learning, pp. 35151–35174. PMLR, 2023.

Wang, J., Blaser, E., Daneshmand, H., and Zhang, S. Transformers learn temporal difference methods
for in-context reinforcement learning. arXiv preprint arXiv:2405.13861, 2024.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C.,
Kumaran, D., and Botvinick, M. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763,
2016.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn, C., and Levine, S. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on robot
learning, pp. 1094–1100. PMLR, 2020.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hofmann, K., and Whiteson, S. Varibad: A
very good method for bayes-adaptive deep rl via meta-learning. arXiv preprint arXiv:1910.08348,
2019.

Zisman, I., Kurenkov, V., Nikulin, A., Sinii, V., and Kolesnikov, S. Emergence of in-context
reinforcement learning from noise distillation. arXiv preprint arXiv:2312.12275, 2023.

9

A Background

A.1 In-Context Reinforcement Learning

Multiple methods for in-context RL have come out, each offering a different way of training and
organising the context (Laskin et al., 2022; Lee et al., 2023; Mirchandani et al., 2023; Liu & Abbeel,
2023; Raparthy et al., 2023; Shi et al., 2024). We focus on Algorithm Distillation (AD) (Laskin et al.,
2022) and Decision-Pretrained Transformer (DPT) (Lee et al., 2023), which we chose as the main
methods for our work due to their simplicity and generality.

Algorithm Distillation. AD (Laskin et al., 2022) was one of the first to show that in-context learning
was possible in RL, and captures the details of many other more recent methods (Mirchandani et al.,
2023; Liu & Abbeel, 2023; Shi et al., 2024) while remaining very simple. It trains a transformer,
or any other sequence model, to autoregressively predict next actions given the history of previous
interactions, i.e. observations, actions and rewards. To transition from in-weights to in-context
learning, it is essential that the context should contain multiple episodes ordered by an increasing
return, which is different from the way it is done in DT-like methods (Chen et al., 2021; Janner et al.,
2021; Lee et al., 2022).

Decision-Pretrained Transformer. DPT is an alternative approach inspired by the Bayesian inference
approximation (Müller et al., 2021). Unlike AD, it trains a transformer to predict the optimal action
for a query state given a random, task specific, context. That is, the context that does not have to
be ordered, but only has to contain transitions belonging to the same task. Thus, DPT requires access
to optimal actions, but does not require a dataset of learning histories.

In addition, the theoretical analyses of AD and DPT methods (Lin et al., 2023; Wang et al., 2024)
showed that they can implement near-optimal online RL algorithms such as Lin-UCB, Thompson
sampling or even temporal difference (TD) methods solely during the forward pass.

A.2 XLand-MiniGrid

Figure 8: Visualization of a
generic XLand-MiniGrid envi-
ronment. Grid layout should
be selected in advance, while
the positions of the objects are
randomized on each reset.

Starting from the seminal work of Wang et al. (2016); Duan et al.
(2016); Finn et al. (2017) on meta-RL, much of the subsequent
work (Zintgraf et al., 2019; Melo, 2022; Grigsby et al., 2023; Lu
et al., 2024; Shala et al., 2024; Beck et al., 2024) has focused on
environments that either have very simple task distributions, or
have very small and limited distributions of hard tasks. This is
because, to generalize in meta-RL, training needs to be performed
on many different tasks, significantly increasing the cost and time
required for experimentation. Recently, Nikulin et al. (2023) released
XLand-MiniGrid, a GPU-accelerated environment and million-task
benchmarks that significantly lowered the entry barrier for meta-RL
research. We will describe it shortly here.

Environment. XLand-MiniGrid is a complete rewrite of MiniGrid
(Chevalier-Boisvert et al., 2023) in JAX (Bradbury et al., 2018),
incorporating a notion of rules and goals from XLand (Team et al.,
2023). Leveraging JAX, it can run on a GPU or TPU accelerators
at millions of steps per seconds. At its core, it is a goal-oriented
grid-world environment with simple underlying dynamics, partial
observability and sparse rewards. The action space is simple, consisting mainly of navigation and
interaction with game objects, such as opening a door or picking and placing items. Observations are
symbolic "images" encoding the agent surrounding as tile and color ID’s. Rules are functions that
can change the state of the environment based on some conditions, e.g. when two specific objects are
places near each other, they both disappear and one new object is placed. Goals are similar, except
they only validate some predefined conditions and do not change anything. Composing different rules
and goals together we can create new tasks with varying reward and dynamics functions. For more
detailed description we refer to Nikulin et al. (2023).

Benchmarks. Along with the environment itself, Nikulin et al. (2023) released a tool for the
procedural generation of a vast number of unique tasks with varying levels of difficulty. Each task
is represented by a binary tree, where the root is the goal to be achieved and rest of nodes define

10

rules of the environment to be triggered in a recurring sequence. To standardize comparisons, four
pre-sampled benchmarks with increasing diversity were provided: trivial, small, medium, high,
each with one million unique tasks. For this work, we chose medium as a middle ground between
yet unsolved high and less challenging small benchmarks. We also use trivial for smaller and
simpler dataset version (see Section 2).

B The Missing Piece For In-Context RL

In order to successfully train an in-context agent, training data shall meet certain criteria. To start with,
the data should be comprised of actual learning histories (Laskin et al., 2022) or their approximations
(Zisman et al., 2023), that contain enough exploration and exploitation phases of learning. Learning
with just expert trajectories would not be sufficient for in-context ability to emerge, since an agent
needs to know the history of policy improvement (Laskin et al., 2022; Kirsch et al., 2023). Another
approach is to learn from optimal actions as proposed by Lee et al. (2023), but it is unclear how to
access the optimal policies to get them. Besides, the data needs to contain thousands of different
tasks to learn from (Kirsch et al., 2022). That is, for a simple task to find two squares on a 9 × 9
grid, an agent needs to see around 2000 different combinations of goals to start adapting for unseen
locations (Laskin et al., 2022). Since such data was never collected and put into a single dataset, all
current in-context RL practitioners were forced to generate data on their own, which inevitably added
more complications in reproduction of the methods.

Besides, collecting thousands of different in-context episodes requires a considerable commitment,
as training numerous RL agents is expensive in terms of time and resources. To that matter, the data
used in current research is collected in very simplistic environments with straightforward goals, like
reaching a specific target on a map (Laskin et al., 2022; Lee et al., 2023; Zisman et al., 2023) or to
apply forces to actuators in order to walk a robot (Kirsch et al., 2023). This significantly slows down
the pace of in-context RL research, as it is not only hard to test the applicability of proposed methods,
but also yet unfeasible to determine the scaling laws in these environments.

To provide a complete picture for the reader, we briefly discuss the existing datasets and highlight
why they are unfit for training in-context RL agents. For simplicity, we categorize them into two
groups: classical datasets designed for offline-RL and datasets collected for large-scale supervised
learning. Note that this categorization is fuzzy in nature and serves only for better understanding of
the current structure in RL data.

Offline RL Datasets. The datasets in this category can be considered classical, as some of them
exist for more than four years now (Fu et al., 2020). They were initially proposed for offline RL,
containing simple tasks with a flat structure, e.g. perform locomotion with different robots (Lu et al.,
2023) or path finding in a maze. Some of them also contain data from robotic manipulators (Fu et al.,
2020; Rafailov et al., 2023), or even Atari frames (Gulcehre et al., 2021). Other datasets collect
data for more sophisticated environments, such as NetHack Learning Environment (Hambro et al.,
2023; Kurenkov et al., 2024) or ProcGen (Cobbe et al., 2019; Mediratta et al., 2024). However, the
aforementioned datasets offer < 100 different tasks with a fixed policy (except for the -replay
datasets, which have limited coverage of various policies). This limitation makes it difficult for
in-context RL to emerge from such data. To overcome this pitfall, we collected almost 30, 000 tasks
with a deep ruleset structure, that are a challenging problem to solve.

Large-Scale Supervised Pretraining. Recent progress in generalist agents, which can solve a
multitude of environments, has been made possible thanks to large datasets. GATO dataset (Reed
et al., 2022), however not being released to the public, consists of 1.5 trillion transitions along with
596 tasks, which makes it one of the largest dataset in RL. The open-sourced analogue, the JAT
dataset (Gallouédec et al., 2024), is smaller in size with 157 tasks and 300 million transitions, but
it provides comparable performance on most of the benchmarks. Both datasets contain expert RL
demonstrations from BabyAI (Hui et al., 2020), Atari games (Bellemare et al., 2013), Meta-World
(Yu et al., 2020) and more.

Another large dataset, Open X-Embodiment (Padalkar et al., 2023), is a combination of more than 60
datasets from different robotics research labs. It consists of 527 different tasks in robotics with the
demonstrations from mostly from human experts. Despite the large quantity of transitions in these
datasets, they do not contain learning histories with improving policies, making their application for

11

Table 2: Descriptive statistics of XLand datasets.
Dataset XLand-Trivial-20B XLand-100B
Episodes 868,805,556 2,500,152,898
Transitions 19,496,960,000 112,598,843,392
History length 60,928 121,856
Num tasks 10,000 28,876
Max task rules 0 9
Observation shape (5, 5) (5, 5)
Num actions 6 6

Mean final return 0.915 0.894
Median final return 0.948 0.925
Median episode transitions 22.45 57.75

Disk size (compressed) 60 GB 326 GB

in-context RL quite challenging. On the contrary, our XLand-100B dataset consists of 100 billions of
transitions of RL agents’ learning histories, making it possible for in-context abilities to emerge.

The only potentially applicable dataset to use for in-context RL is AlphaStar Unplugged (Mathieu
et al., 2023). Although the authors did not initially plan to collect a suitable dataset, the data can be
sorted by players’ MMR (analogous to Elo rating). This sorting can be considered a steady policy
improvement, thus enabling the in-context RL ability. For more details on the datasets, refer to
Table 1.

C What is Inside Dataset?

Both -Trivial and -100B dataset are HDF5 files holding the same structure. The dataset is grouped
the following way:

data["{key_id}/{entity_name}"][learning_history_id]

where key_id is an ordinal number of a task in dataset, learning_history_id is a learning history
number from 0 to 32 and entity_name is one of the names mentioned in Table 3.

NB! Do not confuse key_id with the task ID, which should be accessed via

data["{key_id}"].attrs["ruleset-id"]

Table 3: Data description
Name Type Shape Description
states np.uint8 (5, 5) st, colors and tiles from agent’s POV
actions np.uint8 scalar at, from 0 to NUM_ACTIONS
rewards np.float16 scalar rt, which agent recieved at timestep t
dones np.bool scalar dt, terminated or truncated episode flag
expert_actions np.uint8 scalar same as at but from a generating policy

12

D Compression Chunk Size Tuning

Table 4: Throughput with PyTorch dataloader with different HDF5 compression chunk size settings.
We used 2048 sequence length, 64 batch size and 8 workers. Chunking was applied along the learning
history dimension.

Compression Chunk size Throughput

None None 1,549,619
gzip None 173,895
gzip 256 423,513
gzip 512 549,397
gzip 1024 666,152
gzip 2048 768,706
gzip 4096 749,851
gzip 8192 737,646

E Additional Figures of Data Collection

0 0.5B 1B
Transitions

0.0

0.5

1.0

Re
tu

rn

From Scratch
Pretrained

Figure 9: Single-task evalua-
tion curves on 256 tasks for
policies trained from scratch or
fine-tuned from multi-task pre-
trained checkpoints.

0 1 2 3 4 5 6 7 8
Number of Rules

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

pretrain
scratch

Figure 10: Final return by num-
ber of rules on 256 tasks for
policies trainef from scratch or
fine-tuned from multi-taks pre-
trained checkpoints.

0 1 2 3 4 5 6 7 8 9
Number of rules

0.0

0.5

1.0

Re
tu

rn

Figure 11: Final return by
number of rules in the final
XLand-100B dataset after post-
processing.

F Additional Figures of Data Evaluation

0k 2k 4k 6k 8k
Episodes

0.0

0.5

1.0

Re
tu

rn

XLand-Trivial-20B

Figure 12: Return averaged
over all learning histories in
the final XLand-Trivial-20B
dataset.

0k 3k 6k 9k 12k 15k
Episodes

0.4

0.6

0.8

1.0

Re
tu

rn

XLand-100B

Figure 13: Return averaged
over all learning histories in the
final XLand-100B dataset.

0k 10k 20k 30k 40k 50k 60k
Transitions

0.2

0.4

0.6

0.8

Ac
tio

ns
 a

gr
ee

m
en

t

XLand-Trivial-20B

Figure 14: Agreement between
actions predicted by the expert
and the actual actions in the
learning history. We use final
PPO policy as an expert for ac-
tions labeling.

13

G Details of In-Context Evaluation

The evaluation process resembles the standard in-weight learning, with the key difference being
that the learning itself happens during evaluation. When interacting with the environment, the agent
populates the Transformer’s context with the latest observations, actions and rewards. At the start of
the evaluation, the context is empty. Note that the agent’s context is cross-episodic, which makes it
possible for the agent to access transitions in previous episodes. We report the cumulative reward that
the agent achieved at the end of each episode. We run evaluation for each model for 500 episodes,
reporting mean return across 1024 unseen tasks with standard deviation across 3 seeds. We claim
that the in-context emerged when the mean return rises up until some level. This means the agent
improves its policy from episode to episode, learning how to solve a task.

H AD Implementation

Table 5: Time for training and evaluation.
sequence length 1024 2048 4096

train 15 hrs 10 hrs 11.5 hrs
eval 20 min 30 min 50 min

We implement AD following the original paper of Laskin et al. (2022). To optimize the speed of
training and inference we use FlashAttention-2 (Dao, 2024) with KV-caching and ALiBi positional
embeddings (Press et al., 2022). We also concatenate observations, actions and rewards along the
embedding dimensions, as it reduces the context size by the factor of three. We also use DeepSpeed
(Rasley et al., 2020) to enable distributed training. The total number of parameters of our model is 25
M.

The approximate time of training for single epoch on a -100B dataset and evaluation on 1024 tasks
on 8 H100 GPUs is shown in the Table 5. The computations were done on an internal cluster.

The hyperparameters was copied from (Laskin et al., 2022) except for the size of the network, it was
scaled up to 25 M. The exact hyperparameters can be found in Table 9.

We also show training logs for both datasets. Trivial: wandb; medium: wandb

Table 6: Last episode returns for for AD algorithm on our datasets.
Dataset Seq. length

512 1024 2048 4096
trivial-20B 0.403 0.306 0.294 0.234
medium-100B 0.416 0.400 0.324 0.200

I DPT Implementation

Our implementation is based on the original one (Lee et al., 2023). Compared to AD implementation
(Laskin et al., 2022), during training phase, the model context is generated with decorrelated dataset
transitions to increase data diversity and model robustness: given a query observation and a respective
expert action for it, an in-context dataset is provided by random interactions within the same ruleset.
During evaluation phase, multi-episodic contextual buffer consists only of previous episodes and
updates after the current one ends. The intuition behind this approach is the observed policy during
any given episode is fixed, so it is a lot easier to analyze this policy than a dynamically changing one
while it is executing.

Both AD and DPT shares the same observation encoder and transformer block, except there is no
positional encoding in DPT, as stated in (Lee et al., 2023).

The training consisted of 3 epochs due to computational and time limitations as 1 epoch approximately
lasted 12 hours, while the evaluation on 1024 rulesets on 500 episodes could take from 5 to 21 hours,

14

https://wandb.ai/dunnolab/xminigrid-datasets?nw=96pyqrtxwuu
https://wandb.ai/dunnolab/xminigrid-datasets?nw=5u8wa1myqlw

depending on the model’s sequence length. All experiments ran on 8 A100 GPUs. The computations
were done on an internal cluster.

The hyperparameters was copied from (Lee et al., 2023) except for the size of the network, it was
made up to 25 M, and sequence length, it was increased due to complexity of the tasks. The exact
hyperparameters can be found in Table 8.

We also show DPT training logs. Trivial: wandb; medium: wandb

J On Limitations of DPT in POMDP

We additionally demonstrate the inability of DPT to learn in-context in Partially Observable MDP
(POMDP) on the example of a toy Dark Key-To-Door environment (Laskin et al., 2022). The agent
is required to find an invisible key and then open an invisible door. The reward of 1 is given when
the agent first reaches the key and then the door. Note that the door cannot be reached until the key
is found. This way Key-To-Door can be considered a POMDP. However, the environment can be
reformulated as an MDP by providing additional boolean indicator of reaching a key in addition to the
agent’s position. This way, algorithms that work only with MDPs are able to solve this environment.

Based on this fact, we learn two different Q-tables for both environments: with and without the key
indicator. The learning histories of Q-Learning algorithm are stored together with optimal actions
computed via the oracle.

For clarity, we call DPT training and evaluation Markovian when "reached key" indicator is provided
for every state. We trained DPT on Key-To-Door for 150, 000 updates in Markovian and non-
Markovian setups to show the difference in performance. As it can be seen in Figure 15, in the
Markovian case the model converges to the optimal return, finding both a key and a door. In the
latter case, the model reaches a plateau reward of 1 which means it finds a key. As we empirically
observe, without the indicator DPT reaches only a suboptimal return. We believe it happens due to
DPT inability to reason whether a key was already found from the random context. Without this
knowledge, it is impossible for the agent to know whether it should search for the key or for the door.

We also show logs for Key-To-Door Experiments: Markovian: wandb; non-Markovian: wandb

Table 7: Q-Learning Hyperparameters
Hyperparameter Value

Num. Train Goals 2424
Num. Histories 5000
Num. Updates 50,000
Learning Rate 3e-4

0 50 100 150 200 250
Episodes

0.0

0.5

1.0

1.5

2.0

Re
tu

rn

0 50 100 150 200 250
Episodes

0.0

0.5

1.0

1.5

2.0

Re
tu

rn

0 50 100 150 200 250
Episodes

0.0

0.5

1.0

1.5

2.0

Re
tu

rn

0 50 100 150 200 250
Episodes

0.0

0.5

1.0

1.5

2.0

Re
tu

rn

optimal_return: 2.00

Figure 15: The performance of DPT on Key-To-Door environment. From left to right: first two plots
indicate returns on 20 train and 50 test goals, respectively, for Key-To-Door as MDP by providing
additional indicator of reaching the key to the model. Second two plots indicate returns with the
model that has no access to the fact of reaching a key. The results are averaged across four seeds

15

https://wandb.ai/dunnolab/xminigrid-datasets?nw=smrpeqzlu6a
https://wandb.ai/dunnolab/xminigrid-datasets?nw=pfg0umx9c5d
https://wandb.ai/dunnolab/xminigrid-datasets?nw=jv26obunfp
https://wandb.ai/dunnolab/xminigrid-datasets?nw=gmm7b681xea

K Additional Figures of AD Performance

0 1 2 3 4 5 6 7 8 9
Number of Rules

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

data
model

Figure 16: AD performance on different complexities of rulesets. AD is evaluated on 1024 training
tasks from -100B. Sequence length is 1024.

0 100 200 300 400 500
Episodes

0.4

0.6

0.8

1.0

Re
tu

rn

rules = 0
Data
Model

0 100 200 300 400 500
Episodes

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

rules = 1
Data
Model

0 100 200 300 400 500
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

rules = 2
Data
Model

0 100 200 300 400 500
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

rules = 3
Data
Model

0 100 200 300 400 500
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

rules = 4
Data
Model

0 100 200 300 400 500
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

rules = 5
Data
Model

0 100 200 300 400 500
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

rules = 6
Data
Model

0 100 200 300 400 500
Episodes

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

rules = 7
Data
Model

0 100 200 300 400 500
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

rules = 8
Data
Model

0 100 200 300 400 500
Episodes

0.2

0.0

0.2

0.4

0.6

0.8

Re
tu

rn

rules = 9
Data
Model

Figure 17: AD’s performance on different task complexities, a full variant of Figure 6.

16

L Additional Figures of DPT Performance

0 100 200 300 400 500
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
tu

rn

XLand-Trivial-20B
512
1024
2048
4096

0 100 200 300 400 500
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
tu

rn

XLand-100B
1024
2048
4096

Figure 18: DPT performance on both datasets. Evaluation parameters are the same as in Figure 7.

0 1 2 3 4 5 6 7 8 9
Number of Rules

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

data
model

Figure 19: DPT performance on different complexities of rulesets. DPT is evaluated on 1024 training
tasks from -100B. Sequence length is 1024.

0 100 200 300 400 500
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

goals = 0
model
data

0 100 200 300 400 500
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

goals = 1
model
data

0 100 200 300 400 500
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

goals = 2
model
data

0 100 200 300 400 500
Episodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

goals = 8
model
data

Figure 20: Comparison of the learning histories in -100B dataset vs. DPT performance on the same
training tasks. DPT is not able to solve simple tasks and there is no observation in-context learning
emerges, model’s performance also degrades as the rulesets get harder. The context length of the
model is 1024. The evaluation parameters, except training tasks, are the same as in Figure 7.

17

M Hyperparameters

Table 8: DPT Hyperparameters

(a) DPT Hyperparameters for
datasets

Hyperparameter Value
Embedding Dim. 64
Number of Layers 8
Number of Heads 8
Feedforward Dim. 256
Layernorm Placement Pre Norm
Embedding Dropout Rate 0.1

Batch size [512, 256, 128]
Sequence Length [1024, 2048, 4096]

Optimizer Adam
Betas (0.9, 0.99)
Learning Rate 1e-3
Learning Rate Schedule Cosine Decay
Warmup Ratio 0.05
Parameters 25 M

(b) DPT Hyperparameters Key-to-
Door

Hyperparameter Value
Embedding Dim. 64
Number of Layers 4
Number of Heads 4
Feedforward Dim. 64
Layernorm Placement Pre Norm
Residual Dropout 0.5

Sequence Length [50, 100, 250, 350, 500]

Batch size 128
Optimizer Adam
Betas (0.9, 0.99)
Learning Rate 1e-3
Label Smoothing 0.3
Learning Rate Schedule Cosine Decay
Warmup Ratio 0.05
Parameters 200 K

Table 9: AD Hyperparameters
Hyperparameter Value
Embedding Dim. 64
Number of Layers 8
Number of Heads 8
Feedforward Dim. 512
Layernorm Placement Pre-norm
Embedding Dropout 0.1

Batch size [256, 128, 64]
Sequence Length [1024, 2048, 4096]

Optimizer Adam
Betas (0.9, 0.99)
Learning Rate 1e-3

Learning Rate Schedule CosineLR
Warmup Steps 500
Parameters 25 M

18

Table 10: PPO hyperparameters used in multi-task pre-training from Section 2.2.
Hyperparameter Value

env_id XLand-MiniGrid-R1-13x13
benchmark_id medium-1m
use_bf16 True
pretrain_multitask True
context_emb_dim 16
context_hidden_dim 64
context_dropout 0.0
obs_emb_dim 16
action_emb_dim 16
rnn_hidden_dim 1024
rnn_num_layers 1
head_hidden_dim 256
num_envs 65536
num_steps 256
update_epochs 1
num_minibatches 64
total_timesteps 25,000,000,000
optimizer Adam
decay_lr True
lr 0.0005
clip_eps 0.2
gamma 0.995
gae_lambda 0.999
ent_coef 0.001
vf_coef 0.5
max_grad_norm 0.5
eval_episodes 256
eval_seed 42
train_seed 42

19

Table 11: PPO hyperparameters used in single-task fine-tuning from Section 2.2.
Hyperparameter Value

env_id XLand-MiniGrid-R1-13x13
benchmark_id medium-1m
use_bf16 True
pretrain_multitask False
context_emb_dim 16
context_hidden_dim 64
context_dropout 0.0
obs_emb_dim 16
action_emb_dim 16
rnn_hidden_dim 1024
rnn_num_layers 1
head_hidden_dim 256
num_envs 8192
num_steps 256
update_epochs 1
num_minibatches 8
total_timesteps 1,000,000,000
optimizer Adam
decay_lr True
lr 0.0005
clip_eps 0.2
gamma 0.995
gae_lambda 0.999
ent_coef 0.001
vf_coef 0.5
max_grad_norm 0.5
eval_episodes 256
eval_seed 42
train_seed 42

20

	Introduction
	XLand-100B Dataset
	Data Format
	Data Collection
	Data Evaluation

	Experiments
	Limitations and Future Work
	Background
	In-Context Reinforcement Learning
	XLand-MiniGrid

	The Missing Piece For In-Context RL
	What is Inside Dataset?
	Compression Chunk Size Tuning
	Additional Figures of Data Collection
	Additional Figures of Data Evaluation
	Details of In-Context Evaluation
	AD Implementation
	DPT Implementation
	On Limitations of DPT in POMDP
	Additional Figures of AD Performance
	Additional Figures of DPT Performance
	Hyperparameters

