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ABSTRACT

This paper presents CrossVoice, a novel cascade-based Speech-to-Speech Trans-
lation (S2ST) system employing advanced ASR, MT, and TTS technologies with
cross-lingual prosody preservation through transfer learning. We conducted com-
prehensive experiments comparing CrossVoice with direct-S2ST systems, show-
ing improved BLEU scores on tasks such as Fisher Es-En, VoxPopuli Fr-En and
prosody preservation on benchmark datasets CVSS-T and IndicTTS. With an aver-
age mean opinion score of 3.6 out of 4, speech synthesized by CrossVoice closely
rivals human speech on the benchmark highlighting the efficacy of cascade-based
systems and transfer learning in multilingual S2ST with prosody transfer.

1 INTRODUCTION

Transformer-based models (Vaswani et al., 2017) have revolutionized speech processing, leading
to significant advancements in automatic speech recognition and text-to-speech technologies (Latif]
et al.| [2023; [Prabhavalkar et al., [2023)). This shift towards end-to-end systems has opened new av-
enues in Speech-to-Speech Translation (S2ST) for translating speech across languages. Our work in-
troduces CrossVoice, a cascade-based S2ST system utilizing the latest open-source automatic speech
recognition (ASR), machine translation (MT), and text-to-speech (TTS) models unlike direct S2ST
methods that bypass MT. It is evaluated against state-of-the-art (SOTA) direct S2ST systems for
speech quality, cross-lingual prosody preservation, and translation accuracy using BLEU (BiLin-
gual Evaluation Understudy) score (Papineni et al., 2002). Further, we investigate the performance
of cascade-based vis-4-vis direct approaches in S2ST and demonstrate how transfer learning can
enhance prosody transfer in cross-lingual settings.

2 RELATED WORK

Current open-source systems for direct-S2ST involve various techniques such as self-supervised
learning (Lee et al.| 2021b), using speech discrete units (Lee et al.,|2021a), text modalities (Zhang
et al., [2023) and linguistic decoders (Jia et al., 2022a). However, these systems often face chal-
lenges including lower translation accuracy and inferior audio quality, particularly, in cross-lingual
prosody transfer (Bentivogli et al., [2021)). In contrast, cascade-based S2ST systems that integrate
separate ASR, MT, and TTS models (Nakamura et al.l [2006) are criticized for high latency and
subpar prosody transfer (Latif et al.| 2021}

Recent advancements in transfer-learning, such as voice cloning (Jia et al.,[2019) and transformer-
based ASR and TTS, suggest the potential for more efficient and effective prosody transfer in
cascade-based systems (Huang et al., [2023)). Our study leverages these SOTA technologies in the
proposed cascade-based framework, CrossVoice, and compares its performance with direct S2ST
systems on prosody transfer and overall efficiency.

3 METHODOLOGY

CrossVoice integrates state-of-the-art ASR, MT, and TTS techniques to establish a baseline trans-
lation cascade: 1) Faster—Whispelﬂ for ASR (comparision of other ASR models in|A.2), which is a
faster and batch-capable version of Whisper-Large (Radford et al., 2022; |Moslem et al.| [2022)); 2)

*Equal Contribution
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Figure 1: Proposed Architecture for CrossVoice

Google’s NMT model (Wu et al.,[2016) for MT, which is known to reduce error rates significantly;
and 3) the Massive Multilingual Speech (MMS) model (Pratap et al., [2023)) based on VITS-TTS
(Kim et al.l [2021) for TTS, which is capable of handling over 1000 languages with superior per-
formance in linguistic diversity and speech synthesis. CrossVoice uses transfer learning on a voice
cloning module (trained on the speaker identification task) for prosody preservation. For this, a
pre-trained speaker encoder generates X-vector embeddings (Ravanelli et al., 2021} [Snyder et al.|
2018)) and is coupled with FreeVC’s (Li et al.,2023) voice conversion module to effectively transfer
speaker prosody.

We conducted two sets of experiments to evaluate our system’s performance in translation and
speech synthesis. The first experiment evaluates synthesized speech quality on the CVSS-T (Jia
et al., 2022b) and IndicTTS benchmark datasets (Kumar et al., 2023). We report mean opinion
scores (MOS) from a survey of 40 respondents, rating on a four-point scale with a 95% confidence
interval as per the protocol of |Huang et al.| (2023). MOS-h represents ratings for natural human
speech (called as Ground Truth or GT here), MOS-v for baseline TTS audio without prosody trans-
fer, and MOS-c for speech synthesized by CrossVoic The second experiment compares the BLEU
performance of CrossVoice with recent direct-S2ST SOTA systems discussed in Section [2| on the
translation tasks for which their superiority has been claimed over cascade-based systems.

4 RESULTS

Table [1] tabulates results of the first experiment on five translation tasks. MOS-c score is almost
the same as MOS-h (i.e., the GT) and also beats MOS-v scores of the vanilla TTS considerably, by
almost 40% on each task. Figures [2]and 3] (see highlight high BLEU scores of CrossVoice that
averaged to 33.4 over all the languages of the chosen benchmark datasets.

Table{2] lists the BLEU scores of CrossVoice (BLEU-c) and SOTA methods (BLEU-r). For calcu-
lating the BLEU scores, we employed Whisper (using the temperature setting of one and greedy
decoding) for generating transcripts of the speech generated using CrossVoice and SOTA methods.
We sourced BLEU scores from the original papers for the SOTA methods (reported as BLEU-r).
CrossVoice surpasses the claimed superior performance of direct S2ST systems in their respective
tasks, notably achieving almost a 19-point increase in BLEU score in the VoxPopuli S2ST Fr-En
task. This significant performance boost is attributed to effective ASR and precise audio reconstruc-
tion through voice cloning.

Table 1: MOS comparison on S2ST quality Table 2: Comparison on S2ST-BLEU

Translation Task MOS-h (T) | MOS-v (D)° | MOS-c (1)° Task (reported in | BLEU-r (1) BLEU-c (1)
(GT) (Vanilla TTS) | (CrossVoice) SOTA method) (SOTA method) (CrossVoice)
Spanish-English’ | 3.88 275+0.12 | 3.76 £ 0.08 Fisher Es-En 42.9 (Tia et al.[2022a) | 45.6
German-English™ | 3.83 2.64+005 |373+£0.11 Fisher Es-En 39.9 (Lee et al.[[2021a) | 45.6
Ttalian-Englishf | 3.75 2.89 +£0.01 | 3.53+£0.10 MuST-C En-De | 30.2 (Zhang et al.][2023) | 39.7
Hindi-English* 3.79 254+0.07 |3.63+002 MuST-C En-Fr | 40.8 (Zhang et al.||2023) | 46.5
English-Hindi* [ 3.67 265+£003 |3.34+0.04 VoxPopuli Fr-En | 20.3 (Lee et al.]2021b) | 39.6
TCVSS-T, *Indic-TTS, °mean=+std

5 CONCLUSION AND FUTURE WORK

CrossVoice effectively combines advanced ASR, MT, and TTS technologies, establishing itself as
a highly proficient cascade-based S2ST system with strengths in cross-lingual prosody preserva-
tion and translation accuracy. Our comprehensive experiments reveal that CrossVoice outperforms
existing direct S2ST systems, underscoring the effectiveness and reliability of cascade-based sys-
tems with transfer learning for direct speech translation across languages. Future work includes
improving transfer of emphasis and intonation across languages as reported in[A.4]

?Details about MOS calculations and the protocol are given in the appendix
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A APPENDIX

Al

ACRONYMS USED

* MOS : Mean Opinion Score
e S2ST : Speech to Speech Translation
* ASR : Automated Speech Recognition

e MT : Machine Translation
e NMT : Neural Machine Translation
e TTS : Text to Speech

¢ GT : Ground Truth

* SOTA : State-Of-The-Art
* BLEU : Bilingual Evaluation Understudy

A2

ASR RESULTS

We compared various ASR models such as variants of Whisper, Wav2Vec2.0 (Baevski et al., 2020),
WavLM (Chen et al., 2022) and Faster-Whisper on multilingual datasets: Librispeech-test-clean
(English), IndicTTS (Indian accented English speech) (Kumar et al.,|2023)) and VoxPopuli - French,
Spanish and German. Results are shown in Table[3|and[4} Faster-Whisper clearly performs very well
on both WER and average latency metrics. We measured average latency as the weighted average

of the time taken to transcribe each sample of the entire dataset.

Table 3: Results of different ASR Models on Librspeech-test-clean subset (Panayotov et al.,2015)

Model WER (%) | Average Latency (s)
Whisper - Tiny 9.78 0.183
Whisper - Base 6.94 0.234
Whisper - Small 4.85 0.385
Whisper - Large 3.63 1.145
Wav2Vec2.0 - Large 3.20 0.415
WavLM - Large 2.80 0.525
Faster-Whisper 4.23 0.152

Table 4: WER benchmarking of models on various Datasets

Model IndicTTS-en | VoxPopuli-French | VoxPopuli-Spanish | VoxPopuli-German
Wav2Vec2.0 - XLSR 15.65 25.34 21.34 24.73
WavLM - Large 14.25 23.21 18.65 20.56
Whisper - Tiny 10.74 31.53 19.63 25.24
Whisper - Base 8.63 21.34 15.32 19.75
Whisper - Small 5.28 13.24 12.18 13.32
Whisper - Large 3.85 10.56 7.82 9.75
Faster-Whisper 4.38 11.23 8.96 10.32

A.3 TRANSLATION TASKS

We benchmarked CrossVoice on 3 benchmark S2ST tasks and they are summarised as follows:

1. Fisher (Spanish-English) (Post et al., 2014): The Fisher Spanish dataset is a collection
of telephone speech conversations in Spanish, primarily involving topics of daily life. It
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contains over 160 hours of recorded conversations, involves more than 130,000 utterances
and includes around 24,000 speakers.

2. MuST-C (English to German & English to French) (Di Gangi et al.,2019): It is a multilin-
gual speech translation corpus with 273 hours of audio recorded for the English to German
task and 236 hours of audio recorded for the English to French task.

3. VoxPopuli French-English (Wang et al,[2021): French and English segments of the Vox-
Populi dataset are taken for translation with 211 and 543 hours of transcribed audio. Same
text segments from the dataset are taken for the S2ST task.

For computing the BLEU-c scores, we randomly sampled 250 clips 10 times for each task and
tested our system. The reported BLEU-c score is the average of these 10 iterations to ensure a fair
and correct representation of our results.

A.4 MOS CALCULATION METHODOLOGY AND PROTOCOL

Following the protocol laid out by (Huang et al., 2023)), a survey was conducted of 40 respondents,
where each respondent was shown the same set of translated clips along with their clips in the
source language. This set consisted of 15 voice clips of duration varying from 2 secs to 10 secs. The
following questions were asked from the respondents:

1. Rate the similarity of the voice of the speaker to the original source clip : 1 - Completely
Different, 2 - Some similarities but more differences, 3 - Some differences but more similar-
ities, 4 - Perfectly similar.

2. Rate the quality and naturalness of the generated audio clip: 1 - Extremely poor / robotic, 2
- Somewhat natural but more robotic / poor, 3 - Somewhat robotic/poor but more natural,
4 - Perfectly natural.

3. Rate the similarity of the emphasis and intonation of the source clip and synthesised clip:
1 - Completely Different, 2 - Some similarities but more differences, 3 - Some differences
but more similarities, 4 - Perfectly similar.

Respondents were allowed to rate “exactly in-between” for intermediary cases. It was noted starkly
that on the first two questions, a huge proportion of respondents rated the synthesised speech for the
five languages as close to 4. However, on the last question, a lot of respondents rated the system
between 2 and 3 indicating that while the speaker’s voice characteristics and prosody are being
transferred with quality, intonation and emphasis will need improvement.

For calculating MOS-v, we employed our MMS TTS without using any voice cloning. Similar
surveys on a lesser number of clips were able to see the Vanilla TTS system getting lower ratings
compared to CrossVoice on all the three questions. We referenced MOS-h scores from the official
paper of (Jia et al.| |2022b).

A.5 RESULTS ON CVSS-T AND INDICTTS

We conducted experiments on 11 languages from the CVSS-T dataset and Hindi from IndicTTS
dataset using CrossVoice. Figure [2 shows the results for these 12 languages when translated from
any language X — en (English), whereas Figure [3] shows the results for the 12 languages when
translated from (English) en — X. Notably, our system shows higher BLEU scores on trans-
lating from English to any language because of low WER of Whisper on English and NMT being
extensively pre-trained on en —> X tasks.

For calculating the results, we randomly took samples of 100 clips for each language and calculated
results for one sample. We repeated this process for 10 iterations to check for biases. We report the
average BLEU score for each language from the experiments. The standard deviation shown on all
the tasks ranged between € (0.5, 1.5), thus, indicating lesser deviation.

A.6 ETHICAL CONSIDERATIONS

This study has been conducted and tested on standard open source datasets (that are appropriately
cited in the paper), widely used in the literature.
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We recognize that voice cloning has the potential to be used for malicious activities; however, the
benefits of this technology may outweigh the negatives. Our system is designed to encourage inclu-
sivity and transcend the language barrier in communication between individuals.

Further, we advocate for transparency in the use of voice cloning technology and users should always
be informed when they are interacting with a cloned voice.

A.7 LIMITATIONS AND CHALLENGES

CrossVoice relies heavily on extensive datasets for training. Obtaining and processing large, high-
quality, and diverse datasets that cover a wide range of languages and accents is a significant chal-
lenge and can limit the system’s effectiveness and scalability. CrossVoice encounters challenges in
accurately transferring prosody, like intonation and stress patterns, across different languages. This
is a complex task due to the inherent differences in linguistic structures and prosodic features among
languages. This lack of appropriate transfer of intonation and emphasis is also depicted by the MOS
score protocol [A.4]
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