
SignSGD with Federated Defense:
Harnessing Adversarial Attacks through Gradient Sign Decoding

Chanho Park 1 Namyoon Lee 2

Abstract
Distributed learning is an effective approach to ac-
celerate model training by using parallel comput-
ing power of multiple workers. However, substan-
tial communication delays arise between work-
ers and a parameter server due to the massive
costs associated with communicating gradients.
SignSGD with majority voting (signSGD-MV)
is a simple yet effective optimizer that reduces
communication costs through sign quantization,
but its convergence rate significantly decreases
when adversarial workers arbitrarily manipulate
datasets or local gradient updates. In this paper,
we consider a distributed learning problem where
the workforce comprises a mixture of honest and
adversarial workers. In this setting, we show that
the convergence rate can remain invariant as long
as the number of honest workers providing trust-
worthy local updates to the parameter server ex-
ceeds the number of adversarial workers. The
key idea behind this counter-intuitive result is our
novel aggregation method, signSGD with feder-
ated defense (signSGD-FD). Unlike traditional
approaches, signSGD-FD utilizes the gradient in-
formation sent by adversarial workers with ap-
propriate weights, obtained through gradient sign
decoding. Experimental results demonstrate that
signSGD-FD achieves superior convergence rates
compared to traditional algorithms in various ad-
versarial attack scenarios.

1. Introduction
Distributed stochastic gradient descent (SGD) stands as a
widely adopted technique for tackling large-scale optimiza-
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tion challenges involving data parallelism (Bottou, 2010;
Dean et al., 2012). Theoretically, synchronous distributed
SGD has the potential to significantly boost the training
speed of high-dimensional models in proportion to the num-
ber of workers. Nonetheless, the practical implementation
of such distributed SGD encounters hurdles, notably the sub-
stantial communication costs associated with exchanging
gradient information between a central server and individual
workers. This communication expense scales linearly with
the number of workers. For instance, the cutting-edge large
language models (Zhao et al., 2023), using a few billion
parameters, necessitate an exchange of tens of Giga bytes
of information per iteration for both each worker and the
central server. This renders it impractical for distributed
training, particularly in the environments with limited com-
munication networks. To resolve this communication bottle-
neck issue, it becomes imperative to devise communication-
efficient distributed learning algorithms that can mitigate
communication costs while upholding high learning perfor-
mance.

In recent years, various techniques have been proposed
with the goal of effectively reducing the communication
load in distributed learning (Kairouz et al., 2021). The
primary approach to cost reduction involves edge devices
performing lossy compression on locally computed gradi-
ent, which are then transmitted to the parameter server. One
simple yet effective algorithm is signSGD with majority vot-
ing (signSGD-MV) (Bernstein et al., 2018), in which each
worker quantizes the locally computed stochastic gradient
with only sign information and sends it to the server. Then,
the server aggregates the one-bit gradient information using
the MV principle and shares the aggregated one with the
workers for performing the model update.

Adversarial attacks aim to interfere with the training models
in distributed machine learning systems, introducing secu-
rity vulnerabilities in their predictive outcomes (Lyu et al.,
2020; Baruch et al., 2019; Xie et al., 2020; Blanchard et al.,
2017; Alistarh et al., 2018). For instance, malevolent work-
ers seek to compromise the model by introducing inaccurate
data or manipulating the model’s parameters or gradients.
SignSGD-MV has also shown to effective to optimize the
model against adversarial attack thanks to the majority vot-
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ing principle (Bernstein et al., 2019). Nevertheless, the
test accuracy of signSGD-MV deteriorates rapidly as the
number of adversarial workers increases.

In this paper, we theoretically and empirically prove that the
performance of distributed learning remains unaffected by
the number of adversarial workers, as long as the number
of honest workers exceeds that of adversarial workers. We
summarize our main contributions as follows:

• The key idea showing our counter-intuitive result is a
novel distributed learning algorithm called signSGD
with federated defense (signSGD-FD). Diverging from
the traditional majority voting approach, federated de-
fense astutely utilizes gradient information derived
not only from honest workers but also from adver-
sarial workers during aggregation. To elucidate this
concept, we offer a coding-theoretical interpretation
of signSGD-MV. Building upon this novel interpreta-
tion, we introduce a progressive weighted majority vot-
ing (WMV) method that dynamically adjusts weights
throughout iterations. During each iteration, the server
estimates the weights of workers by comparing signs
between the aggregated gradient through WMV and
the local gradient transmitted by the workers. This
weight estimation process not only aids in identifying
adversarial workers but also leverages the weights to
enhance resilience against adversarial attacks.

• We present a unified convergence rate analysis for the
signSGD-style algorithm incorporating an arbitrary bi-
nary aggregation function. Specifically, when employ-
ing signSGD-FD, we demonstrate that the convergence
rate remains unaffected in the face of adversarial at-
tacks, as long as the number of adversarial workers
is less than that of honest workers. This finding di-
verges from the previous convergence rate observed
with signSGD-MV, where the convergence rate dimin-
ishes with an increasing number of adversarial workers.

• We also provide experimental results on MNIST,
CIFAR-10 and CIFAR-100 datasets to validate the ro-
bustness of signSGD-FD in the presence of malicious
attacks. Compared to signSGD-MV and its variants,
signSGD-FD can achieve much higher test accuracy
in the presence of stochastic sign flip attacks, espe-
cially on the r = 1 case. Furthermore, we validate the
communication efficiency of signSGD-FD by evaluat-
ing the communication costs compared to other full-
precision attack-robust algorithms.

2. Related Works
In this section, we explain prior works that are closely rele-
vant to our research. Additionally, we provide a brief expla-

nation of the weighted majority voting method, which is a
core concept in our proposed federated defense aggregation.

Gradient compression: Gradient compression techniques
can be categorized into quantization, which compresses
the gradient vector into a limited set of codewords, and
sparsification, which selectively updates a small number of
gradient coordinates to optimize models. Noteworthy quan-
tization methods encompass (Seide et al., 2014; Alistarh
et al., 2017; Bernstein et al., 2018; Gandikota et al., 2021;
Hönig et al., 2022), while sparsification techniques include
(Aji & Heafield, 2017; Wangni et al., 2018; Stich et al.,
2018; Rothchild et al., 2020; Li & Hoefler, 2022). To signif-
icantly reduce communication costs, some approaches, as
exemplified by (Wen et al., 2017; Basu et al., 2019; Sattler
et al., 2019; Park & Lee, 2023b; Li & Li, 2023), integrate
both quantization and sparsification. Various adaptations
of the signSGD-MV algorithm, such as those proposed in
(Karimireddy et al., 2019; Jin et al., 2020; Sun et al., 2023;
Jin et al., 2024), have been introduced to address additional
practical challenges.

Robustness to adversarial attacks: A decentralized learn-
ing system is susceptible to malicious attacks, as adversar-
ial attackers can engage in the system. A common attack
method in distributed learning is the Byzantine attack (Lam-
port et al., 1982). To counteract such threats, various defense
algorithms modify the aggregation process which tradition-
ally involves computing the average of workers’ gradients.
These algorithms include coordinate-wise median (Yin et al.,
2018), geometric median (Blanchard et al., 2017; Guerraoui
et al., 2018), center clipping (Karimireddy et al., 2021), and
weighted aggregation (Pillutla et al., 2022). The signSGD-
MV algorithm is recognized as an attack-robust solution,
as it remains unaffected by attacks on gradient magnitudes.
Consequently, several studies (Bernstein et al., 2019; Chen
et al., 2020; Sohn et al., 2020; Jin et al., 2020) have focused
on enhancing robustness. However, recent developments
include new attack methods that can bypass these defense
mechanisms (Baruch et al., 2019; Xie et al., 2020), along
with the emergence of other backdoor attacks (Bagdasaryan
et al., 2020).

Weighted majority voting (WMV): The WMV method
has found widespread application across various domains,
such as communication systems (Hong et al., 2017; Kim
et al., 2019), crowdsourcing (Li & Yu, 2014; Kim et al.,
2023a), and ensemble learning (Berend & Kontorovich,
2015; Kim et al., 2023b). Notably, in scenarios involving the
transmission of binary information through parallel binary
symmetric channels (BSCs), it is established that the WMV
decoder, incorporating log-likelihood ratio (LLR) weights,
stands as the optimal choice from a maximum likelihood
estimation perspective (Jeon et al., 2018). Furthermore, the
utility of WMV extends into the realm of federated learning,
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where it addresses challenges arising from the heterogeneity
of data distribution (Wu & Wang, 2021; Li et al., 2023), as
well as mitigating degradation caused by adversarial attacks
(Jin et al., 2020). Despite these applications, there remains
a notable gap in the literature: specifically, the application
of LLR weights on signSGD-based learning algorithms has
yet to be explored or studied, to the best of our knowledge.

3. Preliminaries
In this section, we briefly review the classical signSGD-MV
algorithm (Bernstein et al., 2018). We also present an ad-
versarial attack mechanism for the signSGD-MV algorithm,
in which adversarial attackers flip the stochastic signs of
workers’ gradients.

3.1. SignSGD-MV

We consider a distributed learning system that consists of
one central server and M workers who have their own
datasets Dm,∀m ∈ M, where M is the set of participating
workers. These local datasets are the subsets of the global
dataset D with D =

⋃
m∈M Dm. Then, the optimization

problem of the distributed learning is given by

x⋆ = argmin
x∈RN

f(x) := argmin
x∈RN

1

M

∑
m∈M

fm(x), (1)

where fm(x) = Ed∼Dm
[F (x;d)] is a local loss function

for the worker m ∈ M. Since the data samples are dis-
tributed among several workers, the worker m trains its
model to be suitable only for the own dataset Dm. For given
model parameter xt at iteration t, the worker m computes
the stochastic gradient with batch size Bm as

gt
m :=

1

Bm

∑
d∈Bt

m

∇fm
(
xt;d

)
∈ RN , (2)

where Bt
m ⊂ Dm. Then, the worker performs one-bit sign

quantization for the locally computed stochastic gradient,
sign (gt

m). Subsequently, the sign of the gradient is sent to
the server through a band-limited communication network.
The server performs the aggregation for sign (gt

m) using
majority voting rule as sign

[∑
m∈M sign (gt

m)
]

(Bernstein
et al., 2018). Then, the server sends the signs of the aggre-
gated gradient to all workers. Lastly, each worker updates
the model as follows:

xt+1 = xt − δ · sign

[ ∑
m∈M

sign
(
gt
m

)]
, (3)

where δ ∈ R+ is a fixed learning rate parameter. This
process is repeated until the model converges, and we call
this optimization process as signSGD-MV.

3.2. Adversarial Attacks

Adversarial attacks in distributed learning give rise to a sub-
stantial threat to the accuracy of training models. This paper
specifically focuses on the adversarial attack scenario within
the framework of signSGD-MV. Our primary emphasis is
on the black-box setting, a scenario wherein attackers are
unable to access any datasets from honest workers. This
particular setting holds practical significance in numerous
distributed learning environments. In this setting, we con-
sider two types of adversarial attacks.

Sign inversion attack: Building upon the earlier research
conducted by (Bernstein et al., 2019) and (Jin et al., 2020),
a potential adversarial attack can be envisioned, wherein
the signs of locally computed gradient are inverted. This
particular attack scenario is denoted as the sign-inversion
attack (SIA).

Stochastic sign flip attack: Inspired by the Gaussian
Byzantine attack discussed in (Blanchard et al., 2017), an al-
ternative attack mechanism involves the stochastic flipping
of the sign information associated with one-bit gradient in-
formation. This attack is hereby referred to as the stochastic
sign flip attack (SSFA). Specifically, we characterize the
stochastic sign flip attack by introducing a sign-flipping
probability parameter, denoted as r ∈ [0, 1]. The set of
compromised workers who have been subjected to adversar-
ial attacks is represented by L ⊂ M, where L denotes the
cardinality of the set. To elaborate, we define the stochastic
sign flip attack method as follows: for each compromised
worker ℓ ∈ L, the sign information of the nth coordinate
is stochastically flipped with probability r. This can be
expressed as follows:

sign
(
g̃tℓ,n

)
=

sign
(
gtℓ,n

)
, w.p. 1− r

−sign
(
gtℓ,n

)
, w.p. r

, (4)

where g̃tℓ,n is the modified gradient by the adversarial attacks.
Notably, the SSFA boils down to the SIA when r = 1.

3.3. Coding-Theoretical Interpretation of signSGD-MV

Upper bound of signSGD-MV: Exploring the learning per-
formance of signSGD-MV becomes particularly insightful
when we analyze its upper bound. This upper bound is
realized when two key conditions are met: i) all workers
m ∈ M collaboratively utilize the complete local datasets,
i.e., Dm = D, and ii) the gradient computation involves the
use of the full-batch size as Bm = |Dm| for all m ∈ M.
Under these two ideal cases, every worker is empowered to
compute the true gradient ḡt at each iteration t as

ḡt =
1

|D|
∑
d∈D

∇F
(
xt;d

)
. (5)
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We denote the true sign of nth coordinate as

U t
n = sign

(
ḡtn
)

(6)

for n ∈ [N ]. Then, the worker updates the model as

xt+1
n = xt

n − δ · U t
n. (7)

The model update technique utilizing the true gradient ex-
hibits a more rapid convergence rate compared to the con-
ventional signSGD-MV, which relies on one-bit stochastic
gradient information. From this ideal case, it is important
to decode the true sign of the gradient in every iteration to
speed up the convergence rate. We call this true sign U t

n for
all coordinate n ∈ [N ] as message bits to be recovered from
the aggregation.

Communication model: We now interpret the one-bit
stochastic gradient computation process as a communica-
tion process. Under the limited data knowledge Dm ⊂ D
and batch sizes Bm ≤ |Dm|, worker m ∈ M computes the
sign of the stochastic gradient as

Y t
m,n = sign

(
gtm,n

)
. (8)

This stochastic sign is different from the true sign of the
gradient U t

n. We model this sign mismatch effect with a
lens through a communication problem. To be specific,
all workers send the true sign of the gradient U t

n through
M parallel binary symmetric channels (BSCs). Then, the
server receives M independent noisy message bits, i.e.,
Yt

n =
[
Y t
1,n, · · · , Y t

M,n

]
. In this modeling, the cross-over

probability of the BSC, ptm,n is defined as

ptm,n = P
[
Y t
m,n ̸= U t

n

]
. (9)

After the server receives all the workers’ gradient signs, the
server decodes the observations Yt

n by using an arbitrary
aggregation function A (Yt

n), and we denote the decoded
sign as Û t

n. To mimic the upper bound performance, it is
important to design the aggregation function that minimizes
the decoding error probability:

ptE,n = P
[
Û t
n ̸= U t

n

]
. (10)

Effect of the adversarial attacks in the BSC model: Uti-
lizing our communication model, we offer insights into how
adversarial attacks impact the alteration of cross-over prob-
abilities in BSCs. The SIA simply alters the sign of the
locally computed gradient among certain workers. Subse-
quently, when worker ℓ ∈ L is subjected to the SIA, we
can express the effect as an equivalent adjustment in the
cross-over probability. Specifically, the probability ptℓ,n
is transformed to p̃tℓ,n = 1 − ptℓ,n for all n ∈ [N ]. The
SSFA introduces a probability parameter r ∈ [0, 1], and
modifies the locally computed gradient according to (4) by

changing its sign with this probability. This operation can
be conceptualized as incorporating an additional BSC in
a cascade fashion. Specifically, let the flipped sign of the
stochastic gradient be denoted as Ỹ t

ℓ,n for the coordinate
n ∈ [N ]. Then, the overall cross-over probability of the two
consecutively connected BSCs can be derived as:

p̃tℓ,n = P
[
Ỹ t
ℓ,n ̸= U t

n

]
= ptℓ,n + r

(
1− 2ptℓ,n

)
, (11)

which can also express that of SIA. Consequently, both SIA
and SSFA mechanism can be understood by the changes in
the cross-over probabilities of effective BSCs. This interpre-
tation facilitates the establishment of a unified convergence
rate applicable to these attack scenarios.

4. SignSGD with Federated Defense
In this section, we put forth a novel distributed learning algo-
rithm called signSGD with federated defense (signSGD-FD).
SignSGD-FD and conventional signSGD-MV share iden-
tical algorithm procedure, differing solely in the gradient
aggregation method employed at the server. Consequently,
we shall focus on explaining the aggregation technique ap-
plied to the gradient sign information Yt

n,∀n ∈ [N ].

4.1. Algorithm

Under the premise that the cross-over probabilities of all
workers, pt1,n, · · · , ptM,n, are perfectly known at the server,
the optimal aggregation method is to perform the maximum
likelihood (ML) decoding. To accomplish ML decoding,
the server computes the log-likelihood ratio (LLR) as

ln
P [Yt

n|U t
n = +1]

P [Yt
n|U t

n = −1]
=
∑

m∈M
ln

1− ptm,n

ptm,n

Y t
m,n. (12)

As a result, the optimal aggregation boils down to the
weighted majority voting (WMV) as

Û t
n = sign

( ∑
m∈M

wt
m,nY

t
m,n

)
, (13)

where wt
m,n = ln

1−pt
m,n

pt
m,n

is the nth coordinate LLR weight
for the worker m ∈ M. Unfortunately, obtaining the true
ptm,n is an insurmountable task due to the server’s inability
to access all the data samples from workers. Nevertheless,
we can estimate these probabilities from the federated de-
fense mechanism. The key idea behind federated defense
lies in leveraging decoding results to estimate the cross-over
probabilities ptm,n over iterations. To elucidate, during the
initial phase t ≤ Tin, the server employs an empirical ap-
proach to estimate the probability of computing errors by
counting the instances of sign errors across all coordinates
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n ∈ [N ], and comparing them with the decoding results as

p̂t+1
m,n =

∑t
i=1

∑N
n=1 1[Y i

m,n ̸=Ûi
n]

Nt
, (14)

where 1[·] is an indicator function. Here, the decoding
results are obtained by the WMV decoding, but with the
estimated LLR weights as

Û t
FD,n = sign

( ∑
m∈M

ŵt
m,nY

t
m,n

)
. (15)

From the estimated cross-over probabilities in (14), the LLR
weight ŵt+1

m,n is updated as

ŵt+1
m,n = ln

1− p̂t+1
m,n

p̂t+1
m,n

. (16)

After the initial phase t > Tin, the cross-over probability
estimation rule is changed to recursively update p̂tm,n in
parallel for each coordinate as

p̂t+1
m,n =

Tin

t
p̂Tin
m,n +

t− Tin

t

∑t
i=Tin+1 1[Y i

m,n ̸=Ûi
n]

t− Tin
, (17)

where p̂Tin
m,n is computed by following (14). Consequently,

the model is updated as

xt+1 = xt − δ · Û t
FD,n. (18)

The entire algorithm is summarized in Algorithm 1.

4.2. Remarks

Universality for adversarial attacks: The proposed
signSGD-FD exhibits versatility in addressing a broad spec-
trum of adversarial attack scenarios. Its adaptability is par-
ticularly evident in the nuanced modeling of cross-over prob-
abilities based on distinct adversarial attack mechanisms. In
the context of the SIA scenario, the cross-over probability
undergoes a transformation from ptℓ,n to p̃tℓ,n = 1 − ptℓ,n
when worker ℓ ∈ L is targeted. Meanwhile, in the SSFA sce-
nario, which can generalize the SIA method, the cross-over
probability is precisely modeled as the expression given by
(11). A noteworthy aspect of the proposed FD is its inde-
pendence from any prior knowledge regarding adversarial
attack scenarios. Notably, it eliminates the need to estimate
the sign-flipping probability r under the SSFA. The only req-
uisite information is the estimation of effective cross-over
probabilities p̂tm,n in (17). Consequently, our signSGD-FD
emerges as a versatile solution, applicable across diverse
adversarial attack scenarios.

Harnessing compromised workers: Our signSGD-FD al-
gorithm leverages the gradients of compromised workers

Algorithm 1 signSGD-FD
Input: Initial model x1, the number of workers M ,
worker m’s batch size Bm, learning rate δ, initial weight
ŵ1

m,n = 1, initial phase duration Tin, total iteration T

for t = 1 : T do

for each worker m ∈ M do
Compute gt

m with batch size Bm

Encode Y t
m,n = sign

(
gtm,n

)
,∀n ∈ [N ]

Send sign (gt
m) =

[
Y t
m,1, · · · , Y t

m,N

]
to server

end for

for each worker ℓ ∈ L attackers do

Manipulate Ỹ t
ℓ,n=

{
Y t
ℓ,n, w.p. 1−r

−Y t
ℓ,n, w.p. r

,∀n ∈ [N ]

Send sign (g̃t
ℓ) =

[
Ỹ t
ℓ,1, · · · , Ỹ t

ℓ,N

]
to server

end for

for each coordinate n = 1 : N server do
Decode
Û t
n = sign

(∑
m∈M\L ŵt

m,nY
t
m,n+

∑
ℓ∈L ŵt

ℓ,nỸ
t
ℓ,n

)
for m ∈ M do

Estimate

p̂tm,n =


∑t

i=1

∑N
n=1 1

[Y i
m,n ̸=Ûi

n]
Nt , if t ≤ Tin∑t

i=1 1
[Y i

m,n ̸=Ûi
n]

t , o.w.

Update ŵt
m,n = ln

1−p̂t
m,n

p̂t
m,n

end for
Send Û t

n to all workers m ∈ M
end for

for each worker m ∈ M do
Update xt+1

n = xt
n − δ · Û t

n, ∀n ∈ [N ]
end for

end for

for aggregation. Specifically, following the cross-over prob-
ability estimation process in (14) and (17), the server can
pinpoint the compromised workers by identifying workers
whose cross-over probabilities exceed 1/2. Typically, dur-
ing gradient aggregation, the server can eliminate the local
gradients from these identified adversarial workers. How-
ever, our federated defense mechanism demonstrates that
this elimination strategy is notably sub-optimal. To achieve
optimal ML decoding performance, it is crucial to utilize
the cross-over probabilities of all workers. These probabili-
ties are imperative because the sign of the estimated LLR
weights of compromised workers can automatically change
if p̂tm,n > 1/2. This counter-intuitive result will be verified
from the convergence analysis in the subsequent section.
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5. Convergence Analysis
In this section, we provide the convergence analysis for
signSGD-FD in the presence of stochastic sign flip attacks.

5.1. Assumptions

Before analyzing the convergence guarantee, we first present
some assumptions used in the analysis:

Assumption 5.1 (Lower bound). For all x ∈ RN and a
global minimum point x⋆, we have an objective value as

f(x) ≥ f (x⋆) = f⋆. (19)

Assumption 5.2 (Coordinate-wise smoothness). For all
x,y ∈ RN , there exists a vector with non-negative constants
L = [L1, . . . , LN ] that satisfies

|f(y)−f(x)−⟨∇f(x),y−x⟩|≤
N∑

n=1

Ln

2
(yn−xn)

2
. (20)

Assumption 5.1 is required for the convergence to local
minima, and Assumption 5.2 indicates the Lipschitz con-
dition of the objective function. Assumptions 5.1 and 5.2
are commonly used for the convergence analysis of learning
algorithms as in (Li et al., 2019; Bernstein et al., 2018), but
with a coordinate-wise fashion.

5.2. Convergence Analysis without Attacks

Under these mild assumptions, the convergence rate of
signSGD using an arbitrary binary aggregation can be de-
rived as the theorem below.

Theorem 5.3 (Universal convergence rate). Let Û t
n =

A (Yt
n) ∈ {−1,+1} be a decoded gradient sign for nth

coordinate at iteration t. We define the maximum of sign
decoding error probability over all n ∈ [N ] and t ∈ [T ] as

Pmax
E = max

n∈[N ],t∈[T ]
P
[
Û t
n ̸= U t

n

]
. (21)

With a fixed learning parameter δ =
√

2(f1−f⋆)
T∥L∥1

, the con-
vergence rate of signSGD-type algorithms is given by

E

[
1

T

T∑
t=1

∥ḡt∥1

]
≤ 1

1−2Pmax
E

√
2 (f1−f⋆) ∥L∥1

T
, (22)

for Pmax
E < 1

2 .

The convergence rate in Theorem 5.3 holds for an arbitrary
sign decoding function A (Yt

n). From Theorem 5.3, we
observe that the convergence rates of signSGD-style algo-
rithms, including signGD, have an order O

(
1√
T

)
. More

importantly, the convergence rate of signSGD-based algo-
rithms improves as decreasing the maximum decoding error

probability. From this observation, our focus shifts to estab-
lishing an upper bound for the decoding error probability
when applying the proposed signSGD-FD algorithm.

Theorem 5.4 (Decoding error bound of signSGD-FD). For
every n ∈ [N ], m ∈ M, and t ∈ [T ], suppose the ratio
between the estimated and true LLR weights are bounded
with some constants δmax ∈ R+ and δmin ∈ R+ as

1− δmin ≤
ŵt

m,n

wt
m,n

≤ 1 + δmax. (23)

Then, the gradient sign decoding error probability when
applying the FD aggregation in (15) is upper bounded by

P FD
E ≤ exp

[
−M

(
1− δmin

1 + δmax

)
γWMV
M

]
, (24)

where γWMV
M = 1

M

∑
m∈M

1
2

(
1
2 − ptm,n

)
ln

1−pt
m,n

pt
m,n

is the
error exponent of the perfect WMV aggregation for the entire
worker set M.

From Theorem 5.4, we observe that the decoding error
bound exponentially decreases with the number of workers
M . The error exponent γWMV

M determines how quickly the
error probability diminishes as increasing M . In addition,
the performance loss of FD aggregation due to weight uncer-
tainty results in an error exponent reduction of 1−δmin

1+δmax
≤ 1.

This observation confirms that the accurate p̂tm,n estimation
helps to reduce the decoding error probability.

Theorem 5.5 (Decoding error bound of signSGD-MV).
Suppose the server performs the MV aggregation in (3),
i.e., Û t

MV,n = sign
(∑

m∈M Y t
m,n

)
. Then, the decoding

error probability is upper bounded by

PMV
E ≤ exp

(
−MγMV

M
)
, (25)

where γMV
M = p̄tn − 1

2 ln (2ep̄
t
n) is the error exponent of the

MV aggregation, and p̄tn = 1
M

∑
m∈M ptm,n is the average

of workers’ cross-over probabilities.

The error bound of MV decoder established in Theorem 5.5
follows an exponentially decreasing trend with M , same
with the FD aggregation. The error exponent γMV

M is ex-
pressed as the average of workers’ computing error proba-
bilities, and this term determines the decoding performance.

5.3. Upper Bounds of Decoding Errors under Attacks

We establish the upper bounds of the decoding error prob-
ability of signSGD-FD under the SSFA. When the SSFA
is considered, as explained in (11), the effective cross-over
probability p̃tℓ,n increases, which leads to an increase of
decoding error probability. The theorem below elucidates
the deterioration of the FD aggregation in the presence of
SSFAs.
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Theorem 5.6 (Decoding error bound for signSGD-FD under
the SSFA). Suppose the server performs the FD aggrega-
tion, and the workers in L ⊂ M with cardinality L are
contaminated by the stochastic sign flip attacks with prob-
ability r. Then, the decoding error probability is upper
bounded by

P FD
E ≤ exp

[
−(M − L)

(
1− δmin

1 + δmax

)
γ̃WMV
M,L

]
, (26)

where γ̃WMV
M,L = 1

M−L

[
MγWMV

M −LγWMV
L +

∑
ℓ∈L g

(
p̃tℓ,n

)]
is the modified error exponent of the FD aggregation with a
specific function g(p) = 1

2

(
1
2 − p

)
ln 1−p

p .

Compared to Theorem 5.4, Theorem 5.6 shows how the
decoding error bound of signSGD-FD changes by the SSFA
with probability r. First, the effective number of workers
decreases from M to M − L, which can increase the de-
coding error bound. However, γ̃WMV

M,L is greater than γWMV
M ,

which leads to the decrease of the decoding error bound. To
provide a more clear intuition on the two opposite effects,
we provide the following corollary for some special cases
of the sign flip probability.

Corollary 5.7 (Special case). Under the stochastic sign
flip attacks with the sign flip probability r ∈ {1, 1

2}, the
decoding error probability is upper bounded by

PWMV
E ≤

exp
[
−M

(
1−δmin

1+δmax

)
γWMV
M

]
, if r = 1

exp
[
− (M − L)

(
1−δmin

1+δmax

)
γWMV
M

]
, if r = 1

2

.

(27)

Corollary 5.7 clearly shows that the decoding error proba-
bility bound does not change under the SSFA with the sign
flip probability r = 1, i.e., the SIA. This result is counter-
intuitive because the adversarial attacks have shown the
degradation of the convergence rate. However, our result
confirms that the convergence rate remains unchanged if
we sagaciously harness the gradient information sent by the
adversarial workers with proper weights. It is also noted
that when r = 1

2 , the exponent term decreases from M to
M − L, which slows down the convergence rate. From this
result, we also observe that the worst-case attack scenario is
to use the sign flip probability of r = 1

2 . This observation
aligns with our intuition that the uniformly random gradient
sign flipping does not allow the server to exploit the gradient
sign information for decoding.

To better appreciate the distinctions, it is informative to
juxtapose the decoding error bound of signSGD-MV within
the framework of SSFA with r against that of signSGD-FD.

Theorem 5.8 (Decoding error bound of signSGD-MV).
Suppose L workers are under the stochastic sign flip at-
tacks with sign flip probability r. Then, the decoding error

probability of the signSGD-MV algorithm is upper bounded
by

PMV
E ≤ exp

[
− (M − 2rL) γ̃MV

M,L
]
, (28)

where γ̃MV
M,L = 1

M−2rL

[
MγMV

M − 2rLγMV
L + ϵL(r)

]
is the

modified error exponent of MV aggregation expressed with
a sufficiently small parameter ϵL(r).

Theorem 5.8 shows that the decoding error probability wors-
ens as the sign flip probability r increases. Unlike our
signSGD-FD method, when r = 1, the convergence rate of
signSGD-MV is significantly degraded by SSFA because
the decoding error bound increases considerably. Neverthe-
less, signSGD-MV can achieve the identical convergence
rate with signSGD-FD under the SSFA when r = 1

2 . As a
result, signSGD-FD provides a theoretical guarantee of su-
perior convergence rate than signSGD-MV under the SSFA
when r > 1

2 . We also empirically observe from numerical
experiments that signSGD-FD provides a faster convergence
rate than signSGD-MV under the SSFA, even when r = 1

2 .

6. Experiments
This section presents the experimental results on the image
classification to verify the learning performance of signSGD-
FD compared to other distributed learning algorithms.

6.1. Settings

Datasets & Training models. The real-world datasets used
for image classification simulation are MNIST (LeCun et al.,
1998), CIFAR-10, and CIFAR-100 (Krizhevsky & Hinton,
2009) datasets. For the learning models, we adopt a convolu-
tional neural network (CNN) (LeCun et al., 1998) model for
the MNIST dataset, and a ResNet-56 (He et al., 2016) model
for the CIFAR-10 and CIFAR-100 datasets. The number of
workers M is fixed to 15, and more details about simulation
settings are deferred to Appendix A.

Adversarial attacks. To evaluate signSGD-FD in the pres-
ence of attacks, we introduce the SIA and SSFA method in
Section 3.2. The sign-flipping probability r is set between
0 and 1, especially focusing on the r = 1 which is the SIA
case and the r = 1

2 case. Referring to (Karimireddy et al.,
2021), we fix the set of workers L compromised by the
attacks during the entire learning process.

Initial phase of signSGD-FD. An additional setting re-
quired for signSGD-FD is the aggregation in the initial
phase. Appendix B provides test accuracy comparisons ac-
cording to the initial phase duration Tin and the estimation
method of cross-over probabilities, and the results in the
subsequent sections are based on the settings which achieves
the best performance.
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Figure 1. Test accuracy vs. training rounds varying the number of
compromised workers L.

6.2. Effects of SIA (r = 1)

In Figure 1-(a) and (b), we provide the test accuracy assess-
ment of signSGD-FD on the effect of SIA. The general trend
of results is that signSGD-MV deteriorates significantly as
the number of compromised workers L increases, while
signSGD-FD can achieve almost the same accuracy as in
the absence of attacks if L < M

2 . These results convince us
that the LLR weights used in the FD aggregation can pro-
vide excellent protection of the training models against the
SIA method. Meanwhile, it can be seen that signSGD-FD
fails to converge in the L = 9 case. This can be considered
that the decoding error probability becomes greater than 1

2
in this case, making it no longer possible to perform the
accurate p̂tm,n estimation. These observations are consistent
with the analyses in Section 5 about the impact of r = 1
attacks, and even the uncertainty of weights.

6.3. Effects of SSFA
(
r = 1

2

)
We also evaluate signSGD-FD in the presence of SSFA with
r = 1

2 in Figure 1-(c) and (d). The test accuracy results
show that signSGD-FD still be more robust to the sign
flip attacks with r = 1

2 than signSGD-MV. Nevertheless,
signSGD-FD becomes to degrade gradually as the number
of compromised workers L increases, which aligns with
our analyses in Corollary 5.7. A notable point is that both
algorithms can learn the models in L = 12 case, unlike the
SIA case, since the effective number of workers for both
algorithms becomes M − L > 0.
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Figure 2. Test accuracy vs. training rounds varying sign-flipping
probability r.
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Figure 3. Test accuracy & communication costs comparison among
the attack-robust distributed learning algorithms.

6.4. Degradation Trend According to r

The degradation trend according to the sign-flipping prob-
ability r is illustrated in Figure 2 with L = 6. The results
for both datasets have the same trend that the test accuracy
loss becomes severer as r increases. On the other hand,
signSGD-FD achieves the best accuracy when r = 0 or 1,
and the worst accuracy for the r = 1

2 attack, but not that
serious. These results have already predicted through the
channel capacity analysis on SSFA.

6.5. Algorithms Comparison

We finally compare the robustness against attacks by com-
paring the test accuracy of signSGD-style algorithms, de-
picted in Figure 3-(a). Here, we set L = 6 with the SIA
method for this comparison. The details about the com-
pared algorithms are presented in Appendix A. The com-
parison results verify that the proposed signSGD-FD algo-
rithm can achieve the highest test accuracy compared to
other signSGD-style robust optimizers. Moreover, other
algorithms require susceptible parameter settings to obtain
high accuracy, but signSGD-FD is not so affected by these
settings, which can be observed in Appendix B.

Figure 3-(b) shows each algorithm’s communication costs
on the MNIST dataset. In this comparison, we adopt Gaus-
sian Byzantine attack (Blanchard et al., 2017), and also
apply Multi-Krum algorithm (Blanchard et al., 2017) on
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SGD and Top-K SGD optimizers to be robust against at-
tacks. Appendix A illustrates the details of these algorithms.
The results demonstrate that signSGD-type algorithms can
significantly reduce communication costs by 30x compared
to the Multi-Krum algorithm. We can even observe the
robustness of signSGD, showing that signSGD-MV can
achieve the same accuracy as signSGD-FD. Top-K SGD-
based multi-Krum requires 3x fewer costs than SGD but still
needs 10x more costs than our proposed algorithm, which
reveals the superiority of signSGD-FD.

7. Conclusion
In this paper, we have demonstrated that the convergence
rate of the signSGD-type algorithm remains invariant as
long as the number of adversarial workers is lower than that
of honest workers. This counterintuitive result is achieved
through a novel optimizer, signSGD-FD, which incorpo-
rates the concept of federated defense. Federated defense
employs learnable weights for weighted majority voting
during aggregation. The server dynamically learns these
weights based on the reliability estimation of the transmit-
ted local gradient information from the workers. These
weights are then used to decode the sign of aggregated lo-
cal gradients, minimizing sign decoding errors. We have
also provided a unified convergence rate analysis framework
applicable to various adversarial attack scenarios. Experi-
mental results demonstrate that signSGD-FD outperforms
traditional signSGD-MV, showcasing a faster convergence
rate, especially in the presence of adversarial attacks.
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A. Details of Experiment Settings
Datasets. The real datasets used for image classification model learning are the MNIST (LeCun et al., 1998), CIFAR-10,
and CIFAR-100 (Krizhevsky & Hinton, 2009) datasets. MNIST dataset consists of total 70,000 gray-scale image samples of
handwritten digits from 0 to 9 with size 28× 28, where 60,000 images are training data and the remaining 10,000 images are
test data. CIFAR-10 dataset consists of 60,000 32× 32 color images in 10 classes with 50,000 training images and 10,000
test images. CIFAR-100 is the same with CIFAR-10, except for 100 classes. Some common data augmentation methods
are used such as random cropping, horizontal random flipping, and random rotation. The data distribution for workers is
assumed to be IID that each worker has the same number of image samples for the entire classes of each dataset.

Neural networks. In the training process, we adopt a convolutional neural network (CNN) (LeCun et al., 1998) model for
the MNIST dataset, and a ResNet (He et al., 2016) model for the CIFAR-10 and CIFAR-100 datasets. The employed CNN
architecture contains N = 5× 105 parameters, consisting of two convolutional layers each with a 5× 5 kernel, connected
with two fully-connected layers. For the ResNet model, we use ResNet-56 model which has 56 layers with parameters
N = 8.5× 105.

Benchmarks. To evaluate the robustness against attacks and the communication efficiency of signSGD-FD, we compare the
test accuracy with other conventional DL algorithms. We briefly introduce three signSGD-based DL algorithms and the
leveraged parameters, which we adopt in the comparison as below:

• Election-signSGD (Sohn et al., 2020): Election-signSGD uses two-stage majority voting aggregation – multiple polling
stations for the first stage, and the final decision aggregation for the second stage. The number of polling stations are
the same as the number of workers, and the voting workers for each station is determined by the generator matrix G,
which is inspired from coding theory. The matrix G is generated by the random Bernoulli codes with r = 2, the best
setting for M = 15 in this paper. Notably, the authors assume that the first stage is not affected by any attack.

• Sto-signSGD (Jin et al., 2020): Sto-signSGD leverages stochastic sign quantization depending on the magnitude of
each gradient component. To be resilient to the attacks, this algorithm additionally uses the reputation-based weights in
the majority voting aggregation, which looks similar with our algorithm. We utilize the best parameter b = 0.012 for
CIFAR-10 dataset, where b determines the sign quantization probability for the gradient. The main difference from our
algorithm is that sto-signSGD assigns the weight of 0 for the suspected workers, while signSGD-FD can assign the
negative weights to those workers.

• Noisy signSGD (Chen et al., 2020): Noisy signSGD injects random Gaussian noise to the computed local gradients to
mitigate the effect of the adversarial attacks. The original goal of this algorithm is to address the heterogeneity of the
data distribution by decreasing the gap between mean and median of each gradient component. However, since it is
well known that median-based algorithms are attack resistant, we add this Noisy signSGD algorithm to the comparison.
We use the standard deviation parameter b = 10−3.

In the communication costs comparison, we use distributed SGD, Top-K SGD optimizers for the baseline. Considering the
robustness against attacks, we apply Multi-Krum algorithm to the above baseline algorithms. We elucidate the details for
each algorithm as below:

• Distributed SGD (Zinkevich et al., 2010): Distributed SGD leverages 32-bit full-precision information for each gradient
component. The aggregation rule is just computing the average of the workers’ local gradients.

• Top-K SGD (Stich et al., 2018): Top-K SGD selects only the largest K gradient components in magnitude to update its
model. As above, the locally computed gradients are averaged in the aggregation process, and the optimizer updates
the model by using 32-bit gradient information. In the comparison, we select only 10% of gradient component, i.e.,
K
N = 0.1.

• Multi-Krum (Blanchard et al., 2017): Multi-Krum is the attack-robust DL algorithm based on SGD optimizers,
which trains the model by selecting K workers who do not appear to be affected by the attacks. When there exist
L compromised workers in total M workers, the server scores each worker by adding the ℓ-2 distance between the
gradient of corresponding worker and the closest M −L− 2 gradients of other workers. Then, the server computes the
average of gradients by selecting the K lowest-score workers. This can be seen as updating the model with geometric
median for workers’ gradients.
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Communication costs. In Section 6.5, we compute the total communication cost for each algorithm required to achieve a
certain test accuracy. The communication costs per iteration and worker can be calculated by multiplying the number of the
shared gradient components per each worker by the bits required to represent each gradient component. We also consider
the costs for the uplink communication (from workers to server) and the downlink communication (from server to workers).
Based on this, Table I provides the communication costs for each base algorithm.

Table 1. Total communication costs for each base algorithm.

BASE ALGORITHMS TOTAL COMMUNICATION COSTS

SGD [32N + 32N ]×MT

TOP-K SGD
[(
32K +K log2

(
N
K

))
+ 32N

]
×MT

SIGNSGD-MV [N +N ]×MT

Hyper-parameters. For the hyper-parameters that we can tune during the simulations, the number of workers M is fixed to
15 and all workers use the same mini-batch size of Bm = 64,∀m ∈ [M ]. The learning rate of each algorithm is carefully
selected by comparing the converged test accuracy, where the value is δ = 10−3 and 10−1 for signSGD-based optimizers
and SGD-based optimizers, respectively. To stabilize the learning, we do not actively utilize momentum and weight decay.

B. Initial Phase Aggregation Design
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(a) Varying initial decoder type
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Figure 4. Test accuracy comparison according to the initial phase aggregation of signSGD-FD.

As we observe in Section 5.2, we should design the cross-over probability estimation process delicately. To find a better
estimation algorithm, we evaluate the test accuracy of signSGD-FV by changing the learning process in the initial phase,
which is described in Figure 4. Here, the number of workers M is 15, and 6 workers are attacked by the SIA method,
i.e., L = 6. The initial aggregation method of signSGD-FD is to perform the WMV aggregation by considering all
gradient coordinates in (14), but the easiest way is to not use the weights as with the MV aggregation. We compare these
two aggregation methods through the test accuracy results for CIFAR-10 image classification task. From the results in
Figure 4-(a), the original signSGD-FD using WMV aggregation has negligible degradation due to attacks, but the accuracy
deterioration begins to emerge as we employ the MV aggregation. This is expected to result in inaccurate weight estimation
in the initial phase because the majority voting is greatly affected by the attack of r = 1. The effect of the initial phase
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duration can be seen in Figure 4-(b), and this shows us that Tin does not affect significantly unless the duration is not
too short to collect the error samples, such as Tin = 10. Therefore, we can summarize that the initial phase aggregation
design should be considered carefully, and the proposed signSGD-FD performs well in the presence of attackers. For
ease of implementation, we set the initial period Tin to 50, 100, 500 for the MNIST, CIFAR-10, and CIFAR-100 datasets,
respectively.

C. Proof of Theorem 5.3
Proof. We commence the proof by leveraging Assumption 5.2 to calculate the upper bound of the loss reduction of f t+1−f t.
Using the update rule of signSGD-based algorithms in (13), the upper bound can be derived as

f t+1 − f t ≤
〈
ḡt,xt+1 − xt

〉
+

N∑
n=1

Ln

2

(
xt+1
n − xt

n

)2
=

N∑
n=1

[
−ḡtn · δÛ t

n +
Ln

2

(
−δÛ t

n

)2]

= −δ

N∑
n=1

ḡtnÛ
t
n +

1

2
δ2∥L∥1

= −δ∥ḡt∥1 +
δ2

2
∥L∥1 + 2δ

N∑
n=1

∣∣ḡtn∣∣1[Ut
n ̸=Ût

n]
. (29)

By taking expectation according to the randomness of Û t
n, f t+1 − f t conditioned by xt can be upper bounded by

E
[
f t+1 − f t

∣∣xt
]
≤ −δ∥ḡt∥1 +

δ2

2
∥L∥1 + 2δ

N∑
n=1

∣∣ḡtn∣∣P [U t
n ̸= Û t

n

]
≤ −δ∥ḡt∥1 +

δ2

2
∥L∥1 + 2δPmax

E

N∑
n=1

∣∣ḡtn∣∣
= −δ (1− 2Pmax

E ) ∥ḡt∥1 +
δ2

2
∥L∥1. (30)

Next, we take the expectation over xt, and apply a telescoping sum over the iterations, which provides

f1 − f⋆ ≥ f1 − E
[
fT
]

= E

[
T∑

t=1

f t − f t+1

]

≥ E

[
T∑

t=1

{
δ (1− 2Pmax

E ) ∥ḡt∥1 −
δ2

2
∥L∥1

}]
,

= δ (1− 2Pmax
E )E

[
T∑

t=1

∥ḡt∥1

]
− δ2T

2
∥L∥1, (31)

where the last equality holds when δ is fixed according to the training round t ∈ [T ]. Consequently, by plugging the learning

rate δ =
√

2(f1−f⋆)
T∥L∥1

into (31), we obtain

E

[
1

T

T∑
t=1

∥ḡt∥1

]
≤ 1

1− 2Pmax
E

[
1

δT

(
f1 − f⋆

)
+

δ

2
∥L∥1

]

=
1

1− 2Pmax
E

√
2 (f1 − f⋆) ∥L∥1

T
. (32)

This completes the proof.
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D. Proof of Theorem 5.4
Proof. We define a binary random variable that indicates the decoding error event, i.e., Zt

m,n = 1[Ut
n ̸=Y t

m,n]
. When

employing the FD aggregation with the imperfect LLR weight ŵt
m,n = ln

1−p̂t
m,n

p̂t
m,n

with the uncertainty (23), decoding
failures arise if the cumulative sum of weights assigned to the incorrectly decoding workers exceeds half of the total weight.
Using this fact, the decoding error probability is rewritten as

P
[
U t
n ̸= Û t

FD,n

]
= P

[
M∑

m=1

ŵt
m,nZ

t
m,n ≥ 1

2

M∑
m=1

ŵt
m,n

]

= P

[
M∑

m=1

ŵt
m,n

(
Zt
m,n − ptm,n

)
≥

M∑
m=1

ŵt
m,n

(
1

2
− ptm,n

)]

= P

[
M∑

m=1

ŵt
m,nZ̄

t
m,n ≥ η

]
, (33)

where Z̄t
m,n = Zt

m,n − ptm,n and η =
∑M

m=1 ŵ
t
m,n

(
1
2 − ptm,n

)
. Applying Chernoff bound to (33) for s > 0 yields an

upper bound on the error probability, expressed as:

P

[
M∑

m=1

ŵt
m,nZ̄

t
m,n ≥ η

]
≤ min

s>0
e−ηs E

[
exp

(
s

M∑
m=1

ŵt
m,nZ̄

t
m,n

)]

= min
s>0

e−ηs
M∏

m=1

E
[
esŵ

t
m,nZ̄

t
m,n

]
. (34)

Here, we leverage the large deviation bound established in Lemma 1 in (Kearns & Saul, 1998), which is stated as

(1− p)e−tp + pet(1−p) ≤ exp

(
1− 2p

4 ln 1−p
p

t2

)
, (35)

for all p ∈ [0, 1] and |t| < ∞. Then, we obtain the upper bound of the expectation term in (34) as

E
[
esŵ

t
m,nZ̄

t
m,n

]
= ptm,ne

sŵt
m,n(1−pt

m,n) +
(
1− ptm,n

)
e−sŵt

m,np
t
m,n

≤ exp

 1− 2ptm,n

4 ln
1−pt

m,n

pt
m,n

(
ŵt

m,n

)2
s2


= exp

[
1

2

(
1

2
− ptm,n

)
ŵt

m,n

wt
m,n

ŵt
m,ns

2

]
, (36)

where the last equality follows from wt
m,n = ln

1−pt
m,n

pt
m,n

. From the uncertainty of LLR weight in (23), we can express the
upper bound as

E
[
esŵ

t
m,nZ̄

t
m,n

]
≤ exp

[
1 + δmax

2

(
1

2
− ptm,n

)
ŵt

m,ns
2

]
. (37)

Invoking (37) into (34), and also using η =
∑M

m=1 ŵ
t
m,n

(
1
2 − ptm,n

)
, the upper bound of the FD decoding error probability

becomes

P
[
U t
n ̸= Û t

FD,n

]
≤ min

s>0
e−ηs exp

[
(1 + δmax) s

2

2

M∑
m=1

(
1

2
− ptm,n

)
ŵt

m,n

]

= min
s>0

exp

[
(1 + δmax) η

2
s2 − ηs

]
= exp

[
− 1

2 (1 + δmax)
η

]
, (38)
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where the last equality follows from the fact that s = 1
1+δmax

is the minimizer of the optimization problem in (38). Now, we
derive a lower bound of η in terms of δmin as

η =

M∑
m=1

ŵt
m,n

(
1

2
− ptm,n

)

=

M∑
m=1

(
1

2
− ptm,n

)
ŵt

m,n

wt
m,n

ŵt
m,n

≥ (1− δmin)

M∑
m=1

(
1

2
− ptm,n

)
wt

m,n. (39)

Consequently, by substituting (39) to (38), the upper bound becomes

P
[
U t
n ̸= Û t

FD,n

]
≤ exp

[
−M

(
1− δmin

1 + δmax

)
· 1

2M

M∑
m=1

(
1

2
− ptm,n

)
ln

1− ptm,n

ptm,n

]

= exp

[
−M

(
1− δmin

1 + δmax

)
γWMV
M

]
. (40)

This concludes the proof.

E. Proof of Theorem 5.5
Proof. Similar to the proof in Appendix D, we express the decoding error probability of the MV aggregation in terms of a
binary random variable Zt

m,n = 1[Ut
n ̸=Ût

MV,n]
as

P
[
U t
n ̸= Û t

MV,n

]
= P

[
M∑

m=1

Zt
m,n ≥ M

2

]
. (41)

By applying Markov’s inequality in (41), the MV decoding error probability is upper bounded as

P
[
U t
n ̸= Û t

MV,n

]
≤ min

s>0
e−

M
2 s E

[
exp

(
s

M∑
m=1

Zt
m,n

)]

= min
s>0

e−
M
2 s

M∏
m=1

E
[
esZ

t
m,n

]
. (42)

Using the moment generating function of Zt
m,n which follows Bernoulli distribution with ptm,n = P

[
Zt
m,n = 1

]
, the upper

bound of the MV decoding error probability becomes

P
[
U t
n ̸= Û t

MV,n

]
≤ min

s>0
e−

M
2 s

M∏
m=1

(
ptm,ne

s + 1− ptm,n

)
= min

s>0
exp

[
−M

2
s+

M∑
m=1

ln
(
ptm,n (e

s − 1) + 1
)]

≤ min
s>0

exp

[
−M

2
s+

M∑
m=1

ptm,n (e
s − 1)

]
, (43)

where the last inequality comes from the property x ≥ ln(1 + x) when x ≥ 0. Let us denote the average of workers’
cross-over probabilities as p̄tn = 1

M

∑M
m=1 p

t
m,n. Then, by substituting s = ln 1

2p̄t
n

which minimizes the upper bound in
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(43), the upper bound becomes

P
[
U t
n ̸= Û t

MV,n

]
≤ exp

[
−M

2
ln

1

2p̄tn
+Mp̄tn

(
1

2p̄tn
− 1

)]
= exp

[
−M

(
p̄tn − 1

2
ln
(
2ep̄tn

))]
= exp

(
−MγMV

M
)
. (44)

This concludes the proof.

F. Proof of Theorem 5.6
Proof. In order to analyze the deterioration of the FD aggregation caused by the stochastic sign flip attacks, we leverage the
result of Theorem 5.4. For ease of expression, we define a function g(p) = 1

2

(
1
2 − p

)
ln 1−p

p for p ∈ [0, 1]. Then, the FD
decoding error bound is derived as

P
[
U t
n ̸= Û t

FD,n

]
≤ exp

−( 1− δmin

1 + δmax

)
·

 ∑
m∈M\L

g
(
ptm,n

)
+
∑
ℓ∈L

g
(
p̃tℓ,n

)
= exp

[
−
(
1− δmin

1 + δmax

)
·

( ∑
m∈M

g
(
ptm,n

)
−
∑
ℓ∈L

g
(
ptℓ,n

)
+
∑
ℓ∈L

g
(
p̃tℓ,n

))]

= exp

[
−
(
1− δmin

1 + δmax

)
·

(
MγWMV

M − LγWMV
L +

∑
ℓ∈L

g
(
p̃tℓ,n

))]
, (45)

where the error exponent of WMV decoder without attacks γWMV
M = 1

M

∑
m∈M g

(
ptm,n

)
and γWMV

L = 1
L

∑
ℓ∈L g

(
ptℓ,n

)
are exploited. Concentrating on the coefficients of error exponents, the error bound of FD aggregation in the presence of
attacks becomes

P
[
U t
n ̸= Û t

FD,n

]
≤ exp

[
− (M − L)

(
1− δmin

1 + δmax

)
γ̃WMV
M,L

]
, (46)

where γ̃WMV
L = 1

M−L

[
MγWMV

M − LγWMV
L +

∑
ℓ∈L g

(
p̃tℓ,n

)]
is the modified error exponent. This concludes the proof.

G. Proof of Corollary 5.7

Proof. From the result of Theorem 5.6, we modify the
∑

ℓ∈L g
(
p̃tℓ,n

)
term according to the sign flip probability r = 1 and 1

2 .
Using the compromised cross-over probability in (11), we can derive the property as

1

2
− p̃tℓ,n =

1

2
−
(
ptℓ,n + r

(
1− 2ptℓ,n

))
= (1− 2r)

(
1

2
− ptℓ,n

)
≜ qtℓ,n. (47)

Then, we can organize the g
(
p̃tℓ,n

)
term as

g
(
p̃tℓ,n

)
=

1

2

(
1

2
− p̃tℓ,n

)
ln

1− p̃tℓ,n
p̃tℓ,n

=
1

2
qtℓ,n ln

1
2 + qtℓ,n
1
2 − qtℓ,n

, (48)
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where − 1
2 < −

(
1
2 − ptℓ,n

)
≤ qtℓ,n ≤ 1

2 − ptℓ,n < 1
2 . It can be easily checked that h(x) = x ln 1/2+x

1/2−x is an even function,

i.e., h(x) = h(−x). Therefore, we can obtain the results that 0 ≤
∑

ℓ∈L g
(
p̃tℓ,n

)
≤
∑

ℓ∈L g
(
ptℓ,n

)
= LγWMV

L . The lower

bound of the inequality can be achieved when r = 1
2 , and the upper bound also can be achieved in the r = 1 case. By

substituting these results to the error exponent γ̃WMV
L in Theorem 5.6, the error bound of FD aggregation becomes

P
[
U t
n ̸= Û t

FD,n

]
≤

exp
[
−M

(
1−δmin

1+δmax

)
γWMV
M

]
, if r = 1

exp
[
−
(

1−δmin

1+δmax

) (
MγWMV

M − LγWMV
L

)]
, if r = 1

2

. (49)

Since our distributed learning system considers that all workers employ the same mini-batch sizes, i.e., Bm = Bm′ ,∀m ̸=
m′, which results in the identical cross-over probabilities ptm,n = ptm′,n by referring the proof of Theorem 1 in (Bernstein
et al., 2018). Therefore, we can note that the error exponents of worker set M and L are the same, i.e., γWMV

M = γWMV
L .

Consequently, we can obtain the final result of Corollary 5.7 as

P FD
E ≤

exp
[
−M

(
1−δmin

1+δmax

)
γWMV
M

]
, if r = 1

exp
[
− (M − L)

(
1−δmin

1+δmax

)
γWMV
M

]
, if r = 1

2

. (50)

H. Proof of Theorem 5.8
Proof. Aligning with the proof of Theorem 5.5 in Appendix E, we can easily derive the upper bound of MV decoding error
probability as

P
[
U t
n ̸= Û t

MV,n

]
≤ exp

[
−M

(
p̃tn − 1

2
ln
(
2ep̃tn

))]
, (51)

where p̃tn is the average of cross-over probabilities for honest workers m ∈ M\L and compromised workers ℓ ∈ L, i.e.,

p̃tn =
1

M

 ∑
m∈M\L

ptm,n +
∑
ℓ∈L

p̃tℓ,n


=

1

M

 ∑
m∈M\L

ptm,n +
∑
ℓ∈L

(
ptℓ,n + r

(
1− 2ptℓ,n

))
=

1

M

[ ∑
m∈M

ptm,n + r
∑
ℓ∈L

(
1− 2ptℓ,n

)]

=
1

M

∑
m∈M

ptm,n +
rL

M

(
1− 2

L

∑
ℓ∈L

ptℓ,n

)

= p̄tn +
rL

M

(
1− 2p̄tL,n

)
, (52)

where p̄tL,n = 1
L

∑
ℓ∈L ptℓ,n is the average of true cross-over probabilities for the compromised workers ℓ ∈ L. Using (52),

the exponent of error bound in (51) can be expressed as

M

[
p̃tn − 1

2
ln
(
2ep̃tn

)]
= Mp̄tn + rL

(
1− 2p̄tL,n

)
− M

2
ln
(
2ep̃tn

)
= M

[
p̄tn − 1

2
ln
(
2ep̄tn

)]
+ rL

(
1− 2p̄tL,n

)
− M

2
ln

p̃tn
p̄tn

= MγMV
M + rL

(
1− 2p̄tL,n

)
− M

2
ln

p̃tn
p̄tn

, (53)
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where the error exponent of MV decoder without attack γMV
M = p̄tn − 1

2 ln (2ep̄
t
n) is used. Likewise, we can continue the

proof by leveraging the error exponent term γMV
L = p̄tL,n − 1

2 ln
(
2ep̄tL,n

)
as

M

[
p̃tn − 1

2
ln
(
2ep̃tn

)]
= MγMV

M − 2rL

(
p̄tL,n − 1

2
ln
(
2ep̄tL,n

))
+ rL− rL ln

(
2ep̄tL,n

)
− M

2
ln

p̃tn
p̄tn

= MγMV
M − 2rLγMV

L − M

2
ln

p̃tn
p̄tn

− rL ln
p̄tL,n

1/2

= MγMV
M − 2rLγMV

L + ϵL(r), (54)

and ϵL(r) = −M
2 ln

p̃t
n

p̄t
n
− rL ln

p̄t
L,n

1/2 is a sufficiently small parameter which contains the ratios of the average cross-over
probabilities. Consequently, if we only focus on the coefficients of the error exponents γMV

M and γMV
L , we can simply express

the error bound of the MV decoder affected by the stochastic sign flip attacks with probability r as

P
[
U t
n ̸= Û t

MV,n

]
≤ exp

[
−
(
MγMV

M − 2rLγMV
L + ϵL(r)

)]
= exp

[
− (M − 2rL) γ̃MV

M,L
]
, (55)

where γ̃MV
M,L = 1

M−2rL

[
MγMV

M − 2rLγMV
L + ϵL(r)

]
is the error exponent of MV decoder in the presence of attacks. This

concludes the proof.
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