
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STRUCTURE-AWARE ATTENTION BASED ON VECTOR
SYMBOLIC ARCHITECTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

The introduction of the Transformer has brought about a revolution in AI. Central
to the success of the Transformer architecture is the self-attention mechanism,
enabling context dependence and long-range dependencies between tokens. Recent
work has drawn an equivalence between Hopfield networks, a kind of associative
memory model, and Transformers. In this work, we leverage this bridge, using
Vector Symbolic Architectures (VSA), a brain-inspired computational paradigm
capable of representing and implementing data structures, including associative
memory models, to define a broad class of attention mechanisms catered for
complex data types. In particular, we use Generalized Holographic Reduced
Representations (GHRR), an implementation of a VSA, as the foundation for
our proposed class of attention mechanisms. We show that GHRR is capable of
implementing attention and design a GHRR Transformer encoder architecture based
on the demonstrated mathematical equivalence. We propose a new kind of binding-
based positional encoding based on methods used in VSAs for encoding sequential
information. We extend the attention mechanism in our architecture to support
graphs, inspired by techniques used in VSAs to encode graph representations. We
evaluate the GHRR Transformer on language modeling, vertex classification, and
graph classification tasks. Results suggest that our approach provides benefits in
language modeling and graph classification tasks compared to baseline models.

1 INTRODUCTION

The introduction of the Transformer Vaswani et al. (2017) brought about a revolution in AI, from
language modeling to vision to reinforcement learning Brown et al. (2020); Dosovitskiy et al. (2021);
Chen et al. (2021). Central to the Transformer architecture is the self-attention mechanism, enabling
context dependence and long-range dependencies between tokens.

Recent work has drawn an equivalence between Hopfield networks model with a modified energy
function Ramsauer et al. (2021); Hopfield (1982) and the self-attention mechanism. This equivalence
is two-way and thus enables cross-pollination; unique features of one side can be transferred and
applied to the other. For example, Ramsauer et al. (2021) applied the idea of repeated iteration
of the Hopfield update rule to the self-attention mechanism within a transformer, which facilitates
better memory retrieval. Consequently, one can use a similar strategy, exploiting the bridge between
self-attention and associative memory models, e.g. Hopfield networks, to develop a broader class
of self-attention mechanisms that can better handle data with more complex relations by utilizing
associative memory structure.

In this work, we focus on Vector Symbolic Architectures (VSA), also known as Hyperdimensional
Computing (HDC) Kanerva (2009); Kleyko et al. (2023), as a candidate associative memory frame-
work for the extension of self-attention. While Hopfield networks rely on a dynamical update rule
for memory retrieval, VSAs, as algebras of high dimensional vectors, are capable of performing
associative memory operations purely based on their algebraic operators. That VSAs can perform the
auto-associative capabilities of a Hopfield network and beyond motivates our choice for implementing
and extending the attention mechanism.

In general, VSAs adhere to certain computational principles, including using high-dimensional vectors
with holographic properties (i.e. the same information is present in each part of the representation,
in expectation) and supporting the algebraic operations of bundling and binding, which correspond

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to the cognitive operations of memorization and association, respectively. Any algebra satisfying
these principles can be classified as a VSA. As a consequence, there exists a vast family of VSAs
Gayler (1998); Plate (2003). In particular, in this work, we make use of Generalized Holograph
Reduced Representations (GHRR) Yeung et al. (2024), an instantiation of a VSA to implement and
extend self-attention. As will be apparent below, the specific mathematical implementation of GHRR
suggests a natural parallel to self-attention in the form of binding key, query, and value hypervectors,
i.e. the VSA equivalent of memory retrieval in a Hopfield network. More importantly, as an algebra,
VSAs are endowed with natural compositional structure, which enables one to build complex data
structures from simpler constituents without any change in representational space Kleyko et al.
(2020); Frady et al. (2020); Kleyko et al. (2022); Poduval et al. (2022). This property of VSAs, as we
will develop in this work, provides a systematic method for one to extend self-attention to support
more complicated data structures beyond sequences. While VSAs traditionally follow stringent
mathematical constraints, here, we make use of VSA as a conceptual framework for designing
generalized self-attention mechanisms for structured data but allow for relaxation of the constraints.
Our contributions are as follows:

1. We demonstrate the mathematical equivalence between the binding of key, query, and value
hypervectors and the self-attention mechanism, i.e. that GHRR is capable of implementing
self-attention.

2. Using the compositionality of VSAs and their ability to represent complex data structures, we
extend the vanilla self-attention mechanism to one that naturally supports complex data types by
construction.

3. We propose a new kind of binding-based positional encoding based on methods used in VSAs for
encoding sequential information.

4. We verify our equivalence claim by evaluating a Transformer encoder with GHRR-based attention
(hereon referred to as GHRR Transformer) on a language modeling task and compare it to a vanilla
Transformer baseline.

5. We apply our methodology of extending self-attention using VSA principles to graph data and
develop a GHRR Graph Transformer. We provide an interpretation of GHRR graph attention as
performing a “soft” one-hop and evaluate our model on vertex and graph classification tasks.

2 RELATED WORK

Transformer adaptation over structured data: The transformer architecture has demonstrated
remarkable versatility and has been adapted to handle a wide range of structured data types, including
graphs Min et al. (2022), trees Wang et al. (2019), images Khan et al. (2022), time series Lim et al.
(2021), and audio Verma & Berger (2021). In contrast to these works, which adapt the transformer to a
specific data structure, our approach provides an adaptation framework for many data structures based
on the structural representation of VSA; for this work, we adapt and experiment on the record-based
encoding Imani et al. (2019); Ge & Parhi (2020) for text-based data and GrapHD Poduval et al. (2022)
for graph-based data.

Adaptation techniques for graph information: When it comes to adaptation techniques, especially
for graphs, there are three general methods for integrating graph information into the transformer Min
et al. (2022): (1) injecting GNNs into transformer architectures as Auxiliary Modules, such as in
Mesh Graphormer Lin et al. (2021) and Graph-BERT Zhang et al. (2020); (2) enhancing positional
encoding (PE) with graph information, such as the Hop-based and Intimacy-based PE in Graph-BERT
and centrality-based PE in Graphormer Ying et al. (2021), and (3) improving the attention matrix
computation with graph information, techniques that include using graph kernels for attention Mialon
et al. (2021) and adding soft bias to attention scores Zhao et al. (2021); Ying et al. (2021); Khoo
et al. (2020). Our method for graphs takes the unique approach of altering the computation of the
key matrix based on VSA graph representation, which subsequently alters positional encoding and
attention computation.

Transformers + VSA: There exists some prior work leveraging VSA for Transformers. Peng et al.
(2021) makes use of the Random Fourier Features (RFF) Rahimi & Recht (2007) encoding commonly
used in VSAs Hernández-Cano et al. (2021) to efficiently compute attention weights in linear time
and space. This work exploits the kernel approximation properties of a specific implementation of
VSA. More recently, MIMOFormer Menet et al. (2024) leverages VSA’s principle of computing in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Bundling (+) Binding (⊗)

Brain-Inspired
Learning

Permutation (𝜌)

Vector Symbolic Architecture: Representation
Atomic element is a hypervector 𝑯

Complex
Representations

(FHRR)

Complex Matrix
Representation

(GHRR)

Vector Symbolic Architecture: AlgebraA B

?? ?? ?? … … ??

Memorization Association

Order-preservation

+ ⊗==

Today is my birthday

𝑯𝟏 𝑯𝟐 𝑯𝟑 𝑯𝟒

𝑺 =	⊗𝒊&𝟏
𝟒 𝝆𝒊 𝑯𝒊 	

q Commutative
q Inflexible
q Kernel is determined by

probabilistic sampling of
𝜃!, 𝑗 = 1,… , 𝐷

ü Non-commutative
ü Flexible
ü Matrix 𝑸𝚲	controls kernel

and binding operation

𝒆𝒊𝜽𝒋 ∈ ℂ𝟏𝒙𝟏 𝑸𝚲 ∈ ℂ𝒎𝒙𝒎

Content in the hypervectors depends on the representation

C

𝓖 =	 -
𝒊,𝒋∈𝑬

𝑯𝒊⊗ 𝑯𝒋

𝑯𝒔
𝑯𝟐
…
𝑯𝟓

𝑯𝟏
𝑯𝟑
…
𝑯𝒌

⊗
⊗

⊗
⊗

!	

Graph 𝓖

Graph Generation
Hypervectors 𝐻" come from encoding

every node 𝑥":
𝐻" = 	𝜙 𝑥" , ∀𝑥" 	 ∈ 𝑉

D

𝟏

𝟒
𝟐 𝟓

𝟑

𝟕
𝟔

	"!

	""

	"# 	"$

	"%

	"&

	"'

.

a

is

Momo

cat

food

loves

It

.

a

is

Momo

cat

food

loves

It
GHRR Attention

Add & Norm

Feed Forward

Add & Norm

GHRR Encoder

Composition Module

Scaled-Similarity
Multi-Head Attention

GHRR Transformer
𝟏𝟎

𝟗
𝟖

GHRR Attention

Add & Norm

Feed Forward

Add & Norm

GHRR Encoder

Composition Module

Scaled-Similarity
Multi-Head Attention

GHRR Transformer

𝟏

𝟒

𝟐 𝟓

𝟑

𝟕

𝟔

𝟏𝟎

𝟗
𝟖

GHRR Transformer on sequential data E GHRR Transformer on graph

𝑺

+

GHRR Attention

Add & Norm

Feed Forward

Add & Norm

GHRR Encoder

Composition Module

Scaled-Similarity
Multi-Head Attention

Input data

GHRR Attention

Add & Norm

Feed Forward

Add & Norm

GHRR Encoder

Composition Module

Scaled-Similarity
Multi-Head Attention

F GHRR Transformer diagram

Figure 1: A. An overview of VSA operations, bundling, binding, and permutation, and their functional
interpretations. B. A comparison of FHRR and GHRR VSA implementations. C. An example of
how graphs can be encoded in VSAs. D. A visualization of how the GHRR Transformer performs
attention on sequential data. E. A visualization of how the GHRR Transformer performs attention on
graph data. F. An overview of the GHRR Transformer architecture.

superposition to provide a dynamic trade-off between model accuracy and throughput. In contrast to
the above approaches which focus primarily on computation efficiency, our work focuses on building
compositional representations with VSA’s algebraic properties.

3 BACKGROUND

In this section, we first give a brief mathematical specification of the scaled dot-product atten-
tion mechanism typically used in a Transformer. We introduce VSAs, highlighting computational
principles and basic algebraic operations and properties. Finally, we describe GHRR, a specific
implementation of a VSA that we use in this work.

3.1 ATTENTION

We focus on scaled dot-product attention Vaswani et al. (2017), which can be written as
attn(Q,K, V) = softmax

(
1√
dk
QK⊤

)
V , where Q,K, V are the embeddings of the input fea-

tures corresponding to query, key, and value respectively, and 1/
√
dk is the scaling factor determined

by the embedding dimension dk, which we omit for the rest of the paper. Generally, Q,K, V is
defined in terms of some input streams Xq , Xk, and Xv: Q = XqWq , K = XkWk, and V = XvWv .
Then, we have

attn(Q,K, V) = softmax(XqWqW
⊤
k X⊤

k)XvWv. (1)

As suggested by the symbols Q,K, V , attention can be interpreted as querying a dictionary formed
by associated keys and values.

3.2 VECTOR SYMBOLIC ARCHITECTURES

Vector Symbolic Architecture (VSA), also known as Hyperdimensional Computing (HDC), is a com-
puting framework inspired by the brain. It is motivated by the observation that representations in the
brain are high-dimensional, consisting of neural activations of a large population of neurons Kanerva
(2009). Moreover, while these population-level representations appear to be highly distributed and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

stochastic across different brains, they exhibit the same cognitive properties at a high level Kleyko
et al. (2023); Gayler (1998).

The fundamental unit in a VSA is a high dimensional vector, also called a hypervector, corresponding
to the population-level neural activations. A hypervector H lives in some hyperspace H, e.g., RD

for D large. The collection of hypervectors, along with some operators, forms an algebra over
vectors. Generally, there are two types of hypervectors: (1) base hypervectors, which are generated
stochastically, e.g., H ∼ N (0, I); and (2) composite hypervectors, which are created by combining
hypervectors via the operators of the algebra. These hypervectors can be compared via a similarity
function δ(H1, H2). Generally, base hypervectors are generated such that they are quasi-orthogonal
with respect to the similarity function. The three main operations in VSA, bundling, binding, and
permutation, can be characterized by how they affect the similarity of hypervectors. We describe the
three operations below:

1. Bundling (+): Typically implemented as element-wise addition. If H = H1 +H2, then both H1

and H2 are similar to H . From a cognitive perspective, it can be interpreted as memorization.

2. Binding (⊙): Typically implemented as element-wise multiplication. If H = H1 ⊙H2, then H is
dissimilar to both H1 and H2. Binding also has the important property of similarity preservation
in the sense that for some hypervector H3, δ(H3⊙H1, H3⊙H2) ≃ δ(H1, H2). From a cognitive
perspective, it can be interpreted as the association of concepts.

3. Permutation (ρ): Typically implemented as a rotation of vector elements. Generally,
δ(ρ(H), H) ≃ 0. Permutation is usually used to encode order in sequences.

It is important to note that the description above of VSA is general; there are various specific
realizations of VSA with the above properties. Figure 1A illustrates the VSA operations and its
interpretations.

Crucially, with the recursive application of the operations above, one can encode, represent, and
query complex data structures such as sets, sequences, dictionaries, and graphs in the compressed
form of a single hypervector Kleyko et al. (2023); Poduval et al. (2022).

3.3 GENERALIZED HOLOGRAPHIC REDUCED REPRESENTATIONS

GHRR is a specific implementation of a VSA. It is a generalization of the Fourier Holographic Re-
duced Representations (FHRR) framework Plate (2003). A GHRR base hypervector H ∈ CD×m×m

of dimension D and complexity m is of the form Hj = WjΛj for j = 1, . . . , D. Here, Wj is an
m×m unitary matrix and Λj is an m×m diagonal unitary matrix.1 This is visualized in Figure 1B.

GHRR hypervectors are endowed with two operations, bundling and binding, which are defined by
element-wise addition and matrix multiplication, respectively. We define the similarity between two
hypervectors as δ(H1, H2) =

1
mDRe

[
tr
(∑D

j=1 H1jH
†
2j

)]
, where H1j and H2j are the j-th matrix

element of H1 and H2, respectively.

When not conditioned on an input, Λj = diag(eiθj1 , . . . , eiθjm), for θjk ∼ pk for distributions pk for
k = 1, . . . ,m such that E[eiθk] = 0. It can be shown that this choice of Λj and any arbitrary choice
of unitary Wj satisfies the constraints of a VSA given in section 3.2 Yeung et al. (2024).

Given some input x ∈ Rn, we define Λj(x) = diag(eiwj1⊤x, . . . , eiw
⊤
jmx), where wjk ∼ pk with

pk being symmetric distributions with zero mean. We denote a GHRR hypervector encoded in this
way as ϕ(x) := [WjΛj(x)]

D
j=1. As in FHRR hypervectors using an RFF encoding scheme Rahimi &

Recht (2007), δ(ϕ(x), ϕ(y)) approximates a kernel, albeit a more complex one in the case of GHRR.

In general, one can interpret Λ as the component primarily responsible for controlling the shape
of the kernel, while W controls how hypervectors bind together. This is in contrast to prior VSA
implementations, which lack expressivity in the binding operation, further accentuated by the fact
that GHRR uses matrix multiplication, as opposed to scalar multiplication, for the binding operation.

1Although it is more proper to describe Hj as a “hypermatrix” or “hypertensor”, we stick to the term
hypervector both by convention and by the understanding that each component of a GHRR base hypervector is a
single element of the unitary group of degree m, which happens to be representable by matrices.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Table of mathematical symbols
Symbol Description

D ∈ Z≥1 Hyperdimension; number of heads
m ∈ Z≥1 Complexity; embedding dimension per head
n ∈ Z≥1 Input dimension
Q ∈ CD×m×m Query hypervector
K ∈ CD×m×m Key hypervector
V ∈ CD×m×m Value hypervector
W ∈ CD×m×m Weight component of GHRR hypervector
Λ ∈ CD×m×m Exponential random diagonal matrix component of GHRR hypervector
ϕ : Rn → CD×m×m GHRR encoder
P ∈ CD×m×m Positional encoding hypervector for binding-based positional encoding

Taken together, the use of matrix multiplication for binding and the ability to modulate W allows
GHRR to be integrated more naturally into a connectionist model like the Transformer.

4 GHRR AND ATTENTION

4.1 GHRR IMPLEMENTS ATTENTION

We first show that it is possible to match the mathematical form of the attention mechanism given in
Eq. 1 using GHRR. We then show that, by binding specific positional information to GHRR token
hypervectors, we can implement token-level attention using GHRR.

Matching mathematical forms between GHRR and attention. Suppose we have three hypervec-
tors Q = WqΛq , K = WkΛk, and V = WvΛv . Then we can write

[softmax(Re[QK†])V]j = softmax(Re[WqjΛqjΛ
†
kjW

†
kj])WvjΛvj . (2)

The almost-equivalence between Eq. 1 and Eq. 2 suggests that GHRR is capable of implementing
attention. The GHRR representation enforces unitarity on Wj to generate base hypervectors that are
norm-preserving; we relax this constraint for greater flexibility, enabling expressivity comparable to
that of a traditional Transformer.

While traditional attention is applied to a sequence of tokens as encoded by a matrix X , here, this
is not necessarily the case. The analog of X , Λ, is a diagonal matrix that in general encodes only
one token. Thus, the attention described in Eq. 2, while similar in form to Eq. 1, does not implement
attention over tokens; instead, it applies attention over the representation of a single token. We
distinguish this form of representation-level attention from traditional token-level attention which is
explicitly applied only to token representations.

Token-level attention and beyond via VSA positional encoding. To add token-level information,
one can express the hypervectors as a sum of token hypervectors bound with hypervectors encoding
positional information. To simplify notation, let us consider only one dimension of the hypervector,
allowing us to omit and free up the subscript j on W and Λ for GHRR components. More precisely,
let ϕ(x) = WΛ(x) be the GHRR encoding and Ej be the positional information for the j-th token.
In particular, we let Ej be an m × m matrix such that [Ej]jj = 1 and zero everywhere else. Let
x1, . . . , xm be the tokens we wish to encode. Then our sequence encoding is

ϕ(x1, . . . , xm) :=

m∑
j=1

Ejϕ(xj), (3)

which results in a matrix where exactly the j-th row encodes information about the j-th token. This
construction gives an explicit correspondence between GHRR and attention, with the difference being
that GHRR token representations involve an extra random exponential map as determined by Λ.

In addition, we may let Ej be some arbitrary trainable matrix Pj , which essentially makes it
a learnable position encoding present in each transformer block. In contrast to the sinusoidal
positional encoding commonly used in the vanilla Transformer architecture, which is added to the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

token embeddings prior to the application of any Transformer blocks, this binding-based positional
encoding is applied via the binding operation, i.e. matrix multiplication in GHRR, and is included in
every GHRR Transformer block.

Matching parameters between GHRR and Transformer. Given the above discussion, we pro-
pose to treat each component of a GHRR hypervector as an attention head. In other words, the
hyperdimension D in GHRR corresponds to the number of attention heads, and the complexity m
determines the maximum number of tokens the GHRR implementation of attention can deal with
independently. Note that it’s possible to encode more than m tokens at the cost of them entangling
within the representation. For simplicity in analysis, we do not consider the entangled case for this
work; as a result, the range of attention is limited by m.

4.2 STRUCTURING TRANSFORMERS EMBEDDING WITH GHRR OPERATIONS

Given GHRR’s ability to perform attention, we can naturally replace the attention mechanism with
the GHRR equivalent as described in Section 4.1. Moreover, our formulation suggests a way in which
the attention mechanism can be extended.

Due to GHRR’s holographic nature, one can encode more complex representations within a tensor of
the same shape. This suggests an extension of the GHRR attention module where query, key, and
value hypervectors themselves can be composites depending on the nature of the data. In the simple
case of sequential input as in a vanilla transformer, and as described in Section 4.1, a sequence can be
represented in the form

∑
j pj ⊙ xj , which resembles Eq. 3.

If, instead, the data is from a more complex data structure, e.g. a graph, we can use a corresponding
VSA encoding that reflects its structure, as shown in Figure 1C. In particular, the key and query can
be formulated in a way that reflects the way is done in traditional VSA applications, e.g. querying
for the neighbors of a vertex in a graph Poduval et al. (2022). This approach to encoding structure
is global in the sense that the encoding is constructed to explicitly capture the entire data structure
in question; it is built into the model architecture based on prior knowledge of the data. Figure 1F
illustrates the general encoder block structure as well as the structure of the attention module. The
general encoding block structure is analogous to that in a vanilla Transformer, with GHRR attention
instead of the traditional scaled dot-product attention.

5 TECHNICAL DETAILS

5.1 GHRR TRANSFORMER FOR SEQUENCES

Let x1, . . . , xn be a sequence. Without loss of generality, we assume D = 1, so all hypervectors
are simply m×m matrices. Moreover, we assume m = n. Let ϕq, ϕk, ϕv be query, key, and value
encoders respectively. We define the hypervectors Q,K, V as follows:

Q =

n∑
j=1

P q
j ⊙ ϕq(xj), K =

n∑
j=1

P k
j ⊙ ϕk(xj), V =

n∑
j=1

P v
j ⊙ ϕv(xj), (4)

where P q
j , P

k
j , P

v
j for j = 1, . . . , n are positional encoding matrices. With D = 1, binding reduces

to matrix multiplication. Figure 2A illustrates the general architectural diagram.

5.2 GHRR TRANSFORMER FOR GRAPHS

Let G = (V, E) be an undirected graph where the vertices are labeled but the edges are not. We
assume that the parameter m = |V| for our GHRR encoding and let o : V → {1, . . . ,m} be a
bijection mapping each vertex to an index. Without loss of generality, we assume D = 1, so all
hypervectors are simply m×m matrices. We encode query, key, and value hypervectors, Q,K, V ,
respectively, as follows:

Q =
∑
x∈V

P q
o(x) ⊙ ϕq(x), V =

∑
x∈V

P v
o(x) ⊙ ϕv(x), (5)

K =
∑

(u,v)∈E

(ϕk2(v)⊙ P k
o(v))

† ⊙ ϕk1(u), (6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

A GHRR Compositional Module
for NLP tasks

Today is my birthday 202415, June

Token embeddings
(𝒙𝒋)

Input tokens

GHRR Positional embeddings
𝑷𝒋
𝒒, 𝑷𝒋𝒌, 𝑷𝒋𝒗

GHRR Encoded embeddings
𝝓𝒒 𝒙𝒋 , 𝝓𝒌 𝒙𝒋 , 𝝓𝒗 𝒙𝒋

⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙

GHRR
Queries

GHRR
Keys

GHRR
Values

𝑸 =)
𝒋%𝟏

𝒏

𝑷𝒋
𝒒⊙𝝓𝒒 𝒙𝒋 𝑲 =)

𝒋%𝟏

𝒏

𝑷𝒋𝒌⊙𝝓𝒌 𝒙𝒋 𝑽 =)
𝒋%𝟏

𝒏

𝑷𝒋𝒗⊙𝝓𝒗 𝒙𝒋

Multi-head attention

𝚺
𝚺𝚺

GHRR Encoder

!

"
$

%

&

'

!(

)
*

B GHRR Compositional Module for Graph Tasks

𝝓𝒒(𝒙𝟏)

𝝓𝒒(𝒙𝟐)
…

𝝓𝒒(𝒙𝟏𝟎)

GHRR
Queries

GHRR
Keys

𝑸 =)
𝒙∈𝓥

𝑷𝒐(𝒙)
𝒒 ⊙𝝓𝒒 𝒙

𝑲 =)
(𝒖.𝒗)∈ℇ

(𝝓𝒌𝟐 𝒖 ⊙𝑷𝒐(𝒗)𝒌)† ⊙𝝓𝒌𝟏 𝒖𝑽 =)
𝒙∈𝓥

𝑷𝒋𝒗⊙𝝓𝒗 𝒙

GHRR
Encoder

GHRR
Encoder

𝑷𝒐(𝒙𝟏)
𝒒

𝑷𝒐(𝒙𝟐)
𝒒

…

𝑷𝒐(𝒙𝟏𝟎)
𝒒

We encode the source and
target nodes of each edge

separately

⊙

𝚺
𝚺

GHRR
Values

Multi-head attention

𝝓𝒌𝟏(𝒙𝟏)

𝝓𝒌𝟏(𝒙𝟐)
…

𝝓𝒌𝟏(𝒙𝟏𝟎)

GHRR
Encoder

GHRR
Encoder

𝑷𝒐(𝒙𝟏)
𝒌

𝑷𝒐(𝒙𝟐)
𝒌

…

𝑷𝒐(𝒙𝟏𝟎)
𝒌

𝚺

⊙
⊙

𝝓𝒌𝟐(𝒙𝟏𝟎)
!

"
$

%

&

'

!(

)
*

Input graph Input graphGHRR Encoded Nodes
𝝓𝒒 𝒙𝒋 , 𝝓𝒗 𝒙𝒋

GHRR Encoded Edge Nodes
𝝓𝒌𝟏 𝒙𝒋 , 𝝓𝒌𝟐 𝒙𝒋

GHRR Positional embeddings
𝑷𝒋
𝒒, 𝑷𝒋𝒗

GHRR Pos. emb.
𝑷𝒋𝒌

Figure 2: A. A visualization of the architecture of the compositional module for the sequential GHRR
Transformer. B. A visualization of the architecture of the compositional module for the GHRR Graph
Transformer. Compared to the sequential version, the key hypervector is computed differently.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where Pj for j = 1, . . . ,m are positional encoding matrices. This method of representing a graph
is similar to that in GrapHD Poduval et al. (2022). When computing the attention weights (before
softmax), we get

QK† =
∑
x∈V

∑
(u,v)∈E

P q
o(x)ϕq(x)ϕk1(u)

†ϕk2(v)P
k
o(v). (7)

We show that with some assumptions and a careful choice of encoding matrices in
ϕq, ϕk1, ϕk2, ϕv, P

q
j , P

k
j , the graph GHRR self-attention can be interpreted as a soft one-hop.

We first assume that P q
j = P k

j = P v
j = Ej , where Ej is defined above in subsection 4.1. In addition,

we make the simplifying assumption that ϕk2(v) ∈ Cm×m is a fixed matrix of all ones and denote
the l-th row of ϕq(x), ϕk1(u) as ql(x), kl(u) respectively, for l = 1, . . . ,m. Then,

[Eo(x)ϕq(x)ϕk1(u)
†ϕk2(v)Eo(v)]ij = δio(x)δjo(v)qi(x)

m∑
l=1

kl(u)
∗, (8)

where δij is the Kronecker delta symbol. If we interpret e(x) := qj(x) and e′(u) :=
∑m

l=1 kl(u) as
vertex embeddings, s(x, y) := e(x)e′(y)∗ defines an asymmetric similarity measure between vertices
x, y ∈ V , which can be made symmetric by weight sharing and an additional assumption. Then, by
Eq. 7,

[QK†]ij =
∑
x∈V

δio(x)
∑

(u,v)∈E

δjo(v)s(x, u) =
∑

u∈NG(o−1(j))

s(o−1(i), u), (9)

where NG(x) is the set of neighbors of x ∈ V .

For the sake of illustration, let us suppose that s is the discrete metric on V . Then [QK†]ij =
I[o−1(i) ∈ NG(o

−1(j))], where I is the indicator function. If we denote the j-th row of V as vj ,
which encodes vertex o−1(j) due to the positional encoding matrix, we have the result[

softmax(Re(QK†))V
]
i
=

1

|NG(o−1(i))|
∑

x∈NG(o−1(i))

vo(x). (10)

Thus, after applying GHRR graph attention, the new representation of vertex i consists of the sum
of the previous representations of its neighbors, which is exactly a one-hop. Figure 1E provides
intuition for how attention is applied after multiple applications of the Graph Transformer Encoder
block. Figure 2B illustrates the general architectural diagram.

6 RESULTS

6.1 NEXT TOKEN PREDICTION

We evaluate our model on a next-token prediction language modeling task on the Wikitext2 Merity
et al. (2016) and the Penn Treebank Marcus et al. (1993) datasets. We implement a Transformer
encoder with GHRR attention as described in section 5.1.

The positional encoding can be the same or different across the Q,K, V hypervectors as well as
across attention heads. Moreover, the positional encodings can either be trainable or fixed (i.e.
randomly initialized). This gives us eight different variants of the GHRR Transformer model. For
each GHRR encoder ϕq, ϕk, ϕv , we make W trainable and keep Λ fixed. Sample positional encodings
are visualized in Appendix C.

Both the baseline Transformer model Vaswani et al. (2017) and our model have a comparable number
of weight parameters, with a slight increase when trainable positional encoding (PE) is included.
Training details are described in Appendix B.1. We report the mean perplexity (PPL) and standard
deviation over five independent runs in Table 2.

We observe an average performance improvement of 5.47% on WikiText-2 and 2.75% on the PTB
dataset when compared to the baseline Transformer model. In the cases with the highest observed

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Perplexity of trained language models
Model Trainable PE Wikitext2 Merity et al. (2016) Penn Treebank Marcus et al. (1993)

Baseline N/A 29.16 ± 0.13 94.78 ± 0.23

All same No 27.54 ± 0.08 93.93 ± 0.09
QKV No 27.6 ± 0.10 91.63 ± 0.04
Head No 27.55 ± 0.06 91.68 ± 0.11

All different No 27.56 ± 0.09 91.58 ± 0.08

All same Yes 27.54 ± 0.08 93.98 ± 0.12
QKV Yes 27.57 ± 0.12 91.51 ± 0.08
Head Yes 27.56 ± 0.07 91.53 ± 0.09

All different Yes 27.56 ± 0.05 91.52 ± 0.05

Table 3: Vertex classification accuracy
Model Accuracy (%)

GHRR Graph Transformer 82.30
GRIT Ma et al. (2023) 87.20

EGT Hussain et al. (2022) 86.82

Table 4: Graph classification accuracy
Trainable PE Accuracy (%)

No 53.5
Yes 70.0

improvements, the performance increased by 5.53% on WikiText-2 and 3.44% on PTB, respectively.
Specifically, we found a 2.56% performance improvement in PTB when PEs are varied across
Q,K, V matrices, attention heads, or both, compared to when they were not.

This suggests that the inclusion of PEs help with model performance, though there needs to be some
kind of variation between PEs to have sufficient expressive power. Moreover, there is negligible
difference between fixed and trainable positional encodings, suggesting that level of expressive power
is not needed for this task.

6.2 VERTEX CLASSIFICATION

We evaluate GHRR attention on vertex-level tasks of graph pattern recognition using the PATTERN
dataset. To reduce model parameters, we apply the assumptions from Section 5.2, including fixed
positional encodings and rank-1 GHRR hypervectors, resulting in a model that performs one-hop
attention. Detailed training information and dataset description are provided in Appendix B.2.

The accuracies of the GHRR graph transformer and state-of-the-art (SOTA) algorithms are listed in
Table 3. Although the performance of the GHRR graph transformer is slightly lower than that of the
SOTA, it demonstrates a significant advantage in training efficiency. The GHRR graph transformer
converges after just 3 epochs, whereas the other models require tens of epochs to converge.

6.3 GRAPH CLASSIFICATION

To test the efficacy of our model, we use a synthetic graph classification dataset. The model we use is
a GHRR Graph Transformer with positional encodings that are distinct across Q,K, V hypervectors
but are the same across attention heads. We do not make the assumptions in Section 5.2. Table 4
compares the accuracy of two versions of the model: one where positional encodings are fixed and
one where they are trainable. Results suggest that unlike in the language modeling task, trainable
positional encodings provide a significant advantage in model performance. Training details are
placed in Appendix B.3.

7 DISCUSSION

Attention based on other VSA structure encodings. In this work, we explored attention
mechanisms based on VSA encodings of sequences and graphs. Of course, our approach is not just

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

limited to these two data structures; one can design a corresponding GHRR Transformer for every
kind of VSA data structure encoding, including that for trees Frady et al. (2020) and finite state
machines Kleyko et al. (2023).

Positional encoding extensions. Our proposed positional encoding based on the binding operation
in VSA depends solely on the index of the token. More complex variants of the encoding can be
explored; for example, one can consider a 2D positional encoding based on (x, y)-coordinates in
images Px ⊙ Py . As mentioned in the related work, one can also incorporate graph information Ying
et al. (2021) into the positional encodings.

Decoder Architectures. While we only considered a Transformer encoder architecture in this work,
our formulation extends naturally to a decoder model. One consideration when designing the decoder
model is how sequential generation can occur, given data of more complex types. Efficient attention
masking is also of practical concern when designing the decoder architecture.

8 CONCLUSION

We have shown that among VSAs, GHRR is capable of implementing the attention mechanism in
the form of the binding operation, and develop a GHRR Transformer based on this equivalence.
We introduced a novel binding-based positional encoding and extended the attention mechanism to
support complex data structures based on VSA principles. In particular, as an example, we specify a
graph transformer architecture based on our framework and provide an interpretation for the graph
GHRR attention mechanism as performing a one-hop. We then evaluate our GHRR Transformer
variants on language modeling, vertex classification, and graph classification tasks.

REFERENCES

Emmanuel Abbe. Community detection and stochastic block models: recent developments. Journal
of Machine Learning Research, 18(177):1–86, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language Models are Few-Shot Learners. In Advances in Neural Information
Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision Transformer: Reinforcement Learning via Sequence
Modeling, June 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,
June 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023.

E. Paxon Frady, Spencer J. Kent, Bruno A. Olshausen, and Friedrich T. Sommer. Resonator Networks,
1: An Efficient Solution for Factoring High-Dimensional, Distributed Representations of Data
Structures. Neural Computation, 32(12):2311–2331, December 2020. ISSN 0899-7667. doi:
10.1162/neco_a_01331.

Ross W. Gayler. Multiplicative binding, representation operators & analogy (workshop poster), 1998.
URL http://cogprints.org/502/.

10

http://cogprints.org/502/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Lulu Ge and Keshab K Parhi. Classification using hyperdimensional computing: A review. IEEE
Circuits and Systems Magazine, 20(2):30–47, 2020.

Alejandro Hernández-Cano, Namiko Matsumoto, Eric Ping, and Mohsen Imani. OnlineHD: Robust,
Efficient, and Single-Pass Online Learning Using Hyperdimensional System. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 56–61, February 2021. doi:
10.23919/DATE51398.2021.9474107.

J J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the National Academy of Sciences, 79(8):2554–2558, April 1982. doi: 10.1073/
pnas.79.8.2554.

Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Global Self-Attention
as a Replacement for Graph Convolution. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 655–665, August 2022. doi: 10.1145/3534678.
3539296.

Mohsen Imani, Xunzhao Yin, John Messerly, Saransh Gupta, Michael Niemier, Xiaobo Sharon Hu,
and Tajana Rosing. Searchd: A memory-centric hyperdimensional computing with stochastic
training. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39
(10):2422–2433, 2019.

Pentti Kanerva. Hyperdimensional Computing: An Introduction to Computing in Distributed
Representation with High-Dimensional Random Vectors. Cognitive Computation, 1(2):139–159,
June 2009. ISSN 1866-9956, 1866-9964. doi: 10.1007/s12559-009-9009-8.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM computing surveys (CSUR), 54(10s):1–41,
2022.

Ling Min Serena Khoo, Hai Leong Chieu, Zhong Qian, and Jing Jiang. Interpretable rumor detection
in microblogs by attending to user interactions. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 8783–8790, 2020.

Denis Kleyko, Abbas Rahimi, Ross W. Gayler, and Evgeny Osipov. Autoscaling Bloom filter:
Controlling trade-off between true and false positives. Neural Computing and Applications, 32(8):
3675–3684, April 2020. ISSN 1433-3058. doi: 10.1007/s00521-019-04397-1.

Denis Kleyko, Mike Davies, E. Paxon Frady, Pentti Kanerva, Spencer J. Kent, Bruno A. Olshausen,
Evgeny Osipov, Jan M. Rabaey, Dmitri A. Rachkovskij, Abbas Rahimi, and Friedrich T. Sommer.
Vector Symbolic Architectures as a Computing Framework for Emerging Hardware. Proceedings
of the IEEE, 110(10):1538–1571, October 2022. ISSN 0018-9219, 1558-2256. doi: 10.1109/
JPROC.2022.3209104.

Denis Kleyko, Dmitri Rachkovskij, Evgeny Osipov, and Abbas Rahimi. A survey on hyperdimen-
sional computing aka vector symbolic architectures, part ii: Applications, cognitive models, and
challenges. ACM Computing Surveys, 55(9):1–52, 2023.

Bryan Lim, Sercan Ö Arık, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4):
1748–1764, 2021.

Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh graphormer. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 12939–12948, 2021.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph Inductive Biases in Transformers without Message Passing, May
2023.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nicolas Menet, Michael Hersche, Geethan Karunaratne, Luca Benini, Abu Sebastian, and Abbas
Rahimi. Mimonets: Multiple-input-multiple-output neural networks exploiting computation in
superposition. Advances in Neural Information Processing Systems, 36, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. GraphiT: Encoding Graph
Structure in Transformers, June 2021.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng Kong.
Random Feature Attention, March 2021.

Tony A. Plate. Holographic Reduced Representation: Distributed Representation for Cognitive
Structures. Lecture Notes. Center for the Study of Language and Information, April 2003. ISBN
978-1-57586-430-3.

Prathyush Poduval, Haleh Alimohamadi, Ali Zakeri, Farhad Imani, M. Hassan Najafi, Tony Givargis,
and Mohsen Imani. GrapHD: Graph-Based Hyperdimensional Memorization for Brain-Like
Cognitive Learning. Frontiers in Neuroscience, 16, 2022. ISSN 1662-453X.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In J. Platt,
D. Koller, Y. Singer, and S. Roweis (eds.), Advances in Neural Information Processing Systems,
volume 20. Curran Associates, Inc., 2007.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,
Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, Victor Greiff, David
Kreil, Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. Hopfield
Networks is All You Need, April 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Prateek Verma and Jonathan Berger. Audio transformers: Transformer architectures for large scale
audio understanding. adieu convolutions. arXiv preprint arXiv:2105.00335, 2021.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen. Tree Transformer: Integrating Tree Structures
into Self-Attention. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 1061–
1070, Hong Kong, China, November 2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1098.

Calvin Yeung, Zhuowen Zou, and Mohsen Imani. Generalized Holographic Reduced Representations,
May 2024.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877–28888, 2021.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun, Xing Xie, and Yanfang
Ye. Gophormer: Ego-graph transformer for node classification. arXiv preprint arXiv:2110.13094,
2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A HOPFIELD NETWORKS

A Hopfield network is an auto-associative memory model; i.e. it retrieves memory items based on
the content of the memory itself (i.e. the keys and values are the same). It can be implemented as a
neural network that stores patterns {ξj}nj=1 such that ξj ∈ {−1, 1}d are attractors Hopfield (1982).
An input query ξ is passed into the network. The retrieved vector is determined by the update rule

ξt+1 = sgn(XX⊤ξt) (11)

where X = [ξ1, . . . , ξn]. Under conditions such as sufficient separability of patterns (with respect to
dot product) and n being sufficiently small, ξ will converge to the closest pattern ξj . The capacity of
the Hopfield network is O(d).

Ramsauer et al. (2021) extends the network to continuous states and introduces a new update rule
that is equivalent to the self-attention mechanism:2

ξt+1 = Xsoftmax(βX⊤ξt) (12)

Here, the patterns {ξj}nj=1 satisfy ξj ∈ Rd. Compared to the discrete network defined, the resulting
Hopfield network has exponential storage capacity.

Hopfield networks, as in attention, compute pairwise similarities across the entire set of inputs,
performing simple dictionary-like queries. For more complex inputs, however, we might wish to
encode structural information into the representation so as to achieve a more structure-aware query
operation.

B TRAINING DETAILS

All experiments are conducted on a workstation equipped with an AMD Ryzen Threadripper PRO
5965WX CPU and two NVIDIA GeForce RTX 4090 GPUs. Each GHRR layer consumes approxi-
mately 0.5 GB of VRAM. The model requires approximately 70 minutes to execute one epoch for
vertex classification and 10 minutes for one epoch for graph classification.

B.1 NEXT TOKEN PREDICTION

For the use case of next token prediction, we add a few constraints to enable easy causal masking for
computational efficiency. We use causal masking to prevent the model from “looking ahead” when
making next token predictions. In particular, we set the positional encoding matrices P q

j , P
k
j , P

v
j

to have the form P a
j = EjA

a
j , a ∈ {q, k, v}. Doing so confines information about the j-th token to

the j-th row in the Q,K, V matrix elements, which allows us to apply a causal mask on the matrix
Re(QK†).

The models are trained using the Adam optimizer with a learning rate of 1e-3 and a weight decay of
1e-3 over 20 epochs. The baseline model features an embedding size of 240, a hidden dimension of
200, and a dropout rate of 0.2, while our model uses an embedding dimension of 240, distributed
across 8 heads.

B.2 VERTEX CLASSIFICATION

The PATTERN dataset is widely utilized to model social network communities by modulating intra-
and extra-community interactions Dwivedi et al. (2023). It comprises 10,000 training graphs, 2,000
validation graphs, and 2,000 test graphs. The graphs within this dataset are generated using the
Stochastic Block Model (SBM) Abbe (2018). An SBM is a type of random graph where communities
are assigned to each node. In this model, any two vertices are connected with a probability p if they
belong to the same community, or with a probability q if they belong to different communities, where
q represents the noise level.

The models comprise 8 GHRR attention layers and are trained using the Adam optimizer with an
initial learning rate of 1e-6, which decreases by a factor of 0.2 after 5 epochs without improvement.
Each model has an embedding size of 1880, a dropout rate of 0.2, and 10 attention heads.

2Self-attention has additional linear maps applied to the matrix X to compute Q,K, V .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B.3 GRAPH CLASSIFICATION

The synthetic dataset consists of random undirected graphs, each with 32 vertices and a corresponding
binary label denoting whether the graph is fully connected or not. Graphs are sampled by randomly
generating matrices A′ such that P (A′

ij = 1) = p = 0.06 for all i, j = 1, ..., n, where n = 32 is the
number of vertices. We compute the final adjacency matrix as A = min(A′ + (A′)⊤,1), where 1 is
a matrix of all ones. We synthesize 10,000 graphs for the training set, and 2,000 graphs each for the
validation and test sets, respectively.

The models comprise 4 GHRR attention layers and are trained using the Adam optimizer with an
initial learning rate of 1e-3, reduced by a factor of 0.5 after 2 epochs of plateau. Each model has an
embedding size of 320, a dropout rate of 0.2, and 10 attention heads.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C POSITIONAL ENCODINGS

Tr
ai

ne
d,

 Q
, L

0
Fi

xe
d,

 Q
, L

0
Tr

ai
ne

d,
 K

, L
0

Tr
ai

ne
d,

 Q
, L

1

Token 1 Token 2 Token 3

Figure 3: Visualization of positional encodings for the language modeling task, including trained
positional encodings for Q,K on two different Transformer layers and a fixed positional encoding
for Q in layer 0.

15

	Introduction
	Related Work
	Background
	Attention
	Vector Symbolic Architectures
	Generalized Holographic Reduced Representations

	GHRR and Attention
	GHRR implements Attention
	Structuring Transformers Embedding with GHRR operations

	Technical Details
	GHRR Transformer for Sequences
	GHRR Transformer for Graphs

	Results
	Next Token Prediction
	Vertex Classification
	Graph Classification

	Discussion
	Conclusion
	Hopfield Networks
	Training Details
	Next Token Prediction
	Vertex Classification
	Graph Classification

	Positional Encodings

