
ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

CHAMALEONLLM: BATCH-AWARE DYNAMIC LOW-
RANK ADAPTATION VIA INFERENCE-TIME CLUSTERS

Kamer Ali Yuksel & Hassan Sawaf
aiXplain Inc., San Jose, CA, USA
{kamer, hassan}@aixplain.com

ABSTRACT

Recent advances in large language models (LLMs) have shown remarkable perfor-
mance across diverse tasks. However, these models are typically deployed with
fixed weights, which limits their ability to adapt dynamically to the variability
inherent in real-world data during inference. This paper introduces Chamale-
onLLM, a novel framework that enables inference-time adaptation of LLMs by
leveraging batch-aware clustering and on-the-fly generation of low-rank updates.
Unlike traditional fine-tuning approaches such as Low-Rank Adaptation (LoRA)
or methods that rely on a fixed set of pre-learned uniforms (changeable masks),
our method dynamically generates adaptive modifications to the decoder weights
based on the aggregated statistics of clustered batches. By intelligently group-
ing similar inputs and computing context-aware low-rank updates via a hyper-
network, ChamaleonLLM achieves significant performance gains, outperforming
conventional LoRA methods while eliminating the overhead of maintaining mul-
tiple expert models. Our experiments highlight the potential of our approach to
serve as a versatile and highly adaptive solution for language model inference.
ChamaleonLLM is open-sourced to ensure the reproducibility of our experiments.

1 INTRODUCTION

Large language models have revolutionized natural language processing by demonstrating unprece-
dented text generation, summarization, translation, and beyond capabilities. Despite their impres-
sive performance, a persistent limitation is their static nature during inference: once deployed, the
weights of these models remain fixed regardless of the variability in input data. This static configu-
ration can lead to suboptimal performance when encountering novel or contextually distinct inputs.
Traditionally, fine-tuning methods such as Low-Rank Adaptation (LoRA) have been employed dur-
ing training to inject task-specific updates into the model parameters in a computationally efficient
manner (Hu et al., 2021). LoRA achieves this by freezing most of the pre-trained model’s parame-
ters and introducing trainable low-rank matrices that serve as corrections. However, even with these
efficient updates, the low-rank modifications remain static during inference, meaning that the model
cannot adjust to nuances in the input data it receives on-the-fly.

ChamaleonLLM is designed to address this limitation by enabling the model to adapt its decoder
weights during inference based on the structure and statistics of the input batch. Inputs are grouped
into clusters based on their semantic and syntactic similarities. By leveraging precomputed token
embeddings, the inference engine identifies coherent groups within each batch, ensuring that similar
examples are processed together. Rather than relying on pre-learned and fixed uniforms (change-
able masks) or static LoRA updates, ChamaleonLLM employs a hyper-network to generate low-rank
adaptation parameters in real-time. This dynamic generation is based on the aggregated statistics of
the clustered batch, allowing the model to tailor its adaptations to the prevailing context. This ap-
proach not only removes the necessity for multiple expert models or a vast wardrobe of pre-stored
masks but also leverages the collective context of the batch, leading to enhanced performance across
a range of tasks. The primary contributions of this work are three-fold: (1) We introduce a method to
dynamically generate low-rank updates based on batch statistics, resulting in a self-adaptive model
during inference. (2) We employ a clustering-based on normalized token embeddings that groups
similar inputs, ensuring context-aware adaptation. (3) We provide experimental results demonstrat-
ing the superiority of ChamaleonLLM over traditional LoRA fine-tuning.

1

https://anonymous.4open.science/r/ChamaleonLLM/


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

2 RELATED WORK

LoRA has emerged as a popular method for fine-tuning large pre-trained models with minimal com-
putational resources. The fundamental idea behind LoRA is to freeze the pre-trained weights and
introduce a pair of trainable, low-rank matrices that approximate the necessary updates for a given
task. By operating in a low-dimensional subspace, LoRA significantly reduces the number of train-
able parameters while enabling effective adaptation. Despite its success, standard LoRA is inher-
ently static during inference. Once the low-rank updates are learned, they are fixed and applied
uniformly, regardless of the heterogeneity of the incoming data. This static nature can limit the
model’s responsiveness to dynamic input distribution or context changes. An alternative to direct
low-rank adaptation is using changeable masks as pre-learned uniforms (Sun et al., 2025). This
method involve training a set of masks—each tailored to specific tasks or data distributions—that
can be blended or selected during inference. The blending is implemented through a softmax-based
selector mechanism that chooses the most appropriate mask based on a task embedding or a similar
indicator. While this method introduces a degree of flexibility, it comes with drawbacks:

• Storage Overhead: A large set of masks must be maintained, and these masks need to be
loaded and blended during inference, increasing both memory and computational demands.

• Static Adaptation: Even though blending introduces some variability, the masks are fine-
tuned individually and not co-optimized for joint adaptation. This can lead to suboptimal
performance when the masks are applied in a blended fashion.

• Task Limitation: Many of these approaches rely on task embeddings, which restrict adap-
tation to known task categories rather than capturing the broader context of the input batch.

Recent research has also explored using task description embeddings derived from powerful mod-
els, such as GPT-4, to generate low-rank updates on a per-sample basis (Charakorn et al., 2024).
This method generates the low-rank parameters for each input based on a task representation. While
effective in certain scenarios, this per-sample adaptation may not fully exploit the shared context
available when processing batches of similar inputs. ChamaleonLLM differentiates itself by using
batch-level context for adaptation. By clustering inputs and computing aggregated statistics, our
method generates low-rank updates that reflect the collective characteristics of the batch. Aggregat-
ing across a batch helps mitigate the noise or outlier effects in single-sample adaptation. A uniform
adaptation across a cluster of similar inputs can lead to more coherent and consistent outputs. By
not being limited to task-specific embeddings, our method can adapt to a broader range of scenarios,
including open-domain and instruction-based tasks. Methods that use task embeddings typically
generate per-sample low-rank updates based on a fixed task identifier. In contrast:

• Batch vs. Sample-Level Adaptation: Our method leverages batch-level statistics, leading
to a more coherent adaptation that benefits from the collective context of multiple samples.

• Flexibility in Unstructured Environments: Task embeddings require clear task bound-
aries, whereas our context-based approach naturally adapts to real-world data.

• Out-of-Sample Robustness: Aggregating over a batch reduces the over-fitting sensitivity
of training, an important advantage when dealing with heterogeneous or noisy datasets.

Similarly, another recent approach Tan et al. (2024) introduces a hypernetwork-based method
for dynamic layer operations, which generates context-dependent low-rank updates by adjust-
ing the model’s depth on a per-sample basis; where the hypernetwork adapts the network struc-
ture for each individual input—effectively generating adjustments for model depth dynamically
at inference time. In contrast to per-sample or depth-focused adaptation methods, our cur-
rent work—ChamaleonLLM—exploits batch-level context to generate adaptive low-rank updates.
Rather than adapting each sample independently, we cluster similar inputs and compute aggregated
token embedding statistics across the batch; these statistics then drive our hyper-network to gener-
ate low-rank updates that reflect the collective context. ChamaleonLLM achieves a coherent and
context-aware adaptation that naturally overcomes the limitations of fixed, per-sample updates and
the storage overhead associated with large sets of pre-learned masks, such as the impact of noisy or
outlier samples, and the storage overhead associated with maintaining pre-learned masks.

2



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

3 METHODOLOGY

ChamaleonLLM is built upon a pre-trained causal language model (e.g., GPT-2), where the con-
ventional transformer layers and language modeling head are augmented with low-rank adaptation
modules. The innovation lies in the dynamic generation of low-rank parameters based on batch-
aware statistics. This process involves two major components: (1) batch-aware clustering and (2)
adaptive low-rank update generation. The central hypothesis is that inputs arriving in a batch often
exhibit significant similarity—whether semantic, syntactic, or stylistic. By grouping similar inputs,
we can extract shared context and exploit common features in the batch. This grouping not only
aids in noise reduction by averaging but also ensures that the low-rank updates are tailored to the
collective characteristics of the batch rather than isolated samples. Using the normalized token em-
beddings, we perform k-means clustering. The number of clusters is chosen based on the batch size
to ensure each cluster is large enough to provide robust statistics while capturing meaningful vari-
ations between groups. The clustering algorithm minimizes the Euclidean distance between points
and cluster centroids, and through iterative refinement, it assigns each input to a cluster that best
represents its features. Once the clusters are defined, the batch is reconstructed such that each mini-
batch contains inputs from the same cluster. This reorganization is critical because it ensures that
subsequent low-rank adaptations are computed on a homogenous set of inputs.

The core idea of dynamic adaptation is to generate low-rank modifications specific to the current
batch’s context. This work proposes a more flexible alternative to LoRA that uses a hyper-network.
Instead of applying a fixed set of low-rank updates (as in standard LoRA), ChamaleonLLM employs
a hyper-network to produce these parameters on-the-fly. The hyper-network takes as input the mean
of the token embeddings from the entire batch, processes this aggregated statistic through several
fully connected layers with non-linear activations, and outputs the parameters for the low-rank up-
date. This on-the-fly generation allows the model to dynamically adjust to the specifics of the batch,
capturing nuances that a static update might miss. The overall architecture maintains the integrity
of the pre-trained model while introducing minimal additional parameters. The transformer layers
are wrapped with LoRA modules that operate similarly to conventional implementations, ensuring
that most of the model’s capacity remains unchanged. For the LM head, the hyper-network variant
ensures that adaptation is context-dependent. During inference, the model first processes the batch
to compute the necessary embeddings to cluster the inputs and then generates a custom low-rank
update for the LM head based on the cluster’s aggregated statistics. The final output is produced by
applying this adapted LM head to the last hidden states of the transformer.

4 EXPERIMENTS

For our experiments, we have used WikiText-2 (Merity et al., 2016) and Alpaca (Taori et al., 2023)
datasets, providing meaningful benchmarks due to their diverse and natural language texts. The
datasets are split into training and validation sets. Each text sample is tokenized using a pre-
trained GPT-2 tokenizer by truncating to a maximum length and padding to ensure uniform sequence
lengths. LM input token embeddings are computed for every example, and normalized to facilitate
robust clustering. For the Alpaca dataset, we calculate the token embeddings from the instruction
part of the input prompts. A crucial part of ChameleonLLM is creating data loaders that reflect the
clustered nature of the inputs. Using the precomputed token embeddings, we apply k-means clus-
tering with the number of clusters based on the desired batch size and overall dataset size. After
clustering, indices are grouped so each mini-batch contains examples from a single cluster. This
ensures that each batch is contextually coherent. We implement a custom data loader that leverages
these clusters as batch samplers. The data loader returns batches fed into the model during training
and evaluation. The evaluation is performed at the end of each epoch on the validation set, where
batches are processed through the clustering pipeline, and the average loss is computed. This sys-
tematic evaluation ensures that our comparisons are fair and reflect real-world performance. All
codes for ChameleonLLM are open-sourced to ensure the reproducibility of experimental results.

Experimental results demonstrate that ChameleonLLM significantly improves over the traditional
LoRA approach, consistently achieving a lower average validation loss on both datasets, and sug-
gest that dynamic adaptation based on batch statistics leads to better convergence and generalization.
As shown in Table 1, ChameleonLLM achieves a validation loss reduction of approximately 25%
compared to traditional LoRA, along with a perplexity improvement of roughly 12%. Table 2 fur-

3

https://anonymous.4open.science/r/ChamaleonLLM/


ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

ther indicates that it reduces the validation loss by almost 30% on instruction fine-tuning. These
improvements underscore the effectiveness of the batch-level context adaptation strategy and can
largely be attributed to the exploitation of batch-level context. By averaging token embeddings over
each batch, the hyper-network input becomes less sensitive to individual outliers, leading to ro-
bust low-rank parameter generation. Clustering groups together semantically or stylistically similar
inputs allows the hyper-network to extract stronger, more relevant signals for adaptation.

Table 1: Comparison of Low-Rank Adaptation Regimes on WikiText-2 Dataset
Adaptation Regime Parameters Training Loss Validation Loss Val. Perplexity

Unadapted GPT-2 124,439,808 13.8144 13.7876 972,500
Traditional LoRA 204,100 0.5504 0.5023 1.6525
ChameleonLLM 6,786,596 0.2359 0.3753 1.4554

Table 2: Comparison of Low-Rank Adaptation Regimes on Alpaca Dataset

Adaptation Regime Parameters Training Loss Validation Loss Val. Perplexity

Unadapted GPT-2 124,439,808 13.3881 13.3881 652,166
Traditional LoRA 204,100 0.1254 0.1527 1.1650
ChameleonLLM* 6,786,596 0.0810 0.1082 1.1143
* Token embeddings for adaptation are calculated from the instruction part of the prompt only.

• Traditional LoRA Fine-Tuning: Here, all transformer layers and the LM head use the
static LoRA adaptation. Standard cross-entropy loss (with appropriate masking for padding
tokens) is computed, and the low-rank parameters are optimized using AdamW optimizer.

• ChameleonLLM Fine-Tuning: In this regime, while the transformer layers continue to
use static LoRA modules, the LM head is adapted by a hyper-network LoRA module that
generates low-rank update parameters based on the mean token embeddings of the batch.
The loss is computed on the LM head outputs, and optimized similarly.

Although ChameleonLLM has more trainable parameters than LoRA, this increase is justified by
many practical benefits, as it dynamically generates low-rank updates on-the-fly rather than training
and storing separate adaptation matrices for each sample or task. Avoiding the storage of numerous
pre-learned matrices significantly reduces memory and processing overheads during inference. The
additional parameters enable context-aware, batch-level adaptation, leading to better performance.
Despite it also introduces some extra computational steps during inference, the overhead is modest
compared to the overall inference time. The trade-off between increased computation and improved
performance is highly favorable. Our approach is not tied to pre-defined task categories and adapts
to the nuances in the data at inference time, offering a versatile solution for open-domain tasks.

5 CONCLUSION

In this paper, we presented ChameleonLLM—a novel framework that enables inference-time adap-
tation of large language models through batch-aware clustering and dynamic low-rank parameter
generation. By clustering similar inputs and using a hyper-network to generate low-rank updates
based on the aggregated batch statistics, our method provides a flexible and efficient alternative to
static fine-tuning approaches such as traditional LoRA or uniform mask blending. Our extensive
experiments on WikiText-2 and Alpaca demonstrate that ChameleonLLM achieves lower validation
loss and perplexity than baseline methods with dynamic batch-aware contextual adaptation. The
proposed framework reduces the need for storing multiple expert masks and adapts to diverse input
distributions in real-time, making it highly suitable for modern, dynamic inference environments.

4



ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

REFERENCES

Rujikorn Charakorn, Edoardo Cetin, Yujin Tang, and Robert Tjarko Lange. Instant transformer
adaption via hyperlora. In Adaptive Foundation Models: Evolving AI for Personalized and Effi-
cient Learning, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Qi Sun, Edoardo Cetin, and Yujin Tang. Transformer2: Self-adaptive llms. arXiv preprint
arXiv:2501.06252, 2025.

Zhen Tan, Daize Dong, Xinyu Zhao, Jie Peng, Yu Cheng, and Tianlong Chen. Dlo: Dynamic layer
operation for efficient vertical scaling of llms, 2024. ArXiv preprint arXiv:2407.11030.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

5

https://github.com/tatsu-lab/stanford_alpaca

	Introduction
	Related Work
	Methodology
	Experiments
	Conclusion

