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ABSTRACT

Modern deep neural networks are often miscalibrated, leading to overconfident
mistakes that erode their reliability, and limit their use in critical applications. The
existing confidence calibration techniques range from train-time modification of
loss functions to post-hoc smoothing of the classifier’s predicted confidence vector.
Despite the success of these approaches, it is relatively unclear if supervision
from an already trained expert classifier can further enhance a given classifier’s
confidence calibration. Knowledge distillation (KD) has been shown to help clas-
sifiers achieve better accuracy. However, little to no attention has been paid to
a systematic understanding if the calibration can also be transferred via KD. In
this work, we provide new insights into how and when expert supervision can
produce well-calibrated classifiers, by studying a special class of linear teacher and
student classifiers. Specifically, we provide theoretical insights into the working
mechanisms of KD and show that calibrated teachers can distill calibrated students.
We further show that unlike traditional KD where a smaller capacity classifier learns
reliably from a larger capacity expert, transfer of calibration can be induced from
lower capacity teachers to larger capacity students (aka reverse-KD). Furthermore,
our findings indicate that not all training regimes are equally suitable and that a
teacher classifier trained using dynamic label smoothing leads to the better cali-
bration of student classifiers via KD. Moreover, the proposed KD based calibration
leads to a state-of-the-art (SOTA) calibration framework surpassing all existing
calibration techniques. Our claims are backed up by extensive experiments on
standard computer vision classification tasks. On CIFAR100 using WRN-40-1
feature extractor, we report an ECE of 0.98 compared to 7.61 and 2.1 by the current
SOTA calibration techniques Adafocal (Ghosh et al. (2022)) and CPC Cheng &
Vasconcelos (2022) respectively, and 11.16 by the baseline NLL loss (lower ECE
is better). The calibration improvement is achieved across various architectures.
Using MobileNetv2 on CIFAR100 we report an ECE of 0.88/1.83/4.17/7.76
using Ours/Adafocal/CPC/NLL.

1 INTRODUCTION

Calibration. Deep neural network (DNN) models have become increasingly prevalent in critical
applications such as healthcare (Kononenko (2001); Miotto et al. (2018)), and autonomous driving
(Bojarski et al. (2016)). In such applications, it is crucial for DNN predictions to not only be accurate
but also reliable and trustworthy (Nixon et al. (2019); Dusenberry et al. (2020)). Yet, it has been
shown that the softmax probabilities (referred to as predicted confidence in this paper) produced
by DNNs come with no formal probabilistic guarantees (Guo et al. (2017)). The phenomenon
known as Calibration, refers to the alignment between a DNN model’s predicted confidence and the
actual frequency of the event it represents. Calibration indicates model’s ability to provide reliable
uncertainty estimates, and most modern DNNs are shown to be highly miscalibrated.

Reasons for Miscalibration and Our Investigation. Mukhoti et al. (2020) have shown that a DNN
model overfitting on NLL loss is the main reason behind highly overconfident predictions, leading to
miscalibration. This begs the question, if access to richer class structure and label uncertainties during
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training can prevent such overfitting and generate a calibrated classifier. Knowledge distillation
(KD) has been used for transferring learnt representations from a (typically large) teacher model to a
(usually smaller) student model in multitude of works. In this work we investigate if access to learnt
class structure through a teacher model’s representation also helps in calibration of a student model.

Background on Knowledge Distillation. Since its introduction in 2015 by Hinton et al. (2015),
KD has become a go-to method for transferring information between two classifiers with different
capacities or architectures. It has been shown repeatedly that student classifiers trained via expert
supervision from a teacher classifier or ensemble of classifiers via soft-label training exhibit improved
performance than when trained with hard label-based training (for eg., one hot encoding) via cross-
entropy loss Sun et al. (2019); Mirzadeh et al. (2020); Gou et al. (2021). The improved performance is
reflected both in terms of increased classification accuracy, as well as stable behavior during training,
requiring fewer optimization tricks (Phuong & Lampert (2019)). In summary, student classifiers tend
to inherit properties of the teacher classifiers through knowledge sharing between them via KD.

Our Proposal: KD for Calibration. Unfortunately, existing explanations of the process of KD rarely
go beyond simple qualitative statements attributing improved performance to learning from soft-labels
of the expert classifiers. Phuong & Lampert (2019) provide a first theoretical insight into the working
mechanism of KD, albeit from an optimization viewpoint. Allen-Zhu & Li (2023) elucidates the
effectiveness of ensemble learning and KD in enhancing the test accuracy of classifiers, without
placing particular emphasis on the transfer of calibration properties. In our work, we view the role of
KD beyond its well-studied role of accuracy transfer and provide theoretical and empirical insights
into the transfer of calibration to student classifiers. We show, arguably for the first time, that only
calibrated teachers potentially distill the best-calibrated students, and thus, a recipe for producing
accurate and calibrated classifiers must also involve KD through calibrated teacher classifiers.

Departure from Current Belief: Does KD Conflict with Calibration. Interestingly, there is some
precedence in investigating the role of calibrating teacher classifiers via label-smoothing (LS) Müller
et al. (2019). However, LS was observed to impair KD, i.e., the accuracy of student classifiers
degrades when teacher classifiers are calibrated with LS, which potentially points to pitfalls of
KD Shen et al. (2021). In our work, we show that this impairment is not the artefact of KD but
of the LS itself, which when used to calibrate teacher classifiers and distill their understanding to
student classifiers at higher temperatures, ends up over-smoothing a student’s predictions, thereby
significantly degrading its accuracy (Chandrasegaran et al. (2022)). We show that teachers trained via
dynamic label-smoothing methods (E.g., Hebbalaguppe et al. (2022b)) consistently distil calibrated
students across all temperatures. To this end, we highlight the role of KD in calibrating classifiers and
argue strongly in favor of using knowledge sharing from calibrated experts to student classifiers as
the most promising calibration technique.

Mathematical Definition. Formally, given a data distribution D of (x, y) ∈ X × {0, 1} and let c be
the predictive confidence, the predictor f : X → [0, 1] is said to be calibrated (Dawid (1982)), if:

E(x,y)∼D
[
y | f(x) = c

]
= c, ∀c ∈ (0, 1) (1)

Key Contributions. To achieve calibration of DNNs, we bring together two seemingly unrelated
subfields: KD and confidence calibration. We make the following key contributions in this direction:

1. Understanding calibration transfer via distillation: We develop a theoretical framework to
analyze KD and its ability to transfer learning of a teacher classifier to a student classifier, and
show, arguably for the first time, that only calibrated teachers can distill calibrated students. We
corroborate our theoretical results later through exhaustive experiments.

2. Achieving best student network calibration: Our experiments demonstrate that students trained
via KD from teachers that are first calibrated using dynamic/adaptive label-smoothing, exhibit
the best calibration compared to other train-time/post-hoc calibration techniques. (Sec. 5.1). Our
framework is dubbed KD(C) (Knowledge Distillation from Calibrated teacher).

3. Not all calibration techniques are compatible with KD: It has been observed empirically that LS
impairs KD (Müller et al. (2019)). This impairment is argued to be a high-temperature phenomenon
(Chandrasegaran et al. (2022)). In our experiments, we, too, observe a similar behavior when
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teacher classifiers are trained via static calibration methods, such as LS. However, we show that
when the teacher classifiers are calibrated using dynamic LS methods the distillation produces
calibrated student classifiers consistently across wide temperature regimes.

4. Calibration distillation works both ways: Contrary to popular belief that only larger models can
effectively distill their learning to smaller models, we show that smaller calibrated models can
also yield better calibrated larger models. The observation is consistent with our key insight that
the availability of label ambiguities through soft-labels during training is extremely useful for
calibration. This setting is relevant when large calibrated models or large datasets for training such
large models not readily available and significantly widens the applicability of our framework.

2 RELATED WORK

Research pertaining to calibration of DNNs can be categorized into following approaches: (a) train-
time calibration, (b) post-hoc calibration, (c) Bayesian inference, and (d) data augmentation. A train-
time calibration integrates model calibration during the training phase through suitable modification
of loss function. For instance, label smoothing (LS), originally introduced by Szegedy et al. (2015)
to improve the classifier accuracy by computing cross-entropy with a weighted sum of one-hot vector
and the uniform distribution, was adopted by Müller et al. (2019) for improving calibration. Most
train-time methods for calibration improvement inherently look to smooth confidence scores in a
sample-agnostic manner. Noteworthy works in this category include those by Moon et al. (2020);
Kim et al. (2021); Liu et al. (2022); Hebbalaguppe et al. (2022b); Park et al. (2023).

Conversely, post-hoc calibration focuses on optimizing calibration measures using a separate hold-
out set post-training. Guo et al. (2017), demonstrated that temperature scaling (TS), a technique
that smooths confidence scores by dividing the logits of a classifier by a scalar T > 1, enhances
its calibration. Other notable contributions in this category also include the studies by Platt et al.
(1999); Kull et al. (2017; 2019); Bohdal et al. (2021); Islam et al. (2021). However, despite its
simplicity, it was observed in Hebbalaguppe et al. (2022b) that train-time approaches offer superior
performance over post-hoc methods. Prominent examples of calibration methods relying on data
augmentation encompass Thulasidasan et al. (2019) and Hebbalaguppe et al. (2022a). Meanwhile,
Bayesian methodologies are exemplified by Gal & Ghahramani (2016); Lakshminarayanan et al.
(2017); Ovadia et al. (2019) and Wenzel et al. (2020). However, in the context of our research,
train-time and KD-based approaches are especially pertinent.

KD Hinton et al. (2015) was originally proposed to enhance the accuracy of student classifiers by
transferring knowledge from high-capacity teacher classifiers. However, recent empirical evidence
points to regularization effects of KD over student classifiers akin to training classifiers separately
via LS (see Tang et al. (2020)), which seems to suggest direct calibration benefits of KD. It was
shown in Yuan et al. (2021) that when the temperature parameter during KD is set to unity and the
probability distribution of teacher classifiers are assumed to be uniform, KD via teacher classifier and
LS of student classifier exhibit identical behaviors in terms of gradient propagation. The observations
prompted to explore the scenario where a teacher classifier itself is first calibrated via LS and then
distills knowledge to a student classifier (i.e., distill knowledge from an LS calibrated teacher) with the
hope of doubling the regularization benefits. However, it was observed in Müller et al. (2019) that LS
representations impaired with those of KD, thus nullifying any regularization benefits. This viewpoint,
nonetheless, was later shown to be incomplete by Shen et al. (2021), where the authors argued that
such an impairment is only a high-temperature phenomenon. While this interplay between LS and
KD provided some insights into the regularization benefits of KD, its role as a potential calibrator of
smaller teacher classifiers has not been addressed in the literature. In our work, we look beyond just
the vanilla LS of teacher classifiers and provide direct theoretical and empirical evidence towards the
benefits of working with calibrated teachers and how they distill SOTA calibrated student classifiers
via KD. We also systematically analyze various calibration techniques for the teacher classifiers so that
the resulting student classifiers exhibit significantly improved calibration performance over directly
calibrating them via train-time or post-hoc methods. We show that dynamic LS methods, such as the
MDCA (Hebbalaguppe et al. (2022b)), consistently exhibit better accuracy and calibration trade-off
across wider temperature ranges.
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3 UNDERSTANDING CALIBRATION VIA KNOWLEDGE DISTILLATION

We analyze the mechanics of obtaining calibrated models via KD from a theoretical standpoint,
focusing on linear teacher and student networks in a binary classification problem. Such linear
classifiers, which were initially explored in Phuong & Lampert (2019) to gain a general understanding
of KD, have not been previously investigated for their potential to transfer learned representations,
particularly calibration, to student networks. Furthermore, the authors in Phuong & Lampert (2019)
utilized a simplified version of the KD loss function, which did not consider the significance of
distillation weights and quadratic temperature scaling. These factors play a crucial role in showcasing
the transfer of calibration to student models.

To this end, we represent an ith training instance by xi ∈ Rd. The set of all training examples
is represented by X ∈ Rd×N . We use zi,s and zi,t to represent logits of the student and teacher
networks for the ith training instance, respectively. These logits can be converted into valid probability
distributions pi,s and pi,t, respectively, using Sigmoid activation function. In knowledge distillation,
the output probabilities of the teacher network are softened using inverse temperature scaling of the
logit, leading to prediction probabilities {p̃i,t}. The true class labels are denoted by {yi ∈ {0, 1}}.
Since, the teacher and student networks are assumed to be linear networks, an arbitrary deep network
can equivalently be represented using a single layer network. We use Ws and Wt to represent
weight matrices of the student and teacher networks, respectively. Finally, we use T ∈ R+ to depict
temperature parameter for temperature scaling, while α ∈ [0, 1) represents the relative importance of
the student’s binary cross-entropy loss. Below we list the key assumptions before presenting the key
theoretical results.

Assumption 1. The feature dimension d is larger than the number of training examples N .

Assumption 2. The student and teacher networks are represented by linear networks.

Remark 1. A direct consequence of Assumption 1 is that the data matrix X is full column rank almost
surely, since if one randomly samples N training examples (with N < d), the probability that any
two sample vectors are perfectly aligned is nearly zero. Consequently, the matrix X⊤X is invertible.
Assumption 2 ensures that both student and teacher networks can be compactly represented as single
layer linear networks. Though, the assumption implicitly enforces student network to be of the same
capacity as that of the teacher network, it makes it easier to better understand the mechanics of the
KD, specifically when we later distill larger models from smaller models. Extending to nonlinear
networks poses significant challenges, similar to the lack of a general theory for DNNs and non-convex
optimization. However, we can still extract valuable insights from the theory of linear networks and
utilize them to establish a framework applicable to general nonlinear networks.

In KD, the student aims to minimize the weighted combination of the binary cross-entropy loss LBCE,
and the KD loss LKD, given by:

LBCE = −
∑N

i=1
[yi log pi,s + (1− yi) log (1− pi,s)] ,

LKD = −T 2
∑N

i=1
[p̃i,t log p̃i,s + (1− p̃i,t) log (1− p̃i,s)] ,

Ltot = (1− α)LBCE + αLKD, (2)

where pi,s := σ(W⊤
s xi), p̃i,s := σ

(
W⊤

s xi

T

)
, p̃i,t := σ

(
W⊤

t xi

T

)
and σ(·) is the Sigmoid

function. Below we provide our key theoretical results.

Theorem 1. Let X ∈ Rd×N be a data matrix satisfying Assumption 1, and Ws and Wt represent
the parameters of the student and the teacher networks, respectively. Then, under Assumption 2 and
using the gradient-descent algorithm, the parameters Ws of the student network converge to:

Ws ≈ αWt + 4(1− α)X(X⊤X)−1Y1/2,

where Y1/2 :=
[
yi − 1

2

]N
i=1

is an N -dimensional vector.
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Proof. Please refer to Section 2.1 in the supplementary material for the detailed proof. ■

Remark 2. Theorem 1 shows that when α is close to unity, the weights of the student network are
almost identical to those of the teacher network. Thus, properties of the teacher network transfer
directly to the student. For α ̸= 1, the student also learns to update its weight from the labeled data.

Calibrated Teachers produce Calibrated Students. A neural network classifier is said to be well
calibrated if the predicted probability distribution is similar to the observed probability distribution
(Naeini et al. (2015)). Mathematically speaking, if a teacher network with predicted probabilities
{pi,t} is well calibrated, then the following holds:∑N

i=1
pi,t =

∑N

i=1
yi. (3)

We now prove that well-calibrated teachers distill well-calibrated students. On the contrary, if the
teacher classifier is not well-calibrated, it is impossible to distill well-calibrated student classifiers.
The result extends our understanding of KD beyond accuracy transfer and formally characterizes the
transfer of calibration from student-to-teacher networks.

Theorem 2. Let Assumptions 1-2 hold. Let tc and tuc be two teacher classifiers with output prob-
abilities {pi,tc} and {pi,tuc

}, respectively. Also, let sc, suc depict two student classifiers trained
independently from the corresponding teacher classifiers tc and tuc through KD, with output proba-
bilities {pi,sc} and {pi,suc

}, respectively. Furthermore, assume that the teacher classifier tc is well
calibrated, then the student classifier sc is also well calibrated. Conversely, if the teacher classifier
tuc is uncalibrated, the corresponding student classifier suc mimics a similar behavior, i.e.,∑N

i=1
pi,sc =

∑N

i=1
yi, and

∑N

i=1
pi,suc

̸=
∑N

i=1
yi.

Proof. Please refer to Section 2.2 in the supplementary material for detailed proof. ■

Below we describe our framework for calibrating classifiers that leverage KD as a key tool.

3.1 RECIPE FOR JOINT OPTIMIZATION OF CALIBRATION AND ACCURACY

Abbreviation Description of Calibration Technique
NLL Negative Log Liklihood
LS Szegedy et al. (2015) Label Smoothing
CE+TS Guo et al. (2017) Temperature scaling on student model trained with cross-entropy loss
MMCE Kumar et al. (2018) Maximum Mean Calibration Error
MixUp Thulasidasan et al. (2019) Calibration through MixUp data augmentation
CRL Moon et al. (2020) Correctness Ranking Loss
PSKD Kim et al. (2021) Progressive refinement in Self Knowledge Distillation
MDCA Hebbalaguppe et al. (2022b) Multi-class difference in Confidence and Accuracy
AdaFocal Ghosh et al. (2022) Adaptive Focal Loss
CPC Cheng & Vasconcelos (2022) Calibration via Pairwise Constraints
MbLS Liu et al. (2022) Margin-based Label Smoothing
KD(UC) Knowledge Distillation from Uncalibrated teacher

KD with TS (Ours) Temperature Scaling on distilled Student classifier
KD with LS (Ours) KD framework with teacher trained on LS
KD with MDCA (Ours) KD framework with teacher trained on MDCA
KD with AdaFocal (Ours) KD framework with teacher trained on AdaFocal
KD with CPC (Ours) KD framework with teacher trained on CPC
KD with CRL (Ours) KD framework with teacher trained on Correctness Ranking Loss
KD with MbLS (Ours) KD framework with teacher trained on Margin based Label Smoothing
KD with MixUp (Ours) KD framework with teacher trained on MixUp data augmentation

Table 1: Nomenclature used for baseline methods and
the corresponding description of calibration technique.
Our proposed approach KD(C) variants are highlighted
where ‘C’ is calibration type

Our main goal is to create well-trained DNNs
that demonstrate the highest possible accuracy
and confidence calibration during inference.
Traditional loss functions like negative log-
likelihood (NLL) have been found to encour-
age over-confident models. To overcome the
shortcomings of NLL-based training, one po-
tential but simplistic approach involves calibrat-
ing classifiers pre-trained via KD, with the hope
that these models will retain enhanced accuracy
from the teacher model (refer to Theorem 1) and
achieve confidence calibration through subse-
quent post-hoc calibration. However, our experi-
ments illustrate that this two-step approach does
not guarantee the best results. We hypothesize
that the suboptimal performance of the student classifier primarily arises from the interference
between the representations learned through KD and the post-hoc calibration technique.

As shown in Theorem 2, calibrated teachers are guaranteed to distill calibrated students. Hence, we
experiment with KD using calibrated teachers which can potentially distill accurate and calibrated
students in one go. For calibrating teacher networks, we restrict our attention to train-time methods,
such as MDCA (Hebbalaguppe et al. (2022b)) and LS (Szegedy et al. (2015)), since post-hoc methods
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hhhhhhhhhhhhhhMethod
Architecture WideResNet-40-1 (0.56M) MobileNetV2 (2.25M)

Top1 (%) ECE (%) SCE (%) ACE (%) Top1 (%) ECE (%) SCE (%) ACE (%)
↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓

NLL 70.04 11.16 0.30 11.19 66.09 7.76 0.25 7.80
LS Szegedy et al. (2015) 70.07 1.30 0.21 1.49 66.96 4.24 0.23 4.18
CE+TS Guo et al. (2017) 70.04 2.57 0.19 2.50 66.09 2.33 0.19 2.37
MMCE Kumar et al. (2018) 69.69 7.34 0.25 7.37 62.90 3.21 0.21 3.15
MixUp Thulasidasan et al. (2019) 72.04 2.57 0.21 2.52 67.53 8.69 0.28 9.73
CRL Moon et al. (2020) 65.80 13.91 0.37 13.91 67.05 12.06 0.33 12.06
PSKD Kim et al. (2021) 72.56 3.73 0.20 3.72 69.09 6.95 0.23 6.94
MDCA Hebbalaguppe et al. (2022b) 68.51 1.35 0.21 1.34 66.96 1.61 0.20 1.92
AdaFocal Ghosh et al. (2022) 67.36 2.10 0.21 1.97 65.34 1.83 0.20 1.53
CPC Cheng & Vasconcelos (2022) 69.99 7.61 0.23 7.55 67.30 4.17 0.22 4.07
MbLS Liu et al. (2022) 69.97 5.37 0.22 5.37 67.22 1.25 0.20 1.25
KD(UC) 69.60 15.18 0.37 15.18 66.82 5.40 0.22 5.36

Ours (KD with MixUp) 72.48 1.21 0.20 1.17 69.92 2.17 0.24 2.10
Ours (KD with AdaFocal) 71.70 1.19 0.19 1.34 66.64 1.55 0.20 1.43
Ours (KD with CPC) 70.00 9.02 0.26 9.01 67.83 0.88 0.19 0.95
Ours (KD with MDCA) 71.07 0.98 0.20 1.10 67.17 1.10 0.20 1.17

Table 2: [Large-to-small] Comparison of calibration performance of small student models calibrated
using KD(C) framework vs. SOTA calibration techniques, employing a relatively larger calibrated
teacher on CIFAR100 dataset. WRN-40-2 (Zagoruyko & Komodakis (2016)) and ResNeXt-18x4
(Xie et al. (2017)) were used as teachers for WRN-40-1 (Zagoruyko & Komodakis (2016)) and
MobileNetV2 (Sandler et al. (2018)) respectively as student models. For ECE/SCE computation, 15
bins were used in accordance with prior work. ACE uses an adaptive binning strategy. For full results
refer to the supplementary . Numbers in bold: best performance; underlined: second best. KD(C)
gives best all around performance, in one instance PSKD is slightly better than KD(C) in accuracy,
but lags much behind in calibration metric (the focus of this paper).

are known to result in relatively inferior calibration performance (Müller et al. (2019); Platt et al.
(1999); Kull et al. (2019)). Supported by the theoretical insights of generic property transfer from a
teacher to a student network, we describe our training regime in two steps:

1. Train-time calibration of teachers: We draw inspiration from train-time calibration techniques
that have shown superior performance than post-hoc calibration, and have experimented with the
following techniques: (Kumar et al. (2018); Müller et al. (2019); Hebbalaguppe et al. (2022b);
Cheng & Vasconcelos (2022); Moon et al. (2020)) to name a few. A simple gradient analysis
reveals that train-time calibration methods, such as MDCA (Hebbalaguppe et al. (2022b)) and
ACLS (Park et al. (2023)), act as dynamic/adaptive label smoothing, which is arguably better than
the traditional static label smoothing (Müller et al. (2019)).

2. Knowledge distillation from calibrated teacher: Once trained for calibration and accuracy, teacher
classifiers distill their behavior to student classifiers through KD loss Eq. (2). As a result, the
student classifiers are both accurate and confidence calibrated (see Theorem 2).

Proposed comprehensive framework KD(C) encompasses the full spectrum, enabling models with
varying capacity (smaller/larger) to distill student models with the least calibration error and better
accuracy compared to the SOTA post-hoc/train-time calibration methods. Note: We do not advocate a
specific train-time calibrator but rather a KD-style calibration where an expert model helps enhance the
calibration performance of a student. Tab. 1 shows the KD(C) framework encompasses the variations
highlighted in Cyan. With this, we study systematically the effect of various direct calibration
methods. The best results among “KD with” methods are shown in each table. Please refer to the
supplementary for a full version of these results.

4 EXPERIMENTS

We now validate our theoretical claims on calibrated teachers distilling calibrated students (see
Theorem 2 in supplementary material) through extensive experiments.

Evaluation Metrics: We benchmark our framework KD(C) against other competing methods using
(a) calibration error metrics (lower value is better), Expected calibration error (ECE) (Guo et al.
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Figure 1: Comparative study of accuracy vs. calibration trade-offs associated with existing
calibration techniques and ours (Top-left is most preferred): The mean and one standard scatter
error bars for Top1, ECE and SCE of WideResNet-40-1 trained on CIFAR100 using SOTA
calibration techniques. WideResNet-40-2 was used as Teacher for KD(UC) and the proposed,
KD(C) variants. Note: KD(C) variants (magenta, cyan, and green) achieve the best results in terms
of ECE, ACE and SCE, along with slight boosts in Top1 (an inherent KD-property). Further, the
lower variances emphasize the reliability of KD(C) variants. All plots were generated by training
WideResNet-40-1 models through every calibration technique on 3 runs.

(2017)), Static Calibration Error (SCE) and Adaptive Calibration Error (ACE) (Nixon et al. (2019)),
as well as (b) Top1 accuracy (higher value is better), indicative of generalization performance.

Datasets and Baselines. We use widely accepted diverse datasets, CIFAR10 (Krizhevsky et al.
(2009)), CIFAR100 (Krizhevsky et al. (2009)), and Tiny-ImageNet (Le & Yang (2015)) for
benchmarking. To test robustness of our approach, we report additional results on CIFAR100-C
(Hendrycks & Dietterich (2019)) dataset in the supplementary. We could not experiment on ImageNet
due to limited computational constraints in our lab. We include models trained through standard NLL,
as well as LS, MixUp, Adafocal, MMCE, CRL, CPC, MDCA, and PSKD (please refer to Tab. 1 for
citations on calibration techniques). Along with this, we include student KD(UC) distilled from an
uncalibrated teacher obtained by training using NLL as one of the baselines.

Training details. The architectures used in the experiments include ResNet(He et al. (2016)),
MobileNetV2 (Sandler et al. (2018)), and ShuffleNetV2 (Ma et al. (2018)) DenseNet (Huang
et al. (2018)), WideResNet(Zagoruyko & Komodakis (2016)) architectures. The exact details of
training and model hyperparameters, along with the details on compute resources are included in the
supplementary material. Source code /trained models for all benchmark methods will be made public
upon acceptance for reproducibility.

5 RESULTS

Large calibrated teacher models distilling into smaller models. We now present compelling
evidence supporting the superiority of our proposed KD(C) method over the SOTA train-time and
post-hoc techniques for calibrating smaller student classifiers. To this end, we leverage distillation to
create a smaller model (e.g., WRN-40-1/MobileNetV2) from a well-calibrated teacher model (e.g.,
WRN-40-2) and compare its performance with models directly subjected to train-time calibration
techniques, as well as the progressive-KD (PSKD) method introduced by Kim et al. (2021). We
also report the impact of distillation from an uncalibrated teacher model, denoted as KD(UC), as a
baseline. The summarized results are detailed in Tab. 2. Notably, KD(C) demonstrates significantly
lower calibration errors (ECE/SCE/ACE) while simultaneously achieving higher accuracy compared
to models calibrated directly using metrics such as NLL/MDCA/LS. Additionally, Fig. 1 provides
a visual representation of our findings, illustrating the mean and standard deviations of accuracy
and calibration errors over three random runs. Notably, KD(C) variants exhibit (a) the best balance
between accuracy and calibration while (b) displaying higher reliability, as evidenced by their lower
variance. Importantly, our results confirm our theoretical findings discussed in Sec. 3, establishing
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that calibrated teachers are capable of effectively distilling calibrated students. This underscores the
successful transfer of learned representations, encompassing both accuracy and calibration aspects,
from a calibrated teacher model to a smaller student. We give additional results in supplementary
showing our approach consistently yields improved calibration across various model architectures.
Reliability diagrams corresponding to Tab. 2 can also be found in the supplementary.

Calibration Method Top1 (%) ECE (%) SCE (%) AECE (%)
↑ ↓ ↓ ↓

NLL 89.87 3.30 0.75 3.28
LS Szegedy et al. (2015) 89.60 7.10 1.78 6.75
CE+TS Guo et al. (2017) 89.90 0.96 0.40 0.77
MMCE Kumar et al. (2018) 89.38 1.20 0.51 0.94
MixUp Thulasidasan et al. (2019) 89.57 9.42 2.07 9.41
CRL Moon et al. (2020) 90.31 2.92 0.72 2.81
PSKD Kim et al. (2021) 89.21 3.27 0.93 3.25
MDCA Hebbalaguppe et al. (2022b) 88.74 0.99 0.46 0.80
AdaFocal Ghosh et al. (2022) 88.98 0.79 0.44 0.86
CPC Cheng & Vasconcelos (2022) 89.26 3.47 0.79 3.44
MbLS Liu et al. (2022) 89.86 2.83 0.69 2.78
KD(UC) 89.88 0.99 0.43 0.82

Ours (KD with TS) 90.23 0.51 0.41 0.59
Ours (KD with MixUp) 89.27 9.16 2.19 9.05
Ours (KD with AdaFocal) 89.56 0.63 0.41 0.65
Ours (KD with CPC) 89.92 0.64 0.48 0.67
Ours (KD with MDCA) 88.79 0.48 0.48 0.54
Ours (KD with MMCE) 89.97 0.85 0.54 0.84

Table 3: [Self-distillation] using MobileNetV2 feature
extractor on CIFAR10 dataset. Only top-3 performing
KD(C) variants are reported, for full results refer to sup-
plementary.

Self-distillation. A significant question
that arises pertains to the generalizability
of insights gleaned from the prior set of
experiments. Particularly whether these
insights can be extended to produce accu-
rately calibrated classifiers with identical
architecture and capacity. Our research
demonstrates that this process referred
to as “self-distillation,” results in clas-
sifiers that exhibit superior calibration
compared to their teachers. However,
the increase in accuracy is only marginal,
likely due to the absence of distillation
from a teacher with greater capacity. Our
findings on the CIFAR-10 dataset are suc-
cinctly presented in Tab. 3. It is worth
noting that, unlike the PSKD approach
proposed by Kim et al. (2021), which
progressively distills knowledge by lever-
aging the previous epoch’s trained model, KD(C) employs self-distillation just once with a fixed
teacher throughout the training process, following a methodology akin to Zhang & Sabuncu (2020).
Nevertheless, KD(C) achieves remarkable improvements in terms of calibration errors, notably
surpassing the performance of the baseline models by a significant margin.

Method Top1 Acc.(↑) ECE(↓) SCE(↓) ACE(↓)
NLL 94.81 3.37 0.72 3.34
LS Szegedy et al. (2015) 94.33 4.58 0.85 4.56
CE+TS Guo et al. (2017) 94.81 0.97 0.40 1.23
MMCE Kumar et al. (2019) 93.08 1.01 0.39 0.92
MixUp Thulasidasan et al. (2019) 95.18 2.85 0.67 2.83
CRL Moon et al. (2020) 93.67 1.36 0.45 1.25
PSKD Kim et al. (2021) 94.49 1.81 0.43 2.02
MDCA Hebbalaguppe et al. (2022b) 92.69 0.31 0.35 0.35
AdaFocal Ghosh et al. (2022) 93.48 1.44 0.43 1.10
CPC Cheng & Vasconcelos (2022) 94.39 4.36 0.91 4.18
MbLS Liu et al. (2022) 94.45 3.42 0.75 3.43
KD(UC) 90.2 2.17 0.60 2.13

Ours (KD with AdaFocal) 91.68 0.54 0.34 0.61
Ours (KD with MDCA) 90.09 0.53 0.45 0.51
Ours (KD with MbLS) 93.1 0.61 0.38 0.40

Table 4: [small-to-large] Calibration performance of a
large student model (DenseNet-121)(6.95M) on CI-
FAR10 when distilled from small (un)calibrated teacher
(MobileNetV2(2.25M)). Top3 performing KD(C)
variants have been shown. See to supplementary for ad-
ditional results.

Small calibrated teacher models dis-
tilling into large models. In settings
where large trained models are not
available, it is desirable to be able
to distill the knowledge from smaller
models to larger models. Jiang &
Deng (2023) have shown that smaller
models can also be valid teachers
for large students, however, it was
observed that the gains in accuracy
were not significant as compared to
distilling from a large teacher com-
paratively. Our results for the con-
figuration are summarized in Tab. 4,
where smaller model MobileNetV2 is
used as teacher network to calibrate
DenseNet-121. We note a trade-off
between accuracy and calibration per-
formance, primarily arising from the
inherent capacity differences between larger student models and smaller-capacity teachers. Larger
student models possess greater capacity and can potentially match or surpass the performance of
smaller-capacity teachers. Consequently, this limits the additional knowledge that can be effectively
distilled from smaller-capacity teachers. Nevertheless, the process still yields improvements in
calibration for larger models through KD.

Iterative self-distillation. Taking inspiration from previous works such as Mirzadeh et al. (2020);
Yalburgi et al. (2020); Kim et al. (2021), we investigate whether KD(C) can iteratively distill more
accurate and calibrated models. Here both teacher and student have identical architectures, and a
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Figure 2: Iterative self-KD on CIFAR100 using ResNet56. We use KD with MDCA for calibration.

student in tth iteration (called generation hereon) becomes teacher for (t+1)th generation. We refer
to this as iterative self-distillation. Fig. 2 shows the self-distillation process for six generations. As
expected the gap between KD(UC) and KD(C) gradually diminishes with each generation (the only
difference between the two is initialization: generation zero teacher is uncalibrated in KD(UC) but
calibrated in KC(C)). Our observation aligns with findings from (Zhang & Sabuncu (2020); Kim et al.
(2021)).

Note: From Tables 2, 3, and 4, we observe no other method is as consistent in improving calibration
performance as KD(C); notice that while direct calibration can be the best-performing in one of the
instances, it fails miserably in other instances. The KD(C) framework variants are consistently the
best-performing ones or the second-best.

Other Experiments. We report (a) calibration performance under dataset drift on vision datasets; (b)
ablation study on the effect of hyper-parameters like T (temperature) and α (distillation weight) in
the supplementary along with experiments involving other DNN architectures.

5.1 DISCUSSION

Our work offers promising results with a recipe to combine KD and calibration in one go. Unlike
traditional LS, dynamic/adaptive smoothing based regularizers (Park et al. (2023); Hebbalaguppe et al.
(2022b)) offer sample-specific dynamic label-smoothing. However, not many of these methods tend
to capture inter-class semantics, which are inherently captured through the interplay of teacher-based
knowledge transfer and learning directly from data. Inspired from Chandrasegaran et al. (2022), in
the supplementary, we give additional rationale for the superior performance of the proposed KD(C)
framework using penultimate layer visualizations. We also provide more justification on why teacher
classifiers need to be calibrated at train-time in the supplemental material.

6 CONCLUSIONS

Our primary contribution lies in providing a robust theoretical foundation, including formal proofs,
for the transfer of calibration and accuracy between teacher and student DNN models. We have
demonstrated consistent superior calibration achieved through our KD(C) method. Our experiments
span diverse scenarios, encompassing large-to-small, small-to-large, and self-distillation settings,
featuring a variety of architectures and datasets. The consistent success of KD(C) across these
different configurations highlights its effectiveness and broad applicability. Additionally, we advocate
for the adoption of dynamic calibration techniques (such as MDCA) on the teacher model before
the distillation. Our findings are further enriched by the insights gained from penultimate layer
visualizations, shedding light on the inner workings of calibration in DNNs. From an application
perspective, as the utilization of KD continues to grow, particularly for obtaining lightweight models
beneficial for edge computing, neural architecture search, model compression, and other domains,
our work contributes by introducing a method to additionally enhance the trustworthiness of these
neural networks through calibration.
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1 INTRODUCTION

We complement our main text with supplementary materials encompassing the following components:

1. Theoretical Insights: This section contains main theoretical results, along with an explana-
tion of the rationale behind choosing Padé approximants over more commonly used Taylor
approximation, as discussed in Lemma 1.

2. Rationale for Enhanced Performance: This section elucidates the superior performance
of the KD(C) framework, attributing it to three key factors: (a) insights from penultimate
visualizations, (b) considerations of inter-class semantic similarities, and (c) the careful
design of calibrators for the teacher model.

3. Illustration of Generality: Included is Fig. S5, which provides a visual demonstration
of KD(C)’s versatility by comparing direct calibration with the KD(C) framework. It also
presents an example featuring the Hebbalaguppe et al. (2022) regularizer.

4. Expanded Experimental Scope: We strengthen the KD(C) methodology with additional
experiments, covering various scenarios, including large-to-small, small-to-large, self-
distillation, and iterative self-distillation. These experiments involve different descriptors
and datasets.

5. Additional Results: We provide supplementary results that encompass calibration per-
formance in the presence of dataset drift and reliability diagrams featuring confidence
histograms, as elaborated in Sec. 5.1.

6. Hyperparameter Analysis: A detailed study explores how calibration and accuracy are
influenced by various hyperparameters in the KD(C) framework, as depicted in Fig. S8.

7. Source Code: The supplementary materials include the source code along with a
readme.md file, enclosed within the provided zip file.

8. Training and Compute Details: We furnish comprehensive information on the specifics of
training and compute resources employed in our experiments.

9. Limitations and Broader Impact: This section delves into the limitations of our research
and contemplates its broader impact on the field.

These supplementary materials serve to enrich and provide a deeper understanding of our main
findings and contributions.

2 THEORETICAL SUPPORT: ADDITIONAL DETAILS

2.1 PROOF OF THEOREM 1

The proof of Theorem 1 is contingent on several essential Lemmas, which will be introduced
beforehand. Lemma 1 and Lemma 2 capture the effect of quadratic temperature scaling in the KD
loss function, LKD. In particular, it is shown that the partial derivative of LKD w.r.t. student’s logit
for a given sample is equal to the difference in predicted probabilities of the student and teacher
classifiers for that sample. These results are leveraged to characterize the first-order condition of
optimality for the total loss function Ltot w.r.t. parameters of the student classifier.

Lemma 1. Let zi,s := W⊤
s xi and zi,t := W⊤

t xi with p̃i,s, p̃i,t be defined as above. Then
lim

T→∞
T (p̃i,s − p̃i,t) ≈ pi,s − pi,t.

Proof. The result follows as a consequence of Padé approximation. Recall that from definition,

p̃i,s − p̃i,t =
1

1 + e−zi,s/T
− 1

1 + e−zi,t/T
≈ 1

1 +
1− zi,s

2T

1 +
zi,s
2T

− 1

1 +
1− zi,t

2T

1 +
zi,t
2T

, (S1)

where the last approximation follows from Padé approximation of the exponential when T is large.
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Thus, Eq. (S1) can be re-written as:

p̃i,s − p̃i,t =
1 + zi,s

/
2T

2
−

1 + zi,t
/
2T

2
=⇒ T (ỹi,s − ỹi,t) =

zi,s − zi,t
4

. (S2)

On the other hand, a similar analysis following the Padé approximation yields:

pi,s − pi,t ≈ (zi,s − zi,t)/4. (S3)

Thus, Lemma 1 follows directly from Eq. (S2) and Eq. (S3).

Remark: Padé approximants have a wider range of convergence than the corresponding Taylor series,
and can even converge where the Taylor series does not. For a detailed exposition, please refer to
Sec. 2.3 and Fig. S1.

The following result shows that the quadratic temperature scaling in the KD loss function ensures
that the gradients used to update the network weights are independent of the smoothed labels.
Lemma 2 (Quadratic temperature scaling). Let LKD be defined as in Eq. (2). Then,

lim
T→∞

∂LKD

∂zi,s
= pi,s − pi,t.

Proof. Recall that by definition p̃i,s =
1

1 + e−zi,s/T
. The partial derivative of p̃i,s w.r.t. zi,s reads:

∂p̃i,s
∂zi,s

=
1

T
p̃i,s(1− p̃i,s). (S4)

On the other hand,

∂LKD

∂zi,s
= −T 2

(
p̃i,t
p̃i,s

− 1− p̃i,t
1− p̃i,s

)
∂p̃i,s
∂zi,s

= T 2 (p̃i,s − p̃i,t)

p̃i,s(1− p̃i,s)

∂p̃i,s
∂zi,s

. (S5)

Thus, from Eq. (S4), Lemma 1 and for large T , Eq. (S5) reduces to:

lim
T→∞

∂LKD

∂zi,s
= pi,s − pi,t,

which completes the proof.

Lemma 3. The derivative of the total loss function Ltot w.r.t. the parameters Ws of the student
network lies in the span of X, and is given by:

∂Ltot

∂Ws
=

N∑
i=1

(pi,s − {αpi,t + (1− α)yi})xi.

Proof. The proof follows directly from Lemma 2.

Theorem 1. Let X ∈ Rd×N be a data matrix satisfying Assumption 1, and Ws and Wt represent
the parameters of the student and the teacher networks, respectively. Then, under Assumption 2 and
using the gradient-descent algorithm, the parameters Ws of the student network converge to:

Ws ≈ αWt + 4(1− α)X(X⊤X)−1Y1/2,

where Y1/2 :=
[
yi − 1

2

]N
i=1

is an N -dimensional vector.

Proof. First observe that the minimum value of the total loss function in Eq. (2) is finite. Moreover,
the total loss function is convex in the parameters of the student network. Thus, any gradient-based
descent algorithm with suitable step-size will converge to the optimizer asymptotically fast.

We now characterize the set of optimizers. Recall that the first-order condition of optimality implies:

∂Ltot

∂Ws
= 0 =⇒

∑N

i=1
(pi,s − {αpi,t + (1− α)yi})xi = 0,
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where the last equality follows from Lemma 3. Since the vectors {xi} are linearly independent (see
Remark 1), the above equality holds if:

pi,s − {αpi,t + (1− α)yi} = 0, ∀i ∈ {1, . . . , N}. (S6)

Expanding Eq. (S6) in terms of logits zi,s leads to:

1

1 + e−zi,s
= α

1

1 + e−zi,t
+ (1− α)yi =⇒ 1

1 +
1−

zi,s
2

1+
zi,s
2

≈ α
1

1 +
1−

zi,t
2

1+
zi,t
2

+ (1− α)yi, (S7)

where the last equation follows from Padé approximation. Rearranging the terms in Eq. (S7), and
using the fact that zi,s = W⊤

s xi and zi,t = W⊤
t xi, one obtains:

(Ws − αWt)
⊤
xi = 4(1− α) (yi − 1/2) .

Since the above condition holds for every i ∈ {1, . . . , N}, the vector form of it can be written as:

X⊤(Ws − αWt) = 4(1− α)Y1/2, (S8)

which is an underdetermined system of linear equations whose least-norm solution is given by:

Ws = αWt + 4(1− α)X(X⊤X)−1Y1/2, (S9)

which completes the proof.

2.2 PROOF OF THEOREM 2

Theorem 2. Let Assumptions 1-2 hold. Let tc and tuc be two teacher classifiers with output prob-
abilities {pi,tc} and {pi,tuc

}, respectively. Also, let sc, suc depict two student classifiers trained
independently from the corresponding teacher classifiers tc and tuc through KD, with output proba-
bilities {pi,sc} and {pi,suc

}, respectively. Furthermore, assume that the teacher classifier tc is well
calibrated, then the student classifier sc is also well calibrated. Conversely, if the teacher classifier
tuc is uncalibrated, the corresponding student classifier suc mimics a similar behavior, i.e.,∑N

i=1
pi,sc =

∑N

i=1
yi, and

∑N

i=1
pi,suc

̸=
∑N

i=1
yi.

Proof. From Eq. (S6), the first-order condition for optimality for a student s trained from a teacher t
through KD reads: ∑N

i=1
pi,s = α

∑N

i=1
pi,t + (1− α)

∑N

i=1
yi,

which can be rewritten as
N∑
i=1

(pi,s − yi) = α

N∑
i=1

(pi,t − yi).

Thus for the same value of α ∈ (0, 1), if the teacher classifier sc is well calibrated, then

N∑
i=1

(pi,sc−yi)=α

(
N∑
i=1

(pi,tc−yi)

)
= 0,

where, the last equality follows from well calibration of the teacher classifier. On the other hand,∑N

i=1
(pi,suc−yi)=α

∑N

i=1
(pi,tuc−yi) ̸= 0 =⇒

∑N

i=1
pi,suc ̸=

∑N

i=1
yi,

which completes the proof.
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Figure S1: Padé vs Taylor for a simple exponential function. Note that Padé approximants offer
superior reliability compared to the extensively used Taylor approximants.

2.3 PADÉ VS TAYLOR APPROXIMANTS

Employing approximants to derive theoretical outcomes in DNNs is commonplace due to the intri-
cacies of dealing with highly nonlinear equations. We illustrate the difference between Padé and
Taylor’s approximation as follows: Padé approximants have a wider range of convergence than the
corresponding Taylor series, and can even converge where the Taylor series does not. A simple exam-
ple of Padé approximant is, ex = e0.5x

e−0.5x ≈ (1+0.5x)
(1−0.5x) = (1 + 0.5x)(1− 0.5x)−1, which for |x| < 2

can further be expanded to ex ≈ (1 + 0.5x)(1− 0.5x)−1 = (1 + 0.5x)(1 + 0.5x+ 0.25x2 + . . . ).
Thus, despite using first-order approximations for both the numerator and denominator terms, the
above Padé approximant very closely follows the original exponential function. This is in contrast
to Taylor’s expansion, and even a second-order Taylor’s expansion does not mimic the exponential
function, except for a very small interval around the origin. Please refer to Figure S1 for further
details.

This is precisely why we restrict using Padé approximants in our theoretical exploration since they
are still potentially non-divergent in regimes even when zi,t and zi,s are not vanishingly small. It
must also be remarked that exact characterization of weights of student network is a theoretically
hard problem, and such practical approximations are useful to obtain important theoretical insights.

3 RATIONALE ON THE SUPERIOR PERFORMANCE OF OUR KD(C) FRAMEWORK

The essence of Theorem 2 lies in its assertion that uncalibrated teachers can only transfer their lack
of calibration to their student counterparts, whereas calibrated teachers enable the distillation of
calibrated students. This theorem underscores the crucial significance of utilizing calibrated teachers
in the knowledge distillation process. In light of this observation, we advocate for a novel approach
to achieving accurate and calibrated models: calibrating a model through distillation from another
model that is already calibrated. To validate the efficacy of this approach, we conducted an extensive
series of experiments, showcasing the capabilities of our framework, KD(C). Our experimental results
provide compelling evidence that KD(C) yields student models characterized by two key attributes:
dynamic calibration at the sample level and semantic calibration. These findings substantiate the
effectiveness of our proposed framework in achieving both sample-level and semantic calibration in
student models.

3.1 CLASSIFICATION OF LABEL SMOOTHING

Standard/static label smoothing. Label Smoothing (LS) serves as a regularization technique de-
signed to address potential inaccuracies within datasets. It recognizes that maximizing the likelihood
directly, denoted as P (y|x), may be detrimental due to the possibility of errors in the training labels.
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To mitigate this issue, LS introduces controlled noise into the labeling process. In essence, LS
operates as follows: Given a small constant value ϵ, it considers the training label y to be correct
with a probability of (1− ϵ) and incorrect otherwise. Specifically, in the context of a softmax model
with k outputs, it replaces the traditional binary classification targets of 0 and 1 with modified targets.
These modified targets consist of ϵ

(k−1) for incorrect labels and (1− ϵ) for correct labels Szegedy
et al. (2015); Müller et al. (2019). This approach ensures that all output probabilities undergo uniform
regularization, thereby helping to combat overfitting and improve model generalization.

Adaptive Label Smoothing. In this method the level of regularization applied to training labels,
which are typically one-hot encoded, is dynamically adjusted based on the network’s output prob-
abilities for different classes Cheng & Vasconcelos (2022); Hebbalaguppe et al. (2022); Park et al.
(2023). This method is found to be more beneficial than conventional static label smoothing (LS)
proposed in Szegedy et al. (2015).

Conditional Label Smoothing. In this method the training labels go through selective modifications
based on specific criteria, such as the application of margin-based penalties Liu et al. (2022). This
approach places its emphasis on and applies regularization solely to the probabilities that exhibit
miscalibration, thereby demonstrating enhanced calibration capabilities.

3.2 VISUALIZATION OF PENULTIMATE LAYER’S ACTIVATIONS REVEAL KD(C) USING
DYNAMIC REGULARIZATION WORKS BETTER THAN STATIC REGULARIZATION

Figure S2: Visualization of penultimate layer’s activations (Teacher = ResNet56,
Student = ResNet8, Dataset = CIFAR100). We train ResNet8 using calibration tech-
niques: KD with LS (Left column) and KD with MDCA(Right Column). We follow
the same setup and procedure used in papers [Müller et al. (2019); Shen et al. (2021)] We use two se-
mantically similar classes (bowl, plate) and one semantically dissimilar class (willow_tree).
A ‘*’ in the plot for each cluster represents its cluster’s centroid. A well-calibrated teacher can
effectively capture the inter-class relationships and serve as a reliable dynamic label smoothing prior
such as MDCA Hebbalaguppe et al. (2022). Observe that the classes: bowl and plate are visually
similar and hence the penultimate visualizations of these classes should be closer than the dissimilar
class: willow_tree. As the temperature T is increased the similar classes diffuse into one in
the case of KD with LS while KD with MDCA offers better separation, retaining the semantic
similarity while being well separated from the dissimilar class.

Penultimate Visualization. Müller et al. (2019) introduced this visualization technique wherein they
projected the penultimate activations onto the hyperplane defined by the template vectors (weight
vectors) corresponding to the selected classes (three classes) for visualization.

Systematic diffusion. The concept of “systematic diffusion," introduced by Chandrasegaran et al.
(2022), was developed to address discrepancies observed in prior studies, particularly the contra-
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Figure S3: Visualization of penultimate layer’s activations (Teacher = ResNet56,
Student = ResNet8, Dataset = CIFAR100). We train ResNet8 using calibration tech-
niques: KD with LS (Left column) and KD with MDCA(Right Column). We follow
the same setup and procedure used in papers [Müller et al. (2019); Shen et al. (2021)] We use
two semantically similar classes (man, boy) and one semantically dissimilar class (crab). A ‘*’
for each cluster represents its cluster’s centroid. A well-calibrated teacher can effectively capture
the inter-class relationships and serve as a reliable dynamic label smoothing prior such as MDCA
Hebbalaguppe et al. (2022). Observe that the classes: man and boy are visually similar and hence the
penultimate visualizations of these classes should be closer than the dissimilar class: crab. As the
temperature T is increased the similar classes diffuse into one in the case of KD with LS while KD
with MDCA offers better separation, retaining the semantic similarity while being well separated
from the dissimilar class.

dictions between Shen et al. (2021) and the insights presented in LS literature Müller et al. (2019).
This concept aims to elucidate the compatibility of label smoothing with knowledge distillation. The
findings from Chandrasegaran et al. (2022)’s work indicate that when KD is conducted at elevated
temperatures from a teacher model trained with LS, it results in a systematic shift in the relationships
between classes. Specifically, for semantically similar classes, the inter-cluster distance decreases,
while for the remaining classes, it increases relatively. Importantly, this diffusion of classes is not
random; rather, it follows a systematic pattern.

In Fig. S2 and Fig. S3, we provide visual evidence of the limitations associated with LS-trained
teachers compared to MDCA teachers Hebbalaguppe et al. (2022). These Penultimate layer visualiza-
tions, inspired by the work of Shen et al. (2021), reveal that semantically similar classes experience
systematic diffusion when using LS, whereas this phenomenon is not observed with MDCA calibration.
This observation substantiates our recommendation to opt for dynamic smoothing regularization
techniques such as MDCA.

Notably, we notice a trend where distilled student models are most calibrated when the distillation
temperature (T ) is approximately 1. We hypothesize that increasing T leads to the destruction of
discriminating features, as outlined by Chandrasegaran et al. (2022), due to systematic diffusion
among highly similar classes as seen in the penultimate representations. These discriminating
features are crucial for achieving calibration by resolving confusion among similar classes. However,
as T increases further, we simultaneously amplify the relationships between somewhat related
classes Tang et al. (2020), while diminishing the relationships between very similar classes. This
nuanced understanding highlights the intricate interplay between temperature, class relationships,
and calibration, shedding light on the optimal conditions for achieving calibration in KD scenarios.
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Figure S4: [Study of ECE variablity in case of KD(C), specifically we consider KD with LS and
KD with MDCA and study variation of accuracy and calibration as a function of temperature]:
Comparison of Top 1% accuracy and ECE when train-time calibration method is changed from Label
Smoothing Szegedy et al. (2015) and MDCA Hebbalaguppe et al. (2022): We use ResNet56 teacher
on CIFAR100 and distill to ResNet8. Note that MDCA-based students have lower accuracy than
NLL, however, ECE is largely stable when temperature T is varied.

4 ILLUSTRATION OF THE GENERALITY OF KD(C) FRAMEWORK

Fig. S5 presents a novel framework KD(C) that leverages calibrated teachers through KD to produce
DNNs with the least calibration error. This comprehensive framework encompasses the full spectrum,
enabling models with varying capacity (smaller/larger) to distill student models with the least
calibration error and better accuracy compared to the SOTA post-hoc/train-time calibration methods.
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ResNet-110 ResNet-56 ResNet-32 ResNet-8

Cal   (73.9, 1.1)

Uncal (75.9, 9.8)

Trained from Scratch Trained from Scratch Trained from Scratch Trained from Scratch

KD Trained KD Trained KD Trained

KD-C  (74.7↑, 1.3↑)

KD-UC (76.4↑, 9.6↓)

KD-C  (71.3↑, 1.3↑)

KD-UC (72.6↑, 6.6↓)

KD-C  (71.5↑, 0.8↑)

KD-UC (71.4↑, 1.0↑)

KD-C  (69.8↑, 1.4↑)

KD-UC (70.7↑, 7.2↓)

KD-C  (61.1↑, 1.1↑)

KD-UC (61.1↑, 5.8↓)

Cal   (69.2, 3.2)

Uncal (71.7, 10.9)

Cal   (66.8, 1.6)

Uncal (67.8, 13.4)

Cal   (58.3, 1.3)

Uncal (59.8, 8.0)

Big to Small KD

Self KD

Small to Big KD

Legend

(Top1(%), ECE(%))

Improvement over Cal↑

↓ Degradation over Cal

* High values of  Top1 and low values of  ECE are better

*

Figure S5: An illustration of KD(C) framework’s generality using calibration method as MDCA.
We can distill a calibrated student from a large teacher and vice-versa yielding SOTA calibration
without any trade-offs in accuracy. “Uncal” and “Cal” mean uncalibrated and calibrated teachers
trained using NLL and a recent SOTA calibration technique Hebbalaguppe et al. (2022) respectively.
KD(UC) and KD(C) refer to students distilled using “Uncal” and “Cal” teachers respectively. Going
from a large calibrated teacher to a smaller student yields SOTA calibrated student, with an additional
boost in accuracy (E.g., compare ResNet56 “Trained from scratch” with ResNet56 “KD-trained”
student from ResNet110). Self-distillation and going from a smaller teacher to a bigger student also
have a similar effect on calibration, however, the gains in accuracy are comparable to respective
models trained from scratch. The above results are on CIFAR100.

5 ADDITIONAL RESULTS

5.1 RELIABILITY DIAGRAMS AND CONFIDENCE HISTOGRAMS

Reliability diagrams serve as effective visual aids for assessing the calibration of DNNs. They involve
partitioning the predicted probabilities generated by DNNs into a predetermined number of bins along
the x-axis. The y-axis represents the normalized count of events (e.g., class = “dog") within each bin.
A well-calibrated model will exhibit points that closely align with the main diagonal, spanning from
the bottom left to the top right of the plot. Reliability diagrams corresponding to Fig. S6 are included
to show that KD(C) variants obtain near SOTA results.

5.2 EFFECT OF HYPER-PARAMETERS LIKE T (TEMPERATURE) AND α

We investigate the influence of hyperparameters T and α on both calibrated and uncalibrated teacher
models, as visually depicted in Fig. S7 (big-to-small) and Fig. S8 (small-to-big).

(a) Big teacher, Small student: In this scenario as we increase the value of α, we witness an
intuitive rise in calibration. However, this effect is predominantly noticeable for small values of T
(depicted in the bottom-right region of Fig. S7). Generally, the calibration errors (ECE) incurred by
distilling students from a calibrated teacher tend to be markedly lower than those distilled from an
uncalibrated teacher, as evident from the bottom row in Fig. S7. (b) Small teacher, Big student:
Initially, we observe an expected trend: as α increases (signifying a higher dependence on the teacher),
accuracy experiences a decrease. This outcome arises from the process of distillation from a weaker
teacher. However, when distilling from a calibrated teacher, we discern that elevating α results in
enhanced calibration. Nevertheless, this improvement in calibration is accompanied by a trade-off
with accuracy.

Notably, we find that optimal calibration is generally achieved when T ≈ 1, regardless of the size
of the teacher model employed. This observation aligns with the findings presented in Stanton et al.
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Figure S6: Reliability Plots for top-5 KD with (Ours) techniques on WideResNet-40-1 on
CIFAR100. Teacher used: WideResNet-40-2. KD(C) framework achieves competitive calibration
results for KD with MDCA, KD with AdaFocal and KD with MixUp.

(2021), which suggest that maximizing fidelity with the teacher model yields the best transfer of
properties.

5.3 CALIBRATION PERFORMANCE UNDER DATASET DRIFT

DNNs are found to be over-confident and highly uncalibrated under dataset/domain shift Tomani
et al. (2020). We investigate the robustness of our method KD(C) by examining the degradation in
calibration under natural/non-semantic shift (images with the same label but different distribution).
We carry out this study for ResNet56 pre-trained on the CIFAR100 dataset along with various
calibration techniques and report the evaluation results on CIFAR100-C Hendrycks & Gimpel
(2016) in Fig. S9. We used ResNet56 models that were trained with ResNet110 as teacher
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Calibration Method Top1 (%) ECE (%) SCE (%) AECE (%)
↑ ↓ ↓ ↓

NLL 50.43 13.72 0.24 13.72
LS Szegedy et al. (2015) 51.20 3.84 0.19 3.88
CE with TS Guo et al. (2017) 50.43 13.72 0.24 13.72
MMCE Kumar et al. (2018) 50.30 11.32 0.21 11.32
MixUp Thulasidasan et al. (2019) 52.02 4.74 0.19 4.73
PSKD Kim et al. (2021) 53.66 13.27 0.21 13.27
MDCA Hebbalaguppe et al. (2022) 46.81 1.52 0.19 1.11
CPC Cheng & Vasconcelos (2022) 51.27 12.01 0.21 12.01
MbLS Liu et al. (2022) 50.11 8.87 0.20 8.87
KD(UC) 49.31 4.20 0.20 4.20

Ours (KD with MDCA) 45.79 0.85 0.21 1.17
Ours (KD with LS) 49.69 2.69 0.19 2.68
Ours (KD with MbLS) 49.33 2.86 0.20 2.89

Table T1: [Self-distillation] using MobileNetV2 feature extractor on Tiny-ImageNet dataset.
Note that the main paper reported self-distillation results using the MobileNetV2 feature extractor
on the CIFAR10 dataset. Top3 best KD(C) variants are reported. KD with MDCA variant of

KD(C) achieve competitive calibration results with SOTA.

Students from Uncalibrated Teacher Students from Calibrated Teacher

Figure S7: We study the effect of varying temperature, T and distillation weight α, on ECE and
top 1% accurracy when ResNet56 teacher model is used and ResNet8 as student on CIFAR100
dataset. Observe the optimal values of ECE and top 1% accuracy when T is set around 1. For
calibration KD with MDCA was used.

for KD(UC) and KD(C). We observe KD(UC) and KD(C) achieve the highest accuracy across all
severities, with the latter achieving close to the best ECE (LS achieves best ECE), however, KD(C)
achieves the best AUROC score in comparison to any other calibration technique. This indicates,
KD(C) is better across all metrics measuring reliability (be it calibration or refinement, while also
giving an additional boost in accuracy).
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Students from Uncalibrated Teacher Students from Calibrated Teacher

Figure S8: We study the effect of varying temperature, T and distillation weight α, on ECE and top
1% accuracy when ResNet32 teacher model is used and ResNet56 as student on CIFAR100
dataset. KD with MDCA was used for calibration.

KD(C)

KD(UC)

PSKD

LS

MDCA

NLL

KD(C)

KD(UC)

PSKD

LS

MDCA

NLL

KD(C)

KD(UC)

PSKD

LS

MDCA

NLL

Figure S9: Robustness to corruption, tested on CIFAR100-C dataset Hendrycks & Gimpel (2016)
using ResNet-56. KD(UC) and KD(C) were trained using ResNet-110 as a Teacher. Note that
KD(C) provides a good trade-off between accuracy and calibration, at the same time achieving the
highest AUROC (even though LS outperforms KD(C) by a tiny margin in terms of calibration, KD(C)
has significantly better AUROC and accuracy. AUROC indicates better inter-class separability in
classifiers thereby enhancing trustworthiness in addition to calibration benefits. KD(C) uses KD
with MDCA variant.

6 TRAINING DETAILS

In this section, we provide a detailed summary of the hyperparameters and training techniques used,
in order to ensure reproducibility. All models have been trained on 40GB Nvidia A100 GPUs.
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Dataset Teacher Teacher Top1 ECE SCE ACE Student Top1 ECE SCE ACE
Calibration (%) (%) (%) (%) (%) (%) (%) (%)

C
IF

A
R

10
0

NLL

WRN-40-2

74.10 13.42 0.32 13.42

WRN-40-1

69.60 15.18 0.37 15.18
LS 74.67 2.44 0.21 2.21 70.54 1.22 0.21 1.20
CE+TS 74.10 2.18 0.20 2.15 70.07 4.00 0.21 4.00
MMCE 73.04 5.21 0.21 5.14 72.08 2.02 0.19 1.95
MixUp 77.46 1.50 0.19 1.43 72.48 1.21 0.20 1.17
CRL 70.71 12.20 0.32 12.11 69.76 7.21 0.23 7.04
MDCA 73.74 1.36 0.19 1.26 71.07 0.98 0.20 1.10
AdaFocal 73.24 2.43 0.20 2.31 71.70 1.19 0.19 1.34
CPC 75.09 11.06 0.28 10.99 70.00 9.02 0.26 9.01
MbLS 73.54 5.53 0.22 5.50 71.44 3.70 0.22 3.41

NLL

RNXT-18x4

63.69 17.20 0.41 17.20

MNV2

66.82 5.40 0.22 5.36
LS 63.89 5.00 0.25 5.37 66.63 2.48 0.24 2.50
CE+TS 63.69 2.73 0.23 2.74 67.22 1.63 0.19 1.58
MMCE 62.40 6.53 0.24 6.56 66.24 1.47 0.19 1.64
MixUp 65.57 3.15 0.24 3.17 69.92 2.17 0.24 2.10
CRL 52.98 20.21 0.51 20.21 64.17 2.89 0.23 2.79
MDCA 63.70 2.14 0.22 2.23 67.17 1.10 0.20 1.17
AdaFocal 64.55 6.19 0.24 6.15 66.64 1.55 0.20 1.43
CPC 63.20 8.98 0.28 8.97 67.83 0.88 0.19 0.95
MbLS 64.42 12.89 0.32 12.88 67.50 3.21 0.20 3.22

C
IF

A
R

10

NLL

MNV2

89.87 3.30 0.75 3.28

DN

90.2 2.17 0.60 2.13
LS 89.60 7.10 1.78 6.75 92.65 4.27 1.23 4.13
CE+TS 89.90 0.98 0.40 0.77 93.25 0.62 0.43 0.54
MMCE 89.38 1.20 0.51 0.94 92.13 0.81 0.45 0.69
MixUp 89.57 9.42 2.07 9.41 91.19 5.20 1.33 5.01
CRL 90.31 2.92 0.72 2.81 92.24 2.58 0.68 2.54
MDCA 88.74 0.99 0.46 0.80 90.90 0.53 0.45 0.51
AdaFocal 88.98 0.79 0.44 0.86 91.68 0.54 0.34 0.61
CPC 89.26 3.47 0.79 3.44 93.14 0.74 0.43 0.85
MbLS 89.86 2.83 0.69 2.78 93.1 0.61 0.38 0.40

Table T3: Comparison of evaluation metrics of Teacher-Student pairs. Observe that calibration
transfer takes place from a calibrated teacher more or less to a student. The minor differences of
calibration values can be attributed to the capacity gap between the teacher and student. WRN:
WideResNet, RNXT: ResNeXt, DN: DenseNet. Number of parameters: WRN-40-1: 0.56M ; WRN-
40-2: 2.24M ; MNV2: 2.25M ; RNXT-18x4: 25.46M ; DN: 6.95M

The code was written using the PyTorch framework. We make use of automatic mixed precision
training in order to reduce training time. We borrow some code from the official implementation of
Hebbalaguppe et al. (2022); Mukhoti et al. (2020); Yuan et al. (2021).

For CIFAR10/100 datasets, we train all ResNets / WideResNets / ResNeXt-18x4
models using a learning rate of 0.1 for 160 epochs. The learning rate is decayed by a factor of
10 at epoch 80 and 120. We use SGD optimizer with momentum 0.9 and weight decay of 5e− 4. We
use a batch size of 128. For the larger models like ResNet-110, we train them using a learning
rate of 0.05 for 240 epochs. The learning rate is decayed by a factor of 10 at epoch 150, 180 and 210.
We use SGD optimizer with momentum 0.9 and weight decay of 5e− 4. We use a batch size of 64.
ConvNet2 model has been trained just like all other models, except for the learning rate which is set
to 0.01, without a learning rate decay scheduler.

For Tiny-ImageNet dataset, all models are trained using a maximum learning rate of 0.1 with a
cosine annealing learning rate with a warmup of 1000 steps with minimum learning rate 1e− 5. The
weight decay and momentum are 5e− 4 and 0.9 respectively. We train the models for 100 epochs
with a batch size of 128.

For training students using KD, we use the same hyper-parameters for the respective datasets.
For big-to-small KD (e.g. WideResNet-40-2→ WideResNet-40-1), we grid search T
(temperature) and α (distillation weight) in the ranges {1, 1.5, 2, 3, 4, 5, 10, 20} and {0.9, 1.0} re-
spectively. For small-to-big KD and self-distillation (e.g. MobileNetV2 ↓ DenseNet-121,
MobileNetV2 → MobileNetV2), we grid search T and α in the ranges {1, 1.5, 2, 3, 4} and
{0.1, 0.3, 0.5, 0.7, 0.9, 1.0} respectively.

For baselines, we use the recommended hyperparameters as suggested by the respective authors
Hebbalaguppe et al. (2022); Szegedy et al. (2015); Kim et al. (2021); Kumar et al. (2019); Cheng &
Vasconcelos (2022); Thulasidasan et al. (2019); Liu et al. (2022); Moon et al. (2020); Ghosh et al.
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Dataset Teacher Model Student Model Temperature Top1 (%) ECE (%) SCE (%) ACE (%)

C
IF

A
R

10
0

WRN-40-2 WRN-40-1

0.10 71.06 26.40 0.55 26.39
0.20 71.06 23.79 0.52 23.79
0.50 71.06 15.74 0.38 15.74
0.75 71.07 8.44 0.27 8.44
1.00 71.06 0.98 0.20 1.10
1.25 71.06 8.60 0.27 8.60
1.50 71.06 18.00 0.42 18.00
1.75 71.06 27.11 0.58 27.11
2.00 71.06 35.22 0.74 35.22
2.25 71.06 41.99 0.88 41.99
2.50 71.06 47.39 0.99 47.39
2.75 71.06 51.60 1.07 51.60
3.00 71.06 54.86 1.12 54.86
3.25 71.06 57.37 1.13 57.37
3.50 71.06 59.32 1.11 59.32
3.75 71.06 60.86 1.07 60.86
4.00 71.06 62.08 1.00 62.08
4.25 71.06 63.06 0.92 63.06
4.50 71.06 63.86 0.81 63.86
4.75 71.06 64.52 0.69 64.52
5.00 71.06 65.07 0.56 65.07

RNXT-18x4 MNV2

0.10 67.17 29.85 0.63 29.85
0.20 67.17 26.81 0.58 26.80
0.50 67.17 17.33 0.41 17.33
0.75 67.17 8.96 0.28 8.96
1.00 67.17 1.10 0.20 1.17
1.25 67.18 9.60 0.28 9.60
1.50 67.18 19.24 0.44 19.24
1.75 67.17 28.23 0.62 28.23
2.00 67.17 35.97 0.78 35.97
2.25 67.17 42.21 0.91 42.21
2.50 67.17 47.04 1.00 47.04
2.75 67.17 50.70 1.05 50.70
3.00 67.18 53.48 1.06 53.48
3.25 67.18 55.59 1.05 55.59
3.50 67.17 57.20 1.01 57.20
3.75 67.17 58.47 0.94 58.47
4.00 67.17 59.47 0.85 59.47
4.25 67.17 60.27 0.75 60.27
4.50 67.17 60.92 0.64 60.92
4.75 67.17 61.46 0.52 61.47
5.00 67.17 61.92 0.40 61.92

Table T4: [Effect of TS on KD(C)]:The student is calibrated by distilling from an MDCA calibrated
teacher KD with MDCA (a variant of KD(C)). The table shows that further temperature scaling
(TS) does not impact the models trained with KD with MDCA as they are calibrated to start with.
Parameters: WRN-40-1: 0.56M ; WRN-40-2: 2.24M ; MNV2: 2.25M ; RNXT-18x4: 25.46M

(2022), i.e. for LS Szegedy et al. (2015), we use smoothing of 0.1; for PSKD Kim et al. (2021) we
use α = 0.8; for MixUp Zhang et al. (2018) the mixup hyperaparameter was taken as 0.4 as it was
reported to be the best by the authors, for MDCA Hebbalaguppe et al. (2022), we grid search for
the best performing β ∈ {1, 5, 10} and γ ∈ {1, 2, 3, 4, 5}; For MMCE, we grid search for the best
performing β ∈ {1, 2, 3, 4, 5}.

We provide the metrics for various teachers trained from scratch and used throughout the paper in
Tab. T3. These teachers have been used to train various student models for KD(UC) and KD(C)
variants mentioned in the paper.

7 REPRODUCIBILITY

In the spirit of reproducible research, we intend to make the source code available post-acceptance.
To aid reviewers, the source code for our approach is attached along with the supplemental material.
Details of our setup and implementation of the baselines can be found at: Code/README.md folder.
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Figure S7: Comparative study of accuracy vs. calibration trade-offs associated with existing
calibration techniques and ours (Top-left is most preferred): The mean and one standard scatter
error bars for Top1, ECE and SCE of WideResNet-40-1 trained on CIFAR100 using SOTA
calibration techniques. WideResNet-40-2 was used as Teacher for KD(UC) and the proposed,
KD(C) variants. Note: KD(C) variants (magenta, cyan, and green) achieve the best results in terms
of ECE, ACE and SCE, along with slight boosts in Top1 (an inherent KD-property). Further, the
lower variances emphasize the reliability of KD(C) variants. All plots were generated by training
WideResNet-40-1 models through every calibration technique on 3 runs.

8 LIMITATIONS

While our work paves way to create optimal lightweight models that are both accurate and calibrated,
it is important to acknowledge three potential limitations that we plan to address in future research
- (a) principled approach to select hyperparameters, such as the temperature T , distillation weight
α, calibration regularization coefficient β, and characterization of optimal student-teacher capacity
difference for best calibration, (b) extending theoretical insights to general nonlinear networks, (c)
benchmarking KD(C) on natural language processing (NLP) tasks, particularly when the teacher
networks belong to the family of large language models (LLMs). This is particularly challenging due
to the unavailability of adequate computational resources.

9 BROADER IMPACT

Bigger DNN models aren’t necessarily better models. From a deployment standpoint, the size of
the weights affects the inference time and storage constraints on edge devices which is crucial in
applications such as augmented reality and robotics. Our proposed algorithm has the potential to
be employed in trustworthy lightweight models on the edge. In our endeavor to deploy lightweight
models that are also reliable, we delve into the realm of knowledge distillation, extending its
traditional function of transferring accuracy from teacher networks to student networks. Through
this exploration, we have discovered a novel approach to calibrating models effectively. We present,
arguably for the first time, compelling evidence that model calibration can be achieved without
sacrificing accuracy through knowledge distillation. Notably, our implementation of knowledge
distillation not only guarantees enhanced model calibration but also outperforms the accuracy obtained
through conventional training from scratch in specific cases. This innovative approach enables us to
simultaneously accomplish the dual objectives of optimal calibration and improved accuracy.

Towards this end, we provide extensive theoretical findings that extend beyond the realms of accuracy
transfer and calibration alone. We show, through optics of linear teacher and student networks,
that the optimization of student network weights through knowledge distillation enables them to
exhibit similar behavior and performance as their respective teachers (see Theorem 1 in the main
text). Subsequently, the scope of producing trustworthy models can also be extended to incorporate
characteristics, such as fairness and refinement. On a more specific note, Theorem 2 in our work
shows that there is a definite advantage of working with calibrated teachers over uncalibrated teachers,
i.e., calibrated teachers tend to produce calibrated students without compromising on accuracy. Hence
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our approach, KD(C), centers around train-time calibration of teacher models, enabling them to
generate accurate and optimally calibrated students through knowledge distillation. Significantly,
based on our empirical evaluations, it is evident that the transfer of calibration operates bidirectionally.
This means that larger calibrated models can be utilized to create smaller calibrated models, and
conversely, smaller calibrated models can also serve as a foundation for generating larger calibrated
models.

Overall, the research contributes to the advancement of model calibration, accuracy, trustworthiness,
and scalability, which can have significant implications in various fields relying on the deployment of
reliable and lightweight models.
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