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ABSTRACT
This paper describes the method and evaluation results of our Deep-
Motion entry to the GENEA Challenge 2022. One difficulty in data-
driven gesture synthesis is that there may be multiple viable gesture
motions for the same speech utterance. Therefore the deterministic
regression methods can not resolve the conflicting samples and may
produce more damped motions. We proposed a two-stage model
to address this uncertainty issue in gesture synthesis. Inspired by
recent text-to-image synthesis methods, our gesture synthesis sys-
tem utilizes a VQ-VAE model to first extract smaller gesture units
as codebook vectors from training data. An autoregressive model
based on GPT-2 transformer is then applied to model the prob-
ability distribution on the discrete latent space of VQ-VAE. The
user evaluation results show the proposed method is able to pro-
duce gesture motions with reasonable human-likeness and gesture
appropriateness.
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1 INTRODUCTION
Producing realistic non-verbal behaviors that mimic human behav-
iors is vital for a virtual human to communicate effectively in a
social interaction with human users. Co-speech gestures synthesis
from speech audio, therefore, plays an important role in creating
an effective embodied agent since it is not feasible to manually
create gesture motions for all speech utterances. Such capability
will find applications in areas such as games, education, and virtual
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reality. However, synthesizing realistic 3D gesture motions from
only speech audio is still a challenging and unsolved problem.

One challenge in learning a model for gesture synthesis is that
there may be multiple viable gesture motions for the same speech
utterance. Therefore a direct regression method may not be able
to learn the correct speech-to-gesture mapping when there are
conflicting examples in the dataset. Since such methods formulate
the prediction as a deterministic process using either convolutional
neural network [11] or recurrent neural network [30, 31], it could
produce more damped arm movements and sometimes require
an adversarial training scheme to improve the resulting gestures.
Recent methods investigated this issue by developing a probabilistic
framework to handle such uncertainty [2, 21]. This line of methods
works by first learning a latent space for gestures and then sampling
new gestures from the latent spaces given speech conditions to
handle the randomness in gesture generation.

In this work, we proposed a two-stage model to address such
uncertainty issues in gesture synthesis. The main purpose of the
first stage is to obtain suitable feature representations of gesture
motions. Here we train the VQ-VAE from gestures motions to learn
a discrete codebook as our gesture representations. This is inspired
by earlier retrieval-based gesture generation methods that utilize
pre-defined gesture units to create gesture performance [15]. A VQ-
VAEmodel naturally learns the prevalent gesture units by implicitly
clustering input gesture data into codebook vectors. In the second
stage, we learn an autoregressive model to predict the probability
distribution for the next gesture token given previous tokens and
speech conditions. We choose to model the autoregressive mapping
with a transformer architecture [28], which is good at understand-
ing the relationship between long-ranged elements.

In the experiment results we found that utilizing VQ-VAE help
retain motion quality from the original data as well as increase
the fluency of generated gestures. Moreover, since the gesture gen-
eration process is reduced to sample the next possible token in
gesture codebook, we could generate multiple gesture sequences
given the exact same speech. This mitigates the issue when multiple
viable gestures exist for the same speech and avoids over-smooth
or damped motions from deterministic mapping when using direct
regression models [14].

In summary, our contribution is a novel two-stage method for co-
speech gesture generation from multi-modal context information
including audio and text. Firstly, we proposed to utilize a VQ-VAE
model for modeling smaller gesture units as codebook vectors. Sec-
ondly, we proposed an autoregressive model based on the GPT-2
transformer to model the distribution on the discrete latent space
of VQ-VAE and to sample new gesture sequences based on the
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given speech context. The user evaluation results showed the pro-
posed method can produce gesture motions with reasonable human
likeness and gesture appropriateness.

2 BACKGROUND
2.1 Co-Speech Gesture Generation
There are mainly two approaches to the automatic speech gesture
generation task. The first type is retrieval-based generation meth-
ods, which usually rely on a predefined set of gesture units that are
created manually and the synthesis is done via keywords matching
or semantic and prosody analyses to find associated gestures in the
database [3, 16, 22]. Recent methods created such gesture unit data-
base automatically from the training speech-gesture pairs [10, 13].
The synthesis stage then includes gesture attributes estimations
from speech and k-nearest neighbor search to find the gesture unit
that best matches the new speech content. Our design choice of uti-
lizing the VQ-VAE model is inspired by these methods to implicitly
build the gesture unit database via codebook learning.

The second type is learning-based methods which take speech-
gesture pair data and learn an end-to-end model to predict co-
speech gestures. Among them, some methods formulate the prob-
lem as a direct regression from speech to gestures [17]. Such meth-
ods do not explicitly handle the issue of one-to-many mapping from
speech to gestures, and may require an additional discriminator
to improve the synthesis results [4, 12, 30]. Recent methods model
the gesture synthesis process in a probabilistic framework and can
produce multiple gesture sequences from the same speech input
via latent space sampling [1, 2, 5, 21, 23]. Our method follows the
similar generative model architecture of latent space learning and
conditional sampling for synthesizing new gestures. The main dif-
ference is that instead of modeling a continuous latent space, we
utilize the discrete codebook learned via VQ-VAE to learn a probabil-
ity distribution on latent codes by the autoregressive model. Thus
the inference process is reduced to selecting the most likely latent
code from the codebook based on predicted probability distribution,
which naturally models the one-to-many mapping from speech to
gesture in the training data.

2.2 Discrete Latent Space Learning
For our work, we utilized the VQ-VAE model to extract gesture
units from the training gesture motions. The codebook in VQ-VAE
plays an important role in unit gesture selection. In the next part
of this section, we briefly explain the basic idea of VQ-VAE and its
extensions.

A VQ-VAE model [27] usually consists of three parts, an encoder,
a decoder, and the codebook. The encoder maps input data onto a
sequence of discrete latent variables, and the decoder reconstructs
the data from these discrete variables. Both the encoder and decoder
use a shared codebook. VQ-VAE was first introduced for image
synthesizing and compression tasks like Text-to-Image Generation.
For example, Cogview [7] concatenates text tokenizer output with
image codebooks to predict the next image tokens using GPT-2
model.

Currently, VQ-VAE is known to be one of the state-to-the-art
generative models not only used in images but also in time-series
data such as audio. Jukebox [6] utilizes VQ-VAE to generate music

singing based on. It trained multi-level VQ-VAEs to compress audio
in different resolutions into discrete space and then used autoregres-
sive Transformers to learn the latent codes for music generation.
VQ-VAE was also adapted to generate repetitive rhythms of mu-
sic by learning from extracted music loops. Multi-Instrumentalist
Net [26] was proposed to generate multi-instrumental music from
videos, which trained VQ-VAE along with an autoregressive prior
conditioned on the musician’s body key points movements. In our
method, we aim to apply VQ-VAE in gesture-generating tasks and
the evaluation results show its potential for retainingmotion quality
and handling probabilistic gesture synthesis.

One issue for training VQ-VAE is codebook collapse. Codebook
collapse happens when the model only learns to use a small sub-
set of the codes in the codebook, leaving a majority of the codes
unused. Several methods and techniques have been proposed to
prevent codebook collapse. Jukebox [6] introduced the technique
of re-initializing the unused codes to a random vector to prevent
dead codes during each training iteration. Video GPT [29] finds nor-
malizing MSE for the reconstruction loss also mitigates codebook
collapse. Also, some hierarchical VQ-VAEs were proposed recently
for better codebook utilization. VQVAE2 uses a hierarchy of VQVAE
to extract bottom and top features unconditionally, and the feedfor-
ward decoder mitigates the codebook collapse to some extent [25].
RQ-VAE uses a fixed size of codebook to recursively quantize the
feature map represented as a stacked map of discrete codes, which
decreases the codebook size and stabilizes the codebook training
[19].

2.3 Multi-modal Text-to-Image Synthesis
Text-to-image synthesis is a conditional image generation task that
creates images to reflect the meaning of textual descriptions. Some
recent works are based on the two-stage VQ-VAE and transformer
architecture. DALL-E [24] utilizes autoregressive models to process
the text and image tokens as a single stream of data for image
generation. They found that directly modeling the priors over raw
pixels tends to prioritize short-range dependencies between pixels.
To generate higher quality results, they model the priors over the
latent codes extracted by VQ-VAE. Similarly, the work by Esser et
al [8] use CNNs to learn a context-rich vocabulary of image con-
stituents based on VQ-GAN and utilize transformers to efficiently
model the composition with conditional context information. Our
model architecture is inspired by these recent successes in image
synthesis and the goal is to adapt this idea for gesture synthesis.

3 DATA PRE-PROCESSING
The training data for the GENEA Challenge 2022 is based on a
subset of the Talking with Hands (TWH) dataset [20]. For input
gesture representation, we first down-sampled input motions to
20 fps and applied a sliding window of 64 frames with 10 frames
step size to produce gesture samples. Each gesture sample is con-
verted into a tensor of size 𝑇 × 𝐽 × 𝐷 , where 𝑇 = 64 is the sliding
window size, 𝐽 is the number of joints, and 𝐷 is the size for joint
rotation representation. Following the baseline processing code, we
use 𝐽 = 18 for upper-body only gestures and 𝐽 = 24 for full-body
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gestures, excluding finger joints. We also use 𝐷 = 6 as the represen-
tation for joint rotations based on previous research [34] to prevent
singularities and reduce rotation approximation errors.

Since the dataset includes dyadic conversations instead of mono-
logue speech as in previous gesture datasets [9, 30], we found that
some portions of the training data include only listening behaviors
without any speech utterances or gestures. To reduce the effects of
such non-speech samples, we also filter the training data by remov-
ing samples with less than two speech words. Such data account
for about 30% of all samples and removing them is more efficient
for training the model.

When developing our methods, we also utilized the dataset from
GENEA Challenge 2020 [18], which is based on Trinity Gesture
Dataset [9]. Since the dataset includes only monologue speech
gestures and is one-fourth of the TWH dataset in size, it is easier to
tune and validate themodels. Utilizing this data during development
helps reduce the training time and allows a faster turn-around for
different ideas. When training the model for the submission data,
we excluded the Trinity dataset and only trained with the TWH
dataset.

4 METHOD
The proposed method is motivated by the recent works in cross-
modal text-to-image synthesis [8, 24] that utilize VQ-VAE as latent
space representation for image patches and generate new images
via autoregressive models to predict discrete tokens for each patch.
As a high-level analogy for gesture generations, this could be seen
as extracting a smaller set of gesture units from the training mo-
tions and learning the conditional probability distribution for these
gesture units based on speech context and previous gestures. One
motivation for learning the gesture units as discrete latent vectors
is because the generation process can be seen as sampling from
the codebook instead of interpolation within a continuous latent
space and thus we hypothesize that the resulting gestures are more
likely to retain their motion quality from original data. Moreover,
learning the probability distribution in the discrete codebook will
naturally handle the issue when different gesture motions are as-
sociated with the same speech in the training data since during
inference the model can randomly pick one of these gesture units
instead of outputting their average.

4.1 Overall Architecture
Our model consists of 4 components, 2 encoders for text and audio
feature extraction, a VQ-VAE for gesture feature extraction, and
a transformer decoder for gesture generation as shown in Figure
1. The text and audio encoders are largely based on the Trimodal
model [30] while the VQ-VAE and autoregressive transformer ar-
chitectures are adapted from the recent work in image synthesis
from natural language [8].

As stated in the previous section, the input data is a gesture clip
of 64 frames. This is done in the prepossessing step, where we use
a sliding window to segment the speech and gesture into sample
clips instead of producing the full speech and gesture sequence in
one pass. To maintain the continuity of output gestures, we include
a 10-frame overlap between each clip for consecutive syntheses.

Our model includes two stages. The first stage only involves
training the VQ-VAE model to learn discrete feature representation.
In the second stage, we will freeze the weight of VQ-VAE to treat it
as a gesture encoder and use the transformer to learn the probability
distribution over the discrete latent space.

4.2 Learning discrete feature representation

Figure 1: VQ-VAE architecture

The first stage of our learning process is to train the VQ-VAE
model to extract small gesture units as tokens from raw gestures.
Since it is an autoencoder architecture, both the input and output
for VQ-VAE include only gesture samples. In the training process,
each gesture sample 𝑥 is a tensor of size 𝑇 × 𝑃 , where 𝑇 is the
number of frames per clip and 𝑃 = 𝐽 × 𝐷 is the pose feature size.
The encoder first downsamples the input gesture into the tensor
𝑍𝑒 (𝑥) with size 𝑡 × 𝑝 . Then each 𝑝-dimensional vector from 𝑍𝑒 (𝑥)
is quantized to the nearest embedding in a learnable codebook
𝑉 = {𝑒1, 𝑒2, ..., 𝑒 |𝑉 |}, with embedding dimension 𝑝 and codebook
size |𝑉 |. Specifically, during the quantization stage each feature
vector from the encoder output 𝑍𝑒 (𝑥) is replaced by the index of
the nearest vector 𝑒𝑘 in the codebook. The quantization step can
be summarized as:

𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑒 (𝑍𝑒 (𝑥)) = 𝑒𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑗

| |𝑍𝑒 (𝑥) − 𝑒 𝑗 | |

During the reconstruction stage, the decoder takes the quantized
latent vector 𝑒 and maps it back to the reconstructed gesture 𝑥 in
the original dimension. Besides the 𝐿1 reconstruction loss, VQ-VAE
also includes two additional loss terms. The codebook loss helps
the codebook variable training and the commitment loss updates
encoder weights. The objective function for training the VQ-VAE
is then defined as the following:

𝐿(𝑥, 𝑥) = | |𝑥 − 𝑥 | | + | |𝑠𝑔[𝑍𝑒 (𝑥)] − 𝑒 | |22 + 𝛽 | |𝑠𝑔[𝑒] − 𝑍𝑒 (𝑥) | |22
The operator 𝑠𝑔 refers to the stop-gradient operator and 𝛽 is a
hyperparameter that controls the weight of commitment loss. The
quantized result can be represented by 𝑡 indices of the vector in
the codebook. The decoder maps and upsamples the quantized
vectors back to reconstruct the original input. In our model, we use
𝑡 = 16, 𝑑 = 128 in the encoder for feature extraction, and |𝑉 | = 1024
for codebooks size in full-body model and |𝑉 | = 128 for upper-body
only model.

One issue for training VQ-VAE is the codebook collapse. This
problem happens when only a small subset of codes are utilized
in the codebook during training and will result in a latent space
with less representational power. To prevent codebook collapse, we
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utilized several strategies proposed in previous work for learning
VQ-VAE. First, we apply exponential moving averages for the code-
book learning, which places a greater weight update on the most
recent codebook vectors [27]. In addition, we reset the codes that
are not used to random values to allow them a better chance to be
utilized in the next iterations, as proposed in the Jukebox paper
[6]. We also found that dividing the variance of the dataset when
calculating MSE reconstruction loss does have a small improvement
for the training [29].

4.3 Training auto-regressive model
The input conditions for our auto-regressive model are raw audio
and text. Our text and audio encoders are inspired by the Trimodal
[30], which uses the 1D-convolutional encoder for audio data and
temporal convolutions for text tokens of word embedding. After
encoding data from each modality through separate encoders, we
concatenate both outputs into a single condition feature tensor 𝑓𝑐
with size 𝑇 × (𝑑1 + 𝑑2), where 𝑑1 and 𝑑2 are the encoder output
dimensions for audio and text.

In the training process, we aim to predict the next gesture token
based on previous tokens and condition vectors. We take the fea-
ture vectors for text and audio as the condition on the transformer
and do left-to-right prediction of tokens, similar to other language
modeling tasks on the discrete latent codes. To simplify the archi-
tecture, we treat both condition vectors and gesture tokens the
same way as transformer inputs. The transformer we use is similar
to conditioned GPT-2 with masked self-attention. For each training
sample, the transformer predicts a sequence of gesture token at
every position after the condition vectors.

Specifically, during training the model takes the condition fea-
tures 𝑓𝑐 and previous gesture tokens 𝑔1:𝑡 as input to predict the
probability distribution of the next token 𝑝𝑖 (𝑡 + 1) for each code
𝑒𝑖 in the codebook. Here the autoregressive steps at each position
𝑡 = 1, . . . , 𝑇𝑠 sequentially predict the gesture tokens within the slid-
ing window, where 𝑠 is the downsampling factor in the VQ-VAE
encoder and 𝑇 = 64 is the sliding window size. In our experiment,
we set 𝑠 = 4 to allow each gesture token to represent about 0.2
second of gesture motion. The loss is calculated using negative
log-likelihood at each position.

When inferring from longer speech, we predict T frames at a
time and merge them into the final gesture sequence. Each sliding
window has a 10 frames overlap with the previous window and
the poses are interpolated in the overlapped area to maintain mo-
tion continuity. More specifically, for simplicity, we discard last
10 frames of the follow-up predicted sequence and merge them
together, and there is no affine combination or decaying of interpo-
lation was applied. The gesture tokens within each sliding window
are predicted in a similar autoregressive manner by inferring the
probability 𝑝𝑖 (𝑡 + 1) for the next token. To allow more variety in
the resulting gestures, instead of selecting the latent code with
the highest probability from the codebook, we randomly sample
it using the top-k probabilities where 𝑘 = 10 for both upper-body
and full-body gesture generations.

5 EVALUATION
The main evaluations were performed by the organizers and in-
cluded both subjective human studies and objective metrics [32].
Since the overall quality of the generated gestures is more subjec-
tive and includes multiple aspects that are difficult to quantitatively
measure such as fluency, consistency, or whether the generated
gestures match with the speech, the evaluation process placed more
emphasis on human studies. For the subjective evaluation, two dif-
ferent human study tasks were performed to compare the pros and
cons of different methods. The Human-likeness study measures
how much the generated gestures look like the motion of a real hu-
man while ignoring the effect of the speech. On the other hand, the
appropriateness study measures whether the generated gestures
match the speech content. To avoid bias toward more realistic mo-
tions, the generated gesture is compared against a random motion
from the same submission.

For each team, 40 chunks from their submitted motions were
selected and evaluated for both full-body and upper-body only
gestures. Figure 3 and 4 provide visualizations to summarize the
user study results among different submissions and baselines. Our
submission is FSI entry in the full-body study and USJ entry in the
upper-body study. As shown in the study results, our method was
able to achieve relatively good performance in both human-likeness
and appropriateness tasks.

6 RESULTS AND DISCUSSION
From the user evaluation results, our method performs relatively
well for human likeness and is among top-3 methods in all sub-
missions for both upper-body only and full-body results. Since
we trained two separate VQ-VAE and autoregressive models from
upper-body and full-body data, this consistent result validates our
goal of utilizing VQ-VAE to extract gesture units that retain motion
quality from the original data. However, we also notice that there
is still a significant quality gap between our synthesis results and
ground truth gesture motions. There are two possible explanations
for the gap. Firstly, since the method processes one sliding window
at a time and interpolates adjacent windows to form the gesture
sequence, there could be discontinuities between two adjacent win-
dows. While interpolating data in the overlapped frames removes
the pose discontinuity, it does not resolve the velocity and accelera-
tion discontinuity. Such higher order discontinuities produce more
jerky movements periodically and will likely reduce the overall
gesture quality. Secondly, the autoregressive model may not predict
the correct gesture tokens and some bad tokens might disrupt the
quality of decoded gesture motions as seen in the results of previous
text-to-image synthesis works.

Another issue we noticed when visualizing our synthesis results
is that for the full-body gestures, our method tends to produce a lot
of weight-shifting movements in the lower body. While the move-
ment itself is not unnatural, the frequent lower body movements
may look distracting and be regarded as motion artifacts in the user
evaluations. This might also explain the slightly lower score for our
full-body evaluations. We believe this issue might due to the fact
that we encode all joints in the full-body poses into a single gesture
token, and thus without proper constraints, the predicted gesture
tokens may include any lower body movements as far as they are
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Figure 2: The autoregressive transformer for predicting the probablity for the next gesture token.
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Figure 3: Box plot visualization for the human-likeness stud-
ies.
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(b) Upper-body study

Figure 4: Bar plot visualization for the gesture appropriate-
ness studies.

deemed likely based on input speech conditions. Separating both
the VQ-VAE and autoregressive models into a multi-level skeleton
hierarchy may alleviate this problem as we could learn different
probability distributions for different parts of the body.

The evaluation for appropriateness shows that the differences
are relatively small between all submissions and the ground truth

Figure 5: Plot of reconstruction loss when training VQ-VAE
with different codebook sizes and downsample factors. With
small codebook size (|𝑉 | = 128 and 𝑠 = 4), reconstruction error
is significantly higher than model trained larger codebook
size (|𝑉 | = 1024).

result is leading by a large margin. Although our method performs
consistently fine in the human-likeness evaluations, our results for
appropriateness are mixed. In the full-body study, our result is still
in the top 3 among all submissions, but for upper-body evaluations,
our method produces one of the lowest results. While the gap is
not significant, we find this result puzzling initially as the upper-
body movements should be easier to model by the autoregressive
model. After further investigations, we found that this might be
due to the codebook size |𝑉 | we chose for the upper-body only
model. As shown in Figure 5, our setting of |𝑉 | = 128 for the
upper-body only model has a gap in reconstruction loss when
compared with the model trained with a larger codebook size |𝑉 | =
1024. This might indicate that our upper-body setting is not able to
fully capture the complete gesture space of the training data. As
a result, the autoregressive model is not learning all the richness
of gesture motions and might produce simpler gestures with more
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limited gesture tokens. Our findings after further reviewing the
visualization results support this guess as our upper-body only
model tends to repeat similar gestures multiple times for the whole
utterances and the more interesting co-articulated gestures are less
frequent when compared with the full-body model. Thus while
our upper-body model produces results with reasonable human-
likeness from gesture tokens, it is not able to produce gestures with
enough diversity to account for different speech utterances and
thus might result in a lower appropriateness score. This finding
also shows that for our method, training a good VQ-VAE model is
vital as it could impact both the reconstructed motion quality and
the richness of the resulting autoregressive models.

7 CONCLUSIONS AND TAKEAWAYS
In this work, we proposed a two-stage approach that utilizes VQ-
VAE for learning gesture units and an autoregressive transformer
for learning conditional latent code priors. The evaluation results
show the potential of the method for generating gestures with
adequate human-likeness. While our method performed relatively
well in the user evaluation studies, we did not have enough time to
implement and experiment with different variations of our method
to produce more refined results. Specifically, there are a few issues
we would hope to investigate and further improve the system.

One key issue is that the VQ-VAE training is not as stable as
we originally expected due to codebook collapse. Thus we would
hope to develop a more robust process for training the VQ-VAE,
especially for different datasets. During our initial development,
we used the Trinity dataset [9] to allow faster iterations in model
training and parameter tuning. However, when we switched to the
TWH dataset and applied the same hyper-parameters (|𝑉 | = 64
and 𝑠 = 4) that were working well on the Trinity dataset, we found
that the results were worse than expected and we had to re-do the
parameter tuning to build an acceptable latent cookbook. Since
the codebook collapse issue is still not fully solved for VQ-VAE,
this might explain why the results are not as stable across different
datasets with a varying number of joints and motion quality. We
also hope to investigate newer techniques [33] that mitigate the
codebook collapse issue to make the training less vulnerable to
hyper-parameter changes.

We would also hope to improve the autoregressive model to ad-
dress the sequential nature of gesture motions. Due to the timeline
for the challenge, we simplified the transformer implementation
and adapted the typical architecture from image synthesis for our
method. Thus it only works at a fixed-size sliding window without
considering longer gesture sequences. This not only makes the
system less flexible but also introduces potential artifacts between
adjacent windows. A specialized model for handling time-series
data of arbitrary length should work better for gesture synthesis.

Finally, in our submission, we were not able to model the root
translations and for simplicity, we fixed the root joint positions
for all of our results. Thus the lower body movements from our
submission are less natural compared with the other top results.
Implementing the techniques of full-body synthesis such as the
one proposed in [2] to handle the root translations will enhance
our method to generate long sequences of full-body gestures with
realistic lower body motions.
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