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ABSTRACT

Acquiring a generalizable policy by continually learning a sequence of tasks is a
natural human skill yet challenging for current reinforcement learning algorithms.
This is largely due to the dilemma that the agent is expected to quickly adapt to
new tasks (plasticity) while retaining the common knowledge from previous tasks
(stability). In this work, we present a scheme referred to as “Learning with Lan-
guage Inference and Tips (LLIT)”, which introduces a rewarding mechanism to
parse and ground human knowledge in natural language form to the task space
and produces an interpretable policy for each task in task-agnostic setting. LLIT
trains a shared policy for each task by inferring and embedding the tips and con-
tent of the task. The language instructions inferred by the large language model
(LLM) are then used to pre-train an auxiliary reward model with observations’
embedding, thereby extracting the semantic representations in tasks. Simultane-
ously, the instructions and tips embedding will be collected and organized as a
prompt pool to capture the correlation among tasks. Hence, closely related tasks
exhibit greater neuron overlap in the policy network, stemming from shared se-
mantics, which effectively curbs cross-task interference and forgetfulness. Given
the auxiliary reward model trained on previous tasks that interprets human knowl-
edge in natural language, new task adaptation reduces to highly efficient tips ag-
gregation and sub-network finetuning. In experimental studies, LLIT achieves
a desirable plasticity-stability trade-off without any task-specfic information. It
also outperforms existing continual RL methods in terms of overall performance,
forgetting reduction, and adaptation to unseen tasks. Our code is available at
https://github.com/llm4crl/LLIT.

1 INTRODUCTION

Reinforcement learning(RL) has demonstrated remarkable performance and great potential on learn-
ing individual tasks, such as playing strategic games(Silver et al., 2016; Vinyals et al., 2019), robotic
control (Kober et al., 2013; Kormushev et al., 2013; Polydoros & Nalpantidis, 2017) and autonomous
driving(Aradi, 2020; Kiran et al., 2021). However, it is hard for RL to perform well when learning a
stream of tasks sequentially, due to catastrophic forgetting and difficulty to transfer knowledge be-
tween tasks(Bengio et al., 2020; Khetarpal et al., 2022). Consequently, training a single policy that
can properly handle to all learned tasks or even swiftly adapt and generalize to unseen ones still re-
mains as a major challenge. This problem is commonly referred to continual or lifelong RL(Mendez
et al., 2020) and has attracted growing interest in the RL community.

The plasticity-stability trade-off(Khetarpal et al., 2022) is a fundamental and enduring issue in
continual RL.The RL policy should concurrently preserve and utilize task-related knowledge
in past(stability) while remaining adaptive to novel tasks without being interfered by previous
tasks(plasticity). In practice, this issue is a key factor in improving the efficiency of continual RL
and the generalization capability of its learned policy. Recently, due to the thriving development of
large language model (LLM), instructions in natural language derived from a pre-trained LLM can
efficiently guide the policy with human knowledge, mitigating the necessity of experience replay
and the associated memory and computational overhead. Moreover, The instructions obtained by
inference can not only optimize the policy gradient updates effectively, but also serve as the auxiliary
representation to transfer the shared skills positively across tasks. Hence, the stability can be signif-
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Figure 1: The workflow and key components of LLIT.

icantly enhanced as the number of tasks increases with better plasticity achieving faster adaptation
and better generalization to new tasks.

To directly address the plasticity-stability dilemma and overcome the drawbacks of previous work,
we choose to incorporate knowledge in the form of natural language into continual RL. Then, given
only a textual description of the observation space and the action space of a previously learned or
unseen task, a set of inferred tips to solve the task and inferred task content can be automatically
and efficiently extracted from the large language model. This aligns with the concept of prompting
in recent large language models but distinguishes from existing methods, which either optimize
a task-specific policy from scratch(Boschini et al., 2022) or select a policy from the pool of pre-
trained models for each task(Kessler et al., 2022). To this end, we propose to learn a reward model
along with a prompt pool to encode the knowledge as an auxiliary signal, which provide high-level
semantic understandings for the policy, which also extract cross-tasks skills from the semantics to
enable the continual learning. We call this approach “Learning with Language Inference and Tips
(LLIT)”.

In Fig.1, given the t-th task t, the task tips and content are generated by a frozen and pre-trained
LLM, which are tokenized along with observations into three embeddings ett, etn and eobs sepa-
rately. Next, ett and eobs are element-wise concatenated as input to a transformer model, which is
trained as an auxiliary reward generator to produce the language instruction reward. Meanwhile,
the embedding of the inferred task content etn is put into a prompt pool, which exploits the task
correlations in both the embedding and prompt spaces. This leads to efficient usage of the semantic
interpretations and goal-oriented optimization of the trade-off between plasticity and stability in that
relevant tasks can reuse skills by sharing more tips and parameters (good plasticity and fast adapta-
tion) while the harmful interference between irrelevant tasks can be largely avoided by sharing less
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or no tips and parameters (high stability and less forgetting). Moreover, due to the prompt pool, it
is unnecessary for to store any experiences of previous tasks in replay buffer, requiring much less
computation and memory than rehearsal-based methodsSerra et al. (2018); Rolnick et al. (2019).
Furthermore, the prompt pool in LLIT, as an efficient task adaptation method, can extract policy
sub-networks for unseen tasks and thus leads to a more generalizable meta-policy.

In our work, we show that on Continual World benchmarks and randomly sampled task sequences
that consist of tasks from different domains, LLIT outperforms overall performance most baselines
in terms of overall performance, forgetting reduction, and adaption to unseen tasks (Table 1).We also
make a comprehensive ablation study (Table 2) and confirm the importance of inferring language
instructions and obtaining prompt pool. In addition, our empirical analysis shows that auxiliary
reward model trained on language instructions converges fast and can judge the value of current
trajectory from the aspect of semantics precisely(Table 2), while the learned prompt pool captures
the semantic correlations among tasks(Fig.??).

2 PRELIMINARIES AND RELATED WORK

We follow the task-incremental setting in previous work(Wolczyk et al., 2021; 2022; Khetarpal et al.,
2022; Rolnick et al., 2019; Mendez et al., 2020; Chaudhry et al., 2018), which considers a sequence
of tasks, each defining a Markov Decision Process (MDP) Mt =< St, At, Tt, rt, γ > such that S
is the state space, A is the action space, p : S × A → ∆S is the transition probability where ∆(S)
is the probability simplex over S, r : S × A → R is the reward function so rt(st, h, at,h) is the
immediate reward in task t when taking action at,h at state st,h, h indexes the environment step, and
γ ∈ [0, 1) is the discounted factor. Continual RL aims to achieve a policy πθ at task T that performs
well (with high expected return) on all seen tasks t ≤ T , with only a limited (or without) buffer of
previous tasks’ experiences:

θ∗ = argmax
θ

T∑
t=1

Eπθ
[

∞∑
h=0

γhrt(st,h, at, h)] (1)

Continual learning is a natural human skill that can accumulate knowledge generalizable to new
tasks without forgetting the learned ones. However, RL agents often struggle with achieving the
goal in Eq. 1 due to the plasticity-stability trade-off: the policy is expected to quickly adapt to new
tasks t ≥ T (plasticity) but meanwhile to retain its performance on previous tasks t < T (stability).

Existing strategies for continual RL mainly focus on improving stability and reducing catastrophic
forgetting. Rehearsal-based methods such as CLEAR(Rolnick et al., 2019) and PC (Schwarz et al.,
2018) repeatedly replay buffed experiences from previous tasks but the required buffer memory and
computational cost grow with the number of tasks(Kumari et al., 2022). By contrast, Regularization-
based methods such as EWC(Kirkpatrick et al., 2017) and PC(Kaplanis et al., 2019) alleviate forget-
ting without the replay buffer by adding extra regularizers when learning new tasks, which can bias
the policy optimization and lead to sub-optimal solutions(Zhao et al., 2023). Finally, structure-based
methods adopt separate modules, i.e., sub-networks within a fixed-capacity policy network, for each
task(Mendez & Eaton, 2022). We summarize two main categories of structure-based methods in the
following.

Connection-level methods. This category includes methods such as PackNet(Mirchandani et al.,
2021), Sup-Sup(Wortsman et al., 2020), and WSN(Kang et al., 2022). For task t, the action at is
drawn from at ∼ π(st; θ ⊗ ϕt) where st is the state and ϕt is a binary mask applied to the model
weights θ in an element-wise manner (i.e., ⊗). Pack-Net generates ϕ t by iteratively pruning θ after
the learning of each task, thereby preserving important weights for the task while leaving others for
future tasks. SupSup fixes a randomly initialized network and finds the optimal ϕt for each task t.
WSN jointly learns θ and ϕt and uses Huffman coding (Huffman, 1952) to compress ϕt for a sub-
linear growing size of {ϕt}Tt=1 with increasing tasks. However, these methods usually need to store
the task-specific masks for each task in history, leading to additional memory costs(Huang et al.,
2022). Moreover, their masks are seldom optimized for knowledge sharing across tasks, impeding
the learned policy from being generalized to unseen tasks.

Neuron-level methods. Instead of extracting task-specific sub-networks by applying masks to
model weights, the other category of methods produces sub-networks by applying masks to each
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layer’s neurons/outputs of a policy network. Compared to connection-level methods, they use layer-
wise masking to achieve a more flexible and compact representation of sub-networks. But the gen-
eration of masks depends on either heuristic rules or computationally inefficient policy gradient
methods. By contrast, LLIT generates masks by highly efficient sparse coding (solving a relatively
small lasso problem).

3 METHOD

To facilitate more efficient execution of CRL tasks in a task-agnostic setting, as well as to mitigate
the occurrence of catastrophic forgetting and promote knowledge transfer, we propose our own
approach by leveraging the general inferential capabilities of large language models and the fine-
tuning capabilities of the Decision Transformer model.

3.1 ROUGH INFERENCE WITH LARGE LANGUAGE MODEL

In the context of Continual Reinforcement Learning (CRL), an agent is tasked with performing
a continuous sequence of multiple tasks. During the learning process, the identification of tasks
(referred to as Task IDs) and task boundaries (Task Boundary) are critical for strategies employed
by certain CRL methods. These task identifiers are often used for switching training datasets, storing
data in different replay buffers, or altering policy distributions. However, in task-agnostic settings
and real-world scenarios, agents often struggle to directly obtain accurate Task IDs or task boundary
indications during training.

Hence, the goal of our proposed approach is to efficiently guide the agent’s learning without relying
on human’s intervention. We recognize that although agents cannot obtain task-specific informa-
tion solely from themselves, they do have direct access to observations, such as sensor data, and
executable actions, such as robotic arm movements. The semantics of various dimensions of this
observational and actionable data are well-defined for agents.

Assume the agent is trained on the task t in a task sequence which contains T tasks in total, and the
observation space and action space of it are denoted as Ot with n dimensions, and At with m dimen-
sions separately.The simple language descriptions about different dimensions of Ot and At can be
collected as two sets:DesOt

= {desiOt
}ni=1 and DesAt

= {desjAt
}mj=1, where desiOt

represents

the description of ith dimension of observation space Ot and desjAt
represents the description of jth

dimension of action space At. Large language models possess fundamental reasoning ability based
on general knowledge, which implies that they can roughly infer task-related information when they
receive given description sets about observation space and action space. In LLIT, we utilize LLMs
to focus on inferring two types of crucial task-related information:task content and task tips.

Task content, denoted as ltcontent, should be a short sentence that briefly summarizes the task, and
can be viewed as a prediction via LLMs about task name, while task tips, denoted as lttips, are a
set of suggestions in natural language, provided by LLMs on the purpose of instructing the agent to
accomplish the task more efficiently. To acquire more precise content and meaningful tips of a task,
we carefully design prompt templates that are input into LLMs with the description sets of the task.
This process can be written as:

ltcontent = fLLM (DesOt
, DesAt

; pcontent)

lttips = fLLM (DesOt
, DesAt, l

t
content

; ptips)
(2)

where fLLM denotes a LLM function, pcontent denotes the prompt template for inferring the task
content of task t and ptips denotes the prompt template for proving the task tips for task t. Extract-
ing task content and task tips through LLMs offers three distinct advantages. Firstly, ltcontent and
lttips represent high-level semantic understandings of the original information, encapsulating human
knowledge about the task in the form of natural language, which means they can serve as signals be-
sides rewards for guiding the optimization of policy. Secondly, ltcontent and lttips are representations
closely associated with task-specific information, facilitating knowledge transfer across different
tasks. Lastly, obtaining ltcontent and lttips only requires initial acquisition at the beginning of training
for each task, leading to less computation.
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3.2 GROUNDING TIPS TO POLICY

One of the expected effects of our proposed framework is that task tips containing human knowledge
can be used to guide agent learning, thereby improving efficiency and interpretability. However,
there are two challenges to deploy the task tips in the agent’s policy. Firstly, there is a huge gap
between natural language(the form of tips) and sensor data(the form of observation), which suggests
that it is necessary to transform the tips into the observation space. Secondly, it is difficult to translate
the knowledge in the task tips instead of text itself into effective reward signals.

To address the challenges above, we train a reward model to bridge the tips and observation space.
Firstly, each of the tips can be parsed by a frozen similarity model.We utilize the similarity model
to detect if the description of a dimension of observation space exists in a tip, while those existed
will be bound with their relevant sub-sentence in the tips and others will be bound with a predefined
character ”¡NULL¿”.Therefore, each tip will be parsed in a vector that has the same dimensions as
the observation space, for example, the ith parsed tip could be Di

t = {< ob 1 sub tip >, . . . , <
NULL >, . . . }.

When we obtain the parsed tips of a task, we establish a correspondence between the observation
space and tips, which helps generate the auxiliary reward signal to instruct the policy to update.
Specifically, we select a pre-trained tokenizer to turn each parsed tip and each single observation
data into token embeddings denoted as etip and eo separately, then element-wise concatenate etip
and eo. Finally, the concatenated embedding will be the input to train a transformer model, which is
an auxiliary reward model.The process can be shown as:

Ra = fARM ([etip; eo]) (3)

where Ra is auxiliary reward, fARM is the auxiliary reward model which based on transformer, and
[etip; eo] is the element-wise concatenation of etip and eo.

3.3 LEARNING WITH POOL OF INFERRED INFORMATION

After sufficient training of the auxiliary reward model, we obtain a tool to extract the semantics
of tips from human knowledge and instruct the agent to learn more efficiently and reasonably, and
next we need to solve the problem that the nature of continual reinforcement learning brings. In
CRL, agent needs to learn tasks sequentially with single policy model, which lead to catastrophic
forgetting if doing nothing to the intervene between tasks.

To deal with catastrophic forgetting, we propose a modulation pool. Similar to L2P,we define a
modulation pool that contains a set of M keys,Kpool = ki |Mi=1.Each ki is associated with a set of
modulation vectorslik,b, l

i
v,b, l

i
ff,b as values,for each layer block b of a DT with B layer blocks,where

lk ∈ Rdk ,lv ∈ Rdv ,and lff ∈ Rdff , dk,dv ,and dff correspond to the dimensions of the keys,
queries, and feedforward activations in the DT, respectively. Since we follow a GPT-2-like architec-
ture, dk = dv and dff = 4 × dk. We interleave each Transformer layer with separate modulation
vectors, resulting in dk + dv + 4 × dff learnable parameters per layer. At time t,we compose all
states in a trajectory τ into a matrix S≤t after the y are processed via the embedding layer of the DT.
Subsequently, we reduce the matrix to a query vector qt ∈ Rdq by an aggregation function g(·):

qt = g(S≤t) (4)

For the aggregation function g(·), we use mean-pooling by default. Further, we retrieve a set of
modulation vectors {ljk,b, l

j
v,b, l

j
ff,b} |Bb=1 by the maximum similarity between each k ∈ Kpool in the

modulation pool and the query qt at timestep t:

j = argmax
k∈Kp

sim(qt, k)n(k)
−1 (5)

In our case, sim(·, ·) corresponds to the cosine similarity and n(k)−1 represents the inverse selection
count for key k up to the current task. This way, we discourage that queries for different tasks attend
to the same key. Subsequently, we use {ljk,b, l

j
v,b, l

j
ff,b} |Bb=1 to modulate the attention mechanism

in the DT, as proposed by Liu et al.(2022):

(ljv ⊙ V )T softmax(β(ljk ⊙K)Q) (6)
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Here, ⊙ corresponds to element-wise multiplication, and β = 1√
dk

. Also, Q, K, V refer to queries,

keys, and values in the self-attention, respectively. Further, ljff modulates the activations of the
position-wise feed-forward activations in DT. All modulation vectors are initialized to ones, and,
thus, the activations remain unchanged at the start of training. All keys in Kpool are initialized uni-
formly between [-1,1]. Our method unifies the benefits of both, (IA)3 and L2P in the RL setting. It
assures high-performance and few additional learnable parameters, while it avoids forgetting on the
pre-trained tasks. Moreover, it provides a simple task-matching mechanism and enables scalability
to numerous tasks.

4 EXPERIMENTS SETUP

4.1 ENVIRONMENTS AND TASKS

In order to assess the CRL ability of LLIT and the baselines in a cross-domain, task-agnostic setting,
we focus on environments with significant differences in domains, specifically where the state space
and action space, vary. Each environment consists of multiple control tasks. We randomly select
tasks from different environments in proportion and shuffle them to create a mixed control task
sequence. In this setup, the task sequence allows for a comprehensive evaluation of LLIT and
baselines’ knowledge transfer capabilities and generalization performance when dealing with tasks
that exhibit significant differences in control objects, control logic, task goals, and other aspects. We
list the evaluation environments below:

Classical Control:The Classical Control environment consists of 2D control tasks from OpenAI
Gym, including Cart Pole, Inverted Pendulum, LunarLander, and others. In these tasks, the con-
trolled object remains within a 2D plane, and their control physics are relatively straightforward.

Mujoco Control:The Mujoco Control environment consists of multiple control tasks with Mujoco
physics engine.These tasks are selected from two benchmarks: OpenAI Gym Mujoco and the DM-
control benchmark.In mujoco control tasks, The controlled objects typically have multiple joints,
and there are simulated physical interactions between these joints.

Continual World:The Continual World environment is a task sequence originated from the Con-
tinual World benchmark, which contains 20 realistic robotic tasks carefully selected and arranged
from the Meta World benchmark.These tasks and their ordering are arranged based on their transfer
matrix so that there is a high variation of forward transfers.In our setup, the Continual World envi-
ronment will be an independent evaluated environment where the tasks will maintain their original
arrangement instead of being randomly inserted into the mixed task sequence.

4.2 BASELINES

We compare LLIT with several baselines and state-of-the-art (SoTA) continual RL methods. Ac-
cording to (Lange et al., 2022), these methods can be divided into three categories: regularization-
based, structure-based, and rehearsal-based methods. Concretely, regularization-based methods in-
clude L2, Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017), Memory-Aware Synapses
(MAS) (Aljundi et al., 2018), and Variational Continual Learning (VCL) (Nguyen et al., 2018).
Structure-based methods include PackNet (Mallya and Lazebnik, 2018), Hard Attention to Tasks
(HAT) (Serr‘a et al.,2018), and TaDeLL (Rostami et al., 2020). Rehearsal-based methods include
Reservoir, Average Gradient Episodic Memory (A-GEM) (Chaudhry et al., 2019), and ClonEx-SAC
(Wolczyk et al., 2022). For completeness, we also include a naive sequential training method (i.e.,
Finetuning) and representative multi-task RL baselines (MTL (Yu et al.,2019) and MTL+PopArt
(Hessel et al., 2019)), which are usually regarded as the soft upper bound a continual RL method
can achieve. For a fair comparison, we refer to the Continual World repository for implementation
and hyper-parameter selection. We re-run these methods to ensure the best possible performance. In
addition, we adopt author-reported results for ClonEx-SAC due to the lack of open-sourced imple-
mentation.
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Figure 2: Performance (mean ± std over 5 random seeds) of all methods on CW20 sequence.
LLIT outperforms all the continual RL methods and all the multi-task RL baselines.

Benchmarks CW10 CW20

Metrics P ↑ F ↓ G ↓ P ↑ F ↓ G ↓

CL

L2 0.41 ± 0.14 0.00 ± 0.03 0.53 ± 0.05 0.51 ± 0.07 -0.09 ± 0.04 0.56 ± 0.06
EWC 0.62 ± 0.15 0.01 ± 0.04 0.36 ± 0.05 0.60 ± 0.08 0.03 ± 0.03 0.40 ± 0.07
MAS 0.63 ± 0.17 -0.04 ± 0.03 0.45 ± 0.05 0.49 ± 0.04 0.02 ± 0.02 0.51 ± 0.02
V CL 0.49 ± 0.09 −0.01 ± 0.07 0.44 ± 0.05 0.52 ± 0.13 −0.02 ± 0.06 0.53 ± 0.05

Finetuning 0.11 ± 0.03 0.72 ± 0.03 0.25 ± 0.07 0.04 ± 0.00 0.74 ± 0.04 0.32 ± 0.04
PackNet 0.82 ± 0.11 0.00 ± 0.00 0.25 ± 0.07 0.76 ± 0.06 0.00 ± 0.00 0.31 ± 0.04

HAT 0.64 ± 0.11 0.00 ± 0.00 0.45 ± 0.06 0.64 ± 0.07 0.00 ± 0.00 0.45 ± 0.04
A − GEM 0.12 ± 0.05 0.65 ± 0.03 0.23 ± 0.02 0.06 ± 0.02 0.71 ± 0.07 0.27 ± 0.04

ClonEx − SAC∗ 0.86 0.02 − 0.87 0.02 −
CoTASP 0.91 ± 0.03 0.00 ± 0.00 0.25 ± 0.03 0.86 ± 0.02 0.00 ± 0.00 0.25 ± 0.03

MT MTL 0.51 ± 0.10 − − 0.50 ± 0.12 − −
MTL + PopArt 0.71 ± 0.13 − − 0.67 ± 0.16 − −

LLIT (ours) 0.95 ± 0.07 0.00 ± 0.00 0.19 ± 0.06 0.91 ± 0.04 0.00 ± 0.00 0.27 ± 0.03

Table 1: Evaluation (mean ± std of 3 metrics over 5 random seeds) on Continual World. *-
reported in previous work. Reg = Regularization-based, Struc = Structure-based, Reh = Rehearsal-
based, MT = Multi-task, P = Average Performance, F = Forgetting, G = Generalization. The best
result for each metric is highlighted.

4.3 EVALUATION

Following a widely-used evaluation protocol in continual learning literature, we adopt three metrics.
(1) Average Performance (higher is better): the average performance at time t is defined as P (t) =
1
T

∑T
i=1 pi(t)pi(t) where pi(t) ∈ [0, 1] denotes the success rate of task i at time t. This is a canonical

metric used in the continual learning community. (2) Forgetting (lower is better): it measures the
average degradation across all tasks at the end of learning, denoted by F = 1

T

∑T
i=1 pi(i ·δ)−pi(T ·

δ), where δ is the allowed environment steps for each task. (3) Generalization (lower is better): it
equals to the average number of steps needed to reach a success threshold across all tasks. Note that
we stop the training when the success rate in two consecutive evaluations reaches the threshold (set
to 0.9). Moreover, the metric is divided by δ to normalize its scale to [0, 1].

5 EXPERIMENTS

5.1 CONTINUAL LEARNING EXPERIMENTS

This section presents the comparison between LLIT and ten representative continual RL methods
on mixed task sequence and CW benchmarks. We focus on the stability (retain performance on
seen tasks) and the plasticity (quickly adapt to unseen tasks) and keep the constraints on computa-
tion, memory, number of samples, and neural network architecture constant. Table 1 summarizes
our main results on CW10 and CW20 sequences. LLIT consistently outperforms all the compared
methods across different lengths of task sequences, in terms of both average performance (measures
stability) and generalization (measures plasticity). We observe that when the hidden-layer size is
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Benchmark CW20

Metrics P (↑) G(↓)

LLIT(ours) 0.91± 0.02 0.27± 0.03
with D frozen 0.73± 0.06 0.47± 0.03
with α frozen 0.79± 0.06 0.34± 0.02

with both frozen 0.62± 0.05 0.52± 0.03
lazily update D 0.85± 0.03 0.29± 0.05

EWC 0.60± 0.07 0.39± 0.06
PackNet 0.78± 0.07 0.32± 0.04
A-GEM 0.08± 0.02 0.29± 0.04

Finetuning 0.05± 0.00 0.30± 0.05

Table 2: Ablation study. Performance of LLIT variants on CW20 sequence. Please refer to Sec.
4.3 for a detailed explanation.

the same as other structure-based methods (PackNet and HAT), LLIT outperforms them by a large
margin, especially in the generalization metric, indicating the advantage of LLIT in improving the
adaptation to new tasks.

Moreover, we find that most continual RL methods fail to achieve positive backward transfer (i.e.,
F < 0) except for VCL, suggesting the ability to improve previous tasks’ performance by learning
new ones is still a significant challenge. We leave this for future work. Finally, the results in Fig.
3 show that LLIT is the better method than CoTASP that performing comparably to the multi-task
learning baselines on the first ten tasks of CW20 sequence, and it exhibits superior performance
over these baselines after learning the entire CW20 sequence. One possible explanation is that the
knowledge accumulated by LLIT’s meta-policy network and dictionaries leads to improved gener-
alization.

Effectiveness of core designs. To show the effectiveness of each of our components, we conduct an
ablation study on four variants of LLIT, each of which removes or changes a single design choice
made in the original LLIT. Table 2 presents the results of the ablation study on CW20 sequence,
using two representative evaluation metrics. Among the four variants of LLIT, “D frozen” replaces
the learnable dictionary with a fixed, randomly initialized one; “α frozen” removes the prompt op-
timization proposed in Sec. 3.3; “both frozen” neither updates the dictionary nor optimizes the
prompt; “lazily update D” stops the dictionary learning after completing the first ten tasks of CW20
sequence. According to the results in Table 2, we give the following conclusions: (1) The use of a
fixed, randomly initialized dictionary degrades the performance of LLIT on two evaluation metrics,
highlighting the importance of the learnable dictionary in capturing semantic correlations among
tasks. (2) The “α frozen” variant performs comparably to our LLIT but outperforms the results
achieved by EWC and PackNet. This indicates that optimizing the prompt can improve LLIT’s
performance but is not crucial to our appealing results. (3) The “both frozen” variant exhibits no-
ticeable degradation in performance, supporting the conclusion that the combination of core designs
proposed in LLIT is essential for achieving strong results. (4) The “lazily update D” variant only
slightly degrades from the original LLIT on the performance but still outperforms all baselines by a
large margin, indicating that the learned dictionary has accumulated sufficient knowledge in the first
ten tasks so that LLIT can achieve competitive results without updating the dictionary for repetitive
tasks.

Effect of key hyperparameters.LLIT introduces the sparsity parameter λ, a hyperparameter that
controls the trade-off between the used network capacity and the performance of the resulting policy.
A larger value of λ results in a more sparse policy sub-network, improving the usage efficiency of the
meta-policy network’s capacity. But the cost is decreased performance on each task due to the loss of
expressivity of the over-sparse task policy. According to the results in Fig. 3, LLIT with λ=1e-3 or
1e-4 achieves better trade-off between performance and usage efficiency than other structure-based
methods (HAT and PackNet) on CW10 sequence.
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6 CONCLUSION

We propose LLIT to address two key challenges in continual RL: (1) training an auxiliary reward
model using language instructions interpretable and generalizable to all seen and even unseen tasks;
(2) efficiently extracting similarities in semantics of tasks and mitigating forgetting. LLIT learns
a policy with embeddings of human skills in the form of language and a prompt pool to transfer
knowledge across tasks. This encourages knowledge sharing/reusing among relevant tasks while re-
ducing harmful cross-task interference that causes forgetting and poor new task adaptation. Without
any experience replay, LLIT achieves a significantly better plasticity-stability trade-off and more
efficient network capacity allocation than baselines. Its extracted policies outperform all baselines
on both previous and new tasks.
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