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ABSTRACT

The introduction of the Transformer has brought about a revolution in AI. Central
to the success of the Transformer architecture is the self-attention mechanism,
enabling context dependence and long-range dependencies between tokens. Recent
work has drawn an equivalence between Hopfield networks, a kind of associative
memory model, and Transformers. In this work, we leverage this bridge, using
Vector Symbolic Architectures (VSA), a brain-inspired computational paradigm
capable of representing and implementing data structures, including associative
memory models, to define a broad class of attention mechanisms catered for
complex data types. In particular, we use Generalized Holographic Reduced
Representations (GHRR), an implementation of a VSA, as the foundation for
our proposed class of attention mechanisms. We show that GHRR is capable of
implementing attention and design a GHRR Transformer encoder architecture based
on the demonstrated mathematical equivalence. We propose a new kind of binding-
based positional encoding based on methods used in VSAs for encoding sequential
information. We extend the attention mechanism in our architecture to support
graphs, inspired by techniques used in VSAs to encode graph representations. We
evaluate the GHRR Transformer on language modeling, vertex classification, and
graph classification tasks. Results suggest that our approach provides benefits in
language modeling and graph classification tasks compared to baseline models.

1 INTRODUCTION

The introduction of the Transformer Vaswani et al. (2017) brought about a revolution in AI, from
language modeling to vision to reinforcement learning Brown et al. (2020); Dosovitskiy et al. (2021);
Chen et al. (2021). Central to the Transformer architecture is the self-attention mechanism, enabling
context dependence and long-range dependencies between tokens.

Recent work has drawn an equivalence between Hopfield networks model with a modified energy
function Ramsauer et al. (2021); Hopfield (1982) and the self-attention mechanism. This equivalence
is two-way and thus enables cross-pollination; unique features of one side can be transferred and
applied to the other. For example, Ramsauer et al. (2021) applied the idea of repeated iteration
of the Hopfield update rule to the self-attention mechanism within a transformer, which facilitates
better memory retrieval. Consequently, one can use a similar strategy, exploiting the bridge between
self-attention and associative memory models, e.g. Hopfield networks, to develop a broader class
of self-attention mechanisms that can better handle data with more complex relations by utilizing
associative memory structure.

In this work, we focus on Vector Symbolic Architectures (VSA), also known as Hyperdimensional
Computing (HDC) Kanerva (2009); Kleyko et al. (2023), as a candidate associative memory frame-
work for the extension of self-attention. While Hopfield networks rely on a dynamical update rule
for memory retrieval, VSAs, as algebras of high dimensional vectors, are capable of performing
associative memory operations purely based on their algebraic operators. That VSAs can perform the
auto-associative capabilities of a Hopfield network and beyond motivates our choice for implementing
and extending the attention mechanism.

In general, VSAs adhere to certain computational principles, including using high-dimensional vectors
with holographic properties (i.e. the same information is present in each part of the representation,
in expectation) and supporting the algebraic operations of bundling and binding, which correspond

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

to the cognitive operations of memorization and association, respectively. Any algebra satisfying
these principles can be classified as a VSA. As a consequence, there exists a vast family of VSAs
Gayler (1998); Plate (2003). In particular, in this work, we make use of Generalized Holograph
Reduced Representations (GHRR) Yeung et al. (2024), an instantiation of a VSA to implement and
extend self-attention. As will be apparent below, the specific mathematical implementation of GHRR
suggests a natural parallel to self-attention in the form of binding key, query, and value hypervectors,
i.e. the VSA equivalent of memory retrieval in a Hopfield network. More importantly, as an algebra,
VSAs are endowed with natural compositional structure, which enables one to build complex data
structures from simpler constituents without any change in representational space Kleyko et al.
(2020); Frady et al. (2020); Kleyko et al. (2022); Poduval et al. (2022). This property of VSAs, as we
will develop in this work, provides a systematic method for one to extend self-attention to support
more complicated data structures beyond sequences. While VSAs traditionally follow stringent
mathematical constraints, here, we make use of VSA as a conceptual framework for designing
generalized self-attention mechanisms for structured data but allow for relaxation of the constraints.
Our contributions are as follows:

1. We demonstrate the mathematical equivalence between the binding of key, query, and value
hypervectors and the self-attention mechanism, i.e. that GHRR is capable of implementing
self-attention.

2. Using the compositionality of VSAs and their ability to represent complex data structures, we
extend the vanilla self-attention mechanism to one that naturally supports complex data types by
construction.

3. We propose a new kind of binding-based positional encoding based on methods used in VSAs for
encoding sequential information.

4. We verify our equivalence claim by evaluating a Transformer encoder with GHRR-based attention
(hereon referred to as GHRR Transformer) on a language modeling task and compare it to a vanilla
Transformer baseline.

5. We apply our methodology of extending self-attention using VSA principles to graph data and
develop a GHRR Graph Transformer. We provide an interpretation of GHRR graph attention as
performing a “soft” one-hop and evaluate our model on vertex and graph classification tasks.

2 RELATED WORK

Transformer adaptation over structured data: The transformer architecture has demonstrated
remarkable versatility and has been adapted to handle a wide range of structured data types, including
graphs Min et al. (2022), trees Wang et al. (2019), images Khan et al. (2022), time series Lim et al.
(2021), and audio Verma & Berger (2021). In contrast to these works, which adapt the transformer to a
specific data structure, our approach provides an adaptation framework for many data structures based
on the structural representation of VSA; for this work, we adapt and experiment on the record-based
encoding Imani et al. (2019); Ge & Parhi (2020) for text-based data and GrapHD Poduval et al. (2022)
for graph-based data.

Adaptation techniques for graph information: When it comes to adaptation techniques, especially
for graphs, there are three general methods for integrating graph information into the transformer Min
et al. (2022): (1) injecting GNNs into transformer architectures as Auxiliary Modules, such as in
Mesh Graphormer Lin et al. (2021) and Graph-BERT Zhang et al. (2020); (2) enhancing positional
encoding (PE) with graph information, such as the Hop-based and Intimacy-based PE in Graph-BERT
and centrality-based PE in Graphormer Ying et al. (2021), and (3) improving the attention matrix
computation with graph information, techniques that include using graph kernels for attention Mialon
et al. (2021) and adding soft bias to attention scores Zhao et al. (2021); Ying et al. (2021); Khoo
et al. (2020). Our method for graphs takes the unique approach of altering the computation of the
key matrix based on VSA graph representation, which subsequently alters positional encoding and
attention computation.

Transformers + VSA: There exists some prior work leveraging VSA for Transformers. Peng et al.
(2021) makes use of the Random Fourier Features (RFF) Rahimi & Recht (2007) encoding commonly
used in VSAs Hernández-Cano et al. (2021) to efficiently compute attention weights in linear time
and space. This work exploits the kernel approximation properties of a specific implementation of
VSA. More recently, MIMOFormer Menet et al. (2024) leverages VSA’s principle of computing in
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Figure 1: A. An overview of VSA operations, bundling, binding, and permutation, and their functional
interpretations. B. A comparison of FHRR and GHRR VSA implementations. C. An example of
how graphs can be encoded in VSAs. D. A visualization of how the GHRR Transformer performs
attention on sequential data. E. A visualization of how the GHRR Transformer performs attention on
graph data. F. An overview of the GHRR Transformer architecture.

superposition to provide a dynamic trade-off between model accuracy and throughput. In contrast to
the above approaches which focus primarily on computation efficiency, our work focuses on building
compositional representations with VSA’s algebraic properties.

3 BACKGROUND

In this section, we first give a brief mathematical specification of the scaled dot-product atten-
tion mechanism typically used in a Transformer. We introduce VSAs, highlighting computational
principles and basic algebraic operations and properties. Finally, we describe GHRR, a specific
implementation of a VSA that we use in this work.

3.1 ATTENTION

We focus on scaled dot-product attention Vaswani et al. (2017), which can be written as
attn(Q,K, V ) = softmax

(
1√
dk
QK⊤

)
V , where Q,K, V are the embeddings of the input fea-

tures corresponding to query, key, and value respectively, and 1/
√
dk is the scaling factor determined

by the embedding dimension dk, which we omit for the rest of the paper. Generally, Q,K, V is
defined in terms of some input streams Xq , Xk, and Xv: Q = XqWq , K = XkWk, and V = XvWv .
Then, we have

attn(Q,K, V ) = softmax(XqWqW
⊤
k X⊤

k )XvWv. (1)

As suggested by the symbols Q,K, V , attention can be interpreted as querying a dictionary formed
by associated keys and values.

3.2 VECTOR SYMBOLIC ARCHITECTURES

Vector Symbolic Architecture (VSA), also known as Hyperdimensional Computing (HDC), is a com-
puting framework inspired by the brain. It is motivated by the observation that representations in the
brain are high-dimensional, consisting of neural activations of a large population of neurons Kanerva
(2009). Moreover, while these population-level representations appear to be highly distributed and
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stochastic across different brains, they exhibit the same cognitive properties at a high level Kleyko
et al. (2023); Gayler (1998).

The fundamental unit in a VSA is a high dimensional vector, also called a hypervector, corresponding
to the population-level neural activations. A hypervector H lives in some hyperspace H, e.g., RD

for D large. The collection of hypervectors, along with some operators, forms an algebra over
vectors. Generally, there are two types of hypervectors: (1) base hypervectors, which are generated
stochastically, e.g., H ∼ N (0, I); and (2) composite hypervectors, which are created by combining
hypervectors via the operators of the algebra. These hypervectors can be compared via a similarity
function δ(H1, H2). Generally, base hypervectors are generated such that they are quasi-orthogonal
with respect to the similarity function. The three main operations in VSA, bundling, binding, and
permutation, can be characterized by how they affect the similarity of hypervectors. We describe the
three operations below:

1. Bundling (+): Typically implemented as element-wise addition. If H = H1 +H2, then both H1

and H2 are similar to H . From a cognitive perspective, it can be interpreted as memorization.

2. Binding (⊙): Typically implemented as element-wise multiplication. If H = H1 ⊙H2, then H is
dissimilar to both H1 and H2. Binding also has the important property of similarity preservation
in the sense that for some hypervector H3, δ(H3⊙H1, H3⊙H2) ≃ δ(H1, H2). From a cognitive
perspective, it can be interpreted as the association of concepts.

3. Permutation (ρ): Typically implemented as a rotation of vector elements. Generally,
δ(ρ(H), H) ≃ 0. Permutation is usually used to encode order in sequences.

It is important to note that the description above of VSA is general; there are various specific
realizations of VSA with the above properties. Figure 1A illustrates the VSA operations and its
interpretations.

Crucially, with the recursive application of the operations above, one can encode, represent, and
query complex data structures such as sets, sequences, dictionaries, and graphs in the compressed
form of a single hypervector Kleyko et al. (2023); Poduval et al. (2022).

3.3 GENERALIZED HOLOGRAPHIC REDUCED REPRESENTATIONS

GHRR is a specific implementation of a VSA. It is a generalization of the Fourier Holographic Re-
duced Representations (FHRR) framework Plate (2003). A GHRR base hypervector H ∈ CD×m×m

of dimension D and complexity m is of the form Hj = WjΛj for j = 1, . . . , D. Here, Wj is an
m×m unitary matrix and Λj is an m×m diagonal unitary matrix.1 This is visualized in Figure 1B.

GHRR hypervectors are endowed with two operations, bundling and binding, which are defined by
element-wise addition and matrix multiplication, respectively. We define the similarity between two
hypervectors as δ(H1, H2) =

1
mDRe

[
tr
(∑D

j=1 H1jH
†
2j

)]
, where H1j and H2j are the j-th matrix

element of H1 and H2, respectively.

When not conditioned on an input, Λj = diag(eiθj1 , . . . , eiθjm), for θjk ∼ pk for distributions pk for
k = 1, . . . ,m such that E[eiθk ] = 0. It can be shown that this choice of Λj and any arbitrary choice
of unitary Wj satisfies the constraints of a VSA given in section 3.2 Yeung et al. (2024).

Given some input x ∈ Rn, we define Λj(x) = diag(eiwj1⊤x, . . . , eiw
⊤
jmx), where wjk ∼ pk with

pk being symmetric distributions with zero mean. We denote a GHRR hypervector encoded in this
way as ϕ(x) := [WjΛj(x)]

D
j=1. As in FHRR hypervectors using an RFF encoding scheme Rahimi &

Recht (2007), δ(ϕ(x), ϕ(y)) approximates a kernel, albeit a more complex one in the case of GHRR.

In general, one can interpret Λ as the component primarily responsible for controlling the shape
of the kernel, while W controls how hypervectors bind together. This is in contrast to prior VSA
implementations, which lack expressivity in the binding operation, further accentuated by the fact
that GHRR uses matrix multiplication, as opposed to scalar multiplication, for the binding operation.

1Although it is more proper to describe Hj as a “hypermatrix” or “hypertensor”, we stick to the term
hypervector both by convention and by the understanding that each component of a GHRR base hypervector is a
single element of the unitary group of degree m, which happens to be representable by matrices.
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Table 1: Table of mathematical symbols
Symbol Description

D ∈ Z≥1 Hyperdimension; number of heads
m ∈ Z≥1 Complexity; embedding dimension per head
n ∈ Z≥1 Input dimension
Q ∈ CD×m×m Query hypervector
K ∈ CD×m×m Key hypervector
V ∈ CD×m×m Value hypervector
W ∈ CD×m×m Weight component of GHRR hypervector
Λ ∈ CD×m×m Exponential random diagonal matrix component of GHRR hypervector
ϕ : Rn → CD×m×m GHRR encoder
P ∈ CD×m×m Positional encoding hypervector for binding-based positional encoding

Taken together, the use of matrix multiplication for binding and the ability to modulate W allows
GHRR to be integrated more naturally into a connectionist model like the Transformer.

4 GHRR AND ATTENTION

4.1 GHRR IMPLEMENTS ATTENTION

We first show that it is possible to match the mathematical form of the attention mechanism given in
Eq. 1 using GHRR. We then show that, by binding specific positional information to GHRR token
hypervectors, we can implement token-level attention using GHRR.

Matching mathematical forms between GHRR and attention. Suppose we have three hypervec-
tors Q = WqΛq , K = WkΛk, and V = WvΛv . Then we can write

[softmax(Re[QK†])V ]j = softmax(Re[WqjΛqjΛ
†
kjW

†
kj ])WvjΛvj . (2)

The almost-equivalence between Eq. 1 and Eq. 2 suggests that GHRR is capable of implementing
attention. The GHRR representation enforces unitarity on Wj to generate base hypervectors that are
norm-preserving; we relax this constraint for greater flexibility, enabling expressivity comparable to
that of a traditional Transformer.

While traditional attention is applied to a sequence of tokens as encoded by a matrix X , here, this
is not necessarily the case. The analog of X , Λ, is a diagonal matrix that in general encodes only
one token. Thus, the attention described in Eq. 2, while similar in form to Eq. 1, does not implement
attention over tokens; instead, it applies attention over the representation of a single token. We
distinguish this form of representation-level attention from traditional token-level attention which is
explicitly applied only to token representations.

Token-level attention and beyond via VSA positional encoding. To add token-level information,
one can express the hypervectors as a sum of token hypervectors bound with hypervectors encoding
positional information. To simplify notation, let us consider only one dimension of the hypervector,
allowing us to omit and free up the subscript j on W and Λ for GHRR components. More precisely,
let ϕ(x) = WΛ(x) be the GHRR encoding and Ej be the positional information for the j-th token.
In particular, we let Ej be an m × m matrix such that [Ej ]jj = 1 and zero everywhere else. Let
x1, . . . , xm be the tokens we wish to encode. Then our sequence encoding is

ϕ(x1, . . . , xm) :=

m∑
j=1

Ejϕ(xj), (3)

which results in a matrix where exactly the j-th row encodes information about the j-th token. This
construction gives an explicit correspondence between GHRR and attention, with the difference being
that GHRR token representations involve an extra random exponential map as determined by Λ.

In addition, we may let Ej be some arbitrary trainable matrix Pj , which essentially makes it
a learnable position encoding present in each transformer block. In contrast to the sinusoidal
positional encoding commonly used in the vanilla Transformer architecture, which is added to the
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token embeddings prior to the application of any Transformer blocks, this binding-based positional
encoding is applied via the binding operation, i.e. matrix multiplication in GHRR, and is included in
every GHRR Transformer block.

Matching parameters between GHRR and Transformer. Given the above discussion, we pro-
pose to treat each component of a GHRR hypervector as an attention head. In other words, the
hyperdimension D in GHRR corresponds to the number of attention heads, and the complexity m
determines the maximum number of tokens the GHRR implementation of attention can deal with
independently. Note that it’s possible to encode more than m tokens at the cost of them entangling
within the representation. For simplicity in analysis, we do not consider the entangled case for this
work; as a result, the range of attention is limited by m.

4.2 STRUCTURING TRANSFORMERS EMBEDDING WITH GHRR OPERATIONS

Given GHRR’s ability to perform attention, we can naturally replace the attention mechanism with
the GHRR equivalent as described in Section 4.1. Moreover, our formulation suggests a way in which
the attention mechanism can be extended.

Due to GHRR’s holographic nature, one can encode more complex representations within a tensor of
the same shape. This suggests an extension of the GHRR attention module where query, key, and
value hypervectors themselves can be composites depending on the nature of the data. In the simple
case of sequential input as in a vanilla transformer, and as described in Section 4.1, a sequence can be
represented in the form

∑
j pj ⊙ xj , which resembles Eq. 3.

If, instead, the data is from a more complex data structure, e.g. a graph, we can use a corresponding
VSA encoding that reflects its structure, as shown in Figure 1C. In particular, the key and query can
be formulated in a way that reflects the way is done in traditional VSA applications, e.g. querying
for the neighbors of a vertex in a graph Poduval et al. (2022). This approach to encoding structure
is global in the sense that the encoding is constructed to explicitly capture the entire data structure
in question; it is built into the model architecture based on prior knowledge of the data. Figure 1F
illustrates the general encoder block structure as well as the structure of the attention module. The
general encoding block structure is analogous to that in a vanilla Transformer, with GHRR attention
instead of the traditional scaled dot-product attention.

5 TECHNICAL DETAILS

5.1 GHRR TRANSFORMER FOR SEQUENCES

Let x1, . . . , xn be a sequence. Without loss of generality, we assume D = 1, so all hypervectors
are simply m×m matrices. Moreover, we assume m = n. Let ϕq, ϕk, ϕv be query, key, and value
encoders respectively. We define the hypervectors Q,K, V as follows:

Q =

n∑
j=1

P q
j ⊙ ϕq(xj), K =

n∑
j=1

P k
j ⊙ ϕk(xj), V =

n∑
j=1

P v
j ⊙ ϕv(xj), (4)

where P q
j , P

k
j , P

v
j for j = 1, . . . , n are positional encoding matrices. With D = 1, binding reduces

to matrix multiplication. Figure 2A illustrates the general architectural diagram.

5.2 GHRR TRANSFORMER FOR GRAPHS

Let G = (V, E) be an undirected graph where the vertices are labeled but the edges are not. We
assume that the parameter m = |V| for our GHRR encoding and let o : V → {1, . . . ,m} be a
bijection mapping each vertex to an index. Without loss of generality, we assume D = 1, so all
hypervectors are simply m×m matrices. We encode query, key, and value hypervectors, Q,K, V ,
respectively, as follows:

Q =
∑
x∈V

P q
o(x) ⊙ ϕq(x), V =

∑
x∈V

P v
o(x) ⊙ ϕv(x), (5)

K =
∑

(u,v)∈E

(ϕk2(v)⊙ P k
o(v))

† ⊙ ϕk1(u), (6)
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Figure 2: A. A visualization of the architecture of the compositional module for the sequential GHRR
Transformer. B. A visualization of the architecture of the compositional module for the GHRR Graph
Transformer. Compared to the sequential version, the key hypervector is computed differently.
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where Pj for j = 1, . . . ,m are positional encoding matrices. This method of representing a graph
is similar to that in GrapHD Poduval et al. (2022). When computing the attention weights (before
softmax), we get

QK† =
∑
x∈V

∑
(u,v)∈E

P q
o(x)ϕq(x)ϕk1(u)

†ϕk2(v)P
k
o(v). (7)

We show that with some assumptions and a careful choice of encoding matrices in
ϕq, ϕk1, ϕk2, ϕv, P

q
j , P

k
j , the graph GHRR self-attention can be interpreted as a soft one-hop.

We first assume that P q
j = P k

j = P v
j = Ej , where Ej is defined above in subsection 4.1. In addition,

we make the simplifying assumption that ϕk2(v) ∈ Cm×m is a fixed matrix of all ones and denote
the l-th row of ϕq(x), ϕk1(u) as ql(x), kl(u) respectively, for l = 1, . . . ,m. Then,

[Eo(x)ϕq(x)ϕk1(u)
†ϕk2(v)Eo(v)]ij = δio(x)δjo(v)qi(x)

m∑
l=1

kl(u)
∗, (8)

where δij is the Kronecker delta symbol. If we interpret e(x) := qj(x) and e′(u) :=
∑m

l=1 kl(u) as
vertex embeddings, s(x, y) := e(x)e′(y)∗ defines an asymmetric similarity measure between vertices
x, y ∈ V , which can be made symmetric by weight sharing and an additional assumption. Then, by
Eq. 7,

[QK†]ij =
∑
x∈V

δio(x)
∑

(u,v)∈E

δjo(v)s(x, u) =
∑

u∈NG(o−1(j))

s(o−1(i), u), (9)

where NG(x) is the set of neighbors of x ∈ V .

For the sake of illustration, let us suppose that s is the discrete metric on V . Then [QK†]ij =
I[o−1(i) ∈ NG(o

−1(j))], where I is the indicator function. If we denote the j-th row of V as vj ,
which encodes vertex o−1(j) due to the positional encoding matrix, we have the result[

softmax(Re(QK†))V
]
i
=

1

|NG(o−1(i))|
∑

x∈NG(o−1(i))

vo(x). (10)

Thus, after applying GHRR graph attention, the new representation of vertex i consists of the sum
of the previous representations of its neighbors, which is exactly a one-hop. Figure 1E provides
intuition for how attention is applied after multiple applications of the Graph Transformer Encoder
block. Figure 2B illustrates the general architectural diagram.

6 RESULTS

6.1 NEXT TOKEN PREDICTION

We evaluate our model on a next-token prediction language modeling task on the Wikitext2 Merity
et al. (2016) and the Penn Treebank Marcus et al. (1993) datasets. We implement a Transformer
encoder with GHRR attention as described in section 5.1.

The positional encoding can be the same or different across the Q,K, V hypervectors as well as
across attention heads. Moreover, the positional encodings can either be trainable or fixed (i.e.
randomly initialized). This gives us eight different variants of the GHRR Transformer model. For
each GHRR encoder ϕq, ϕk, ϕv , we make W trainable and keep Λ fixed. Sample positional encodings
are visualized in Appendix C.

Both the baseline Transformer model Vaswani et al. (2017) and our model have a comparable number
of weight parameters, with a slight increase when trainable positional encoding (PE) is included.
Training details are described in Appendix B.1. We report the mean perplexity (PPL) and standard
deviation over five independent runs in Table 2.

We observe an average performance improvement of 5.47% on WikiText-2 and 2.75% on the PTB
dataset when compared to the baseline Transformer model. In the cases with the highest observed
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Table 2: Perplexity of trained language models
Model Trainable PE Wikitext2 Merity et al. (2016) Penn Treebank Marcus et al. (1993)

Baseline N/A 29.16 ± 0.13 94.78 ± 0.23

All same No 27.54 ± 0.08 93.93 ± 0.09
QKV No 27.6 ± 0.10 91.63 ± 0.04
Head No 27.55 ± 0.06 91.68 ± 0.11

All different No 27.56 ± 0.09 91.58 ± 0.08

All same Yes 27.54 ± 0.08 93.98 ± 0.12
QKV Yes 27.57 ± 0.12 91.51 ± 0.08
Head Yes 27.56 ± 0.07 91.53 ± 0.09

All different Yes 27.56 ± 0.05 91.52 ± 0.05

Table 3: Vertex classification accuracy
Model Accuracy (%)

GHRR Graph Transformer 82.30
GRIT Ma et al. (2023) 87.20

EGT Hussain et al. (2022) 86.82

Table 4: Graph classification accuracy
Trainable PE Accuracy (%)

No 53.5
Yes 70.0

improvements, the performance increased by 5.53% on WikiText-2 and 3.44% on PTB, respectively.
Specifically, we found a 2.56% performance improvement in PTB when PEs are varied across
Q,K, V matrices, attention heads, or both, compared to when they were not.

This suggests that the inclusion of PEs help with model performance, though there needs to be some
kind of variation between PEs to have sufficient expressive power. Moreover, there is negligible
difference between fixed and trainable positional encodings, suggesting that level of expressive power
is not needed for this task.

6.2 VERTEX CLASSIFICATION

We evaluate GHRR attention on vertex-level tasks of graph pattern recognition using the PATTERN
dataset. To reduce model parameters, we apply the assumptions from Section 5.2, including fixed
positional encodings and rank-1 GHRR hypervectors, resulting in a model that performs one-hop
attention. Detailed training information and dataset description are provided in Appendix B.2.

The accuracies of the GHRR graph transformer and state-of-the-art (SOTA) algorithms are listed in
Table 3. Although the performance of the GHRR graph transformer is slightly lower than that of the
SOTA, it demonstrates a significant advantage in training efficiency. The GHRR graph transformer
converges after just 3 epochs, whereas the other models require tens of epochs to converge.

6.3 GRAPH CLASSIFICATION

To test the efficacy of our model, we use a synthetic graph classification dataset. The model we use is
a GHRR Graph Transformer with positional encodings that are distinct across Q,K, V hypervectors
but are the same across attention heads. We do not make the assumptions in Section 5.2. Table 4
compares the accuracy of two versions of the model: one where positional encodings are fixed and
one where they are trainable. Results suggest that unlike in the language modeling task, trainable
positional encodings provide a significant advantage in model performance. Training details are
placed in Appendix B.3.

7 DISCUSSION

Attention based on other VSA structure encodings. In this work, we explored attention
mechanisms based on VSA encodings of sequences and graphs. Of course, our approach is not just

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

limited to these two data structures; one can design a corresponding GHRR Transformer for every
kind of VSA data structure encoding, including that for trees Frady et al. (2020) and finite state
machines Kleyko et al. (2023).

Positional encoding extensions. Our proposed positional encoding based on the binding operation
in VSA depends solely on the index of the token. More complex variants of the encoding can be
explored; for example, one can consider a 2D positional encoding based on (x, y)-coordinates in
images Px ⊙ Py . As mentioned in the related work, one can also incorporate graph information Ying
et al. (2021) into the positional encodings.

Decoder Architectures. While we only considered a Transformer encoder architecture in this work,
our formulation extends naturally to a decoder model. One consideration when designing the decoder
model is how sequential generation can occur, given data of more complex types. Efficient attention
masking is also of practical concern when designing the decoder architecture.

8 CONCLUSION

We have shown that among VSAs, GHRR is capable of implementing the attention mechanism in
the form of the binding operation, and develop a GHRR Transformer based on this equivalence.
We introduced a novel binding-based positional encoding and extended the attention mechanism to
support complex data structures based on VSA principles. In particular, as an example, we specify a
graph transformer architecture based on our framework and provide an interpretation for the graph
GHRR attention mechanism as performing a one-hop. We then evaluate our GHRR Transformer
variants on language modeling, vertex classification, and graph classification tasks.
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A HOPFIELD NETWORKS

A Hopfield network is an auto-associative memory model; i.e. it retrieves memory items based on
the content of the memory itself (i.e. the keys and values are the same). It can be implemented as a
neural network that stores patterns {ξj}nj=1 such that ξj ∈ {−1, 1}d are attractors Hopfield (1982).
An input query ξ is passed into the network. The retrieved vector is determined by the update rule

ξt+1 = sgn(XX⊤ξt) (11)

where X = [ξ1, . . . , ξn]. Under conditions such as sufficient separability of patterns (with respect to
dot product) and n being sufficiently small, ξ will converge to the closest pattern ξj . The capacity of
the Hopfield network is O(d).

Ramsauer et al. (2021) extends the network to continuous states and introduces a new update rule
that is equivalent to the self-attention mechanism:2

ξt+1 = Xsoftmax(βX⊤ξt) (12)

Here, the patterns {ξj}nj=1 satisfy ξj ∈ Rd. Compared to the discrete network defined, the resulting
Hopfield network has exponential storage capacity.

Hopfield networks, as in attention, compute pairwise similarities across the entire set of inputs,
performing simple dictionary-like queries. For more complex inputs, however, we might wish to
encode structural information into the representation so as to achieve a more structure-aware query
operation.

B TRAINING DETAILS

All experiments are conducted on a workstation equipped with an AMD Ryzen Threadripper PRO
5965WX CPU and two NVIDIA GeForce RTX 4090 GPUs. Each GHRR layer consumes approxi-
mately 0.5 GB of VRAM. The model requires approximately 70 minutes to execute one epoch for
vertex classification and 10 minutes for one epoch for graph classification.

B.1 NEXT TOKEN PREDICTION

For the use case of next token prediction, we add a few constraints to enable easy causal masking for
computational efficiency. We use causal masking to prevent the model from “looking ahead” when
making next token predictions. In particular, we set the positional encoding matrices P q

j , P
k
j , P

v
j

to have the form P a
j = EjA

a
j , a ∈ {q, k, v}. Doing so confines information about the j-th token to

the j-th row in the Q,K, V matrix elements, which allows us to apply a causal mask on the matrix
Re(QK†).

The models are trained using the Adam optimizer with a learning rate of 1e-3 and a weight decay of
1e-3 over 20 epochs. The baseline model features an embedding size of 240, a hidden dimension of
200, and a dropout rate of 0.2, while our model uses an embedding dimension of 240, distributed
across 8 heads.

B.2 VERTEX CLASSIFICATION

The PATTERN dataset is widely utilized to model social network communities by modulating intra-
and extra-community interactions Dwivedi et al. (2023). It comprises 10,000 training graphs, 2,000
validation graphs, and 2,000 test graphs. The graphs within this dataset are generated using the
Stochastic Block Model (SBM) Abbe (2018). An SBM is a type of random graph where communities
are assigned to each node. In this model, any two vertices are connected with a probability p if they
belong to the same community, or with a probability q if they belong to different communities, where
q represents the noise level.

The models comprise 8 GHRR attention layers and are trained using the Adam optimizer with an
initial learning rate of 1e-6, which decreases by a factor of 0.2 after 5 epochs without improvement.
Each model has an embedding size of 1880, a dropout rate of 0.2, and 10 attention heads.

2Self-attention has additional linear maps applied to the matrix X to compute Q,K, V .
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B.3 GRAPH CLASSIFICATION

The synthetic dataset consists of random undirected graphs, each with 32 vertices and a corresponding
binary label denoting whether the graph is fully connected or not. Graphs are sampled by randomly
generating matrices A′ such that P (A′

ij = 1) = p = 0.06 for all i, j = 1, ..., n, where n = 32 is the
number of vertices. We compute the final adjacency matrix as A = min(A′ + (A′)⊤,1), where 1 is
a matrix of all ones. We synthesize 10,000 graphs for the training set, and 2,000 graphs each for the
validation and test sets, respectively.

The models comprise 4 GHRR attention layers and are trained using the Adam optimizer with an
initial learning rate of 1e-3, reduced by a factor of 0.5 after 2 epochs of plateau. Each model has an
embedding size of 320, a dropout rate of 0.2, and 10 attention heads.
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C POSITIONAL ENCODINGS
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Figure 3: Visualization of positional encodings for the language modeling task, including trained
positional encodings for Q,K on two different Transformer layers and a fixed positional encoding
for Q in layer 0.
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