
Published as a conference paper at MCDC ICLR 2025

Collective Model Intelligence Requires
Compatible Specialization

Jyothish Pari∗
Massachusetts Institute of Technology
Cambridge, MA, USA

Samy Jelassi
Harvard University
Cambridge, MA, USA

Pulkit Agrawal
Massachusetts Institute of Technology
Cambridge, MA, USA

Abstract

In this work, we explore the limitations of combining models by averag-
ing intermediate features, referred to as model merging, and propose a new
direction for achieving collective model intelligence through what we call
compatible specialization. Current methods for model merging, such as pa-
rameter and feature averaging, struggle to effectively combine specialized
models due to representational divergence during fine-tuning. As models
specialize to their individual domains, their internal feature representations
become increasingly incompatible, leading to poor performance when at-
tempting to merge them for new tasks. We analyze this phenomenon using
centered kernel alignment (CKA) and show that as models specialize, the
similarity in their feature space structure diminishes, hindering their capac-
ity for collective use. To address these challenges, we investigate routing-
based merging strategies, which offer more flexible methods for combining
specialized models by dynamically routing across different layers. This al-
lows us to improve on existing methods by combining features from multiple
layers rather than relying on fixed, layer-wise combinations. However, we
find that these approaches still face limitations when layers within models
are representationally incompatible. Our findings highlight the importance
of designing new approaches for model merging that operate on well-defined
input and output spaces, similar to how humans communicate through lan-
guage rather than intermediate neural activations.

1 Introduction

Machine learning has recently seen an explosion of models trained for diverse tasks and
data and made readily available on platforms such as Hugging Face. Given a new task, a
question faced by practitioners is whether it is possible to reuse and combine information
across existing models or whether a base foundation model should be fine-tuned for their
application. We hypothesize that if a new task can be solved by combining existing models
– such a collective model may outperform a model obtained by fine-tuning a base foundation
model. We refer to the process of leveraging and combining multiple models to solve a target
task as model merging (Raffel, 2023; Ha & Tang, 2022; Ferreira et al., 2024).
The idea of collectively utilizing the intelligence of individual entities is commonplace in
nature – organisms often come together to form collectives—bee colonies, whale pods, and
human societies. Coordination between individuals (or models) with potentially specialized
roles (or functions) can enhance the capabilities of the whole (Seeley, 2009; Sumpter, 2010).
Imagine we need to solve a problem related to disease modeling. Instead of training one per-
son to be an expert in two fields, we may recruit two specialized experts – a mathematician

∗Correspondence to: Jyothish Pari <jyop@mit.edu>

1



Published as a conference paper at MCDC ICLR 2025

and a biologist – who can work together to solve the given problem. Effective collaboration
requires the two experts to share a common language. Regardless of their skills, if one
speaks only Hindi and the other speaks only German, their collaboration will be limited.
Thus, effective collaboration requires entities that are specialized and can communicate in
a shared language – a phenomenon we term compatible specialization.
We investigate state-of-the-art methods for model merging from the lens of compatible spe-
cialization and find that current approaches cannot effectively combine specialized models.
A prominent way to merge models is to pool features of the input predicted by different
models – we refer to this paradigm as representation-based or feature averaging. This in-
cludes techniques such as parameter averaging (Wortsman et al., 2022; Ilharco et al., 2022;
Matena & Raffel, 2022; Yadav et al., 2024b; Yu et al., 2024) or computing a weighted aver-
age of the individual model features. (Ferreira et al., 2024; Fedus et al., 2022; Shazeer et al.,
2017; Jiang et al., 2024a; Yadav et al., 2024a; Sukhbaatar et al., 2024; Tang et al., 2024).
However, experiments show that feature averaging fails to achieve compatible specialization
and is less effective than directly fine-tuning a base model for the target task.
To illustrate our perspective, consider this setup: we finetune a math model and a coding
model from a common base foundation model, aiming to merge them for a new task that
requires both math and coding skills—such as writing code to solve a math word problem.
We now outline two key factors that prevent compatible specialization:
1. Representations diverge during fine-tuning.
To measure how ”compatible” the math and coding models are while fine-tuning, we use
a representational divergence metric, D. Our experiments reveal a critical point, t, where
the dynamics of merging these models shift. From the start of fine-tuning up to t, as the
math and coding models become more specialized in their respective domains, D increases,
yet merging still improves performance on tasks that require both math and coding skills,
such as writing code to solve a math word problem. However, beyond t, further increases
in D lead to diminishing returns: merging yields fewer gains, and performance eventually
degrades. This critical point t marks the threshold where specialization begins to interfere
with compatibility. Thus, merging the math and coding models is effective only when they
haven’t become too specialized.
2. Layers become representationally incompatible.
Traditionally, merging is done by fine-tuning models from the same base model, where
features from the same depth in each model are combined (Zheng et al., 2024; Jiang et al.,
2024b; Lange et al., 2022). We refer to layers at the same depth across different models as
corresponding layers. However, a more flexible approach would allow for the combination
of features from layers at different depths across multiple models, as layers at different
depths may represent distinct functional computations. Unfortunately, the aforementioned
trade-off between specialization and mergeability is mirrored here. As layers become more
specialized, especially when they are positioned further apart in depth, representational
divergence increases, limiting their compatibility for merging. Therefore, we cannot achieve
compatible specialization across layers.
In essence, for model merging to be effective, models must not only be specialized but also
able to communicate their knowledge in a way that facilitates collaboration rather than
relying on representational alignment across layers. We argue that representations across
finetuned models will remain fundamentally incompatible, even if they originate from a com-
mon base model. Therefore, model merging should not be approached as simply combining
intermediate representations. Instead, it should focus on enabling models to exchange in-
formation, akin to how humans collaborate through language rather than combining their
brain activity. This shift in perspective highlights the critical need to develop methods that
support compatible specialization. While this paper does not propose a specific solution
for achieving compatible specialization, it aims to identify this need and demonstrate that
current model merging techniques fall short of it. We offer insights into how future work
can move toward realizing true compatible specialization.

2



Published as a conference paper at MCDC ICLR 2025

2 Representational Similarity Degrades over Time

How does representational compatibility across specialized models relate to the merg-
ing performance?

As models become increasingly specialized, their internal representations tend to shift to-
wards being more task-specific and less generalizable. We show this is Figure 1, where
despite the task specific models become more capable at math and coding respectively,
the merging performance on the adaptation task that requires math and coding abilities
steadily degrades after initially improving. This posses a trade off where we need to balance
specialization with representational compatibility. This is also clearly shown in the middle
and right sub-figures in Figure 1 where we can see a “U” shape curve when plotting repre-
sentational similarity vs merging performance. Therefore, from the start of fine-tuning, as
the models acquire specializations, the merging performance improves. However, it appears
after a critical step, the representations diverge to the point where further specialization
does not contribute to merging performance.
It is import to note that we measure the representational similarity on the adaptation
dataset that requires math and coding skills as well as the pretraining dataset OpenWebText
(Gokaslan & Cohen, 2019). Having diverging representations on the pretraining datasets
implies that the models have less compatibility. To mitigate this we try injecting the pre-
training data into the fine-tuning process to enforce more compatibility, but we did not
improve merging performance (see, Appendix A.8). This warrants the need to establish
representational structure and compatibility which can mitigate the existence of the afore-
mentioned trade off.

Figure 1: (Left) Validation cross-entropy loss (CE Loss) for math and coding models during
finetuning, as well as the merged models. The math and coding models exhibit steady
decreases in validation loss as they specialize on their respective tasks. In contrast, the
validation loss of the merged model via activation interpolation on a cross-domain task
requiring both math and coding decrease quickly and increase gradually after a critical
point. (Middle) Merging loss plotted against CKA similarity computed on data from the
adaptation dataset. (Right) Merging loss plotted against CKA similarity computed on data
from the pretraining dataset.

In summary, representational compatibility appears to play a crucial role in the success of
merging specialized models. As models specialize, their internal representations diverge,
making alignment across models over time increasingly difficult. This divergence is particu-
larly evident when merging models that are highly specialized. To improve the effectiveness
of model merging in feature space, strategies that promote representational similarity, ei-
ther through modifications in pretraining or fine-tuning process as well as architectural are
essential. In the following section we explore more complex merging methods to see if our
current merging practices are limiting performance.

3



Published as a conference paper at MCDC ICLR 2025

3 Merging with More Degrees of Freedom Improves
Adaptation Performance

Are there limits to more sophisticated routing strategies for merging?

3.1 Routing Is More Effective than Static Interpolation

C
E 

Lo
ss

2.0

1.8

1.6

1.4

1.2

Interpolation Value
1.00.80.60.40.20.0

C
E 

Lo
ss

1.70

1.65

1.60

1.55

1.50

1.45

1.40

1.35

Interpolation Value
1.00.80.60.40.20.0

In Domain Cross Domain

C
E 

Lo
ss

C
E 

Lo
ss

Routing With Base
Full Router
Single Router
Activation interpolation
LERP interpolation
SLERP interpolation1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15

1.10

Interpolation Value
1.00.80.60.40.20.0

Figure 2: Performance comparison of various model merging techniques for In-Domain and
Cross-Domain tasks. The plot shows the progression of different merging methods, from
simple interpolation strategies, (SLERP, LERP, activation interpolation) see A.5, to more
complex ones involving routers (Single Router, Full Router, Routing with Base Model). The
trend demonstrates that increasing the complexity and capacity for model merging results
in performance gains, as reflected by the lower adaptation loss.

Cross Domain
In Domain 2
In Domain 1

C
E 

Lo
ss

1.45

1.40

1.35

1.30

1.25

1.20

1.15

1.10

Routing

[3 layers]

Routing

[2 layers]

Routing

[Standard]

Figure 3: Comparison three routing strate-
gies in model merging: Standard, 2-Layer, and
3-Layer Routing (see Figure 4). Evaluated
on two in-domain tasks and one cross-domain
task, results show that increased routing com-
plexity reduces CE loss across all tasks. 2-
Layer Routing achieves notable gains over
standard routing, with 3-Layer Routing offer-
ing further, minor improvements.

We provide a characterization of different
merging methods based on their degrees
of freedom which describes how large their
search space is. For example, when we do
a simple interpolation of parameters where
θmerge = αθA + (1 − α)θB , we are searching
along a one dimensional subspace. Search-
ing the right subspace has shown to be im-
portant (Wortsman et al., 2021). Pushing
this direction, we focus our attention on
routing methods, where each router can ex-
plore an interpolation between two or more
experts conditioned on the current input
or token. By introducing routers we can
dynamically combine information between
layers from different models, thus increas-
ing our search space for merging.
As shown in Figure 2, in all tasks as
the complexity of the merging method in-
creases in degrees of freedom, we observe
an improvement in the adaptation perfor-
mance. We see that merging scales with
more routers and models. To push current
methods we will describe in the following section how we increased the search space for
routing based merging.

3.2 Multi-Layer Routing improves Merging Performance

Based on the aforementioned trend we further increase the search space by allowing the
router at layer l of the MoE to route to expert MLPs at different layers than l across

4



Published as a conference paper at MCDC ICLR 2025

attention

router

weighted average

Routing to 2 Layers

attention

router

weighted average

Routing to 3 LayersStandard Routing

attention

router

weighted average

Model BModel A

Figure 4: Visual representation of different routing strategies for model merging. From left
to right: (1) Standard Routing performs layer-wise merging between corresponding layers
from models A and B using a weighted average. (2) Routing to 2 Layers expands the merging
process by incorporating not only the corresponding layers but also the next layer, allowing
the router to combine outputs from the current layer and the layer above. (3) Routing to
3 Layers extends this further by merging the current layer, the layer above, and two layers
above, enabling more complex

different models. Typically in an MoE model, experts will come from the same layer l in
the specialized models. This allows experts to be reused across layers and consequently it
broadens the search space. We visually describe what this means in Figure 4.

Inter Comparison

10

8

6

4

2

0

1086420

Intra Comparison

10

8

6

4

2

0

1086420

Intra Comparison

Layer Index

10

8

6

4

2

0

1086420

1 1

La
ye

r 
In

d
ex

Pr
et

ra
in

in
g 

D
at

as
et

A
da

pt
at

io
n 

D
at

as
et

La
ye

r 
In

d
ex

Layer Index

Figure 5: CKA representational similarity analysis for MLP layers in a cross-domain math
and coding task, comparing layer outputs across models. The top row shows comparisons
based on the adaptation dataset, while the bottom row shows comparisons based on the
pretraining dataset. The first two columns depict intra-model comparisons, illustrating the
self-similarity of representations within the same model across different layers. These plots
show that adjacent layers exhibit higher representational similarity, whereas layers farther
apart have significantly lower similarity. The third column shows inter-model comparisons,
reflecting the similarity of corresponding layers between the math and coding models. Layers
in distant positions, demonstrate lower representational alignment.

However, there is a plateau in performance across all tasks as shown in Figure 3 when
increasing the number of layers the router can route to. This implies that unless there
exists a better way to efficiently decompose the model, the current method of MoE routing
style merging is limited. Ideally, we would want to be able to create a more complex routing
scheme that uses different blocks across different locations across different models, instead
of being locally limited. In the following section we investigate this phenomenon through a
representational lens.

5



Published as a conference paper at MCDC ICLR 2025

3.3 The Challenges of Layer Wise Representational Incompatibility

When the performance in Figure 3 plateaus, we find that is is correlated with representa-
tional similarity between layers within a model and across models. We specifically analyzed
this in the cross domain experiment as shown in Figure 5. We pass a batch from the adap-
tation dataset and the pretraining dataset into both the math and coding finetuned models,
and measure the representational similarity between different layers. It is apparent that
within a model (Intra), layers adjacent to each other produce the most similar representa-
tions. In addition, even across the finetuned models (Inter) there is highest representational
similarity around similar relative positions in the network. This suggests that layers with
high representational dissimilarity can not have their outputs combined in a straightforward
way.
Consequently, we are limited to routing experts that come from similar relative positions in
the network. To mitigate this one would have to change the architecture, or how the models
are pretrained or fintuned to ensure representationally compatibility across different layers
in the network.

4 Current Limitations and Future Directions

Our experiments demonstrate that while routing-based merging shows promise, it still under-
performs direct fine-tuning across all evaluated tasks (Table 1). This limitation necessitates
fundamental improvements before model merging can be practically adopted. We outline
key challenges and proposed solutions toward achieving decentralized collective intelligence
(Raffel, 2023).

Method Cross-Domain In-Domain 1 In-Domain 2
Merging 1.17 1.10 1.36

Fine-tuning 1.04 0.91 1.01

Table 1: Loss comparison of merging and fine-tuning methods on the cross-domain task.

4.1 Representational Compatibility Challenges

While successful cases of model combination exist, such as LLaVA’s vision-language model
stitching (Liu et al., 2024; Li et al., 2024), these typically involve carefully designed adapters
between two models. Scaling this approach to dynamic routing among multiple models
would require exponentially many adapters. Despite progress in layer-wise compatibility
(Jiang et al., 2024b), ensuring cross-model representational consistency remains an open
challenge.

4.2 Input-Output Space Routing

Drawing parallels to open-source software development (Raffel, 2023), we propose that one
fruitful direction of research is to shift from feature-space merging to routing models in
their input-output spaces. Rather than attempting to merge internal representations, this
approach treats models as specialized functions operating in a common space (e.g., lan-
guage), similar to how software libraries are composed.

4.3 Router Design Considerations

Current MoE routing mechanisms are constrained by fixed expert counts and requirements
for smooth loss interpolation. Future routers should mirror how programmers select li-
braries: actively searching and retrieving models based on task requirements. This suggests
an RL-based approach to routing, combined with clear model functionality descriptions (Lee
et al., 2024). Such descriptions could include human-provided specifications and input/out-
put examples when models are contributed to a collective repository.

6



Published as a conference paper at MCDC ICLR 2025

References
William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion pa-

rameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

Silvan Ferreira, Ivanovitch Silva, and Allan Martins. Organizing a society of language
models: Structures and mechanisms for enhanced collective intelligence. arXiv preprint
arXiv:2405.03825, 2024.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Arthur Gretton, Kenji Fukumizu, Choon Teo, Le Song, Bernhard Schölkopf, and Alex
Smola. A kernel statistical test of independence. Advances in neural information process-
ing systems, 20, 2007.

David Ha and Yujin Tang. Collective intelligence for deep learning: A survey of recent
developments. Collective Intelligence, 1(1):26339137221114874, 2022.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig
Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic.
arXiv preprint arXiv:2212.04089, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian
Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024a.

Jiachen Jiang, Jinxin Zhou, and Zhihui Zhu. On layer-wise representation similarity: Ap-
plication for multi-exit models with a single classifier. arXiv preprint arXiv:2406.14479,
2024b.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of
neural network representations revisited. In International conference on machine learning,
pp. 3519–3529. PMLR, 2019.

Richard D Lange, Devin Kwok, Jordan Matelsky, Xinyue Wang, David S Rolnick, and
Konrad P Kording. Neural networks as paths through the space of representations. arXiv
preprint arXiv:2206.10999, 2022.

Hyunji Lee, Luca Soldaini, Arman Cohan, Minjoon Seo, and Kyle Lo. Routerretriever:
Exploring the benefits of routing over multiple expert embedding models. arXiv preprint
arXiv:2409.02685, 2024.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-
vision assistant for biomedicine in one day. Advances in Neural Information Processing
Systems, 36, 2024.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual
instruction tuning, 2024. URL https://arxiv.org/abs/2310.03744.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging.
Advances in Neural Information Processing Systems, 35:17703–17716, 2022.

Jason Phang, Haokun Liu, and Samuel R. Bowman. Fine-tuned transformers show clusters of
similar representations across layers. In Jasmijn Bastings, Yonatan Belinkov, Emmanuel
Dupoux, Mario Giulianelli, Dieuwke Hupkes, Yuval Pinter, and Hassan Sajjad (eds.),
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural
Networks for NLP, pp. 529–538, Punta Cana, Dominican Republic, November 2021. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2021.blackboxnlp-1.42. URL
https://aclanthology.org/2021.blackboxnlp-1.42.

7

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://arxiv.org/abs/2310.03744
https://aclanthology.org/2021.blackboxnlp-1.42


Published as a conference paper at MCDC ICLR 2025

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019.

Colin Raffel. Building machine learning models like open source software. Communications
of the ACM, 66(2):38–40, 2023.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Doso-
vitskiy. Do vision transformers see like convolutional neural networks? Advances in neural
information processing systems, 34:12116–12128, 2021.

Thomas D Seeley. The wisdom of the hive: the social physiology of honey bee colonies.
Harvard University Press, 2009.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. arXiv preprint arXiv:1701.06538, 2017.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste
Rozière, Jacob Kahn, Daniel Li, Wen-tau Yih, Jason Weston, et al. Branch-train-mix:
Mixing expert llms into a mixture-of-experts llm. arXiv preprint arXiv:2403.07816, 2024.

David JT Sumpter. Collective animal behavior. Princeton University Press, 2010.

Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-
task models via weight-ensembling mixture of experts. arXiv preprint arXiv:2402.00433,
2024.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin, Ali Farhadi, and Mohammad
Rastegari. Learning neural network subspaces. In International Conference on Machine
Learning, pp. 11217–11227. PMLR, 2021.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith,
et al. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In International conference on machine learning, pp.
23965–23998. PMLR, 2022.

Prateek Yadav, Colin Raffel, Mohammed Muqeeth, Lucas Caccia, Haokun Liu, Tianlong
Chen, Mohit Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model
moerging: Recycling and routing among specialized experts for collaborative learning.
arXiv preprint arXiv:2408.07057, 2024a.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-
merging: Resolving interference when merging models. Advances in Neural Information
Processing Systems, 36, 2024b.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are su-
per mario: Absorbing abilities from homologous models as a free lunch. In Forty-first
International Conference on Machine Learning, 2024.

Yafang Zheng, Lei Lin, Shuangtao Li, Yuxuan Yuan, Zhaohong Lai, Shan Liu, Biao Fu,
Yidong Chen, and Xiaodong Shi. Layer-wise representation fusion for compositional gen-
eralization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 19706–19714, 2024.

8



Published as a conference paper at MCDC ICLR 2025

A Appendix

We present the main tools we will use. In sub-section A.1, we describe the general Mixture
of Experts formulation and how we employ it for model merging. In sub-section A.2, we
outline the merging methods we compare. In sub-section A.3, we discuss the tasks used
to evaluate the merging methods. Finally, in sub-section A.4, we explain how we analyze
model representations and measure similarity. Then we will present more ablations and
analysis.

A.1 Mixture of Experts For Merging

In our work, we investigate model merging based on the Mixture of Experts (MoE) frame-
work (Yadav et al., 2024a). Instead of typically merging models into a single compressed
one, we maintain the original models and introduce a router that dynamically weights token
features outputted by different experts. Typically, the MLP layer in a transformer (Vaswani,
2017) is treated as the expert in an MoE (Fedus et al., 2022).

Let {Ei}N
i=1 denote N experts. For a sequence of T tokens in Rd, represented by X ∈ RT ×d,

the router R(x) : Rd → ∆N assigns a distribution over the experts for each token xt ∈ Rd.
The output of the MoE layer for token xt is a weighted sum of expert outputs:

yt =
N∑

i=1
rt,i Ei(xt),

where rt,i is the weight assigned by the router to expert Ei
1. Thus, for the entire sequence

X, the output is {yt}T
t=1.

In our work, the routing function R(xt) is a linear transformation. Given an input token
xt ∈ Rd, the router is parameterized by a weight matrix W ∈ RN×d. The router output rt
is computed as:

rt = softmax(Wxt),

We now describe how we utilize the MoE formulation for model merging. During fine-
tuning, we train only the MLP layers to create specialized models. The MLP layers become
our “experts”. Additionally, we train the router exclusively on the adaptation dataset.
We capture this in Figure 6. Performance is evaluated through auto-regressive next token
prediction on a held-out validation set, and we report results using cross-entropy loss (CE
Loss).

A.2 Different Merging Methods

While merging methods typically are a form of parameter averaging, we find that MoE
routing style merging performs consistently better and shift our focus on them. We now
describe the different routing schemes we investigate.

• Activation Interpolation Instead of interpolating the experts via a router, we
have a static coefficient α ∈ [0, 1].
So for layer l, x(l) = α E(l)

A (x(l−1)) + (1 − α)E(l)
B (x(l−1)).

• Single Router We place a single trainable router after the first attention layer to
produce the routing coefficients rt that are used for weighted averaging of the MLP
outputs across all layers.

• Full Layer Routing Instead of just having a single router determining the weight-
ing between MLP outputs, we have a separate routing function per layer, more
similar to a standard MoE.

1Note that the router can be sparse and only utilize a subset of experts as well

9



Published as a conference paper at MCDC ICLR 2025

mlpmlp

Model A

attention

attention

mlp

attention

mlp 1

mlp 1

router

router

weighted average

mlp 2

attention

mlpmlp

Base 
Model

attention

mlp

attention

mlp 1

mlp 2

attention

attention

mlpmlp 1

mlp 1

Model B

mlp 2

attention
Adaptation to

Task C

Finetune on 
Task , A B

attention

weighted

average

mlp 2 mlp 2

Figure 6: We illustrate the general routing based merging pipeline as follows. First, the
MLP layers are finetuned from a base model on specialized datasets. Once we obtain a set
of specialized models, we construct a Mixture of Experts (MoE) where the experts are the
finetuned MLP layers from the various models. Finally, on a novel adaptation dataset, we
train only the router.

• Full-Layer Routing with Base Model In our experiments we obtain specialized
models by fine-tuning MLP layers from a common base model. Instead of only
routing between the finetuned models, we also include the base model as well as
another model that can be merged. This tests how routing scales with access to
more models.

• Multi-Layer Routing We extend MoE merging by allowing the router at layer l
to route to experts from different layers. This allows for reuse of experts and more
complex routing paths.

A.3 Tasks

We now describe the different tasks we evaluate on.

• In-Domain We fine-tune a pretrained GPT-2 (Radford et al., 2019) model using
the nanoGPT codebase on two different HuggingFace coding datasets2. In all fine-
tuning, we only update the MLP layers and freeze the attention layers to allow
for easy MoE-style routing for merging. We evaluate merging adaptation on two
additional coding datasets3.

• Cross-Domain We investigate how well merging can be used for cross-domain
adaptation. To this end, we fine-tune a pretrained GPT-2 model on a math dataset4

and a coding dataset5. We measure merging adaptation on a dataset6 that requires
both math and coding reasoning.

We report results in validation Cross-Entropy (CE) Loss.

A.4 Centered Kernel Alignment

We will be utilizing the centered kernel alignment (CKA; Kornblith et al., 2019) metric to
compare the representations of two models. CKA is a well established metric that has been
used in numerous analysis works (Raghu et al., 2021; Lange et al., 2022; Phang et al., 2021).

2nampdn-ai/tiny-codes and TokenBender/code instructions 122k alpaca style
3nickrosh/Evol-Instruct-Code-80k-v1 and open-phi/programming books llama.
4microsoft/orca-math-word-problems-200k.
5nampdn-ai/tiny-codes.
6reasoning-machines/gsm-hard.

10



Published as a conference paper at MCDC ICLR 2025

It is important to note that the CKA metric is invariant to isotropic scaling, biases, and
orthogonal transformations to the representations.
Given two sets of representations, X ∈ Rn×d1 and Y ∈ Rn×d2 .

H = I − 1
n

11⊤, K = HKH, L = HLH

HSIC(K, L) = 1
(n − 1)2 tr(K L)

CKA(X, Y) =
HSIC(K, L)√

HSIC(K, K) · HSIC(L, L)

where H is a centering matrix, and Ki,j = K(xi, xj) and Li,j = L(yi, yj) are kernel matrices
generated by the kernel functions K, L. We use the dot product as the kernel function in
our experiments. HSIC(·, ·) is the empirical estimator for the Hilbert-Schmidt Independence
Criterion (Gretton et al., 2007), which was originally developed to measure the statistical
independence of random variables.

A.5 Weight Interpolation Methods

Linear Interpolation (LERP) Given two models’ weights θA, θB , we search along the
one dimensional subspace: αθA + (1 − α)θB , α ∈ [0, 1].
Spherical Interpolation (SLERP) One potential issue with linear interpolation is that
if the normalized dot product between two flattened weights is close to −1, then a linear
interpolation can result in a low norm weight. To mitigate this effect, we perform spherical
interpolation of the weights, where we search along the arc. Let v0, v1 be two flattened
weight vectors, we switch weight notation from θ to v avoid confusion when referring to
angles between weights.

slerp(α, v0, v1) =
sin((1 − t)θ)

sin(θ) v0 +
sin(tθ)
sin(θ) v1

where θ = cos−1(v⊤
0 v1). If the vectors are nearly colinear (i.e., the dot product is close to

1), linear interpolation (LERP) is used:

A.6 Architecture Details

params dimension n heads n layers learning rate batch size n tokens
124M 768 12 12 8.0 × 10−4 64 160k

Table 2: Model sizes, architectures, and optimization hyper-parameters for fine-tuning
GPT2

We use a learning rate of 8 × 10−5 for the fine-tuning results in Table 1

A.7 In Domain Layer-Wise Similarity

See Figure 7 for the layer wise representational analysis between two coding models across
two different coding adaptation tasks.

A.8 Routing Ablations

11



Published as a conference paper at MCDC ICLR 2025

La
ye

r 
In

d
ex

Layer Index

Inter ComparisonIntra ComparisonIntra Comparison

Figure 7: In the in-domain tasks, we plot the CKA representational distance between dif-
ferent MLP layer outputs for the same batch of inputs. The first two columns show the
self-similarity of representations within the same model at different layers, illustrating how
adjacent layers are more representationally similar. The right column shows the similarity
between the representations of corresponding layers from two different models.

Cross-Domain CE Loss
DataMix Routing 1.35

2 Layer MLP Router 1.28
Standard Routing 1.30

Table 3: Cross Domain Performance with different ablations. DataMix Routing refers to
routing a math and coding policy but the math and coding models were co-finetuned on the
pretraining data. 2 Layer MLP refers to a router being a 2 layer MLP to test the effects of
having more routing capcity.

12


	Introduction
	Representational Similarity Degrades over Time
	Merging with More Degrees of Freedom Improves Adaptation Performance
	Routing Is More Effective than Static Interpolation
	Multi-Layer Routing improves Merging Performance
	The Challenges of Layer Wise Representational Incompatibility

	Current Limitations and Future Directions
	Representational Compatibility Challenges
	Input-Output Space Routing
	Router Design Considerations

	Appendix
	Mixture of Experts For Merging
	Different Merging Methods
	Tasks
	Centered Kernel Alignment
	Weight Interpolation Methods
	Architecture Details
	In Domain Layer-Wise Similarity
	Routing Ablations


