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ABSTRACT
Missing data is a pervasive issue in real-world analytics, stemming
from a multitude of factors (e.g., device malfunctions and network
disruptions), making it a ubiquitous challenge in many domains.
Misperception of missing data impacts decision-making and causes
severe consequences. To mitigate risks from missing data and facil-
itate proper handling, computing methods (e.g., imputation) have
been studied, which often culminate in the visual representation of
data for analysts to further check. Yet, the influence of these com-
puted representations on user judgment regarding missing data
remains unclear. To study potential influencing factors and their
impact on user judgment, we conducted a crowdsourcing study. We
controlled 4 factors: the distribution, imputation, and visualization
of missing data, and the prior knowledge of data. We compared
users’ estimations of missing data with computed imputations un-
der different combinations of these factors. Our results offer useful
guidance for visualizing missing data and their imputations, which
informs future studies on developing trustworthy computing meth-
ods for visual analysis of missing data.

CCS CONCEPTS
• Human-centered computing → Empirical studies in visual-
ization.
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1 INTRODUCTION
Analysts often need to handle data with missing values in many
domains. For example, sensor failures in a weather station can lose
recorded temperature information [56]. For privacy concerns, when
answering a questionnaire, participants may intentionally leave
certain sensitive information (i.e., gender, race, and identity ID) as
blank [18, 55]. Moreover, regarding time, future data values can be
considered as a special type of missing data (for now they are not
present, but existent in the future), and they are commonly analyzed
and predicted in domains that involve temporal measurements (e.g.,
weather forecast, and stock or housing market prediction).

Missing data, if ignored or not responsibly handled, can lead to
severe consequences. For example, decisions made with incomplete
clinical data can waste a huge amount of public money for invest-
ing in stockpiling drugs with no clear benefits [8]. To avoid these,
it calls for a comprehensive understanding of the human reason-
ing process when analyzing incomplete data, and techniques for
supporting sensemaking with missing data. Computing methods
have been proposed to mitigate the risk and facilitate the handling
of missing data. For example, missing data imputation [24, 27] or
prediction [49, 67] aims to replace missing data with some “best,
reasonable inference” based on existing data [60]. Such imputations
or predictions are often computed with uncertainty (e.g., probability
and confidence interval) [20]. To reveal the uncertainty to users, a
variety of visualizations have been studied [16, 38, 53].

While prior works have studied several visual encodings of miss-
ing data [11, 61] and user-perceived data quality [22, 61], there still
lacks an in-depth understanding of how different visualizations
affect users’ reasoning when missing data presents in their analysis.
Moreover, computational models for the imputation or prediction
of missing data can be sometimes inaccurate. It remains unclear if
and how the visualized computational results affect users’ judgment
of missing data. Further, users could have different rationales based
on their expertise or prior knowledge about data, which may not
match the computed imputations or predictions of missing data.

To investigate these problems, we contributed a controlled ex-
periment on Amazon Mechanical Turk (MTurk) [1] to study factors
impacting on users’ judgment of missing data in visual analysis:
specifically, users’ estimations of missing data. While missing data
is commonly estimated computationally, for making data-driven
decisions, computed results often need to be shown to analysts
for further verifications. As missing data implies certain unknown
space, due to the loss of information, human judgment is essential
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for leveraging domain expertise and assuring ethical and responsi-
ble data handling. Moreover, human judgment can be transformed
into certain inputs for computational models and has been consid-
ered and used to improve the performance of computations [10].
Thus, we focus on users’ estimations of missing data in this study.

We controlled four factors in the study: the distribution of miss-
ing data, the imputation of missing data, the visualization of missing
data, and the prior knowledge of data. They correspond to four ma-
jor aspects in a data analysis process: data, computation, interface,
and user, respectively. We controlled these factors based on ratio-
nales derived from common patterns in prior work on missing data,
its analysis, and visualizations [13, 29–33, 35, 41, 61]. We used a
between-subjects design and recruited 630 MTurk workers for the
study. We collected data on metrics related to the accuracy, ten-
dency, and consistency of participants’ estimations of missing data,
their task efficiency, and self-judgment (i.e., level of confidence).
We found that all the factors had a significant impact on the accu-
racy, tendency, and consistency of participants’ estimations. We
also observed that the prior knowledge significantly affected the
participants’ task time; and imputation and visualization showed a
significant impact on participants’ task effort. Lastly, participants’
confidence in their estimations seems to be influenced by all the
factors except, surprisingly, prior knowledge.

Based on the results of our study, we contributed empirical find-
ings on guiding the design of missing data visualization and impu-
tation as well as trustworthy computational interfaces with missing
data in general. Specifically, designers should consider the distribu-
tion of missing data to design interfaces for making judgments, and
provide possible data context to support analysis. Second, users
collaboratively working with computations (i.e., given imputations)
may lead to better estimations, and designers should consider differ-
ent cases of imputation accuracy to apply appropriate visualizations.
Third, users’ prior knowledge is generally helpful, but should be
treated differently, when there might be a conflict with computed
imputations, and externalization of such knowledge might benefit
users for employing it for decision making.

In summary, this work highlights two major contributions: 1) a
controlled experiment (𝑁 = 630) investigating how data, computa-
tion, interface, and human factors (correspondingly, distribution,
imputation, visualization, and prior knowledge) impact the percep-
tion and decision-making of missing data; and 2) in-depth empirical
knowledge including design guidance for visualizing missing data
and their imputations as well as design implications for building
trustworthy computing methods and interfaces with missing data.

2 BACKGROUND AND RELATEDWORK
2.1 Missing Data
Missing data occurs due to many reasons, often referring to the loss
of recorded data values (e.g., a sensor fails to capture the weather
temperature) [46, 63]. In a broad sense, missing data can go beyond
missing values, which, instead, covers multiple aspects of data. Sun
et al. have discussed the missingness of data in 5 aspects [64]: data
values, data attributes, data records, data relationships (e.g., missing
links in networks [67, 68] and incomplete bicliques with missing
edges [40, 62, 65]), and data usage (e.g., selecting what parts of data
to use). Among these, missing data values has been heavily studied,

as it appears in real-world analyses in a variety of domains (e.g.,
bioinformatics [45], database [44], social network [43], and survey
[18]). This drives the focus of our study on missing data values.

A value-oriented, missingness mechanism has been studied [30–
32, 57]. It categorizes missing data values into three types, based
on the probability that missingness depends on observed data and
missing data: 1) missing completely at random (MCAR: the miss-
ingness probability relies on neither observed nor missing data),
2) missing at random (MAR: the missingness probability relies on
observed data), and 3) missing not at random (MNAR: the missing-
ness probability depends on missing data). However, it is practically
challenging to identify which pattern missing data belongs to, as it
requires certain awareness of an unknown space [23].

These theories and studies motivate our work, but none of them
provides an in-depth empirical understanding about what and how
different factors impact users’ judgement of missing data values.

2.2 Analysis with Missing Data
To support handling missing data (especially missing values), a
collection of analysis methods have been developed [12, 34], and a
detailed discussion about them can be found in [9, 28, 46]. Analysis
strategies to handlemissing values fall into threemajor groups. First,
imputation aims to reasonably estimate missing data and replace
them with the estimations [24, 27, 45]. While using statistical or
machine learning methods [58] to estimate missing values varies, it
holds a belief that filling in gaps in data can give a more reasonable
analysis than ignoring them. The quality of imputations are often
evaluated by comparing estimated values with true values. This
informs us setting a control on imputed missing data values.

Omission treats missing values as noises in data. Instead of at-
tempting to fixing holes in data, it highlights removing data records
with missing values. It considers them as “low-quality” data and
hypothesizes that removing them improves data quality, which
can benefit analysis. However, this reduces the number of samples
to analyze (e.g., likewise detection [50]). Due to omitting possibly
useful information, it may lead to a biased analysis, especially for
the missing pattern of MNAR (e.g., participants intentionally leave
sensitive information in a survey blank) [18].

Third, adaptation highlights performing an analysis by adapting
to incomplete data. It neither replaces missing values with their
estimations, nor removes them. Instead, it uses incomplete data for
analysis (e.g., the expectation-maximization algorithm [25]). Com-
pared to the other two strategies, existing data is neither augmented
nor reduced, but in this strategy, individual missing values catch
less attention. It tries to identify and enlarge a good likelihood of
complete data (i.e., observed data), by assuming that this likelihood
may potentially cover the missingness in data.

While these strategies support analysis with missing data, there
still lacks thoroughly performed studies on investigating users’
judgement of missing data, when there is imputation or not, espe-
cially with the existence of other factors (e.g., missing data distribu-
tion and visualization). This motivates us to develop the research
questions in this study. As omission removes missing data and per-
forming adaptation is too complex (estimating a likelihood, instead
of individual data values), we focus on imputation in this work.
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2.3 Missing Data Visualization
Three designs have been studied to show missing data and uncer-
tainty that may come from data missingness and statistical analysis
results. First, contrast-oriented visual encoding is a straightforward
approach, which visually highlights missing data (e.g., using empty
space). It maps each observed data to a visual mark and displays
it in a 2D space based on certain layouts (e.g., matrix, table, and
treemap). A typical example is a table or matrix with empty cells.
Based on the patterns shown by empty cells, the missingness in
data (MCAR, MAR, and MNAR) [57], can be revealed [30–32]. It
can also encode identified missing data with visually salient marks
to get separated from those for observed data (e.g., using color).
Song and Szafir applied this design to bar charts and line charts to
show missing data (e.g., have a few empty bars and gaps between
line segments), and studied user perceived data quality [61].

Second, profiling-oriented visual encoding considers missing
data in the context of data population. It is a relatively implicit strat-
egy to show data missingness, in a way of expressing uncertainty. It
reveals missingness in a visualization that profiles or summarizes all
observed data (e.g., distribution plot, violin plot, gradient plot, box
plot, and more visualizations discussed in [52]). Instead of focusing
on individual missing values, it emphasizes more on the impact
of missing data on the whole data population that is obtained via
statistical methods, so it shows results of data profiling [51]. Due
to this, data missingness can only be roughly perceived, but not
precisely identified (e.g., getting an overview of the distribution of
data, but not sure of where exactly the missingness locates).

Third, anchoring-oriented visual encoding highlights creating
visual anchors to help users understand summarized, observed data.
It shows uncertainty, which regards observed data population and
may involve data missingness. However, it transforms a 1D / 2D
range-based encoding into a collection of visual marks. The spatial
arrangement of them can lead to a perceived 1D / 2D range, simi-
lar to the concept of unit visualization [54]. Typical examples are
quantile dot plot [29] and ensemble plot [47, 48]. Thus, it not only
helps user perceive an overall pattern of data, but also offers marks
that may anchor user attention. Same as the profiling-oriented de-
sign, data missingness is vaguely revealed, but differently, the used
collection of marks breaks a continuous range into discrete pieces.

These visualizations inspired our study design, particularly on
the control of missing data visualization. However, none of them
focus on systematically studying possible impact on users’ judge-
ment of missing data in such visualizations with the presence of
other factors (e.g., missing data distribution, imputation, and prior
knowledge of data). This is the gap that we aim to address.

3 METHOD
3.1 Research Questions
We developed the following set of research questions to study key
factors that may impact users’ estimations of missing data.

Q1. Distribution: how do different distributions of missing data
impact users’ estimations of missing data?

Q2. Imputation: how are users’ estimations of missing data af-
fected by the presence and accuracy of missing data imputations?

Q3. Visualization: how do different forms of visual representa-
tions of missing data affect users’ estimations?

Figure 1: Three different controls on the distribution of miss-
ing data by sampling them from a given dataset.

Q4. Prior knowledge: how are users’ estimations of missing data
affected when they have prior knowledge about data?

We consider these factors, as they correspond to four key aspects
in data analysis: data, computation, interface, and user. Specifically,
distribution characterizes where and how the data is incomplete.
Imputation refers to the computation methods for estimating the
value of missing data. Visualization is the interface that commu-
nicates datasets with missing values. Prior knowledge regards the
user expertise and experience with the data and the analysis tasks.

3.2 Impacting Factors
To investigate these questions, we chose to study time-series data
(a series of data points that are organized in time order) [19]. This
type of data widely permeates people’s daily life (e.g., weather
forecasts, and stock and housing market trends). The widespread
acquaintance with such data helps in reducing disparities in data
familiarity among participants. In addition, given the prevalence of
time-series data [19], using it to conduct the study may extend the
applicability of the findings across multiple domains. Furthermore,
the loss of data commonly appears when collecting time-series data
in practice, and imputations or predictions are often applied to it
[66]. Based on these considerations, we choose to use time-series
data in our study. Below we discuss the rationale for selecting the
four factors studied in this work and their specific controls.

3.2.1 The Distribution of Missing Data. The distribution of missing
data refers to how data points are absent from a dataset. Prior work
has shown that there are multiple patterns of missing data, espe-
cially when considering the missingness based on observed data
[30–32]. Different distributions of missing data may impact users’
judgment of missing data (H1). For example, a user’s estimation of
a missing data value may be more accurate with neighboring data
points, which offer useful context, compared to when adjacent data
are also missing. To examine this, we manipulate the missing data
distribution in three distinct ways to determine which data points
are missing, as summarized below and exemplified in Figure 1.
• Random missing (𝐷𝑟𝑎𝑛𝑑𝑜𝑚):𝑚 data points is randomly selected
from a dataset as missing data.

• Block missing (𝐷𝑏𝑙𝑜𝑐𝑘 ):𝑚 consecutive data points that are not
the last𝑚 ones in a dataset is randomly selected as missing data.

• End missing (𝐷𝑒𝑛𝑑 ):𝑚 consecutive data points at the end of a
dataset is selected as missing data.
The dataset has time series data and 1 ≤ 𝑚 ≤ |𝑑𝑎𝑡𝑎𝑠𝑒𝑡 |, where | · |

denotes the cardinality. We pick the three distributions of missing
data by considering real-world use cases. 𝐷𝑟𝑎𝑛𝑑𝑜𝑚 corresponds to
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cases where unexpected events happen that lead to the loss of data
records (e.g., a strong wind blow leaves up, covering a surveillance
camera for a few seconds, which happens multiple times in a day).
𝐷𝑏𝑙𝑜𝑐𝑘 considers cases where collected data within certain time pe-
riods get lost. For example, due to extremely cold weather, a sensor
fails to capture temperature in the past two hours. 𝐷𝑒𝑛𝑑 regards
cases of predicting future data, which is considered as a special
type of missing data (i.e., missing for the present time, from a future
point of view). It is heavily used in many real-world applications
(e.g., weather forecast, stock market analysis, and disease control).

3.2.2 The Imputation of Missing Data. Asmissing data is often han-
dled in a way of imputation, whether or not giving users imputations
of missing data, and, if given, different levels of imputation accuracy
may impact users’ judgments of missing data (H2). In practice, it is
hard to get perfect heuristics to estimate whether an imputation is
good or bad, and the general advice is to use an imputation method
providing values that are as stable as possible. However, the an-
choring effect [33] suggests that provided imputations, regardless
of their accuracy, may sway users’ judgments—potentially leading
to more consistent evaluations aligned with the provided estimates,
especially when those imputations are more precise. To study this
factor, we set three controls on the imputation of missing data by
considering their true values (i.e., the values recorded in a dataset).
• No imputation (𝐼𝑛𝑜 ): imputations of missing data are not given.
• High-accuracy imputation (𝐼ℎ𝑖𝑔ℎ): we use the true values of se-
lected missing data to simulate high-accuracy imputations.

• Low-accuracy imputation (𝐼𝑙𝑜𝑤 ): we set low-accuracy imputa-
tions of missing data as values that differ from their true values
within a certain range. Section 3.4.1 gives a detailed discussion
of computing a low-accuracy imputation for missing data.
By comparing 𝐼𝑛𝑜 with 𝐼ℎ𝑖𝑔ℎ and 𝐼𝑙𝑜𝑤 , we can study the possible

impact of imputations on users’ estimations of missing data. More-
over, by comparing 𝐼ℎ𝑖𝑔ℎ with 𝐼𝑙𝑜𝑤 , we can further verify H2. For
example, when imputations of missing data are provided with 𝐼ℎ𝑖𝑔ℎ
and 𝐼𝑙𝑜𝑤 , we can test whether users’ estimations of missing data
tend toward the given imputations, even when the accuracy is low.

3.2.3 The Visualization of Missing Data. Prior work found that
missing data visualizations (e.g., highlighting and information re-
moval) can impact user-perceived data quality [61]. However, it
remains unclear whether (and how) these techniques affect users’
estimations of missing data when the imputed values exist or not.
We hypothesize that visualizations of missing data may limit users’
estimations of missing data (H3). As the imputation of missing data
can be revealed in a bounded way (e.g., error bars) [61], users’ esti-
mations of missing data may be constrained by such visual bounds.
In other words, users may not estimate missing data outside the
bounds in such visualizations. To study this, we use three visualiza-
tion techniques, shown in Figure 2.
• Empty visualization (𝑉𝑒𝑚𝑝𝑡𝑦 ): missing data is revealed as empty
space.

• Continuous visualization (𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ): missing data is shown as
imputed values with error bars (representing confidence inter-
vals), which sets a continuous range indicating where the missing
data possibly locates.

• Discrete visualization (𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ): missing data is shown as a set
of discrete points corresponding to meaningful confidence levels

Table 1: Example of collected daily temperature data.

Day Max (◦𝐹 ) Min (◦𝐹 ) Average (◦𝐹 )
06/11/2018 67.4 51.2 59.2
06/12/2018 76.6 49.1 62.9

... ... ... ...

that an imputation of this missing data may have. This is inspired
by the design and benefit of using quantile dot plots [29, 41].
By comparing 𝑉𝑒𝑚𝑝𝑡𝑦 (without visual bounds) with 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

and 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 (with visual bounds), it is possible to test whether
visualized imputations of missing data limit user estimations of
them. Moreover, by comparing 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 with 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 , it helps
us understand whether different forms of visual bounds impact
user judgment of missing data differently. For example, would user
estimations of missing data values fall in the range of error bars in
𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 , but be anchored by certain points in 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒?

3.2.4 The Prior Knowledge of Data. Prior knowledge has been
found playing a key role in developing analysis strategy and proce-
dure [59] and significantly impacting decision-making [15]. Thus,
the prior knowledge of data could impact user estimations of missing
data (H4). Prior knowledge has been used to computationally han-
dling missing data by improving imputation results [13, 35]. Thus,
compared to those without prior knowledge, it is more likely that
users, with prior knowledge of data, may estimate missing data
more reasonably (e.g., closer to their true values). To verify this, we
set two controls on the prior knowledge of data in this study.
• With prior knowledge (𝐾𝑤𝑖𝑡ℎ): historical data is shown to users.
• Without prior knowledge (𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ): historical data is not given.
We use whether or not to show historical data to users to control
their prior knowledge. If the historical data is presented for users
to see, we consider that they have prior knowledge about the data;
if not, we consider them without prior knowledge. By comparing
users’ estimations of missing data in 𝐾𝑤𝑖𝑡ℎ with those in 𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ,
we can study the impact of prior knowledge on users’ estimations.

3.3 Experimental Dataset
As explained in Section 3.2, the study uses weather temperatures as
the experimental dataset. We collected the weather data from the
Blue Hill Observatory and Science Center [2]. It includes the daily
temperature record from the Greater Boston area from 2016 to 2020.
For each day, the data record contains the maximum, minimum, and
average temperature (◦𝐹 ). In total, we collected the temperature
information for 1827 days (60 months), organized in a table-based
format. Table 1 shows a sample of the collected data.

Regarding the temperature data on each day, we used the average
value (see the 4𝑡ℎ column in Table 1). Considering the nature of
micro-tasks on MTurk (short time duration and attention span) [42]
and possibly limited screen space available in the task interface, we
divided the dataset into segments of 60 days for user tasks. It follows
the setting used in a previous study [61], which can be manageable
by participants within a reasonable time period. Specifically, we
separated 60-month (2016–2020) data into smaller datasets, where
each has data of two consecutive months (e.g., May and June in
2018). To assure that each separated dataset has 60-day data, for
two consecutive months with more than 60 days, we cut off extra
ones from the end of the second month; and for two months with
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Figure 2: The design for three types of visualizations in our study, with their supported user interactions, to show missing
data: empty space (A1-4), error bars (B1-4), and discrete points (C1-4). Grey circles are existing data, blue circles are computed
imputations of missing data, and orange circles are user-made estimations of missing data. For each type of visualization, three
interactions are offered: mouse-hovering (A2, B2, and C2), mouse-clicking to make an estimation of a missing data point (A3,
B3, and C3), and dragging and moving to adjust a previously made estimation (A4, B4, and C4).

fewer than 60 days, we add extra days from the beginning of the
following month. For example, for the dataset of July and August
2018 (62 days), we remove the data on August 30 and August 31,
2018; and for the dataset of January and February 2018 (59 days),
we add the data on March 1, 2018. In total, we generated 59 unique
datasets. Each has 60-day weather temperatures.

3.4 Experimental Software
3.4.1 Control of Impacting Factors. Distribution. For each dataset
with 60-day temperature information, to control the distribution of
missing data in it, we selected 10% of its data records (i.e., 6 days) as
missing ones, which followed the setting of the prior work [61]. For
each distribution condition, the selection was performed as follows:
• 𝐷𝑟𝑎𝑛𝑑𝑜𝑚 : randomly selecting six days.
• 𝐷𝑏𝑙𝑜𝑐𝑘 : randomly selecting one day from the first 54 days and
then selecting its next five days.

• 𝐷𝑒𝑛𝑑 : selecting the last 6 days.
Imputation. The 𝐼𝑛𝑜 condition is set as not showing any impu-

tations. The 𝐼ℎ𝑖𝑔ℎ condition is controlled by using the true values
(i.e., temperatures recorded in the collected dataset) as imputations.
We simulate the 𝐼𝑙𝑜𝑤 condition with the following equation:

𝑉𝑓 𝑎𝑙𝑠𝑒 = 𝑉𝑡𝑟𝑢𝑒 + 𝑠𝑖𝑔𝑛(1.645𝜎 + 𝑟 · (2.576𝜎 − 1.645𝜎)) (1)

In Equation (1), 𝑉𝑡𝑟𝑢𝑒 is the true value of a missing data, and 𝜎
is the standard error of the sample mean, where each sample is one
of our generated datasets, including 60-day temperature data. The
function 𝑠𝑖𝑔𝑛(·) randomly generates a positive (+) or a negative (−)
sign, and 𝑟 is a random real number within the range [0, 1]. The con-
stants, 1.645 and 2.576 are two normal critical values, corresponding
to the confidence level at 90% and 99%, respectively. It assures that
generated false values fall in the confidence interval [90%, 99%]
based on true values. It mimics a reasonably well-performed impu-
tation, which can generate values different from the true values of
selected missing data, but not too far away from the true values. We
choose this, as it better fits a real-world analysis scenario (people
are more likely to work with reasonably well-performed imputation
models than obviously bad-performed ones), compared to using
false values that are significantly different from true values.

Visualization.We used a line chart to show the time-series data,
where the x-axis corresponds to the date and the y-axis represents
the average temperature, as a line chart is the most commonmethod
to visualize time-series data. As is shown in Figure 2, we used three
different visualization techniques to present missing data: 1) using
empty space (for 𝑉𝑒𝑚𝑝𝑡𝑦 ), 2) using error bars (for 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ), and
3) using six discrete points (for𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ). They use the same visual
encodings for existing data, which uses a grey circle ( ) to present
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an existing data point and links two neighboring points with a
straight line ( ). They also use the same encoding for user-made
estimations of missing data, which is represented as an orange circle
( ). Moreover, they all highlight the background of each missing
data point ( ), which makes them visually salient.

For 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 , imputations of missing values are plotted as
points on the chart, with error bars ( ). The length of an error
bar is set as three times the standard error (𝜎) used in Equation (1),
which covers 99.73% of the confidence interval for an imputation.

For 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 , imputations of missing values are not directly
shown on the chart, but instead, six discrete circles are displayed
( ). To plot them, we determine the position of a miss-
ing data imputation by its date and imputed temperature. The
relative distances between each of these six circles and the actual
imputation data point are set by using the standard error (𝜎) in
Equation (1), specifically as 𝜎 , 2𝜎 , and 3𝜎 , respectively. They, as a
pair, respectively, cover 68.26% (between -𝜎 and 𝜎), 95.44% (between
-2𝜎 and 2𝜎), and 99.73% (between -3𝜎 and 3𝜎) of the confidence in-
terval for an imputation. The usage of such a discrete visualization
is inspired by the design and benefit of quantile dot plots, which
can relatively better support probabilistic estimations in real-world
prediction usage scenarios [29, 41]. We chose not to use quantile
dot plots, as directly embedding them into a line chart may confuse
users. Moreover, for block missing and end missing, using quantile
dotplots may generate a number of small dots neighboring each
other. This may cause visual illusions or chart misinterpretations.
Thus, instead of using multiple dots to reveal a probability, we use
one circle, and to encode different probability values, we control
the color saturation of circles with a linear mapping function.

Prior Knowledge. Based on the time of a dataset (e.g., May and
June in 2018) selected for user tasks, we chose whether or not to
show a line chart with the full data from a randomly selected year
that share the same two months (e.g., May and June in 2016). If
such a line chart is given before a user task, we consider that users
have some prior knowledge of data (for 𝐾𝑤𝑖𝑡ℎ). If not, we consider
that users have no prior knowledge (for 𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ).

3.4.2 User Interaction and System Implementation. Figure 3 shows
an example of the user interface used in our study. For conditions
with prior knowledge of data, participants see historical data first
(Figure 3 bottom) and then the interface for making estimations
(Figure 3 top). For conditions without prior knowledge, participants
only see the interface for making estimations.

We integrated all the above realization of impacting factors (see
Section 3.4.1) into a visual analysis tool to conduct the study and
collect user estimations and behaviors. The tool was developed
with the Django web framework [4] and deployed on the Microsoft
Azure cloud platform [5]. The back-end of the tool is implemented
in Python with a PostgreSQL database [7]. It generates distribu-
tions, imputations, and visualizations of missing data for different
experiment conditions, and communicates with the MTurk plat-
form to retrieve and store necessary information about participants
(e.g., MTurk worker ID) and record their task results. The front end
of the tool is implemented with the Bootstrap framework [3] in
HTML, CSS, and JavaScript. Our selected visualizations, discussed
in Section 3.4.1, are developed with D3.js [17]. They provide an
interactive user interface for participants to perform given tasks in

Figure 3: Examples of user interface used in the study. Top:
the interface provided for users to make estimations of miss-
ing data, where (a) shows the estimation of missing data that
a user is currentlymaking; (b) reveals themissing data values
to be estimated by a user; (c) are buttons for zooming in/out
of the line chart; and (d) shows the radio buttons for a user to
specify the confidence-level of his/her estimations. Bottom:
the interface used for users to view historical data.

the study. Specifically, the front end allows users to see visualiza-
tions in given tasks, make estimations of missing data, select the
level of confidence for their estimations, and answer a post-task
questionnaire. Moreover, we enabled a set of interactive features
on displayed visualizations, which supports participants in making
estimations of missing data (see A2-4, B2-4 and C2-4 in Figure 2).

Three key user interactions were added to all the visualizations:
mouse-hovering, mouse-clicking, and dragging and moving. When
a user hovers the mouse in the area corresponding to a missing
data point, its border gets highlighted (A2 in Figure 2). It shows
the current focus of this user. Moreover, when a user hovers the
mouse on presented imputations of missing data, besides the border
highlighting, two intersecting, dotted lines are displayed (B2 and C2
in Figure 2). They support users in checking detailed information
about an imputation. To make an estimation, users can click any-
where inside the area corresponding to this missing data (A3, B3,
and C3 in Figure 2). After making an estimation, users can drag and
move it to adjust the estimation (A4, B4, and C4 in Figure 2). While
users are moving a previously made estimation, the two intersect-
ing, dotted lines are shown to support the adjustment. Moreover,
two buttons for zooming in and out of the chart are offered, in case
the size of the screens that participants use for this study is small.

4 STUDY SETUP
Based on the four factors, our study has 30 experimental conditions
(see Table 2). We used a between-subject design for the study.
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Table 2: Summary of experimental conditions in the study.
3 Distribution 𝐷𝑟𝑎𝑛𝑑𝑜𝑚 , 𝐷𝑏𝑙𝑜𝑐𝑘 , and 𝐷𝑒𝑛𝑑

× 2 Prior Knowledge 𝐾𝑤𝑖𝑡ℎ and 𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡

× 5 Imputation & Visualization

(𝐼𝑛𝑜 ,𝑉𝑒𝑚𝑝𝑡𝑦 )
(𝐼ℎ𝑖𝑔ℎ ,𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 )
(𝐼ℎ𝑖𝑔ℎ ,𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 )
(𝐼𝑙𝑜𝑤 ,𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 )
(𝐼𝑙𝑜𝑤 ,𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 )

Total 30 conditions

4.1 Participants
We recruited participants from the MTurk platform. MTurk work-
ers, who have more than 100 approved HITs (Human Intelligence
Tasks) with acceptance rates greater than 95%, were allowed to
participate in this study. We considered a participant qualified, if
he/she passed the screening questions, completed all given tasks,
and finished a post-task questionnaire. Consequently, in total, 630
qualified participants (485 males and 145 females, 25-44 years old)
were included in the data analysis. Each participant was paid $0.70
for finishing a screening task and would receive a bonus payment
of $3.80, if they completed all given study tasks and the post-task
questionnaire. The pay rate was set based on the US Federal mini-
mum wage ($7.25 per hour) [6] and the time to finish given tasks.
Thus, a participant, who finished all in this study, received $4.50.

4.2 Tasks
The user task was to estimate missing data in given visualizations
and specify the confidence level of the estimations. For each task, a
participant worked on a line chart with 60-day temperature data, in
which the data of 6 selected days were missing. Participants were
asked to make estimations of the missing temperatures for the 6
days and rate how confident they were for the 6 estimations they
made by choosing one from a 5-point Likert scale.

Each participant was given 24 tasks that were under the same
experiment condition. The tasks used 24 datasets, with the non-
overlapping months in the same year, which were selected from
our generated 59 datasets. For example, the dataset of May and
June 2018 and that of June and July 2019 can be both used for the 24
tasks; while the dataset of June and July 2018 needs to be excluded
if the dataset of May and June 2018 has already been selected for
user tasks, as they share the month of June 2018. Moreover, for
experiment conditions with prior knowledge (𝐾𝑤𝑖𝑡ℎ), before each
task, participants would see a line chart with full data during the
same 60 days with an in-coming given task but in a different year.
For these prior knowledge charts, we chose datasets from our gen-
erated ones but different from those selected for the 24 tasks. This
assured that participants would not see the true values of missing
data in their given tasks. To avoid possible order effects [37], the
sequence of 24 tasks was randomized and the 6 selected missing
data in each task were also changed. In total, in this study, 15,120
tasks were performed in which 90,720 missing data were estimated
by 630 participants (21 participants for each condition).

4.3 Procedure
We posted the study as 30 HITs in MTurk. Each HIT is one exper-
iment condition (Table 2). All HITs are launched under the same
batch (using the same title and descriptions on MTurk website) to
ensure random assignments. After accepting a HIT, participants

(MTurk workers) were given a consent form. They were advised to
return the HIT, if they did not accept it. Otherwise, they proceeded
to the instruction page that included a 1.5-minute tutorial video for
the corresponding experiment condition of the HIT and the study
software. After reading the instruction and watching the tutorial
video, participants could choose to take a screening test with four
multiple-choice questions to check if they understand how to use
the given tool to do study tasks (e.g. which of the following allows
you to make estimations of missing values?). Participants can ad-
just their answers until they get the correct answers. Alternatively,
they can submit the HIT after at least one attempt to answer all
screening questions, and get the base payment of $0.70. Participants
who passed the screening test would be directed to the study tasks.
After finishing all 24 tasks, participants were given a post-task ques-
tionnaire about demographic information, education background,
experiences of using computing methods for missing data impu-
tations, and their belief in computed imputations of missing data.
After finishing the questionnaire, participants submitted the HIT
and would receive a bonus of $3.80.

The task interface is implemented to allow HIT submission in
two conditions. First is after at least one attempt of the screening
test. Second is after all the screening questions are correctly an-
swered, all the experimental user tasks are completed, and all the
questions in the post-task questionnaire are answered. All partici-
pants who submitted the HIT in the second condition are consid-
ered qualified (as defined in Section 4.1). The data collected from
all qualified participants were included in the data analysis.

4.4 Data Collection, Measures, and Metrics
For each task, we recorded participants’ initial and final estimations
of missing data, all adjustments in between, their confidence rating,
task completion time, and responses to a post-task questionnaire.

We used the following measures to assess the quality of partici-
pants’ estimations, participants’ perceived quality of given imputa-
tions, and the cost (i.e., time and effort) of making estimations.
• Accuracy of user estimations of missing data, with respect to true
values (𝑑𝑡𝑟𝑢𝑒 ): it reveals how close the participants’ estimations
are to the true values.

• Tendency of user estimations of missing data to be influenced by
imputations (𝑑𝑖𝑚𝑝𝑢𝑡𝑒 ): this measures how close the participants’
estimations are to the displayed imputations. The nearer they are,
the more participants tend to follow presented imputations. This
helps to reveal participants’ perceived accuracy of given imputa-
tions (e.g., participants may be more likely to follow imputations
that they perceive as highly accurate).

• Consistency of user estimations of missing data, with respect to
their true values (𝑐𝑡𝑟𝑢𝑒 ): it evaluates how dispersed participants’
estimations of missing data are in relation to true values (𝐼ℎ𝑖𝑔ℎ).

• Consistency of user estimations of missing data, with respect to
imputations (𝑐𝑖𝑚𝑝𝑢𝑡𝑒 ): it measures how dispersed participants’
estimations of missing data are in relation to their imputations
(including both 𝐼ℎ𝑖𝑔ℎ and 𝐼𝑙𝑜𝑤 ).

• Time duration of user estimation (𝑡𝑢𝑠𝑒𝑟 ): it refers to how much
time a participant takes to estimate missing data.

• Effort of user estimation (𝑓𝑢𝑠𝑒𝑟 ): this means the interactive effort
that a participant takes to make an estimation. Specifically, it
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measures the number of adjustments that a participant makes
before getting to a finalized estimation.

• Confidence of user estimations ( 𝑗𝑢𝑠𝑒𝑟 ): this is measured by the
confidence rating that participants select in each task.
In summary, 𝑑𝑡𝑟𝑢𝑒 measures the accuracy of participants’ esti-

mations; 𝑑𝑖𝑚𝑝𝑢𝑡𝑒 measures the tendency that participants follow
given imputations for estimating missing data; 𝑐𝑡𝑟𝑢𝑒 , and 𝑐𝑖𝑚𝑝𝑢𝑡𝑒
are consistency oriented measures; 𝑡𝑢𝑠𝑒𝑟 and 𝑓𝑢𝑠𝑒𝑟 are efficiency
oriented measures; and 𝑗𝑢𝑠𝑒𝑟 measures participants’ self-judged
confidence for their estimations. We used the Euclidean distance
between participants’ estimations of missing data and their true
values and imputations to compute 𝑑𝑡𝑟𝑢𝑒 and 𝑑𝑖𝑚𝑝𝑢𝑡𝑒 , respectively.
For 𝑐𝑡𝑟𝑢𝑒 and 𝑐𝑖𝑚𝑝𝑢𝑡𝑒 , we computed the standard deviation of 𝑑𝑡𝑟𝑢𝑒
and 𝑑𝑖𝑚𝑝𝑢𝑡𝑒 , respectively, so lower values (for 𝑐𝑡𝑟𝑢𝑒 and 𝑐𝑖𝑚𝑝𝑢𝑡𝑒 )
indicate that participants’ estimations are more consistent.

5 RESULTS
To answer our research questions, we performed quantitative anal-
ysis on the collected data. As part of the visualization factor work
when an imputation (i.e., for 𝐼ℎ𝑖𝑔ℎ and 𝐼𝑙𝑜𝑤 ) exists, we used dummy
coding [14] to combine the visualization and imputation factors,
which generated five different combinations, following the notions
in Table 2. For each factor (i.e., distribution, knowledge, and im-
putation & visualization), we performed a separate mixed-effects
regression (i.e., the lmer package in R) by treating the factors as the
fixed effects and individual participants as the random effect. To
perform a more accurate test, we used ANOVA (i.e., the anova() in
R) to compare each mixed effect model with a null model that only
has participants as the random effects, to test if the corresponding
factor was significant or not for a specific measure (see Section
4.4). The analysis results (𝜒2 (𝑑 𝑓 ) and 𝑃𝑟 (> 𝜒2)) are summarized
in Table 3 and 4. Figure 4 shows the mean (𝜇) and 95% confidence
intervals (CI) of the measures for each control of the factors.

5.1 Impact by The Distribution
The distribution of missing data shows a significant impact on the
accuracy, tendency, consistency, and confidence of participants’
estimations of missing data, but not on the efficiency measures of
their estimations (see the second row in Table 3 and Table 4).

The significance of accuracy (𝑑𝑡𝑟𝑢𝑒 ) is mainly reflected by the
𝐷𝑏𝑙𝑜𝑐𝑘 and 𝐷𝑒𝑛𝑑 conditions. The linear mixed model fitted by max-
imum likelihood (LMER) used the 𝐷𝑏𝑙𝑜𝑐𝑘 condition as the reference
and the intercept estimate (𝛽) is 5.28, with 95% CI: [4.95, 5.62] and
𝑡 = 31.13. This suggests that in the 𝐷𝑏𝑙𝑜𝑐𝑘 condition, the distance
between participants’ estimations of missing data and their true val-
ues (𝑑𝑡𝑟𝑢𝑒 ) can be expected to be around 5.28, mostly falling within
[4.95, 5.62]. Compared to the 𝐷𝑏𝑙𝑜𝑐𝑘 condition, in the 𝐷𝑒𝑛𝑑 condi-
tion, it is expected that participant estimations were less accurate,
as 𝑑𝑡𝑟𝑢𝑒 is expected to increase 0.98 (𝛽), with 95% CI: [0.76, 1.20],
and 𝑡 = 8.73. Moreover, for the 𝐷𝑟𝑎𝑛𝑑𝑜𝑚 condition, compared to
𝐷𝑏𝑙𝑜𝑐𝑘 , participants’ estimations were more accurate (𝛽 = −0.06,
95% CI: [−0.29, 0.16], 𝑡 = −0.54). It is consistent with Figure 4 (A).
This suggests that users may makemore accurate estimations of
missing data when their neighboring data values are present.

For the consistency of participants’ estimations (𝑐𝑡𝑟𝑢𝑒 ), with
regard to true values (𝐼ℎ𝑖𝑔ℎ), participant estimations of missing data

were less consistent with true values in both𝐷𝑒𝑛𝑑 (𝛽 = 0.29, 95% CI:
[0.16, 0.42], 𝑡 = 4.37) and 𝐷𝑟𝑎𝑛𝑑𝑜𝑚 (𝛽 = 0.13, 95% CI: [0.00, 0.26],
𝑡 = 1.94), compared to the𝐷𝑏𝑙𝑜𝑐𝑘 condition (the reference by LMER).
This implies that estimating missing data in the middle of a
time seriesmay be less challenging for users to get true values
than those randomly distributed or at the end of the series.

Similarly, for the tendency measure (𝑑𝑖𝑚𝑝𝑢𝑡𝑒 ), participants’ es-
timations of missing data tended to follow given imputations less
in both the 𝐷𝑒𝑛𝑑 condition (𝛽 = 1.07, 95% CI: [0.85, 1.29], 𝑡 = 9.52)
and the 𝐷𝑟𝑎𝑛𝑑𝑜𝑚 condition (𝛽 = 0.22, 95% CI: [0.00, 0.44], 𝑡 = 1.89)
than the 𝐷𝑏𝑙𝑜𝑐𝑘 condition (the reference by LMER). Under 𝐷𝑏𝑙𝑜𝑐𝑘 ,
the distance between participant estimations of missing data and
their imputed values (𝑑𝑖𝑚𝑝𝑢𝑡𝑒 ) was expected to be: 𝛽 = 3.21, 95%
CI: [2.84, 3.58], 𝑡 = 16.92. Moreover, for the consistency of partici-
pant estimations (𝑐𝑖𝑚𝑝𝑢𝑡𝑒 ), with regard to imputed values, partici-
pants made less consistent estimations in 𝐷𝑒𝑛𝑑 (𝛽 = 0.41, 95% CI:
[0.26, 0.55], 𝑡 = 5.53) and 𝐷𝑟𝑎𝑛𝑑𝑜𝑚 (𝛽 = 0.17, 95% CI: [0.03, 0.32],
𝑡 = 2.33) than the 𝐷𝑏𝑙𝑜𝑐𝑘 condition. These suggest that with the
presence of imputed values (even less-accurate ones), par-
ticipants’ estimations of missing data are most likely to be
“biased’,’ when the missing data are in the middle of a series;
and the least “biased’,’ when they are at the end of the series.

Regarding the confidence of participants’ estimations ( 𝑗𝑢𝑠𝑒𝑟 ),
participants chose to select lower confidence-ratings in 𝐷𝑒𝑛𝑑 (𝛽 =

−0.14, 95%CI: [−0.18,−0.10], 𝑡 = −7.19) and higher ones in𝐷𝑟𝑎𝑛𝑑𝑜𝑚
(𝛽 = 0.14, 95% CI: [0.10, 0.18], 𝑡 = 6.85), based on the reference
𝐷𝑏𝑙𝑜𝑐𝑘 . This indicates that participants seemed less confident of
their estimations when working on a consecutive number of
missing data than those randomly distributed in a series.

5.2 Impact by The Imputation & Visualization
The way of providing imputed values of missing data (including
their imputations and visualizations) shows a significant impact on
the accuracy, tendency, consistency, and confidence of participants’
estimations, and their effort in making estimations, but not on the
time spent on the estimations (see the last row in Table 3 and 4). For
all these measures, LMER took (𝐼ℎ𝑖𝑔ℎ , 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) as the reference
and compared others against it.

For accuracy, the distance between participants’ estimations of
missing data and true values (𝑑𝑡𝑟𝑢𝑒 ), under the (𝐼ℎ𝑖𝑔ℎ , 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 )
condition, was expected to be: 𝛽 = 2.99, 95% CI [2.66, 3.32], 𝑡 =

17.62. In comparison, participants’ estimations were the least ac-
curate in (𝐼𝑛𝑜 , 𝑉𝑒𝑚𝑝𝑡𝑦 ) (𝛽 = 5.01, 95% CI: [4.74, 5.29], 𝑡 = 35.52),
and less accurate in (𝐼𝑙𝑜𝑤 , 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ), (𝐼𝑙𝑜𝑤 , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ), and (𝐼ℎ𝑖𝑔ℎ ,
𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ). Among them, in (𝐼ℎ𝑖𝑔ℎ , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ), participants’ estima-
tions were the most accurate. Moreover, participants’ estimations
seemedmore accurate in (𝐼𝑙𝑜𝑤 ,𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ) than (𝐼𝑙𝑜𝑤 ,𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ), as
the former has a smaller 𝛽 with a smaller 95% CI. For the consistency
of participants’ estimations (𝑐𝑡𝑟𝑢𝑒 ), with regard to true values (𝐼ℎ𝑖𝑔ℎ),
(𝐼𝑛𝑜 , 𝑉𝑒𝑚𝑝𝑡𝑦 ) has the least consistent participants’ estimations (𝛽 =

2.96, 95% CI: [2.80, 3.12], 𝑡 = 36.18); while (𝐼ℎ𝑖𝑔ℎ , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ) has
the most consistent ones (𝛽 = −0.05, 95% CI: [−0.21, 0.11], 𝑡 =

−0.63). For the other three conditions, participants’ estimations
were more consistent in (𝐼ℎ𝑖𝑔ℎ ,𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) than (𝐼𝑙𝑜𝑤 ,𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 )
and (𝐼𝑙𝑜𝑤 , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ), respectively. Furthermore, compared to (𝐼𝑙𝑜𝑤 ,
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Table 3: Summary of the results on the accuracy, tendency, and consistency of participants’ estimations of missing data. The
intercept estimate (𝛽) with 95% CIs of the estimate for each condition are also reported.

Factors
Accuracy
(𝑑𝑡𝑟𝑢𝑒 )

Consistency to
True Value (𝑐𝑡𝑟𝑢𝑒 )

Tendency
(𝑑𝑖𝑚𝑝𝑢𝑡𝑒 )

Consistency to
Imputation (𝑐𝑖𝑚𝑝𝑢𝑡𝑒 )

Distribution 𝜒2 (2) = 86.943, 𝑝 < .0001 𝜒2 (2) = 21.178, 𝑝 < .0001 𝜒2 (2) = 90.496, 𝑝 < .0001 𝜒2 (2) = 30.635, 𝑝 < .0001
𝐷𝑏𝑙𝑜𝑐𝑘 (intercept)
𝐷𝑒𝑛𝑑

𝐷𝑟𝑎𝑛𝑑𝑜𝑚

𝛽 : 5.28, [4.95, 5.62], 𝑡 : 31.13
𝛽 : 0.98, [0.76, 1.20], 𝑡 : 8.73
𝛽 : -0.06, [-0.29, 0.16], 𝑡 : -5.4

𝛽 : 3.07, [2.90, 3.23], 𝑡 : 36.35
𝛽 : 0.29, [0.16, 0.42], 𝑡 : 4.37
𝛽 : 0.13, [0.00, 0.26], 𝑡 : 1.94

𝛽 : 3.21, [2.84, 3.58], 𝑡 : 16.92
𝛽 : 1.07, [0.85, 1.29], 𝑡 : 9.52
𝛽 : 0.22, [0.00, 0.44], 𝑡 : 1.89

𝛽 : 1.97, [1.78, 2.15], 𝑡 : 20.81
𝛽 : 0.41, [0.26, 0.55], 𝑡 : 5.53
𝛽 : 0.17 , [0.03, 0.32], 𝑡 : 2.33

Prior knowledge 𝜒2 (1) = 22.685, 𝑝 < .0001 𝜒2 (1) = 205.299, 𝑝 < .0001 𝜒2 (1) = 15.940, 𝑝 < .0001 𝜒2 (1) = 19.852, 𝑝 < .0001
𝐾𝑤𝑖𝑡ℎ (intercept)
𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡

𝛽 : 5.41, [5.09, 5,73], 𝑡 : 33.52
𝛽 : 0.36, [0.17, 0.55], 𝑡 : 3.76

𝛽 : 2.83, [2.68, 2.99], 𝑡 : 36.21
𝛽 : 0.77, [0.66, 0.88], 𝑡 : 13.81

𝛽 : 3.50, [3.14, 3.86], 𝑡 : 19.13
𝛽 : 0.30, [0.11, 0.49], 𝑡 : 3.10

𝛽 : 2.04, [1.87, 2.22], 𝑡 : 22.76
𝛽 : 0.25, [0.13, 0.37], 𝑡 : 3.99

Imputation & Visualization 𝜒2 (4) = 1709.25, 𝑝 < .0001 𝜒2 (4) = 1813.57, 𝑝 < .0001 𝜒2 (3) = 61.477, 𝑝 < .0001 𝜒2 (3) = 196.833, 𝑝 < .0001
(𝐼ℎ𝑖𝑔ℎ ,𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) (intercept)
(𝐼ℎ𝑖𝑔ℎ ,𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 )
(𝐼𝑙𝑜𝑤 ,𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 )
(𝐼𝑙𝑜𝑤 ,𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 )
(𝐼𝑛𝑜 ,𝑉𝑒𝑚𝑝𝑡𝑦 )

𝛽 : 2.99, [2.66, 3.32], 𝑡 : 17.62
𝛽 : 0.46, [0.19, 0.73], 𝑡 : 3.38
𝛽 : 3.61, [3.35, 3.88], 𝑡 : 26.99
𝛽 : 3.41, [3.12, 3.71], 𝑡 : 22.40
𝛽 : 5.01, [4.74, 5.29], 𝑡 : 35.52

𝛽 : 1.93, [1.77, 2.09], 𝑡 : 23.41
𝛽 : -0.05, [-0.21, 0.11], 𝑡 : -0.63
𝛽 : 1.77, [1.62, 1.92], 𝑡 : 22.65
𝛽 : 1.57, [1.40, 1.74], 𝑡 : 18.14
𝛽 : 2.96, [2.80, 3.12], 𝑡 : 36.18

𝛽 : 2.98, [2.59, 3.37], 𝑡 : 15.00
𝛽 : 0.40, [0.14, 0.65], 𝑡 : 3.05
𝛽 : 1.00, [0.75, 1.25], 𝑡 : 7.90
𝛽 : 1.00, [0.71, 1.29], 𝑡 : 6.80
N / A

𝛽 : 1.65, [1.45, 1.85], 𝑡 : 16.04
𝛽 : -0.06, [-0.23, 0.10], 𝑡 : -0.73
𝛽 : 0.78, [0.62, 0.94], 𝑡 : 9.41
𝛽 : 1.01, [0.82, 1.19], 𝑡 : 10.72
N / A

Table 4: Summary of the results on the efficiency and confidence of participants’ estimations of missing data. The non-significant
results are in gray. The intercept estimate (𝛽) with 95% CIs of the estimate for each condition are also reported.

Factors
Time
(𝑡𝑢𝑠𝑒𝑟 )

Effort
(𝑓𝑢𝑠𝑒𝑟 )

Confidence
(𝑗𝑢𝑠𝑒𝑟 )

Distribution 𝜒2 (2) = 4.863, 𝑝 = .0879 𝜒2 (2) = 4.129, 𝑝 = .127 𝜒2 (2) = 186.162, 𝑝 < .0001
𝐷𝑏𝑙𝑜𝑐𝑘 (intercept)
𝐷𝑒𝑛𝑑

𝐷𝑟𝑎𝑛𝑑𝑜𝑚

𝛽 : 32.12, [28.62, 35.62], 𝑡 : 18.03
𝛽 : -3.47, [-8.06, 1.12], 𝑡 : -1.48
𝛽 : 4.18, [-0.42, 8.77], 𝑡 : 1.79

𝛽 : 1.25, [1.09, 1.40], 𝑡 : 15.74
𝛽 : -0.10, [-0.20, 0.01], 𝑡 : -1.85
𝛽 : -0.10, [-0.20, 0.01], 𝑡 : -1.82

𝛽 : 3.70, [3.64, 3.76], 𝑡 : 117.60
𝛽 : -0.14, [-0.18, -0.10], 𝑡 : -7.19
𝛽 : 0.14, [0.10, 0.18], 𝑡 : 6.85

Prior knowledge 𝜒2 (1) = 23.191, 𝑝 < .0001 𝜒2 (1) = 1.541, 𝑝 = .214 𝜒2 (1) = 0.507, 𝑝 = .477
𝐾𝑤𝑖𝑡ℎ (intercept)
𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡

𝛽 : 27.74, [24.80, 30.69], 𝑡 : 18.50
𝛽 : 9.32, [5.55, 13.09], 𝑡 : 4.85

𝛽 : 1.16, [1.01, 1.31], 𝑡 : 15.14
𝛽 : 0.05, [-0.03, 0.14], 𝑡 : 1.21

𝛽 : 3.71, [3.65, 3.77], 𝑡 : 122.26
𝛽 : -0.01, [-0.05, 0.02], 𝑡 : -0.71

Imputation & Visualization 𝜒2 (4) = 9.165, 𝑝 = .0571 𝜒2 (4) = 15.527, 𝑝 = .00372 𝜒2 (4) = 182.334, 𝑝 < .0001
(𝐼ℎ𝑖𝑔ℎ ,𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) (intercept)
(𝐼ℎ𝑖𝑔ℎ ,𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 )
(𝐼𝑙𝑜𝑤 ,𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 )
(𝐼𝑙𝑜𝑤 ,𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 )
(𝐼𝑛𝑜 ,𝑉𝑒𝑚𝑝𝑡𝑦 )

𝛽 : 36.03, [31.54, 40.52], 𝑡 : 15.73
𝛽 : -3.22, [-9.21, 2.79], 𝑡 : -1.05
𝛽 : -4.06, [-10.05, 1.94], 𝑡 : -1.33
𝛽 : -3.66, [-9.62, 2.32], 𝑡 : -1.20
𝛽 : -7.41, [-13.46, -1.35], 𝑡 : -2.40

𝛽 : 1.27, [1.10, 1.44], 𝑡 : 14.75
𝛽 : 0.00, [-0.13, 0.13], 𝑡 : -0.04
𝛽 : -0.02, [-0.15, 0.11], 𝑡 : -0.34
𝛽 : -0.14, [-0.29, 0.01], 𝑡 : -1.87
𝛽 : -0.25, [-0.39, -0.12], 𝑡 : -3.63

𝛽 : 3.81, [3.75, 3.88], 𝑡 : 110.85
𝛽 : -0.04, [-0.09, 0.01], 𝑡 : -1.58
𝛽 : -0.10, [-0.15, -0.05], 𝑡 : -3.96
𝛽 : -0.11, [-0.16, -0.05], 𝑡 : -3.66
𝛽 : -0.33, [-0.38, -0.27], 𝑡 : -12.28

𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ), they were more consistent in (𝐼𝑙𝑜𝑤 ,𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ). Such re-
sults suggest that showing imputations may help participants
estimate missing data more consistently closer to true values
than without providing imputations.

Considering the tendency measure (𝑑𝑖𝑚𝑝𝑢𝑡𝑒 ), participants’ esti-
mations of missing data tended to follow presented imputations
more under conditions where 𝐼ℎ𝑖𝑔ℎ was involved than 𝐼𝑙𝑜𝑤 was used.
This is because, compared to the reference (𝐼ℎ𝑖𝑔ℎ ,𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ), both
(𝐼𝑙𝑜𝑤 , 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) and (𝐼𝑙𝑜𝑤 , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ) have a positive 𝛽 , which
indicates a larger distance between participants’ estimations and
given imputations. For the consistency of participants’ estimations
(𝑐𝑖𝑚𝑝𝑢𝑡𝑒 ), with regard to imputed values, (𝐼ℎ𝑖𝑔ℎ , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ) has the
highest consistent participants’ estimations (𝛽 = −0.06, 95% CI:
[−0.23, 0.10], 𝑡 = −0.73), while (𝐼𝑙𝑜𝑤 , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ) leads to the least
consistent participants’ estimations (𝛽 = 1.01, 95% CI: [0.82, 1.19],
𝑡 = 10.72). Also, participants’ estimations were more consistent
in (𝐼ℎ𝑖𝑔ℎ , 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) than (𝐼𝑙𝑜𝑤 , 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ). The results indicate
that participants tended to more consistently align estimations
with high-accuracy imputations than low-accuracy ones.

Regarding the effort of making estimations (𝑓𝑢𝑠𝑒𝑟 ), participants
had fewer adjustments when no and low-accuracy imputations (i.e.,
𝐼𝑛𝑜 and 𝐼𝑙𝑜𝑤 ) are shown than high-accuracy imputations are dis-
played (i.e., 𝐼ℎ𝑖𝑔ℎ). Moreover, when imputations (both 𝐼ℎ𝑖𝑔ℎ and 𝐼𝑙𝑜𝑤 )
were displayed, adjustments made in𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 remained similar (i.e.,

(𝐼ℎ𝑖𝑔ℎ , 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) v.s. (𝐼ℎ𝑖𝑔ℎ , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 )), or were even fewer (i.e.,
(𝐼𝑙𝑜𝑤 , 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ) v.s. (𝐼𝑙𝑜𝑤 , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 )) than those in 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 .
These suggest that participants are more likely to double-check
their estimations when showing imputations than without
them (as they made adjustments to their previous estimations), and
participants seemed to be easier to have their decisions settled
with the discrete visualization than the continuous one.

Regarding the confidence of participants’ estimations ( 𝑗𝑢𝑠𝑒𝑟 ), par-
ticipants chose the lowest confidence-rating score in (𝐼𝑛𝑜 , 𝑉𝑒𝑚𝑝𝑡𝑦 )
(𝛽 = −0.33, 95% CI: [−0.38,−0.27], 𝑡 = −12.28) and highest ones in
the reference condition (by LMER), (𝐼ℎ𝑖𝑔ℎ , 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ). By compar-
ing to the reference, participants selected lower confidence ratings
in (𝐼ℎ𝑖𝑔ℎ , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ), (𝐼𝑙𝑜𝑤 , 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 ), and (𝐼𝑙𝑜𝑤 , 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 ). More-
over, given the same visualization of imputed values, participants’
selected confidence rating was higher when using 𝐼ℎ𝑖𝑔ℎ than 𝐼𝑙𝑜𝑤 ;
while, under the same accuracy of imputed values, 𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠
led to higher confidence-ratings than 𝑉𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 . These results indi-
cate that participants weremore confident when imputations
were given than without imputations and they seemed to bemore
confident of their estimations with error bars (than using dis-
crete dots). This seems aligned with the results of their estimation
accuracy: in the conditions with higher accuracy of estimations,
participants are more likely to select higher confidence ratings.
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Figure 4: Plots of the results on the accuracy, tendency, consistency, confidence, and efficiency of participants’ estimations of
missing data. Each data point in the plot indicates the mean and 95% CI of the corresponding metric.

5.3 Impact by The Prior Knowledge of Data
Prior knowledge of data shows a significant impact on the accuracy,
tendency, and consistency of participants’ estimations, and the time
that they spent on making their estimations. However, it does not
significantly affect participants’ efforts in estimating missing data
and the confidence of their estimations.

With prior knowledge about data, participants’ estimations were
more consistent (for 𝑐𝑡𝑟𝑢𝑒 , referencing to 𝐾𝑤𝑖𝑡ℎ , 𝛽 = 0.77, 95% CI:
[0.66, 0.88], 𝑡 = 13.81 for 𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ) and closer (for 𝑑𝑡𝑟𝑢𝑒 , referenc-
ing to 𝐾𝑤𝑖𝑡ℎ , 𝛽 = 0.36, 95% CI: [0.17, 0.55], 𝑡 = 3.76 for 𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡 )
to the true values, than without prior knowledge. Similarly, par-
ticipants tended to more consistently (for 𝑐𝑖𝑚𝑝𝑢𝑡𝑒 , referencing to
𝐾𝑤𝑖𝑡ℎ , 𝛽 = 0.25, 95% CI: [0.13, 0.37], 𝑡 = 3.99 for 𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ) follow
imputed values for making estimations with prior knowledge about
data than without it (for 𝑑𝑖𝑚𝑝𝑢𝑡𝑒 , referencing to 𝐾𝑤𝑖𝑡ℎ , 𝛽 = 0.30,
95% CI: [0.11, 0.49], 𝑡 = 3.10 for 𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ). Moreover, for the time
spent on making estimations, they spent less time when they had
prior knowledge about data than without it (for 𝑡𝑢𝑠𝑒𝑟 , reference
to 𝐾𝑤𝑖𝑡ℎ , 𝛽 = 9.32, 95% CI: [5.55, 13.09], 𝑡 = 4.85 for 𝐾𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ).
These indicate that participants weremore likely to follow given
imputations andmakemore accurate estimations within less
time, when they had prior knowledge than they did not.

6 DISCUSSION
6.1 Comparison to Prior Studies
Our study distinguishes itself from the prior research [11, 22, 26, 61]
by offering a comprehensive examination of how four factors, data,
computation, interface, and user, affect users’ estimations of missing
data, encompassing a broader scope of the data analysis process

than most prior studies. Specifically, [11, 26] focuses on represen-
tations of missing data in a line chart, [61] controls imputation
methods and representations of missing data in a line chart and a
bar chart, and [22] considers data distribution and visualizes miss-
ing data as empty space in dot plots, histograms, and density plots.
In contrast, our study integrates these elements to provide a more
holistic view, centering on users’ estimations of missing data – a
focal point not emphasized in the earlier research. While missing
data is an important component in these studies, they emphasize
either user-perceived data quality [22, 61], or decision-making (e.g.,
comparing two values [26] and choosing when to book a travel
[11]) in the presence of missing data. For these prior studies, the
usage and user perception of visually revealed missing data catches
more attention than users’ judgment of them. Thus, our study com-
plements these prior works, as the low-level judgment of missing
data (from our study) may be associated with the way of using it
for decision-making (from prior studies). The findings from this
work can help to inform future studies about eliciting and assessing
insights from incomplete data.

6.2 Limitations and Future Directions
First, we used a between-subjects design, which inevitably intro-
duced individual bias into the collected data. Thus, our results could
be further examined in a within-subjects design setting in the future.
However, a within-subjects design would make the study sessions
much longer for each participant, which may introduce fatigue,
especially regarding the number of conditions.

Second, we used time-series data, particularly weather data, as
our test bed in this study, as it is commonly seen in daily life and
used in imputation algorithms. However, there are different forms of
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data (e.g., trees, graphs, and text) that can have missing values. Our
results may not be generalized to them, as not all the specific con-
trols in our study can be directly applied to them (e.g., trees, graphs,
and text often use different visualizations than a line chart). How-
ever, the four key aspects (data, computation, interface, and user)
that our controls follow can be generalized to a broad set of data
types and analysis tasks, because these aspects are commonly in-
volved in computing-supported data analytics. In addition, weather
data scenarios are relatable to the general public, so laypeople can
make reasonable predictions based on their real-life experiences.
While participants from MTurk with random assignments can pro-
vide a reasonable representation of users’ estimations of missing
weather data, our study did not consider the role of domain knowl-
edge and expertise in missing data estimation. Future research is
needed for other scenarios with different datasets where missing
values may not be possibly estimated without domain expertise.

In terms of the generalization of our observations, our study
focused on estimating missing data values, which is needed in many
types of data analysis tasks, such as merging and resolving data
conflicts, cleaning and wrangling data, and interpreting datasets
with missing values. We did not study missing data analysis in the
context of these tasks with the consideration to reduce confounding
factors. One valuable future research direction is to investigate
the impact of data context and different analysis tasks on human
perception and behavior related to missing data. Nonetheless, we
believe that the results from our study shed light on common-sense
user perceptions and human-computation collaboration on missing
data estimation. The insights from our work are helpful for future
exploration of missing data estimation and explorations in graphs
and trees, as well as other data forms and application scenarios.

Third, in this study, we used three particular visualizations to
show missing data and their imputations. However, there are other
visualizations that can also be used to support visual analysis with
missing data (e.g., bar charts and matrices). We did not consider
them in this study, which may impact people’s judgment of missing
data. Moreover, the relationship between imputations and visu-
alizations of missing data seems complex. In this work, we only
studied two levels of imputation and two types of visualization,
with the empty case (𝐼𝑛𝑜 ,𝑉𝑒𝑚𝑝𝑡𝑦 ) as the basis. Thus, further studies
are needed to gain a comprehensive understanding of a broad set
of visual encodings for missing data analysis.

Fourth, the metrics used in our study (i.e., accuracy, tendency,
and consistency) are observation-oriented ones. They indirectly
reveal participants’ perceived accuracy of given imputations, which
is inferred based on the observations of their estimations. However,
we did not consider participants’ subjective judgement of the accu-
racy of given imputations in this study. There could be mismatches
between our inferences and participants’ opinions. Further studies
are needed to gain an in-depth understanding of participants’ per-
ceived accuracy of given imputations (e.g., why do users consider
high-accuracy imputations as low-accuracy ones, or vice versa).

Last, the participants, recruited in this study, may not be quite
representative of all the real-world use cases that need to handle
incomplete data for visual analysis. Such cases often involve people,
who can be domain experts and have to make informed decisions
about complex datasets. As we recruited participants from MTurk,
they (i.e., users in this particular online platform) cannot be fully

representative of the whole user population for actual analysis use
cases. While there are prior studies that have investigated statistical
chart interpretation with non-statisticians (e.g., [21, 39, 41]), it has
been found that an expert population was more likely to answer
questions and provide feedback more accurately [36]. Thus, due to
the limitation of participants in this study, our findings may not
hold for cases with different groups of users, which requires further
verifications with a more diverse group of participants.

7 CONCLUSION
We presented a controlled study to investigate users’ estimations
of missing data on MTurk with 630 participants using a between-
subjects design. We studied four impacting factors: the distribution,
imputation, and visualization of missing data, and users’ prior knowl-
edge of data. We controlled each factor with multiple conditions
based on common patterns summarized in the literature. To mea-
sure users’ estimations, we used metrics for the accuracy, tendency,
and consistency of estimations, participants’ efficiency, and their
self-judgment (i.e., level of confidence). Our quantitative analyses
indicate that all the factors significantly affect the distance and
consistency of user estimations with respect to the ground truth
and low-accuracy imputations. Prior knowledge shows a significant
impact on the task time; and imputation and visualization influence
participants’ efforts in making estimations. Also, participants’ confi-
dence is significantly affected by all factors except prior knowledge.
Collectively, with observations discussed in this work, the results
could inform future studies of developing trustworthy, interactive
computing methods for visual analysis with missing data.
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