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Figure 1: Qualitative comparison of language feature visualizations by our method and
4DLangSplat (Li et al., 2025c). The top part shows semantic visualizations learned by both methods,
where our approach not only captures finer details (upper-right zoomed regions) but also demon-
strates higher sensitivity to temporal state changes of objects (lower-right highlighted examples).
The bottom part illustrates our method’s learned semantic features projected onto 3D point clouds,
providing a more interpretable view of spatiotemporal semantics in dynamic scenes.

ABSTRACT

Constructing 4D language fields is crucial for embodied AI, augmented/virtual
reality, and 4D scene understanding, as they provide enriched semantic represen-
tations of dynamic environments and enable open-vocabulary querying in com-
plex scenarios. However, existing approaches to 4D semantic field construction
primarily rely on scene-specific Gaussian splatting, which requires per-scene op-
timization, exhibits limited generalization, and is difficult to scale to real-world
applications. To address these limitations, we propose 4DLangVGGT, the first
Transformer-based feed-forward unified framework for 4D language grounding,
that jointly integrates geometric perception and language alignment within a sin-
gle architecture. 4DLangVGGT has two key components: the 4D Visual Geome-
try Transformer, StreamVGGT, which captures spatio-temporal geometric repre-
sentations of dynamic scenes; and the Semantic Bridging Decoder (SBD), which
projects geometry-aware features into a language-aligned semantic space, thereby
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enhancing semantic interpretability while preserving structural fidelity. Unlike
prior methods that depend on costly per-scene optimization, 4DLangVGGT can
be jointly trained across multiple dynamic scenes and directly applied during in-
ference, achieving both efficiency and strong generalization. This design signifi-
cantly improves the practicality of large-scale deployment and establishes a new
paradigm for open-vocabulary 4D scene understanding. Experiments on HyperN-
eRF and Neu3D datasets demonstrate that our approach not only generalizes ef-
fectively but also achieves state-of-the-art performance, achieving up to 2% gains
under per-scene training and 1% improvements under multi-scene training. Our
code released in 4DLangVGGT Repository.

1 INTRODUCTION

Scene understanding (Peng et al., 2023) has become a core capability in modern applications such as
human–robot interaction (Fang et al., 2024), AR/VR content creation (Schieber et al., 2025), and in-
telligent surveillance (Yuan et al., 2024). While recent advances in 3D visual–language learning (Ma
et al., 2025; Fan et al., 2025) have shown strong performance in static settings, they remain limited
when extended to dynamic 4D scenarios, where both geometry and semantics evolve continuously
over time. Unlike static environments (Li et al., 2025a;b; Qin et al., 2024), real-world scenes de-
mand temporal consistency, semantic continuity, and cross-frame alignment to handle open-ended
and time-sensitive queries. Directly applying 3D methods often leads to semantic drift and unstable
alignment, highlighting a critical gap that motivates research in robust 4D vision–language mod-
els (Cai et al., 2025; Ge et al., 2025).

Recent research (Li et al., 2025c) has begun to explore extending scene representations toward
language-guided 4D fields. However, most existing approaches remain heavily reliant on Gaus-
sian Splatting pipelines. While Gaussian Splatting has shown promising performance in controlled
settings, its fundamental drawback lies in the need for explicit per-scene optimization. This re-
quirement introduces several critical limitations: the computational cost becomes prohibitively high,
scalability across diverse videos is severely restricted, and separate models must be maintained for
different environments, making large-scale deployment impractical. More importantly, the reliance
on per-scene training fundamentally undermines the feasibility of real-time applications, where effi-
ciency and generalization are indispensable requirements. These constraints underscore the pressing
need for new solutions that move beyond scene-specific pipelines.

To alleviate the scalability issues caused by per-scene optimization, we turn to the paradigm of feed-
forward 4D geometric reconstruction (Zhuo et al., 2025; Wang et al., 2024; 2025b). Methods such as
StreamVGGT (Zhuo et al., 2025) demonstrate strong real-time performance and generalization by
enabling efficient reconstruction without scene-specific optimization. However, these approaches
focus solely on geometry and motion, lacking semantic or language alignment, and are therefore
insufficient for supporting open-vocabulary 4D understanding. This gap highlights the need for a
next-generation framework that jointly models geometry and semantics within a unified architecture.

To address these limitations, we propose 4DLangVGGT, a Transformer-based feed-forward frame-
work that unifies dynamic geometric reconstruction and visual-language alignment within a single
architecture. The framework integrates two key components: a 4D Visual Geometry Transformer,
which captures spatio-temporal geometric representations of dynamic scenes, and a Semantic Bridg-
ing Decoder (SBD), which maps scene-aware features into a language-aligned semantic space to
bridge the gap between geometric perception and semantic prediction. Through this design, the
model achieves both high structural fidelity and semantic consistency, as shown in Fig. 1, while
inheriting the efficiency and strong generalization capabilities of feed-forward approaches. More
importantly, to the best of our knowledge, our proposed 4DLangVGGT is the first unified language
field model that can be jointly trained across multiple dynamic scenes and directly applied during in-
ference, eliminating the need for costly per-scene optimization and thereby significantly enhancing
the practicality of deployment in large-scale, real-world systems. Experiments show that our method
not only generalizes well but also achieves state-of-the-art results across multiple benchmarks, yield-
ing up to 2% improvements under per-scene training and around 1% gains under training across
scenes.

Our main contributions are as follows:
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• We propose 4DLangVGGT, the first Transformer-based feed-forward framework that unifies 4D
geometric reconstruction with visual-language alignment in a single network.

• We introduce SBD, which maps dynamic, scene-aware features into a language-aligned semantic
space, effectively bridging the gap between geometric perception and semantic prediction.

• Unlike prior scene-specific methods, our model can be jointly trained across multiple dynamic
scenes (6 scenes in HyperNeRF and 6 scenes in Neu3D) and directly applied at inference without
per-scene optimization, making large-scale real-world deployment feasible.

2 RELATED WORKS

Static 3D Scene Understanding. Language grounding in 3D has been studied with NeRF-based
and Gaussian-based representations. NeRF-based methods such as LERF (Kerr et al., 2023) and
OV-NeRF (Liao et al., 2024) enabled open-vocabulary querying but suffered from slow volumetric
rendering. To improve efficiency, LangSplat (Qin et al., 2024) adopted 3D Gaussian Splatting (Kerbl
et al., 2023) with hierarchical semantics, achieving orders-of-magnitude faster rendering, while ex-
tensions like GaussianGrasper (Zheng et al., 2024) demonstrated applications in robotics. Multi-
modal fusion approaches such as LangSurf (Li et al., 2024) further enhanced cross-modal alignment.
Nonetheless, existing methods remain limited to static scenes and do not generalize to dynamic en-
vironments.

Dynamic 4D Scene Understanding. Bridging natural language and dynamic 4D scene understand-
ing has emerged as a critical research direction, with core efforts focused on tight integration of lin-
guistic semantics into time-varying geometric representations. 4DLangSplat (Li et al., 2025c) uses
object-wise video captions and a status deformable network to supervise a 4D Gaussian Splatting
field that supports both time-sensitive and time-agnostic open-vocabulary queries; 4-LEGS (Fiebel-
man et al., 2025) lifts spatio-temporal video features into a 4D Gaussian representation to localize
text prompts in space and time, allowing interactive video editing. They both depend on Gaussian
Splatting, which needs scene-specific optimization. Collectively, these works represent important
advances but do not yet satisfy all desiderata of efficient inference, cross-scene generalization, and
tightly aligned semantics with evolving geometry.

Feed-forward Scene Reconstruction. Feed-forward frameworks provide a scalable alternative to
NeRF- and GS-based reconstruction by leveraging pretrained encoders or end-to-end architectures.
Works such as DUST3R (Wang et al., 2024), VGGT (Wang et al., 2025a), and StreamVGGT (Zhuo
et al., 2025) enable efficient 3D and 4D reconstruction, while methods like SplatterImage (Szy-
manowicz et al., 2024), Flash3D (Szymanowicz et al., 2025), and Niagara (Wu et al., 2025) empha-
size efficiency and scalability. However, these approaches focus solely on geometric reconstruction,
leaving open the challenge of unifying feed-forward reconstruction with language grounding for
generalizable 4D semantic understanding.

3 PRELIMINARIES: VGGT & STREAMVGGT

Visual Geometry Grounded Transformer (VGGT) (Wang et al., 2025a) is a feed-forward Trans-
former for 3D scene reconstruction that achieves fast and accurate results in a single pass. Given
one or more scene views, it directly predicts key 3D attributes such as camera parameters, depth
maps, point maps, and 3D point tracks. The processing flow of VGGT can be summarized in three
stages. First, the image encoder DINO (Caron et al., 2021; Oquab et al., 2023), denoted as E ,
transforms the input sequence {It}Tt=1 into image tokens {Ft}Tt=1, with an additional camera token
{Ct}Tt=1 appended to each image. These tokens are then fed into the Alternating-Attention trans-
former layers D, which alternate between frame-level and cross-frame self-attention to refine the
representations and produce two outputs: updated camera tokens and geometry tokens {Gt}Tt=1. Fi-
nally, the multi-head predictor, comprising the camera head Hcam and the DPT (Ranftl et al., 2021)
head HDPT, decodes the corresponding tokens to yield camera parameters Oc

t and dense geometric
predictions Og

t , thereby completing the end-to-end mapping from images to 3D attributes.

StreamVGGT extends VGGT to the streaming setting by employing causal temporal attention for
sequential inference, where each incoming frame is processed incrementally. During inference, only
a cache memory of past tokens needs to be maintained: Mt = Mt−1 ∪ [Ct,Ft], enabling real-time
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Figure 2: Overview of 4DLangVGGT. The framework integrates a geometry encoder, a semantic
bridging decoder, and a multi-objective training strategy to achieve language-aware 4D fields with
geometric fidelity and semantic alignment.

efficiency while preserving temporal consistency. The overall process can be formulated as follows:

Ft = E(It); [Ct,Gt] = D ( [Ct,Ft] |Mt−1 ) ; Oc
t = Hcam(Ct), O

g
t = HDPT(Gt). (1)

These definitions and formulations provide the necessary background for introducing our method.

4 METHODOLOGY: 4DLANGVGGT

We introduce 4DLangVGGT, a unified framework for building language-aware 4D fields that main-
tain geometric fidelity while ensuring semantic alignment. As illustrated in Figure 2, the frame-
work comprises three main components: (i) a StreamVGGT-based geometry encoder that generates
spatio-temporal geometric representations (Sec. 4.1), (ii) a Semantic Bridging Decoder (SBD) that
maps geometry tokens into a language-aligned semantic space (Sec. 4.2), and (iii) a multi-objective
training strategy that jointly optimizes semantic alignment and appearance reconstruction (Sec. 4.3).
Together, these components provide a robust foundation for 4D perception that is both structurally
faithful and semantically interpretable.

4.1 STREAMVGGT-BASED GEOMETRY ENCODER

As mentioned in the preliminaries and Eq. (1), the StreamVGGT aggregator alternates between
spatial attention and causal temporal attention, producing geometry tokens {Gt}Tt=1 that encode
both fine-grained 3D geometry structure and temporal dynamics. In our framework, we adopt this
architecture but keep it frozen during training. The reason is twofold: (i) StreamVGGT has already
been pre-trained on large-scale video data for geometry reconstruction, providing strong spatio-
temporal representations that generalize well to diverse scenes; and (ii) freezing this part avoids
redundant optimization and reduces computational cost, allowing the training process to focus on
semantic alignment rather than relearning geometry from scratch.

In our framework, we leverage both geometry tokens and camera tokens. The geometry tokens
Gt ensure geometry-centered representations that serve as the foundation for semantic alignment.
Meanwhile, the camera tokens Ct are retained mainly for inference. They remain frozen during
training, but at inference time they enable the model to exploit camera intrinsics and extrinsics to
map features back into the 4D point cloud space, ensuring that semantic information is properly
injected and aligned at the point cloud level. The StreamVGGT-based encoder provides a strong,
geometry-centered foundation for our framework, enabling reliable spatio-temporal representations
to support subsequent semantic alignment.

4
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4.2 SEMANTIC BRIDGING DECODER (SBD)

While geometry tokens capture the geometry structural and temporal dynamics of a scene, they
remain agnostic to semantics and cannot directly align with natural language queries. To address
this gap, we propose the Semantic Bridging Decoder (SBD), whose goal is to establish a robust
mapping between geometry representations and language semantics, thereby unifying geometric
fidelity and semantic alignment.

Geometry-to-Contextual Representation Transformation. The input geometry tokens Gtt = 1T

are first processed by a contextual-aware Dense Prediction Transformer (DPT) (Ranftl et al., 2021).
DPT combines the spatial sensitivity of local convolutional operations with the global modeling ca-
pability of Transformers, thereby capturing long-range dependencies across both spatial and tempo-
ral dimensions. This new introduced DPT, denoted as Hlang

DPT, which employs stacked self-attention
layers to transform geometry tokens into contextually enriched feature representations, significantly
enhancing their semantic discriminability.

Ht = Hlang
DPT(Gt), ∀t ∈ [1, · · · , T ], (2)

where Ht ∈ Rh×w×c is referred to as the unified 4D feature representation. Here, h and w denote
the spatial resolution of the token map, while c is the feature dimension after transformation. Im-
portantly, this module remains trainable during optimization, allowing it to be continuously refined
for semantic tasks.

Dual-head Semantic and Reconstruction Decoding. Once the contextual-geometry features Ht

are obtained, they are passed through two independent prediction heads that project them into com-
plementary semantic and visual subspaces for dual supervision:

Ŝt = fLang(Ht), Ît = σ(fRGB(Ht)) , ∀t ∈ [1, · · · , T ], (3)

where fLang maps the features into a d-dimensional semantic embedding space for language align-
ment, yielding Ŝt ∈ Rh×w×d, which serves as the predicted semantic representation at time t.
Meanwhile, fRGB projects the features back into the image space to reconstruct RGB frames, pro-
ducing Ît ∈ RH×W×3, which represents the reconstructed videos at time t and thereby enforces
perceptual consistency. Here, H and W denote the spatial resolution of video frames.

4.3 MULTI-OBJECTIVE TRAINING

Semantic Loss. During training, we employ two complementary types of semantic supervision:
time-agnostic semantic supervision and time-sensitive semantic supervision. The former provides
static, object-level constraints, while the latter captures temporally evolving semantics, and together
they enhance the model’s ability to achieve robust semantic alignment. For each video, we first use
Segment Anything Model (SAM) (Kirillov et al., 2023) and DEVA (Cheng et al., 2023) to generate
its object-level masks {Mi,t}N,T

i,t=1,1, where i denotes the object index with N objects in total.

Time-agnostic semantic supervision. Each mask region is passed through CLIP (Radford et al.,
2021a) to obtain its object-specific embedding, which is then assigned to all pixels within the mask
region, yielding a region-aligned semantic feature map:

eCLIP
i,t = fCLIP(It ·Mi,t), SCLIP

t =
∑N

i=1
eCLIP
i,t ·Mi,t, ∀t ∈ [1, · · · , T ] (4)

where the CLIP embedding is denoted as eCLIP
i,t ∈ R1×1×d, and the object mask Mi,t ∈ Rh×w×1

takes the value 1 if a pixel belongs to the object and 0 otherwise.

Time-sensitive semantic supervision. Using SAM masks across frames, we feed the video-level
regions corresponding to each object into a multimodal large language model (fMLLM) to generate
detailed and temporally consistent descriptions. These descriptions are then encoded by a large
language model (fLLM) to obtain the corresponding semantic embeddings, which will be assigned
to all pixels within the mask, producing dynamic semantic ground truth:

{edyni,t }Tt=1 = fLLM
(
fMLLM({It ·Mi,t}Tt=1)

)
, Sdyn

t =
∑N

i=1
edyni,t ·Mi,t. (5)

Final semantic supervision. The semantic maps Ŝt predicted by the Semantic Head in Eq. (3) are
aligned with ground truth St ∈ {SCLIP

t ,Sdyn
t } using a combination of L1 regression and cosine

5
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similarity.

Llang =
∑T

t=1
λ1|Ŝt − St|1 + λ2

(
1− cos(Ŝt,St)

)
, ∀St ∈ {SCLIP

t ,Sdyn
t }. (6)

Here, λ1 and λ2 are loss weights. This dual supervision scheme enables the model to learn both
static object-level semantics and temporally dynamic semantics, thereby improving alignment in
dynamic scenes.

Reconstruction Loss. To ensure perceptual fidelity, the reconstructed RGB frames are supervised
using a hybrid L1–L2 objective:

Lrgb =
∑T

t=1
λimg ∥Ît − It∥1 + (1− λimg) ∥Ît − It∥22, (7)

where Ît is the frame reconstructed by the RGB Head in Eq. (3), It is the ground-truth input
frame. λimg ∈ [0, 1] controls the trade-off between the structural accuracy (L1) and the pixel-level
smoothness (L2).

Final Joint Objective. To jointly preserve semantic alignment and visual fidelity, we employ a
dual-supervision scheme. The overall training objective is defined as

L = αLlang + βLrgb, (8)

where α, β ≥ 0 control their relative contributions.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Training Data. We conducted training and evaluation on the HyperNeRF (Park et al., 2021) and
Neu3D (Li et al., 2022) datasets. We utilized the semantic segmentation annotation dataset for dy-
namic scenes provided by 4DLangSplat Li et al. (2025c). For feature extraction, the OpenCLIP
ViT-B/16 model was used to obtain CLIP features, while the Qwen2.5-VL-7B-Instruct Bai et al.
(2025) model was employed to extract dynamic semantics. Following 4DLangSplat, the e5-mistral-
7b model was applied to process time-varying captions and generate embeddings, and separate au-
toencoders were trained to compress the CLIP Radford et al. (2021b) features to 3 dimensions and
the dynamic semantics features to 6 dimensions.

Implementation Details. The aggregator module of StreamVGGT (Zhuo et al., 2025) was used to
extract geometric features from input video sequences, with a maximum of 128 past frames retained
to preserve temporal dependencies while controlling memory usage. Following StreamVGGT (Zhuo
et al., 2025) and VGGT (Wang et al., 2025a), input frames were resized to 518 pixels; however, we
instead cropped them to the nearest multiple of 14 to better approximate the original resolution.
Training employed a batch size of 8 and an initial learning rate of 4 × 10−5, and all experiments
were conducted on four NVIDIA GeForce RTX 3090 GPUs (24 GB).

Baselines. Following the evaluation protocol of 4DLangSplat, we benchmark our approach against
representative methods under both time-agnostic and time-sensitive query settings. Our primary
baselines are LangSplat (Qin et al., 2024), which introduces language-driven Gaussian splatting
for static scene understanding, and 4DLangSplat (Li et al., 2025c), which extends this paradigm
to dynamic scenes by incorporating temporal modeling. In the time-agnostic setting, we further
compare against Feature-3DGS (Zhou et al., 2024), a feature distillation framework that compresses
high-dimensional representations into compact 3D Gaussians, and Gaussian Grouping (Ye et al.,
2024), which leverages semantic segmentation to cluster and render scene elements. For the time-
sensitive setting, we include the deformable CLIP from 4DLangSplat, which integrates deformable
Gaussian fields with static CLIP embeddings to assess cross-modal alignment, and Non-Status Field,
which removes temporal state modeling to isolate its contribution.

The definitions of the evaluation metrics, together with additional implementation details and anal-
ysis, are provided in the appendix for completeness.
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Table 1: Quantitative comparison of time-agnostic language queries on the HyperNeRF dataset.

Method Per-scene americano chick-chicken split-cookie torchocolate Average

mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

LangSplat (Qin et al., 2024) ✓ 72.08 97.61 75.98 97.86 76.54 97.32 69.55 98.09 73.54 97.72
Feature-3DGS (Zhou et al., 2024) ✓ 34.65 62.96 47.21 87.22 47.03 68.25 24.71 64.58 38.40 70.75
Gaussian Grouping (Ye et al., 2024) ✓ 61.77 71.31 34.65 75.52 72.71 96.56 58.95 85.52 57.02 82.22
4DLangSplat (Li et al., 2025c) ✓ 83.48 98.77 86.50 98.81 90.04 98.67 71.79 98.10 82.95 98.59
4DLangVGGT (Ours) ✓ 86.45 98.95 90.70 99.03 90.15 98.79 72.77 98.32 85.02 98.77

4DLangVGGT (Ours) ✗ 82.46 98.36 86.91 98.88 91.44 98.87 75.15 98.57 83.99 98.67

Table 2: Quantitative comparison of time-sensitive language queries on the HyperNeRF dataset.

Method Per-scene americano chick-chicken split-cookie espresso Average

Acc vIoU Acc vIoU Acc vIoU Acc vIoU Acc vIoU

LangSplat (Qin et al., 2024) ✓ 45.19 23.16 53.26 18.20 73.58 33.08 44.03 16.15 54.01 22.65
Deformable CLIP (Li et al., 2025c) ✓ 60.57 39.96 52.17 42.77 89.62 75.28 44.85 20.86 61.80 44.72
Non-Status Field (Li et al., 2025c) ✓ 83.65 59.59 94.56 86.28 91.50 78.46 78.60 47.95 87.58 68.57
4DLangSplat (Li et al., 2025c) ✓ 89.42 66.07 96.73 90.62 95.28 83.14 81.89 49.20 90.83 72.26
4DLangVGGT (Ours) ✓ 89.96 66.78 98.01 93.56 95.56 83.44 82.44 51.56 90.86 73.06

4DLangVGGT (Ours) ✗ 90.03 67.77 97.81 93.44 95.76 84.02 82.86 52.06 91.44 74.74

5.2 MAIN RESULTS

We evaluate two training regimes to examine both cross-scene applicability and per-scene perfor-
mance. The first regime trains a single model on multiple videos and applies this shared model
for inference across different scenes (“multi-video single model”). The second regime adopts the
per-scene protocol used in 4DLangSplat, i.e., training one model per scene. This per-scene setting is
included to align with existing Gaussian splatting methods and to provide a fair comparison of our
method’s performance.

5.2.1 HYPERNERF DATASET

We evaluate on HyperNeRF under two modes: time-agnostic and time-sensitive language queries,
assessing both spatial grounding accuracy and temporal dynamics.

Time-Agnostic Language Queries. As shown in Table 1, under the per-scene setting (training one
model per scene with the same protocol as 4DLangSplat), training and testing sets are not fully dis-
joint, and the results reflect performance under the same distribution. In this setting, 4DLangVGGT
consistently surpasses all baselines, outperforming 4DLangSplat by 3% mIoU and 0.18% mAcc on
average. Under the multi-video single-model setting (a single model across multiple scenes without
retraining), our method also outperforms 4DLangSplat, gaining about 1% mIoU and 0.08% mAcc,
showing strong cross-scene generalization with shared training weights.

Time-Sensitive Language Queries. Table 2 evaluates methods with time-sensitive queries, which
require both spatial localization and temporal identification (e.g., “glass contains darker brown
liquid” in Fig. 3). In the per-scene setting, 4DLangVGGT outperforms all baselines, exceeding
4DLangSplat by 0.03% Acc and 0.8% vIoU. Under the multi-video single-model setting, our model
further improves temporal accuracy, surpassing per-scene models by 0.58% Acc and 1.68% vIoU.
These results demonstrate that 4DLangVGGT more reliably captures object dynamics and semantic
state changes, highlighting its strength in language–vision alignment and spatiotemporal consistency
for dynamic 4D environments.

5.2.2 NEU3D DATASET

On the Neu3D dataset, which mainly consists of long-range videos where object dynamics are not
prominent, we focus on time-agnostic language queries.

Time-Agnostic Language Queries. As shown in Table 3, our method (4DLangVGGT) achieves the
best overall performance across all evaluated scenes, with an average of 87.41% mIoU and 99.41%
mAcc, outperforming all baselines. Notably, compared to the second-best method 4DLangSplat, our
approach yields consistent improvements in both mIoU and mAcc, demonstrating stronger spatial
semantic grounding under this setting. In addition, we evaluate the more challenging multi-video

7
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Table 3: Quantitative comparisons of time-agnostic language queries on the Neu3D dataset.

Method Per-scene coffee martini cook spinach cut roasted beef Average

mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%) mIoU(%) mAcc(%)

Feature-3DGS (Zhou et al., 2024) ✓ 30.23 84.74 41.50 95.59 31.66 91.07 34.46 90.47
Gaussian Grouping (Ye et al., 2024) ✓ 71.37 97.34 46.45 93.79 54.70 93.25 57.51 94.79
LangSplat (Qin et al., 2024) ✓ 67.97 98.47 78.29 98.60 36.53 97.04 60.93 98.04
4DLangSplat (Li et al., 2025c) ✓ 85.16 99.23 85.09 99.38 85.32 99.28 85.19 99.30
4DLangVGGT (Ours) ✓ 87.59 99.40 86.93 99.52 87.72 99.32 87.41 99.41

4DLangVGGT (Ours) ✗ 85.51 99.35 85.25 99.47 86.17 99.30 85.64 99.37

Language Query #1: 
Glasses contain light-colored liquid

Language Query #2: 
Glasses contain darker brown liquid

4DLangSplat

4DLangVGGT

4DLangSplat

4DLangVGGT

Figure 3: Qualitative results of time-sensitive language queries between 4DLangSplat and our
4DLangVGGT. Our 4DLangVGGT provides more accurate grounding compared to 4DLangSplat.

single-model setting, where a single model is jointly trained on multiple scenes and directly applied
for inference without per-scene retraining. Even under this stricter condition, our model maintains
strong performance, achieving 85.64% mIoU and 99.37% mAcc, which is close to the per-scene
results. This highlights the efficiency and cross-scene generalization ability of our framework.

5.2.3 VISUALIZATION

Table 4: Ablation study of the RGB Head for
reconstruction on Hypernerf dataset.

RGB Head Time-agnostic query Time-sensitive query
mIoU(%) mAcc(%) Acc(%) vIoU(%)

✓ 83.99 98.67 91.44 74.74
✗ 78.36 97.68 88.52 70.94

To qualitatively assess the learned 4D semantic
fields, we visualize both time-agnostic and time-
sensitive query results in Fig. 3 and Fig. 4, re-
spectively. For time-agnostic queries, our method
produces sharper and more consistent masks than
baseline methods, particularly in scenes with
complex geometry or occlusions. For time-
sensitive queries (as shown in Fig. 3), our frame-
work can accurately capture critical semantic
transitions, such as the moment when an object
changes state or when an action begins (e.g., glasses contain darker brown liquid). In contrast,
4DLangSplat often struggles to detect such fine-grained changes, frequently producing temporally
inconsistent masks or missing key state boundaries. These visualizations provide intuitive evidence
that our method achieves superior semantic alignment with both spatial structures and temporal
dynamics.

5.3 ABLATION STUDY

Ablation Study on the RGB Head. To investigate the contribution of the RGB reconstruction
head in the Semantic Bridging Decoder (SBD), we conducted an ablation experiment in which

8
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Figure 4: Comparison of time-agnostic query masks. The results demonstrate that our method
consistently extracts accurate object masks in both intact and fragmented cookie scenarios, whereas
4DLangSplat exhibits degraded performance when handling fragmented cases.

the RGB Head was removed. The results, summarized in Table 4, demonstrate that removing the
RGB Head leads to a noticeable drop (around 5% in IoU, 1-2% in Acc) in both time-agnostic and
time-sensitive performance . This shows that the auxiliary reconstruction branch is essential for
preserving appearance-level cues, which in turn strengthens semantic alignment and yields more
accurate grounding.

Table 5: Ablation study of the different archi-
tectures for the RGB Head and Semantic Head.

Architecture of Heads Time-agnostic query Time-sensitive query
mIoU(%) mAcc(%) Acc(%) vIoU(%)

UNet 83.99 98.67 91.44 74.74
MLP 83.04 97.51 89.38 72.59

Ablation Study on the Architecture of Heads.
We further compare different architectures for
the Semantic and RGB Heads in Table 5. The
UNet design achieves consistently better results
than a simple MLP (improving by +0.95% mIoU,
+1.16% mAcc, +2.06% Acc, and +2.15% vIoU).
These gains highlight the benefit of UNet’s
hierarchical features for capturing fine-grained
structures, leading to stronger spatial–temporal
grounding than shallow alternatives.

6 CONCLUSION

In this work, we introduced 4DLangVGGT, a feed-forward framework that unifies geometry-aware
4D perception with language grounding for dynamic scene understanding. By leveraging the Se-
mantic Bridging Decoder (SBD), the auxiliary RGB head and the joint supervision loss, our method
effectively bridges low-level geometric cues and high-level semantic alignment, leading to more
faithful and robust predictions. Extensive experiments on HyperNeRF and Neu3D demonstrate that
4DLangVGGT achieves strong performance and generalization without per-scene optimization, out-
performing Gaussian-splatting baselines in both scalability and efficiency. These results highlight
the potential of our framework as a step toward scalable, language-aware 4D semantic fields, paving
the way for future extensions to larger-scale datasets and richer multimodal supervision.

9
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Ethics Statement. We follow the ICLR Code of Ethics. Our work focuses on building 4D lan-
guage fields for dynamic scene understanding and does not involve personal data, sensitive attributes,
or identifiable human subjects beyond synthetic or publicly available datasets. Specifically, we con-
duct experiments on HyperNeRF and Neu3D, which are license-compliant research datasets contain-
ing synthetic or anonymized real-world scenes. We exclude any content that is violent, sexual, or
otherwise harmful. The semantic annotations used in our work are automatically generated through
established vision–language models (e.g., CLIP, SAM, DEVA) and do not involve manual collec-
tion of biometric or medical data. While our method learns semantic representations for 4D dynamic
scenes, it does not involve identity-related, biometric, or personally sensitive data. The semantic fea-
tures are derived from publicly available datasets and pretrained vision–language models, and do not
enable identity reconstruction or manipulation. The release is restricted to research purposes only,
with terms prohibiting harmful or deceptive uses. This study complies with all applicable policies
on privacy, copyright, and research integrity.

Reproducibility Statement. We ensure reproducibility by providing a complete description of the
4DLangVGGT framework, including detailed formulations of the StreamVGGT-based geometry en-
coder, the Semantic Bridging Decoder, and the multi-objective training objective. Hyperparameters,
loss weights, and dataset splits are clearly specified in the main text and appendix. We will release
code, pretrained models to reproduce all reported results. Our supplementary materials include
qualitative video visualizations on HyperNeRF and Neu3D. Together, these materials ensure that all
results in the paper can be independently verified and extended.
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Figure 5: 4D inference pipeline of 4DLangVGGT. Input video frames are processed by
StreamVGGT to obtain geometry tokens. The Semantic Bridging Decoder predicts both RGB recon-
structions and semantic embeddings, while the geometry decoder estimates depth maps and camera
poses. Inverse-projection lifts them into a 3D point cloud, onto which the predicted RGB and se-
mantics are colorized, yielding 3D frames and 3D semantic maps.

A MORE EXPERIMENTAL SETTINGS AND DETAILS

A.1 IMPLEMENTATION DETAILS

Input Resolution. StreamVGGT requires input resolutions to be multiples of 14. Therefore, we
centrally crop all frames to the nearest multiple of 14, ensuring compatibility with the architecture
while preserving the main scene content.

Semantic Features. We extract feature embeddings from CLIP (512 dimensions) and E5 (4096
dimensions). To reduce dimensionality, two separate autoencoders are trained to compress these
embeddings into 3-dimensions and 6-dimensions latent spaces, respectively.

Training Hyperparameters. For the semantic loss Llang (Eq. 6), we set λ1 = 0.2 and λ2 = 0.01.
For the reconstruction loss Lrgb (Eq. 7), we set λimg = 0.5. We use the AdamW optimizer with an
initial learning rate of 4 × 10−5, weight decay of 1 × 10−4, and gradient clipping at 1.0. A warm-
up strategy of 20 epochs is applied, followed by either constant or cosine decay scheduling. The
geometry encoder (StreamVGGT) is kept frozen, while the Semantic Bridging Decoder are trained.

Metric. We adopt four standard metrics to evaluate both time-agnostic and time-sensitive query-
ing. For the time-agnostic setting, mean accuracy (mAcc) measures the proportion of correctly
predicted pixels, while mean intersection-over-union (mIoU) evaluates the overlap between pre-
dicted and ground-truth masks. For the time-sensitive setting, accuracy (Acc) reflects the ratio of
correctly identified frames, and video-level IoU (vIoU) assesses spatial alignment within the pre-
dicted temporal segments. Together, these metrics provide a balanced evaluation of spatial precision
and temporal consistency.

A.2 INFERENCE IN 4D

At inference time, our framework takes a sequence of video frames as input and produces both
geometry-aware reconstructions and semantic fields. The process is illustrated in Fig. 5.

First, the StreamVGGT encoder extracts spatio-temporal geometry tokens that capture the underly-
ing 3D structure and temporal dynamics. These geometry tokens are fed into two parallel branches:

1. Our semantic bridging decoder predicts per-frame semantic embeddings aligned with natural lan-
guage, while the RGB head reconstructs frames to ensure perceptual fidelity.

2. The depth head of StreamVGGT estimates dense depth maps, and the camera head of
StreamVGGT predicts camera poses. Using these outputs, we perform inverse-projection to lift
2D pixels into a 3D point cloud.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

T=410T=10 T=110 T=210 T=310

O
u

rs
In

p
u

t 
R

G
B

4
D

L
a

n
g

S
p

la
t

Status: Clean Water Status: Darker Water

O
u

rs
 p

o
in

t 
m

a
p

Figure 6: Additional qualitative comparison of language feature visualizations by our method and
4DLangSplat (Li et al., 2025c) like Fig. 1.

Finally, the predicted RGB values and semantic embeddings are colorized onto the 3D point map.
This produces both 3D frames (geometry with RGB appearance) and 3D semantic maps (geometry
with open-vocabulary semantics), enabling a unified 4D language field representation.

B MORE QUALITATIVE RESULTS

As shown in the visualizations in Fig. 6. The top part shows semantic visualizations learned by
both methods, where our approach not only captures finer details (upper-right zoomed regions) but
also demonstrates higher sensitivity to temporal state changes of objects (lower-right highlighted
examples). The bottom part illustrates our method’s learned semantic features projected onto 3D
point clouds, providing a more interpretable view of spatiotemporal semantics in dynamic scenes.

C GENERALIZATION EXPERIMENT

C.1 CROSS-DATASET GENERALIZATION EXPERIMENTS

As shown in the visualizations in Fig. 7, our method maintains stable reconstruction quality and
produces coherent, artifact-free renderings on unseen datasets such as Objectron (Ahmadyan et al.,
2021), even under substantial domain shifts. These results further demonstrate that our approach
generalizes well beyond its training distribution.

C.2 CROSS-QUERY GENERALIZATION EXPERIMENTS

We conducted a query-level generalization study, with results provided in Table 6. In this ex-
periment, the original evaluation queries were replaced with semantically similar yet syntactically

14
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(a) (b)

Figure 7: Additional robustness experiment. We train our method on the HyperNeRF dataset and
evaluate it on videos from Objectron datasets to demonstrate cross-dataset generalization and visual
robustness.

Table 6: Generalization experiments across different queries. We evaluated the perfor-
mance of different time-sensitive queries on 4DLangSplat and 4DLangVGGT to explore
their generalization capabilities across diverse queries.

Query americano chick-chicken
Raw query Paraphrased query ∆ Raw query Paraphrased query ∆

4DLangSplat 66.07 51.34 -14.73 90.62 83.26 -7.36
4DLangVGGT 67.77 64.82 -2.95 93.44 90.36 -3.08

different expressions to test the model’s robustness to linguistic variations. The results show that
our model remains stable under such query changes and exhibits better cross-query generalization
compared to 4DLangSplat. The modified queries used in this experiment are listed below:

• Query for americano

– Raw query #1. Glasses contain light-colored liquid.
– Raw query #2. Glasses contain dark brown liquid.
– Paraphrased query #1. Glasses are filled with a light-colored liquid.
– Paraphrased query #2. Glasses hold a deep brown-colored liquid.

• Query for chick-chicken

– Raw query #1. Closed chicken container.
– Raw query #2. Opened chicken container.
– Paraphrased query #1. A chicken container that’s sealed shut.
– Paraphrased query #2. A container of chicken that is open.
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Table 7: Ablation study of the DPT layer.

DPT layer Time-agnostic query Time-sensitive query
mIoU(%) mAcc(%) vIoU(%) Acc(%)

× 80.36 96.49 72.15 89.37
✓ 83.99 98.67 74.74 91.44
∆ + 3.63 + 2.18 + 2.59 + 2.07

Table 8: Comparison of time-agnostic language queries under single-model training on HyperN-
eRF. We report results from the paper non-joint training and joint training variant.

Method Joint americano chick-chicken split-cookie torchocolate Average

mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc mIoU mAcc

4DLangVGGT (Ours) × 82.46 98.36 86.91 98.88 91.44 98.87 75.15 98.57 83.99 98.67

4DLangVGGT (Ours, joint) ✓ 81.32 98.22 85.74 98.79 90.21 98.73 74.02 98.41 82.82 98.54

Table 9: Comparison of time-sensitive language queries under single-model training on HyperN-
eRF. We report results from non-joint training and joint training variant.

Method Joint americano chick-chicken split-cookie espresso Average

Acc vIoU Acc vIoU Acc vIoU Acc vIoU Acc vIoU

4DLangVGGT (Ours) × 90.03 67.77 97.81 93.44 95.76 84.02 82.86 52.06 91.44 74.74

4DLangVGGT (Ours, joint) ✓ 89.41 66.92 97.12 92.31 95.03 83.11 82.10 51.21 90.42 73.39

D ADDITIONAL ABLATION STUDY

D.1 DPT LAYER

As shown in Table 7, introducing the DPT layer yields clear improvements across both time-agnostic
and time-sensitive evaluations: +3.63% mIoU and +2.18% mAcc for time-agnostic queries, and
+2.59% vIoU and +2.07% Acc for time-sensitive queries. These results demonstrate that DPT’s
contextual modeling significantly enhances semantic discrimination while improving both spatial
and temporal alignment.

D.2 JOINTLY TRAINING IN TIME-AGNOSTIC AND TIME SENSITIVE

As shown in Table 8 and Table 9, joint training leads to a consistent but mild drop 1.3% in time-
agnostic and 1.1% in time-sensitive compared with the non-joint train in the paper. This confirms
that the two types of semantic supervision indeed encode different objectives: static object semantics
vs. dynamic state transitions, and forcing them into a shared representation introduces functional
interference. These new results further justify our architectural design choice of using decoupled
branches, each specialized for its intended type of semantic signal.

E LIMITATION AND FUTURE WORKS

While our work introduces 4DLangVGGT, the first unified Transformer-based framework for 4D
language fields, there are still several limitations to address. First, our experimental validation is
limited to HyperNeRF and Neu3D, which contain only a small number of dynamic scenes. Although
these benchmarks are standard in prior literature, they do not fully reflect the scale and diversity of
real-world environments. Consequently, the generalization of our framework to more complex and
large-scale settings remains to be thoroughly explored.

In future work, we plan to scale up our approach to substantially larger and more diverse datasets,
aiming to rigorously evaluate both efficiency and robustness under real-world conditions. We will
explore improving the fine-grained and precision of dynamic semantic supervision, which is inspired
by recent Mask Grounding approaches (Chng et al., 2024), which demonstrate the effectiveness
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of achieving fine-grained alignment between linguistic expressions and localized visual regions.
Furthermore, we envision the development of a domain-specific large model for 4D language fields,
which can serve as a foundation model for embodied AI, AR/VR, and open-vocabulary dynamic
scene understanding. Such a model would unify semantic reasoning and geometric perception at
scale, potentially enabling new applications that go beyond current scene-level benchmarks.
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